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A general approach to magnetic losses in Soft Magnetic Composites (SMC) is discussed. It is applied to exciting conditions typical of 
applications, where the induction waveform is most frequently non-sinusoidal. The standard predicting approach, based on the 
Statistical Theory of Losses (STL) and the related concept of loss separation, is extended to the case of granular heterogeneous 
materials. As a starting point, the classical loss component is calculated, taking into account that in small enough samples the measured 
loss is independent of the specimen cross-sectional area, because of negligible grain-to-grain (macroscopic) eddy currents. The loss 
separation is then performed under the conventional sinusoidal induction regime and the STL is used to identify a limited set of 
parameters, associated with the prediction of the excess loss, by which the energy loss under distorted induction can be predicted. 
Significant predicting examples are provided, regarding two different SMCs, where the induction waveform is either triangular or 
distorted by introduction of a third harmonic component. 

 
Index Terms—Soft Magnetic Composites, Statistical Theory of Losses, Classical losses, Excess losses, Distorted induction 
 

I. INTRODUCTION 

OFT MAGNETIC COMPOSITES (SMCs) display properties of 
great interest for modern electrical engineering 

applications. The significant resistivity associated with their 
heterogeneous granular structure tends to inhibit macroscopic 
eddy current patterns in magnetic cores and the related energy 
dissipation [1], making them suitable for applications in high-
speed machines [2], and in power electronics. Another 
advantage derives from the quasi-isotropic behavior of these 
materials, allowing flexibility in core design [3]. However 
complications appear in loss analysis, because one has to deal 
with complex flux regimes, ubiquitously arising in electrical 
machines and in power electronics [4][5][6], while the data 
provided by the manufacturers typically refer, according to the 
standards, to sinusoidal induction. A loss model, simple 
enough to ensure acceptable computation time, quantitatively 
accounting for the role of flux distortions, would be therefore 
important for the accurate prediction of iron losses. 

In a previous paper, we have addressed the general 
problem of experimentally assessing and theoretical predicting 
the magnetic losses in SMCs [7] by means of measurements 
carried out under sinusoidal induction up to 10 kHz, and their 
interpretation in the framework of the Statistical Theory of 
Losses (STL) [8]. With respect to the soft laminations, 
peculiar differences have emerged in the statistics of the 
Magnetic Objects (MOs), which are the regions reversing the 
magnetization in any sample cross-section in a correlated 
fashion. In particular, it has been shown that the number no of 
MOs simultaneously active under quasi-static excitation is far 
from unity, contrary to what generally happens in laminated 
materials [8]. It is consequently observed that the excess loss 
component Wexc attains the typical Wexc ∝ f 1/2 dependence 
only when the magnetizing frequency f approaches the kHz 
range [7]. This engenders complications in the treatment of the 

losses under distorted induction waveform, which have been 
discussed and predicted in soft laminations relying on such a 
Wexc ∝ f 1/2 rule [9][10][11].  

A rate-dependent hysteresis model for magnetic losses 
under non-sinusoidal induction in SMCs has been recently 
proposed [12]. This approach, however, disregards the 
classical losses and is restricted to a maximum frequency of a 
few hundred Hz, where SMCs hardly exhibit any dynamic loss 
contribution. 

As a first step in the development of a loss model in 
SMCs, we need to establish what is the scale to be considered 
for the involved eddy currents (e.c.). That is, we wish to 
understand whether the currents remain mostly confined 
within the particles (in which case we define them as 
microscopic e.c.) or they can appreciably flow upon the scale 
of the sample cross-section (macroscopic e.c.) through random 
interparticle contacts. To this end, the loss is measured on ring 
samples of commercial SMCs having increasing cross-
sectional area So. It is concluded that macroscopic e.c. do not 
affect the loss with sufficiently small So values (i.e. with So  = 
5 mm x 5 mm or lower). This brings about a good 
simplification in our analysis, which will be focused here in 
the prediction of the role of the microscopic e.c. We shall, in 
particular, start with the calculation for sinusoidal induction of 
the classical losses pertaining to the individual particles. In 
this specific context we qualitatively attach a microscopic 
character to the e.c. flowing on the scale of the particle. Based 
then on micrographic inspections, the sample cross-section is 
assumed to be covered by rectangular grains with suitably 
distributed dimensions. Different regular shapes (such as 
squares or ellipses) could equivalently be assumed, with little 
effect on the final calculated loss figure. 

With the so obtained classical losses and the hysteresis loss 
component secured by extrapolation of the measured loss to 
the frequency f→0, the residual excess loss is interpreted in 
the framework of the STL, the parameters of the model being 
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identified with the measurements made under sinusoidal 
induction. The results are then used to predict the magnetic 
losses under non-sinusoidal induction. This approach is 
validated by experiments performed in a broad frequency 
range (up to 8 kHz for the fundamental harmonic), as 
potentially required for applications in very high speed 
electrical machines. The complex problems involved with 
local minima of the induction (minor loops) require quasi-
static loop modeling and will be treated in a forthcoming 
paper. 

The paper is organized as follows: 
− in Section II, the problems related to the classical loss 

computation are dealt with. 
− in Section III, the parameters identification, carried out 

for sinusoidal induction, is discussed. 
− in Section IV the loss prediction is compared with 

experiments performed, for a range of peak induction 
values, either with triangular induction or distortion 
introduced by a third harmonic component. 

− in Section V, the conclusions of the work are given. 

II. THE CLASSICAL LOSS COMPONENT AND ITS CALCULATION  

The concept of classical loss, defined as the energy 
dissipated in a magnet fictitiously deprived of the magnetic 
domains and, as such, representing a lower limiting value for 
the loss, has been given clear physical meaning in the 
statistical treatment of the magnetization process in laminated 
materials [8]. According to the STL, the classical loss Wcl adds 
to the hysteresis (DC) Whyst and excess loss Wexc components 
to provide the total loss W. Calculating Wcl in heterogeneous 
materials is a more complicated matter, because, as previously 
stated, eddy current patterns can circulate at the same time on 
the scale of the individual particles (microscopic) and that of 
the sample cross-section (macroscopic) [13][14][15][16]. The 
problem is sometimes addressed from a phenomenological 
viewpoint, assuming that Wcl ∝ f  and Wexc ∝ f1/2 and 
determining the proportionality constants by best fit of the 
measured loss over a range of frequencies [17]. This is an 
oversimplification, as the experiments show that the excess 
loss in SMCs follows a more complex frequency dependence 
than Wexc ∝ f1/2 [7]. Whereas the microscopic e.c. contribution 
it is often studied assuming spheroidal particles [18], a few 
authors consider the macroscopic e.c. and compute the 
classical loss by a Finite Element Method (FEM), solving a 
diffusion equation upon the whole sample [19][20]. This 
procedure exploits the so-called “ohmic” resistivity measured 
under DC conditions. This approach may be straightforward in 
mildly compacted materials [13], whose resistivity is mainly 
due to imperfections of the intergrain insulator, but its 
application to strongly compacted materials, where the 
electrical resistivity is due to intergrain percolation contacts, is 
dubious [16]. 

In this work we have experimentally found that the 
magnetic losses can increase with the sample size (i.e. cross-
sectional area) only beyond a certain critical dimension. With 
sufficiently small samples, the macroscopic e.c. play a 
negligible role. We shall focus here on such cases, in order to 
calculate the contribution of the microscopic e.c.  

Two types of commercial SMCs have been investigated: 
one developed for electrical machines (Höganäs Prototyping, 

material A), the other for power electronics (Höganäs 110i1P, 
material B) [21]. Both materials are made by compacting pure 
iron particles. Their main physical properties, as reported by 
the manufacturer, are shown in Table I. The resistivity of the 
composite is remarkably 3 orders of magnitude compared to 
pure Fe (ρFe = 104·10-9 Ω·m at room temperature). 

 
TABLE I 

 
PHYSICAL PARAMETERS OF THE MATERIALS  

(FROM THE MANUFACTURER [21]) 

  Material A Material B 
Relative permeability µr 450 110 
Electrical resistivity ρ (Ω·m) 280·10-6 7600·10-6 
Density δ (kg/m3) 7450 7260 

Magnetic testing has been performed as a function of 
frequency in ring shaped SMC samples by means of 
hysteresisgraph-wattmeter with digital control of the induction 
waveform. The setup is schematically shown in Fig. 1. The 
specific loss W is obtained by computing the area of the 
hysteresis cycle. The power source is a DC-20 kHz 5 kVA 
linear amplifier (CROWN mod. 5000VZ). When dealing with 
large samples (3, and 4 in Table II), the required apparent 
power is so high that it can be necessary to add a capacitor C 
in series with the primary winding, in order to overcome the 
amplifier voltage limit. Due to the low thermal conductivity of 
SMCs, sample heating can soon become a problem with the 
increase of frequency and peak polarization value Jp. For this 
reason, the test specimen is contained in a thermal bath at 0°C 
and the measuring time is 1 s at most.  

 

H

B

PC
(digital

feedback) 

IEEE 488 interface

 
Fig. 1 – Schematic view of the employed hysteresisgraph-wattmeter.   

 
A) Macroscopic eddy currents. 
The concept of eddy current patterns arising upon two different 
scales, that of the individual iron particle (microscopic e.c.) and 
that of the sample cross-section (macroscopic e.c.) leads us to 
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define the classical loss as the sum of microscopic and 
macroscopic terms: 

It is easily demonstrated that this is the case under the 
reasonable condition that the macroscopic e.c. have constant 
value over a distance spanning the particle size. It is also 
obviously concluded that only the term Wclass, MAC in (1) 
should depend on the cross-sectional area of the sample. To 
clarify this matter, we have measured the energy loss W(f) on 
toroidal samples of different cross-sectional areas (material 
A), ranging from 2.5 mm × 2.5 mm to 20 mm × 10 mm 
(Table II). The ratio of outside to inside diameter was always 
taken around 1.1, to ensure good homogenetity of the 
induction throughout the sample cross-section. 
 

TABLE II 
THE INVESTIGATED SPECIMENS (MATERIAL A) 

Ring sample Cross-section ( mm × mm) 

1 2.5 × 2.5 
2 5 × 5 

3 10 × 10 
4 20 × 10 

The magnetic losses were measured under controlled 
sinusoidal induction in all these samples for the two peak 
polarization values Jp = 0.5 T and Jp = 1 T in the frequency 
ranges DC-10 kHz (toroids 1 and 2) and DC - 2 kHz (toroids 
3 and 4). The 2 kHz upper limit in the bigger samples is 
imposed by the maximum available exciting power.  
 It is apparent in Fig. 2 that W(f) increases faster with f in 
the bigger samples 3 and 4, a clear effect of macroscopic e.c. 
rising with cross-sectional area. But no significant differences 
can be found in the toroids 1 and 2, even at the highest 
frequencies. As discussed in [16], macroscopic eddy current 
loops may form, because of the presence of random contacts 
among grains formed during the compaction process. The loop 
size depends on the number of contacts, that is, on the 
compaction pressure. In sufficiently small samples no closed 
macroscopic random paths can form, the e.c. are confined to 
the scale of the particle, and Wclass = Wclass,MIC. The 
contribution Wclass,MAC will appear as soon as the critical 
sample size is achieved. According to the results of Fig. 2 
(material A), this size appears intermediate between that of 
toroid 2 and toroid 3. However, the computation of these 
macroscopic eddy currents is by no mean obvious, because it 
requires a specific model for the intergrain random contacts 
and the related paths. For the time being, we shall focus on the 
properties of samples small enough (e.g. samples 1 and 2) to 
make the macroscopic eddy currents negligible.  
B. Microscopic eddy currents. 
The grain structure of the investigated SMCs has been 
observed using a scanning electron microscope. Fig. 3 
provides an example of micrograph taken of material A (for 
the material B an example is shown in [7]). It is observed that 
the particles in the material A are bigger and have undergone 
more severe plastic deformation than in the material B, 

resulting in density closer to that of iron (δA = 7450 kg·m-3; δB 

= 7260 kg·m-3; δFe = 7870 kg·m-3). 
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Fig. 2 – Energy loss W versus frequency  f  in toroids of material A having 
different cross-sectional area. Peak polarization values Jp=0.5 T and Jp=1 T. A 
faster increase of W versus f is observed in the bigger toroids 3 and 4.  

 

 
 

Fig. 3 – Cross-sectional micrographic view of a type A SMC sample.  

 
In order to calculate Wclass,MIC, the classical eddy current loss 
associated with the currents circulating within the particles, we 
assume the sample cross-section covered with rectangular 
grains, accounting for the shape of the actual irregularly 
shaped particles. This choice is justified by the fact that 
circular grains, frequently invoked in the literature [13][14], 
cannot fill the plane and take the non equiax nature of most 
particles into account. Here we first treat the case of the 

class class,MAC class,MICW W W= +  [J/m3] (1)
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individual particle with rectangular cross-section, to further 
generalize the problem to an ensemble of particles with 
distributed geometrical parameters. 
 

0
xz

y

 
Fig. 4 – Cross-section of the model rectangular iron particle and Poisson’s 
equation for the magnetic field under the time dependent applied field Ha(t).  

 
1) Eddy currents in the equivalent rectangular particle 

An equivalent rectangular particle of aspect ratio R = l/L 
and cross-sectional area S = L⋅ l, belonging to the (x, y) plane 
(Fig. 4) is subjected to the z-directed time-varying applied 
field Ha(t) and the ensuing polarization J(t) (taken equal to the 
induction B(t)). Negligible skin effect is envisaged. This 
assumption can be verified by computing, for a frequency 
f=10000 Hz (equal to the maximal test frequency), the skin 
dept (s.d.) thanks to the classical formula: 

Fe r 0

1
s.d.

fσ µ µ π
=  (2) 

Where σFe=1/ρFe=9.93·106 S·m-1 is the conductivity of pure 
iron, µr≈400 is an estimation of the composite relative 
magnetic permeability given by the manufacturer [21]. The 
skin dept found by this formula is 80 µm, which is superior to 
the half of the mean grain dimension of material A <s>A = 
114 µm (assuming the grains as squares). 

The 2-D Poisson’s equation for the magnetic field 
∆H=σFe·dJ/dt, where H is the sum of applied and eddy current 
fields, and H(t) = Ha(t) on the particle boundary, is solved by 
finite element analysis and the 2-D eddy current density j(x, y) 
in each point of the grain is calculated. Note that the stated 
boundary condition H(t) = Ha(t) is the same on the particle 
contour and the sample surface. This is acceptable in the 
absence of macroscopic eddy currents [22]. By integrating | 
j(x, y)|2 over the grain area, the energy loss is obtained as  

( , ) 2
class,MIC p

Fe

1
( , ) ( ) ( )R SW J f K R S J t

ρ
= ⋅ ⋅ ɺ  ,   [J/m3] (3) 

where T = 1/f and the role of the particle aspect ratio is 
included in the dimensionless function K(R).  The calculated 
behavior of K(R), shown in Fig. 5, puts in evidence that for 
given J(t) and S, the loss is reduced if the width-to-length ratio 
is small (a “flat” particle). 

0.0 0.5 1.0
0.00

0.01

0.02

0.03

K
 (R

)

R  
Fig. 5: Function K(R) describing the evolution of the classical loss with the 
aspect ratio R=l/L in the equivalent rectangular particle. 

The formula (2) permits to retrieve the well-known 
expression of the classical loss in a lamination in the limit 
l/L→0. This is explained in the appendix. 
2) Statistical distribution of the particle size.  
 Micrographic investigation can provide average values for 
S and R and the rectangular grain model can accordingly be 
adopted, then the previous calculation is applied, leading to a 
figure for Wclass,MIC [7]. Fig. 6 illustrates the relationship 
between the real irregular grain and the model one. But, given 
the non-linear nature of the problem, a refined approach taking 
the dispersion of S and R values into account would lead to a 
more realistic prediction for the microscopic classical loss by 
integrating Wclass,MIC(S, R) over the distribution function f (S, 
R).  
 An extensive micrographic analysis centered on the use of 
an image processing software allows to find experimental  
 

 
Fig. 6: Characteristic dimensions of a real irregular particle and the equivalent 
rectangular grain having same area S and aspect ratio R, defined as the ratio 
between the characteristic width and the characteristic length.  

distribution functions for S and R in both materials. S and R 
are non-independent random variables. They appear to follow 
a bi-variate lognormal law: 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) 
< 

 

5

( ) ( )

( ) ( )( )

2

,

2

,

ln1 1
, exp

2 1

2 ln lnln
            

S

SS R S R

S R S RR

R S R

S
f S R

S R

S RR

α
ξπξ ξ χ

χ α αα
ξ ξ ξ

 −= ⋅ − 

− −− + − 


 (4)

The parameters appearing in (4) can be estimated by statistical 
methods [23], and their definitions and values, for both 
materials, are summarized in Table III.   
 

TABLE III 
PARAMETERS OF THE LOG-NORMAL DISTRIBUTION FUNCTION (4) 

Parameter Definition Material A Material B 

αS 
Mean value of the particle cross-

sectional area logarithm 
-18.56 -21.4 

αR 
Mean value of the particle aspect 

ratio logarithm 
-0.45 -0.50 

ξS 
Standard deviation of the particle 

cross-sectional area logarithm 
0.92 0.46 

ξR 
Standard deviation of the particle 

aspect ratio logarithm 
0.32 0.16 

χS,R 
Correlation coefficient between ln(S) 

and ln(R) 
-0.27 -0.52 

 
The mean size of an equivalent square particle is <s>A = 
114 µm and <s>B = 29.5 µm for the materials A and B, 
respectively.  Using this statistical model, the microscopic loss 
in the SMC can be computed according to the equation 

( , ) 2
class,MIC p 0

Fe Fe

0 0

1
( , ) ( ) ( )

( , ) ( )

TR SW J f K R S f J t dt

f S R K R S dRdS

δ
δ ρ

∞ ∞

= ⋅ ⋅ ⋅

⋅

∫

∫∫

ɺ

 
[J/m3] (5)

The ratio (δ/δFe) < 1 between SMC and iron densities accounts 
for the fact that the insulating material does not participate in 
the generation of the eddy current loss. 

We compare in Fig. 7 the prediction of the classical loss 
made in materials A and B using either (5) or (3), that is 
considering or not the statistical distribution of S and R.  
While one can appreciate the role of the particle size, with 
Wclass,MIC going roughly as <s>2, it is noted that for the material 
A, characterized with quite wider (R, S) distribution than 
material B, a correspondingly larger effect (about 8% 
increase) is predicted.  
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Fig. 7- Microscopic classical loss Wclass,MIC predicted in materials A and B 
(sinusoidal polarization, peak value Jp = 1 T) either taking all grains equal to 
the actual average grain (dashed lines) or considering the distribution of cross-
sectional area S and aspect ratio R. 

3) Rectangular versus elliptical particles.  
 The model rectangular particles conveniently fill the 
available space, consistent with the high density of the SMCs. 
We may however wonder to what extent the calculated  
Wclass,MIC is affected by the specific shape of the model 
particle. To this end, we have performed the eddy current 
calculation for elliptical particles, a representation of the real 
particles more realistic than the circular/spherical grains 
conventionally assumed in the literature [13][14]. Again, the 
computations have been carried out using finite elements, 
because analytical formulations only exist for circular or 
spherical shapes [18]. The problem to solve is similar to the 
one shown in Fig. 4, now with an elliptical boundary. Thus, 
taking the aspect ratio R=rm/rM, where rm and rM and are the 
minor and major axis of the ellipse, respectively, and the area 
S = πrmrM, the Poisson equation for the magnetic field 
∆H=σFe·dJ/dt is solved using FEM with Dirichlet boundary 
conditions. The classical eddy current loss ( ) ( )M m,

class,MIC p,
r r J fW is 

obtained after integration of the squared current density on the 
equivalent ellipse area. Using the statistical distribution f(S,R), 
we obtain 
 

( ) ( ) ( ) ( ) ( )ELLIP

class,MIC p

Fe

M m,

class,MIC p

0 0

, , ,r rW J f f S R J f dRdSW
δ

δ

∞ ∞

= ∫ ∫  [J/m3] (6) 

Fig. 8 provides a comparison of the loss calculated in the 
material A (sinusoidal polarization, Jp = 1 T) for the 
rectangular (5) and elliptical (6) model grain. A 10% higher  
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Fig. 8 - Material A. Classical eddy current loss predicted starting from either 
rectangular or elliptical model particle and distributed geometrical parameters.   

loss figure is obtained, for the same (S,R) distribution,  with 
the elliptical particle. We conclude that the true value of 
Wclass,MIC should lie between these two values. In the following 
calculations, the rectangular model particle will be adopted.  

III.  LOSS UNDER SINUSOIDAL POLARIZATION: PARAMETERS 

IDENTIFICATION 

Having calculated, according to the previous discussion, 
the classical energy loss component, we can proceed to 
determine the other two components: the hysteresis loss Whyst 
and the excess loss Wexc [8]. We perform this operation for 
sinusoidal induction waveform.  
Hysteresis energy loss Whyst. This component depends, in the 
absence of minor loops, exclusively on the peak polarization 
Jp [9]. It is obtained by experiments, namely by extrapolating, 
at any Jp value, the measured loss versus frequency curve to 
zero frequency. 
Excess energy loss Wexc. This term, arising from the 
inhomogeneous character of the magnetization process (i.e. 
the domain wall displacements) is experimentally obtained by 
subtracting at each frequency Whyst and Wclass from the total 
loss W. It is theoretically predicted, under very general terms, 
starting from the expression for the instantaneous specific 
power loss Pexc(t) [10], according to the expression  

|)(|1|)(|
4

1
2

)( 2
o

2
o

ooo
exc tJtJ

Vn

VGSVn
tP o ɺɺ














−+= σ  [W/m3] (7)

where no is the number of MOs under quasi-static excitation, 
So is the cross-sectional area of the sample, G = 0.1356, and Vo 
is related to the statistical  distribution of the reversal fields for 
the MOs [8]. The parameters no and Vo both depend on Jp. 
Wexc, obtained by integrating Eq. (3) over the period T, is 
expressed for sinusoidal J(t) as 

(sin)
exc p o o p

2

o o
p2 2

o o0

( , ) 2

8
1 cos 1 cos d

W J f n V J

GS V
fJ

n V

π σ π ϕ ϕ ϕ

=

 
⋅ + − 

 
∫

.   [J/m3] (8)

By fitting the experimental ),( p
(sin)

exc fJW it with Eq. (7), no(Jp) 

and Vo(Jp) are identified. SMC materials have unique response 
in terms of the parameter no(Jp), which can be pretty high [7]. 
By opposition, in magnetic laminations it is a few units at 
most, permitting one to reduce (7) to the well known square 

root law (sin) 3/2 1/2
exc o o p8.76W GS V J fσ= .  

 Loss measurements performed in the A-type and B-type 
SMC ring samples under sinusoidal flux over a wide range of 
frequencies (from quasi-static excitation up to 10 kHz) and at 
Jp values ranging between 0.1 T and 1.25 T, permit one to 
identify the quantities Whyst(Jp), no(Jp), and Vo(Jp). Fig. 9a 
shows the experimental behavior of the hysteresis loss 
Whyst(Jp) in the A-type SMC, showing a power law 
dependence Whyst(Jp) ∝ Jp

1.7. The excess loss parameters Vo(Jp) 
and no(Jp)·Vo(Jp), appearing in (7) and (8) are equally observed 
to increase with Jp (Fig. 9b) Quite similar behaviors are 
observed in the B-type SMCs. 

IV.  LOSS UNDER DISTORTED INDUCTION WAVEFORM 

Based on the previous separation procedure, performed for 
sinusoidal flux, we can proceed to the calculation of the 
energy losses under non-sinusoidal polarization. Two different 
examples of loss calculation are provided in this Section, 
where J(t) is obtained either by combination of fundamental 
and third harmonics or as a triangular function. 

1) Distortion of J(t) introduced by a third harmonic. 

Let us consider the time dependent polarization   

)3sin()sin()( 331 ϕωω ++= tJtJtJ  (9)

where ω=2πf, and the harmonics J1 and J3 satisfy the 
conditions J3/J1 = 0.1 with Jp = const, such as a phase shift φ3 
between 0° and 180°, no minor loop can form for so Whyst(Jp) 
is not affected by distortion of J(t). Examples of J(t) 
waveforms with Jp = 1 T and different φ3 values are shown in 
Fig. 10. For any given Jp, the hysteresis loss Whyst(Jp) (Fig. 9a) 
is identical to the one obtained with sinusoidal flux. The 
component Wclass

(dist)(Jp, f) is immediately obtained,  either 
through (4) or by retrieving and summing up the Wclass

(sin) 
values calculated for sinusoidal induction at the frequencies f 
and 3f and the peak polarizations J1 and J3, respectively. 
Because of its quadratic dependence on the induction 
derivative, Wclass

(dist) does not depend on the phase φ3. The 
excess loss Wexc

(dist) is finally calculated using (7) and 
introducing the term )(tJɺ as the derivative of (9). The 

parameters Vo(Jp) and no(Jp)Vo(Jp) in (7) are retrieved, as 
discussed in Section III, from the loss measured under 
sinusoidal J(t) (see Fig. 9b for the type-A material). Fig. 11 
shows the evolution with the phase shift φ3 (0 ≤ φ3 ≤ 180°) of 
the energy loss W(dist) measured under the distorted J(t) given 
by (8) with Jp = 1 T and J3/J1 = 0.1 (symbols) and the 
prediction made according to the above procedure (solid line). 
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Two examples, corresponding to the fundamental frequencies 
f = 2 kHz and f = 7 kHz are given, where the evolution of the 
loss components with the distortion compared with the loss 
measured with sinusoidal J(t) is visible. It is noted that the 
distortion associated with φ3 values closed to 180° leads to a 
decrease of the loss. Fig. 12 shows that the effect of distortion 
can also be predicted with good accuracy in the type-B 
composite. This kind of material exhibits strong hysteresis loss 
component and reduced classical losses, because of its fine 
granular structure. 

2) Triangular polarization waveform 

The above discussed prediction approach can be 
straightforwardly applied to triangular induction. But, since 

)(tJɺ is a constant, it is simpler to get integrate analytically (7), 

the expression for the excess loss: 

(tri) o o
exc p o o p p2 2

o o

16
( , ) 2 1 1FeGS V

W J f n V J J f
n V

σ 
= + −  

 

 
[J/m3]

 
(10)
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Fig. 9 - Type A Soft Magnetic Composite  under sinusoidal flux. a) Hysteresis 
loss Whyst as a function of peak polarization Jp. b) Parameters Vo and no·Vo (see 
(7)) versus Jp. 

It is fair to state that inevitable interwinding capacitive effects 
may hinder to some extent the achievement of a perfectly 
triangular J(t) waveform (i.e. square voltage), because 
oscillations can arise at the tip points. For this reason, our 
experiments were performed up to the maximum exciting 
frequency f = 5 kHz. Fig. 13 shows the frequency dependence 
of the energy loss measured under triangular induction up to 5 
kHz for Jp = 0.5 T, 1 T, and 1.25 T in the A-type material. The 
results show excellent agreement with the theoretical 
prediction. Weak effects related to the appearance of 
macroscopic eddy current patterns may in general be 

envisaged at the highest frequencies and with the strongest 
distortions, so the total loss can be slightly underestimated by 
the present theory, but in any case remains within the range of 
measurement uncertainty. 
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Fig. 10 – Experimental J(t) waveforms obtained, according to (9), by 
combination of fundamental J1 plus third J3 harmonics. The harmonics 
amplitudes are in the ratio J3/J1 = 0.1 and Jp = 1 T. 

V. CONCLUSIONS 

We have carried out a comprehensive investigation on the 
magnetic losses in Soft Magnetic Composites from DC to 10 
kHz and provided an associated theoretical assessment. This is 
based, on the one hand, on the modeling of the classical eddy 
current losses in heterogeneous materials and, on the other 
hand, on the statistical theory of losses, by which the energy 
loss behavior under non-sinusoidal induction waveform can be 
predicted. It is emphasized that eddy currents come about on 
two different scales, that of the individual particle 
(microscopic) and that of the sample cross-section 
(macroscopic). The latter follows from the presence of random 
intergrain contacts, which require sufficiently large cross-
sectional area to result in closed paths. Consequently, no 
macroscopic currents are established in sufficiently small 
samples (e.g. 5 mm × 5mm cross-sectional area and lower), as 
demonstrated by the experiments. Classical eddy current 
losses have been calculated for such kind of specimens, taking 
into account size and shape of the iron particles and the 
statistical distribution of their geometrical parameters.  

Exploiting our ability to compute the classical loss 
component, we were able to make a full assessment of the 
magnetic loss behavior of the composites in the frequency 
range DC – 10 kHz when subjected, according to standard 
rules, to sinusoidal induction. We were able, in particular, 
extract a couple of structure related parameters (no(Jp) and 
Vo(Jp)), characterizing the statistical features of the 
magnetization process, and consequently predict, in the 
framework of the  
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Fig. 11 - Type A Soft Magnetic Composite  under non-sinusoidal flux, with 
distortion introduced by a third harmonic (Jp = 1 T, J3/J1 = 0.1). The symbols 
and the solid line describe the experimental and predicted behaviors of the 
energy loss versus phase shift ϕ3, respectively. The two examples reported 
here refer to the fundamental frequencies f = 2 kHz and f = 7 kHz. 
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Fig. 12 - Same as Fig. 11 for the Type B Soft Magnetic Composite. 
Experiments (symbols) and theory (solid line) at the fundamental frequency 
f = 8 kHz. 

 
loss separation principle, the effect of distortion of magnetic 
induction on the SMC loss behavior. Although more complex 
than in the conventional case of soft magnetic laminations, an 

analytical formulation for the magnetic losses under generic 
induction waveform is obtained. This implies that also the 
reverse is possible, where the material response to sinusoidal 
induction can be induced from measurements done with 
distorted induction. With the introduction of hysteresis loop 
modeling, the present treatment can be generalized to 
induction distortion with minor loops. 

 

0

50

100

150

200

0

25

50

0 1 2 3 4 5
0

100

200

300

W
hyst

W
class

W
exc

 

J
p
 = 1 T

T
o

ta
l l

o
ss

  W
   

(m
J/

kg
)

   Experimental
   Predicted
   Sinusoidal J (t)

W
hyst

W
exc

J
p
 = 0.5 T

T
o

ta
l l

o
ss

  W
   

(m
J/

kg
)

W
class

W
hyst

W
class

W
exc

J
p
 = 1.25 T

T
ot

al
 lo

ss
  W

   
(m

J/
kg

)

Frequency  f   (kHz)  
Fig. 13 - Type A Soft Magnetic Composite under triangular induction (Jp = 
0.5 T, 1.0  T, 1.25 T). The experimental loss versus frequency behavior 
(symbols) closely compares with the prediction (solid line). 

VI.  APPENDIX 

In this appendix, it is demonstrated that the formula (3) 
tends to the one of the classical loss in the lamination, in the 
limit R→0 (i.e. L>>l ), which should be, for a given width l: 

0 2 2
class p

Fe

1 1
( , ) ( )

12
RW J f l J t

ρ
→ = ⋅ ⋅ ⋅ ɺ  ,   [J/m3] (11) 

If formula (3) is in good agreement with formula (11), 
recalling that S=L.l and Rl=l/L, one should find:  
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( )
0

11
12

R

K R

R
→→  (12) 

This can be verified graphically in Fig. 14. Thus the two 
formulae (3) and (11) are consistent. 
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