
HAL Id: hal-00825517
https://hal.science/hal-00825517

Submitted on 23 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controllability of a quantum particle in a moving
potential well

Karine Beauchard, J.M. Coron

To cite this version:
Karine Beauchard, J.M. Coron. Controllability of a quantum particle in a moving potential well.
Journal of Functional Analysis, 2006, 232, pp.328-389. �hal-00825517�

https://hal.science/hal-00825517
https://hal.archives-ouvertes.fr


Controllability of a quantum particle in a moving potential well

K. Beauchard ∗, O. Jean-Michel CORON
†,

Résumé

We consider a non relativistic charged particle in a 1D moving potential well. This quantum

system is subject to a control, which is the acceleration of the well. It is represented by a wave

function solution of a Schrödinger equation. We prove the following controllability result for this

bilinear control system : given ψ0 closed enough to an eigenstate and ψf closed enough to another

eigenstate, the wave function can be moved exactly from ψ0 to ψf in �nite time. Moreover, we can

control the position and the velocity of the well. Our proof uses moment theory, a Nash-Moser

implicit function theorem, the return method and expansion to the second order.

Keywords : Controllability, Schrödinger, Nash-Moser.

1 Introduction

Following P. Rouchon [14], we consider a quantum particle with a potential V (z) in a non Galilean
frame of absolute position D(t), in a one dimension space. This system is represented by a complex
valued wave function (t, z) 7→ φ(t, z) solution of the Schrödinger equation

i~
∂φ

∂t
(t, z) = − ~2

2m

∂2φ

∂z2
(t, z) + V (z −D(t))φ(t, z). (1)

Up to a change of variables, we can assume ~ = 1, m = 1. It was already noticed in [14] that the
change of space variable z → q and function φ→ ψ, de�ned by

q := z −D,

ψ(t, q) := ei(−zḊ+DḊ− 1
2

∫ t
0 Ḋ

2)φ(t, z),

transforms (1) into

i
∂ψ

∂t
(t, q) = −1

2

∂2ψ

∂q2
(t, q) + (V (q)− u(t)q)ψ(t, q), (2)

where u := −D̈. This equation also describes the non relativistic motion of a particle with a potential
V in a uniform electric �eld t 7→ u(t).

We study this quantum system in the case of a potential well (a box) :

V (q) = 0 for q ∈ I := (−1/2, 1/2) and V (q) = +∞ for q /∈ I.

Therefore, our system is

(Σ0)


i∂ψ∂t (t, q) = −1

2
∂2ψ
∂q2

(t, q)− u(t)qψ(t, q), t ∈ R+, q ∈ I,
ψ(t,−1/2) = ψ(t, 1/2) = 0,

Ṡ(t) = u(t),

Ḋ(t) = S(t).

This is a control system, where
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� the state is (ψ, S,D) with
∫
I |ψ(t, q)|2dq = 1 for every t,

� the control is the function t 7→ u(t) ∈ R.
It means that we want to control at the same time the wave function ψ of the particle, the speed S
and the position D of the box. The control is the acceleration of the box (with an easy change of
variable, we could instead take the force applied to the box).

De�nition 1 Let T1 < T2 be two real numbers and u ∈ C0([T1, T2],R). A function (ψ, S,D) is a
solution of (Σ0) if

� ψ belongs to C0([T1, T2], H2 ∩ H1
0 (I,C)) ∩ C1([T1, T2], L2(I,C)) and the �rst equality of (Σ0)

holds in L2(I,C), for every t ∈ [T1, T2],
� S ∈ C1([T1, T2],R) and satis�es the third equality of (Σ0), for every t ∈ [T1, T2],
� D ∈ C2([T1, T2],R) and satis�es the fourth equality of (Σ0), for every t ∈ [T1, T2].

Then, we say that (ψ, S,D, u) is a trajectory of the control system (Σ0) (on [T1, T2]).

Note that the �rst equation of (Σ0) guarantees the conservation of the L2(I,C)−norm of the wave
function. Indeed, we have

d

dt
‖ψ(t)‖2L2(I,C) =< ψ(t),

∂ψ

∂t
(t) > + <

∂ψ

∂t
(t), ψ(t) >= 0,

where < ., . > denotes the usual scalar product on L2(I,C),

< ψ,ϕ >:=

∫
I
ψ(q)ϕ(q)dq

and ψ(t) := ψ(t, .).

It has already been proved in [1] that the subsystem

(Σ)

{
i∂ψ∂t (t, q) = −1

2
∂2ψ
∂q2

(t, q)− u(t)qψ(t, q), t ∈ R+, q ∈ I,
ψ(t,−1/2) = ψ(t, 1/2) = 0,

where the state is ψ and the control is u, is locally controllable around any eigenstate state for u ≡ 0,
which are the functions

ψn(t, q) := ϕn(q)e−iλnt, n ∈ N∗.
Here λn := (nπ)2/2 are the eigenvalues of the operator A de�ned on

D(A) := H2 ∩H1
0 (I,C) by Aϕ := −1

2ϕ
′′

and the functions ϕn are the associated eigenvectors,

ϕn(q) :=

{ √
2 sin(nπq), when n is even,√
2 cos(nπq), when n is odd.

(3)

Thus, we know that, for every eigenstate, the wave function can be moved arbitrarily in a neighbou-
rhood of this eigenstate, in �nite time.

The aim of this paper is to prove that we can also change the energy level. For example, we can
move the wave function from any point in a neighbourhood of the ground state ψ1 to any point in
a neighbourhood of the �rst excited state ψ2. We also prove that we can control the position D and
the speed S of the box at the same time.

Let us introduce few notations in order to state this result,

S := {ϕ ∈ L2(I,C); ‖ϕ‖L2(I,C) = 1},

H7
(0)(I,C) := {ϕ ∈ H7(I,C);Anϕ ∈ H1

0 (I,C) for n = 0, 1, 2, 3}.
Our main result is the following one.
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Theorem 1 For every n ∈ N∗, there exists ηn > 0 such that, for every n0, nf ∈ N∗, for every
(ψ0, S0, D0), (ψf , Sf , Df ) ∈ [S ∩H7

(0)(I,C)]× R× R with

‖ψ0 − ϕn0‖H7 + |S0|+ |D0| < ηn0 , ‖ψf − ϕnf ‖H7 + |Sf |+ |Df | < ηnf ,

there exists a time T > 0 and a trajectory (ψ, S,D, u) of (Σ0) on [0, T ], which satis�es (ψ(0), S(0), D(0)) =
(ψ0, S0, D0), (ψ(T ), S(T ), D(T )) = (ψf , Sf , Df ) and u ∈ H1

0 ((0, T ),R).

Thus, we also have the following corollary.

Corollary 1 For every n0, nf ∈ N∗, there exists a time T > 0 and a trajectory (ψ, S,D, u) of (Σ0) on
[0, T ] such that (ψ(0), S(0), D(0)) = (ϕn0 , 0, 0), (ψ(T ), S(T ), D(T )) = (ϕnf , 0, 0), and u ∈ H1

0 ((0, T ).

For other results about the controllability of Schrödinger equations, we refer to the survey [16]

2 Sketch of the proof

2.1 Global strategy

Thanks to the reversibility of the control system (Σ0), in order to get Theorem 1, it is su�cient
to prove it with nf = n0 + 1. We prove it with n0 = 1 and nf = 2 to simplify the notations.

First, we prove the local controllability of (Σ0) around the trajectory (Y θ,0,0, u ≡ 0) for every
θ ∈ [0, 1], where

Y θ,0,0(t) := (ψθ(t), S(t) ≡ 0, D(t) ≡ 0),

ψθ(t) :=
√

1− θψ1(t) +
√
θψ2(t) for θ ∈ (0, 1),

Y k,0,0(t) = (ψk−1(t), S(t) ≡ 0, D(t) ≡ 0) for k = 0, 1.

Thus we know that
� there exists an open ball V0 (resp. V1) centered at Y 0,0,0(0) (resp. Y 1,0,0(0)) such that (Σ0) can
be moved in �nite time between any two points in V0 (resp. V1),

� for every θ ∈ (0, 1), there exists an open ball Vθ centered at Y θ,0,0(0) such that (Σ0) can be
moved in �nite time between any two points in Vθ.

Then, we conclude thanks to a compactness argument : the segment

[Y 0,0,0(0), Y 1,0,0(0)] := {
√
λY 0,0,0(0) +

√
1− λY 1,0,0(0);λ ∈ [0, 1]}

is compact in L2(I,R) × R × R and covered by ∪06θ61Vθ thus there exists a increasing �nite family
(θn)16n6N such that [Y 0,0,0(0), Y 1,0,0(0)] is covered by ∪16n6NVθn . We can assume Vn ∩Vn+1 6= ∅ for
n = 1, ..., N − 1. Given Y0 ∈ V1 and Yf ∈ VN , we move (Σ0) from Y0 to a point Y1 ∈ Vθ1 ∩Vθ2 in �nite
time, from Y1 to a point Y2 ∈ Vθ2 ∩ Vθ3 in �nite time...etc and we reach Yf in �nite time.

Now, let us explain the proof of the local controllability of (Σ0) around Y θ,0,0 for every θ ∈ [0, 1].
The strategy for θ ∈ (0, 1) is di�erent from the one for θ ∈ {0, 1} but involves the same ideas. In the
next sections, we details the two approaches. We start with the simplest case θ ∈ (0, 1).

2.2 Local controllability of (Σ0) around Y θ,0,0 for θ ∈ (0, 1)

A classical approach to prove the local controllability around a trajectory consists in proving
the controllability of the linearized system around the trajectory studied and concluding with an
inverse mapping theorem. This strategy does not work here because the linearized system around
(Y θ,0,0(t), u ≡ 0) is not controllable. In section 3.1, we justify that the linearized system misses
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exactly two directions, which are (ψ, S,D) = (±iϕ1, 0, 0) . We call this situation �controllability up
to codimension one �.

First, we prove the local controllability up to codimension one of the non linear system (Σ0), in
section 3.2. In the �rst paragraph of section 3.2.1, we explain that the situation is the same as in [1] :
because of a loss of regularity in the controllability (up to codimension one) of the linearized system,
the inverse mapping theorem cannot be applied. We deal with this di�culty by using a Nash-Moser
theorem stated in the second paragraph of section 3.2.2. This theorem is an adaptation of L. Hörman-
der's one in [12], it is slightly di�erent from the one used in [1]. The two last paragraphs of section
3.2.3 are dedicated to the application of this theorem.

Then, in section 3.3, we justify that the nonlinear term in (Σ0) allows to move in the two directions
which are missed by the linearized system. We �x the time, we perform a power series expansion and
we prove that the second order term allows to move in the two directions (ψ, S,D) = (±iϕ1, 0, 0).
This method is classical to study the local controllability of �nite dimensional systems. It has already
been used for an in�nite dimensional one, the Korteweg-de Vries equation, in [6]. In this reference,
an expansion to the second order was not su�cient and it was needed to compute the third order term.

In section 3.4, we get the local controllability of (Σ0) around Y θ,0,0 by applying the intermediate
values theorem.

2.3 Local controllability of (Σ0) around Y k,0,0 for k ∈ {0, 1}

Again, the classical approach does not work because the linearized system around (Y k,0,0, u ≡ 0)
is not controllable for k ∈ {0, 1}. This result was proved by P. Rouchon in [14]. He proved this li-
nearized system is steady-state controllable, but this result does not imply the same property for the
nonlinear system. As noticed in section 4.1, the situation is even worse than the previous one because
the linearized system misses an in�nite number of directions (half of the projections).

The proof of the local controllability of (Σ0) around Y k,0,0 for k ∈ {0, 1} relies on the return
method, a method introduced in [2] to solve a stabilisation problem, together with quasi-static trans-
formations as in [5]. The return method has already been used for controllability problems by J.-M.
Coron in [5], [3], [4], by A. V. Fursikov and O. Yu. Imanuvilov in [7], by O. Glass in [8], [9], by Th.
Horsin in [11] and by E. Sontag in [15].

This strategy is divided in two steps. We explain it with Y 0,0,0 but everything works similarly
with Y 1,0,0 instead of Y 0,0,0. First, in section 4.2 , we propose an other trajectory (Y γ,α,β, u ≡ γ) such
that (Σ0) is locally controllable around Y γ,α,β in time T ∗. Then, we deduce the local controllability
around Y 0,0,0 in section 4.3, by using quasi-static transformations, in the same way as in [5] and [1].
We �x Y0 closed to Y 0,0,0(t0) and Yf closed to Y 0,0,0(tf ) for some real constants t0 and tf . We use
quasi-static transformations in order to move the system

� from Y0 to a point Y1, which is closed to Y γ,α,β(0), for some real constants α, β, γ�
� from a point Y2, which is closed to Y γ,α,β(T ∗), to Yf .

Thanks to the local controllability around Y γ,α,β , we can move the system from Y1 to Y2 in �nite
time, it gives the conclusion. By �quasi-static transformations �, we mean that we use controls u(t)
which change slowly.

Finally, in section 5, we prove the local controllability of (Σ0) around Y γ,α,β . Again, this local
controllability result cannot be proved by using the classical approach because the linearized system
around Y γ,α,β is not controllable. In section 5.1, we explain that this linearized system misses the two
directions (ψ, S,D) = (0,±1, 0). We conclude with the same strategy as in section 2.2.
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In subsection 5.2 we prove that the same strategy as in [1] leads to the local controllability, in
time T, of (Σ0), when the state is (ψ,D) and the control is u, around Y γ,α,β . A loss of regularity in
the controllability (up to codimension one) of the linearized system around (Y γ,α,β, u ≡ γ) prevents
us from applying the inverse mapping theorem. We use the Nash-Moser theorem stated in section
3.2.2, in the context given in section 5.2.1. The two last paragraphs of section 5.2.2 are dedicated to
the application of this theorem.

In section 5.3, we prove that the second order term allows to move in the two directions (ψ =
0, S = ±1, D = 0) which are missed by the linearized system.

In section 5.4, we get the local controllability around Y γ,α,β by applying the intermediate values
theorem.

3 Local controllability of (Σ0) around Y θ,0,0

In all the section 3, θ ∈ (0, 1) is �xed. The aim of this section is the proof of the following result

Theorem 2 Let T := 4/π. There exists η > 0 such that, for every (ψ0, S0, D0), (ψf , Sf , Df ) ∈
[S ∩H7

(0)(I,C)]× R× R with

‖ψ0 − ψθ(0)‖H7 + |S0|+ |D0| < η,

‖ψf − ψθ(T )‖H7 + |Sf |+ |Df | < η,

there exists a trajectory (ψ, S,D) of (Σ0) on [0, 2T ] such that

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),

(ψ(2T ), S(2T ), D(2T )) = (ψf , Sf , Df ),

and u ∈ H1
0 ((0, 2T ),R).

3.1 Controllability up to codimension one of the linearized system around

(Y θ,0,0, u ≡ 0)

Let us introduce, for ψ ∈ S, the tangent space TS(ψ) to the L2(I,C)-sphere at the point ψ,

TSψ := {ϕ ∈ L2(I,C);< < ϕ,ψ >= 0}

and for k = 2, ..., 9, the following subspace of Hk(I,C),

Hk
(0)(I,C) := {ϕ ∈ Hk(I,C);Anϕ ∈ H1

0 (I,C) for n ∈ N, n 6 (k − 1)/2}.

The linearized control system around (Yθ, u ≡ 0) is

(Σl
θ)


i∂Ψ
∂t = −1

2
∂2Ψ
∂q2
− wqψθ,

Ψ(t,±1/2) = 0,
ṡ = w,

ḋ = s.

It is a control system where
� the state is (Ψ, s, d) with Ψ(t) ∈ TS(ψθ(t)),
� the control is the real valued function t 7→ w(t).
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Proposition 1 Let T > 0 and (Ψ, s, d) be a trajectory of (Σl
θ) on [0, T ]. Then, the function

t 7→ =(< Ψ(t),
√

1− θψ1(t)−
√
θψ2(t) >)

is constant on [0, T ]. Thus, the control system (Σl
θ) is not controllable.

Proof : Let us consider the function ξθ(t) :=
√

1− θψ1(t)−
√
θψ2(t). We have

i
∂ξθ
∂t

= −1

2

∂2ξθ
∂q2

,

d

dt
(= < Ψ(t), ξθ(t) >) = =(iw < qψθ(t), ξθ(t) >).

The explicit expressions of ψθ and ξθ provide, for every t,

< qψθ(t), ξθ(t) >∈ iR,

which gives the conclusion.
Let T > 0, and Ψ0 ∈ TS(ψθ(0)), Ψf ∈ TS(ψθ(T )). A necessary condition for the existence of a

trajectory of (Σl
θ) satisfying Ψ(0) = Ψ0 and Ψ(T ) = Ψf is

=(< Ψf ,
√

1− θψ1(T )−
√
θψ2(T ) >) = =(< Ψ0,

√
1− θϕ1 −

√
θϕ2 >).

This equality does not happen for an arbitrary choice of Ψ0 and Ψf . Thus (Σl
θ) is not controllable.�

Proposition 2 Let T > 0, (Ψ0, s0, d0), (Ψf , sf , df ) ∈ H3
(0)(I,R)× R× R be such that

< < Ψ0, ψθ(0) >= < < Ψf , ψθ(T ) >= 0, (4)

= < Ψf ,
√

1− θϕ1e
−iλ1T −

√
θϕ2e

−iλ2T >= = < Ψ0,
√

1− θϕ1 −
√
θϕ2 > . (5)

There exists w ∈ L2((0, T ),R) such that the solution of (Σl
θ) with control w and such that (Ψ(0), s(0), d(0)) =

(Ψ0, s0, d0) satis�es (Ψ(T ), s(T ), d(T )) = (Ψf , sf , df ).

Remark 1 The condition (5) means that we miss exactly two directions, which are (Ψ, s, d) =
(±iξθ, 0, 0). Thus, if we want to control the components < Ψ, ϕk > for k > 2 and < < Ψ, ϕ1 > then, we
cannot control = < Ψ, ϕ1 >. This is why we say that we miss the two directions (Ψ, s, d) = (±iϕ1, 0, 0).

Proof : Let (Ψ0, s0, d0) ∈ L2(I,R) × R × R with Ψ0 ∈ TS(ψθ(0)) and T > 0. Let (Ψ, s, d) be a
solution of (Σl

θ) with (Ψ(0), s(0), d(0)) = (Ψ0, s0, d0) and a control w ∈ L2((0, T ),R). We have the
following equality in L2(I,C)

Ψ(t) =
∞∑
k=1

xk(t)ϕk where xk(t) :=< Ψ(t), ϕk > ∀k ∈ N.

Using the equation satis�ed by Ψ, we get

x2k(t) =

(
< Ψ0, ϕ2k > +i

√
1− θb2k

∫ t

0
w(τ)ei(λ2k−λ1)τdτ

)
e−iλ2kt, (6)

x2k−1(t) =

(
< Ψ0, ϕ2k−1 > +i

√
θc2k−1

∫ t

0
w(τ)ei(λ2k−1−λ2)τdτ

)
e−iλ2k−1t, (7)
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where, for every k ∈ N∗, bk :=< qϕk, ϕ1 > and ck :=< qϕk, ϕ2 >. Thanks to the explicit expression
of the functions ϕk (see (3)), we get

bk =

{
0 if k is odd,
−8(−1)k/2k

π2(1+k)2(1−k)2
if k is even ,

ck =

{
16(−1)(k−1)/2k
π2(k+2)2(k−2)2

if k is odd,

0 if k is even .
(8)

Let (Ψf , sf , df ) ∈ L2(I,R) × R × R with Ψf ∈ TS(ψθ(T )). The equality (Ψ(T ), s(T ), d(T )) =
(Ψf , sf , df ) is equivalent to the following moment problem on w,

∫ T
0 w(t)ei(λ2k−λ1)tdt = −i√

1−θb2k

(
< Ψf , ϕ2k > eiλ2kT− < Ψ0, ϕ2k >

)
,∀k ∈ N∗,∫ T

0 w(t)ei(λ2k−1−λ2)tdt = −i√
θc2k−1

(
< Ψf , ϕ2k−1 > eiλ2k−1T− < Ψ0, ϕ2k−1 >

)
,∀k ∈ N∗,∫ T

0 w(t)dt = sf − s0,∫ T
0 (T − t)w(t)dt = df − d0 − s0T.

(9)

In the two �rst equalities of (9) with k = 1, the left hand sides are complex conjugate numbers be-
cause w is real valued. Thus a necessary condition on Ψ0 and Ψf for the existence of w ∈ L2((0, T ),R)
solution of (9) is

1√
1− θ

(
< Ψf , ϕ2 >e

−iλ2T −< Ψ0, ϕ2 >
)

=
−1√
θ

(
< Ψf , ϕ1 > eiλ1T− < Ψ0, ϕ1 >

)
. (10)

The equality of the real parts of the two sides in (10) is guaranteed by (4). The equality of the imagi-
nary parts of the two sides in (10) is equivalent to (??). Under the assumption Ψ0,Ψf ∈ H3

(0)(I,C), the

right hand side of (9) de�nes a sequence in l2. Then, the existence, for every T > 0, of w ∈ L2((0, T ),R)
solution of (9) is a classical result on trigonometric moment problems. �

3.2 Local controllability up to codimension one of (Σ0) around (Y θ,0,0, u ≡ 0)

Let us introduce the following closed subspace of L2(I,C)

V := Span{ϕk; k > 2}

and the orthogonal projection P : L2(I,C)→ V . The aim of this section is the proof of the following
result.

Theorem 3 Let T := 4/π. There exists C > 0, δ > 0 and a continuous map

Γ : V(0) × V(T ) → H1
0 ((0, T ),R)

((ψ0, S0, D0) , (ψ̃f , Sf , Df )) 7→ u

where

V(0) := {(ψ0, S0, D0) ∈ [S ∩H7
(0)(I,C)]× R× R; ‖ψ0 − ψθ(0)‖H7 + |S0|+ |D0| < δ},

V(T ) := {(ψ̃f , Sf , Df ) ∈ [H7
(0)(I,C) ∩ V ∩BL2(0, 1)]× R× R; ‖ψ̃f − Pψθ(T )‖H7 + |Sf |+ |Df | < δ},

such that, for every ((ψ0, S0, D0), (ψ̃f , Sf , Df )) ∈ V(0) × V(T ), the trajectory of (Σ0) with control

Γ(ψ0, S0, D0, ψ̃f , Sf , Df ) such that (ψ(0), S(0), D(0)) = (ψ0, S0, D0) satis�es

(Pψ(T ), S(T ), D(T )) = (ψ̃f , Sf , Df )

and

‖Γ(ψ0, S0, D0, ψ̃f , Sf , Df )‖H1
0 ((0,T ),R) 6 C[‖P(ψ0 − ψθ(0))‖H7(I,C) + |S0|+ |D0|+

‖ψ̃f − Pψθ(T )‖H7(I,C) + |Sf |+ |Df |].
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3.2.1 The inverse mapping theorem cannot be applied

In our situation, in order to prove the Theorem 3 with the classical approach, we would like to
apply the inverse mapping theorem to the map

Φ : (ψ0, S0, D0, u) 7→ (ψ0, S0, D0,Pψ(T ), S(T ), D(T )),

where ψ solves 
iψ̇ = −1

2ψ
′′ − uqψ,

Ṡ = w,

Ḋ = S,

with (ψ(0), S(0), D(0)) = (ψ0, S0, D0).
The map Φ is C1 between the following spaces

Φ : [S∩H2
(0)(I,C)]×R×R×L2((0, T ),R)→ [S∩H2

(0)(I,C)]×R×R×[V ∩BL2(0, 1)∩H2
(0)(I,C)]×R×R,

Φ : [S∩H3
(0)(I,C)]×R×R×H1

0 ((0, T ),R)→ [S∩H3
(0)(I,C)]×R×R×[V ∩BL2(0, 1)∩H3

(0)(I,C)]×R×R.

Thus, in order to apply the inverse mapping theorem, we would need to construct a right inverse to
the map dΦ(ψθ(0), 0, 0, 0) which maps the following spaces

[TS(ψθ(0)) ∩H2
(0)]× R× R× [V ∩H2

(0)]× R× R→ [TS(ψθ(0)) ∩H2
(0)]× R× R× L2((0, T ),R),

or

[TS(ψθ(0)) ∩H3
(0)]× R× R× [V ∩H3

(0)]× R× R→ [TS(ψθ(0)) ∩H3
(0)]× R× R×H1

0 ((0, T ),R).

The controllability up to codimension one proved for the linearized system around (Yθ, u ≡ 0) only
provides a right inverse for dΦ(ψθ(0), 0, 0, 0) which maps the following spaces

[TS(ψθ(0)) ∩H3
(0)]× R× R× [V ∩H3

(0)]× R× R→ [TS(ψθ(0)) ∩H3
(0)]× R× R× L2((0, T ),R).

In order to deal with this loss of regularity in the controllability of the linearized system around
(Y θ,0,0, u ≡ 0), we use a Nash-Moser implicit function theorem stated in the following section. It is
an adaptation of L. Hörmander's one in [12], it is slightly di�erent from the one proved in [1, section
3.2]. The use of the projection P introduce changes in the statement and the proof so we write them
completely.

3.2.2 The Nash-Moser theorem used

As in [1], we consider a decreasing family of Hilbert spaces (Ea)a∈{1,...,9} with continuous injections
Eb → Ea of norm 6 1 when b > a. Suppose we have given linear operators Sλ : E1 → E9 for λ > 1.
We assume there exists a constant K > 0 such that for every a ∈ {1, ..., 9}, for every λ > 1 and for
every u ∈ Ea we have

‖Sλu‖b 6 K‖u‖a,∀b ∈ {1, ..., a}, (11)

‖Sλu‖b 6 Kλb−a‖u‖a, ∀b ∈ {a+ 1, ..., 9}, (12)

‖u− Sλu‖b 6 Kλb−a‖u‖a, ∀b ∈ {1, ..., a− 1}, (13)

‖ d
dλ
Sλu‖b 6 Kλb−a−1‖u‖a,∀b ∈ {1, ..., 9}. (14)

Then, we have the convexity of the norms (see [12] for the proof) : there exists a constant c > 1 such
that, for every λ ∈ [0, 1], for every a, b ∈ {1, ..., 9} such that a 6 b, λa + (1 − λ)b ∈ N and for every
u ∈ Eb,

‖u‖λa+(1−λ)b 6 c‖u‖λa‖u‖1−λb .
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We �x a sequence 1 = θ0 < θ1 < ...→∞ of the form θj = (j+1)δ where δ > 0. We set ∆j := θj+1−θj
and we introduce

Rju :=
1

∆j
(Sθj+1

− Sθj )u if j > 0 and R0u :=
1

∆0
Sθ1u.

Thanks to (13), we have

u =

∞∑
j=0

∆jRju

with convergence in Eb when u ∈ Ea and a > b. As noticed in [1], it follows from (14) that there
exists K ′ > 0 such that, for every a ∈ {1, ..., 9}, for every u ∈ Ea, for every b ∈ {1, ..., 9}, for every
δ ∈ (0, 2] and for every j ∈ N∗,

‖Rju‖b 6 K ′θb−a−1
j ‖u‖a.

Let a1, a2 ∈ N and a ∈ R be such that 1 6 a1 < a < a2 6 9. We de�ne the space

E′a := {
∞∑
j=0

∆juj ;uj ∈ Ea2 , ∃M > 0/∀j, ‖uj‖b 6Mθb−a−1
j for b = a1, a2},

with the norm ‖u‖′a given by the in�mum of M over all such decomposition of u. This space does not
depend on the choice of a1 and a2 (see [12] for the proof). The norm ‖.‖′a is stronger than the norm
‖.‖b when b < a,

‖u‖b 6Mb,a‖u‖′a (15)

and ‖.‖′a is weaker than ‖.‖a,
‖u‖′a 6 K ′‖u‖a.

As noticed in [1] and [12], there exists a constant K ′′ such that, for every a ∈ {1, ..., 9}, for every
θ > 1, for every b < a and for every u ∈ E′a we have

‖u− Sθu‖b 6 K ′′θb−a‖u‖′a. (16)

We have another family (Fa)a∈{1,...,9} with the same properties as above, we use the same notations
for the smoothing operators Sλ. Moreover, we assume the injection Fb → Fa is compact when b > a.

Theorem 4 Let α and β be �xed positive real numbers such that

4 < α < β < 7 and β − α > 2. (17)

Let P be a continuous linear operator from Fb to Fb of norm 6 1, for b = 1, ..., 9, such that PSθ = SθP.
Let V be a convex E

′
α-neighbourhood of 0 and Φ a map from V ∩E7 to Fβ which is twice di�erentiable

and satis�es

‖Φ′′(u; v, w)‖7 6 C
∑

(1 + ‖u‖m′j )‖v‖m′′j ‖w‖m′′′j (18)

where the sum is �nite, all the subscripts belong to {1, 3, 5, 7} and satisfy

max(m′j − α, 0) + max(m′′j , 2) +m′′′j < 2α, ∀j. (19)

We assume that Φ : E3 → F3 is continuous. We also assume that Φ′(v), for v ∈ V ∩ E9, has a right
inverse ψ(v) mapping F9 into E7, that (v, g) 7→ ψ(v)g is continuous from (V ∩ E9) × F9 to E7 and
that there exists a constant C such that for every (v, g) ∈ (V ∩ E9)× F9,

‖ψ(v)g‖1 6 C[‖Pg‖3 + ‖v‖3‖g‖3], (20)

‖ψ(v)g‖3 6 C[‖Pg‖5 + ‖v‖3‖g‖5 + ‖v‖5‖g‖3], (21)

‖ψ(v)g‖5 6 C[‖Pg‖7 + ‖v‖3‖g‖7 + ‖v‖5‖g‖5 + (‖v‖7 + ‖v‖25)‖g‖3], (22)

‖ψ(v)g‖7 6 C[‖Pg‖9+‖v‖3‖g‖9+‖v‖5‖g‖7+(‖v‖7+‖v‖25)‖g‖5+(‖v‖9+‖v‖7‖v‖5+‖v‖35)‖g‖3]. (23)

For every f ∈ F ′β with su�ciently small norm, there exists u ∈ E3 such that Φ(u) = Φ(0) + f .
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Remark 2 The Nash-Moser theorem used in [1] corresponds to the case P =Id. In what follows, we
only emphasize where the projection P appears in the proof of [1, section 3.2].

Proof : Let g ∈ F ′β . There exist decompositions (see [1, proof of Theorem 6])

g =
∑

∆jgj with ‖gj‖b 6 K ′θb−β−1
j ‖g‖′β for every b ∈ {1, ..., 9}, (24)

Pg =
∑

∆jPgj with ‖Pgj‖b 6 K ′θb−β−1
j ‖Pg‖′β for every b ∈ {1, ..., 9}. (25)

To get (25), we have used PSθ = SθP. We claim that if ‖g‖′β is small enough, we can de�ne a sequence
uj ∈ E7 ∩ V with u0 = 0 by the recursive formula

uj+1 := uj + ∆j u̇j , u̇j := ψ(vj)gj , vj := Sθjuj . (26)

We also claim that there exist constants C1, C2, C3 such that for every j ∈ N,

‖u̇j‖a 6 C1‖Pg‖′βθa−α−1
j , a ∈ {1, 3, 5, 7}, (27)

‖vj‖a 6 C2‖Pg‖′βθ
a−α
j , a ∈ {5, 7, 9},

‖vj‖3 6 C2‖Pg‖′β,
(28)

‖uj − vj‖a 6 C3‖Pg‖′βθa−αj , a ∈ {1, 3, 5, 7}. (29)

More precisely, we prove by induction on k the following property

(Pk) : uj is well de�ned for j = 0, ..., k + 1,
(27) is satis�ed for j = 0, ..., k,
(28), (29) are satis�ed for j = 0, ..., k + 1.

The property (P0) is easy to be checked. Let k ∈ N∗. We suppose the property (Pk−1) is true and we
prove (Pk).

Let us introduce a real number ρ > 0 such that, for every u ∈ E′α, ‖u‖′α 6 ρ implies u ∈ V . With
the same kind of calculus as in [1], we get (27), (28), (29) with

C1 := 8CK ′,

C2 := KC1 max{ 1

7− α
,
2δ(α−4)

5− α
,
2δ(α−2

α− 1
},

C3 := C1 max{1 +K

7− α
,K ′′},

for every g ∈ F ′β with

‖g‖′β 6 min{ ρ

KC1
,

1

C2
, }.

The inequality (27) proves that (uk) converges in E3 to the vector u :=
∑∞

j=0 ∆j u̇j and

‖u‖3 6 C̃1‖Pg‖′β where C̃1 := C1

 ∞∑
j=0

∆jθ
2−α
j

 . (30)

Now, let us consider the limit of (Φ(uk))k∈N. We have

Φ(uj+1)− Φ(uj) = Φ(uj + ∆j u̇j)− Φ(uj) = ∆j(e
′
j + e′′j + gj)
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where

e′j :=
1

∆j

(
Φ(uj + ∆j u̇j)− Φ(uj)− Φ′(uj)∆j u̇j

)
,

e′′j :=
(
Φ′(uj)− Φ′(vj)

)
u̇j .

Thanks to (18), (19), (27), (28), (29) and the same calculus as in [1] we get the existence of ε, C4, C5 > 0
such that, for every j ∈ N,

‖e′j‖7 6 C4‖Pg‖′2β θ
−1−ε
j , ‖e′′j ‖7 6 C5‖Pg‖′2β θ

−1−ε
j . (31)

Thus
∑

∆j(e
′
j + e′′j ) converges in F7. Let us denote T (g) its sum,

T (g) :=
∞∑
j=0

∆j(e
′
j + e′′j ).

Thanks to (31), we get the existence of C6 > 0 such that

‖Tg‖7 6 C6‖Pg‖′2β .

The continuity of Φ gives Φ(uk)→ Φ(u) in F3, thus we have the following equality in F3

Φ(u) = Φ(0) + T (g) + g.

Let us �x f ∈ F ′β . We search u such that Φ(u) = Φ(0) + f . It is su�cient to �nd g ∈ F ′β such that
g + Tg = f . This is equivalent to prove the existence of a �xed point for the map

F : F ′β → F ′β
g 7→ f − T (g).

We conclude by applying the Leray-Shauder �xed point theorem. �

In our situation, we need the continuity of the map f 7→ u in order to apply the intermediate
values theorem in section 3.4. This property can be proved by applying the Banach �xed point theorem
instead of the Leray-Shauder �xed point theorem in the previous proof. In order to do this, we need
more assumptions, which are given in the next theorem.

Theorem 5 Let us consider the same assumptions as in Theorem 4. We assume moreover that, for
every u, ũ ∈ V ∩ E7,

‖Φ′′(u; v, w)− Φ′′(ũ; v, w)‖7 6 C
∑

(1 + ‖u− ũ‖n′j )‖v‖n′′j ‖w‖n′′′j , (32)

where the sum is �nite, all the subscripts belong to {1, 3, 5, 7} and satisfy (19) with mj ← nj. We also
assume that, for every v, ṽ ∈ V ∩ E9,

‖(ψ(v)− ψ(ṽ))g‖1 6 C‖v − ṽ‖3‖g‖3, (33)

‖(ψ(v)− ψ(ṽ))g‖3 6 C[‖v − ṽ‖3‖g‖5 + ‖v − ṽ‖5‖g‖3], (34)

‖(ψ(v)− ψ(ṽ))g‖5 6 C[‖v − ṽ‖3‖g‖7 + ‖v − ṽ‖5‖g‖5 + (‖v − ṽ‖7 + ‖v − ṽ‖25)‖g‖3], (35)

‖(ψ(v)− ψ(ṽ))g‖7 6 C[‖v − ṽ‖3‖g‖9 + ‖v − ṽ‖5‖g‖7+
(‖v − ṽ‖7 + ‖v − ṽ‖25)‖g‖5+
(‖v − ṽ‖9 + ‖v − ṽ‖7‖v − ṽ‖5 + ‖v − ṽ‖35)‖g‖3].

(36)
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Then, there exists C ′ > 0, ε > 0 and a continuous map

Π : V ′β → E3

f 7→ u

where
V ′β := {f ∈ F ′β; ‖f‖′β < ε},

such that, for every f ∈ V ′β,
Φ(Π(f)) = Φ(0) + f,

‖Π(f)‖3 6 C ′‖Pf‖′β. (37)

Proof : The �rst part of Theorem 5 has already been proved in [1, appendix C]. Here, we justify
the bound (37). Let us recall that under the assumptions (32), (33),(34),(35),(36), the map T is a
contraction on a small enough neighbourhood of zero in F ′β : there exists δ ∈ (0, 1) such that

‖T (g)− T (g̃)‖′β 6 δ‖g − g̃‖′β.

Thus, when f = g + T (g) and f̃ = g̃ + T (g̃), we also have

‖g − g̃‖′β 6
1

1− δ
‖f − f̃‖′β.

Let f ∈ F ′β small enough. Let g ∈ F ′β be the solution of f = g + T (g) given by the Banach �xed

point theorem. Using f̃ = 0, we have

‖g‖′β 6
1

1− δ
‖f‖′β.

Let u ∈ E3 be the vector built in the proof of Theorem 4. Using (30) and

Pg = Pf − PT (g), ‖PTg‖′β 6 ‖Tg‖′β 6 C6‖Pg‖′2β ,

we get

‖Pg‖′β 6 2‖Pf‖′β when ‖f‖′β 6
1− δ
2C6

.

thus
‖u‖3 6 2C̃1‖Pf‖′β.�

We apply Theorems 4 and 5 to the map Φ de�ned in section 3.2.1, in a neighbourhood of
(ψθ(0), 0, 0, 0). Our spaces are de�ned, for k = 1, 3, 5, 7, 9, by

Ek := [S ∩Hk
(0)(I,C)]× R× R×H(k−1)/2

0 ((0, T ),R),

Fk := [S ∩Hk
(0)(I,C)]× R× R× [V ∩Hk

(0)(I,C)]× R× R.

We work on the manifold S instead of a whole space. It does not matter because we can move the
problem to an hyperplane of L2(I,C) by studying a new map

Φ̃(ψ̃0, S0, D0, u) := Φ(p−1(ψ̃0), S0, D0, u)

where p is a suitable local di�eomorphism from a neighbourhood of the trajectory ψθ in the sphere S
to an hyperplane of L2(I,C). For example, we can use the following one.
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Proposition 3 Let U := {ψ ∈ S; ∃t ∈ [0, 4/π], ‖ψ − ψθ(t)‖L2(I,C) < ε} where ε > 0 is small enough,
H := {ψ ∈ L2(I,C);< < ψ,ϕ3 >= 0} and p : L2(I,C)→ H de�ned by

p(ψ) := ψ −<(< ψ,ϕ3 >)ϕ3 + <(< ψ,ϕ3 >) < ψ,ϕ1 > ϕ1.

The map p is a C1 di�eomorphism from U to an open subset of H. Moreover, the norm of dp(ψ)
as linear operator from (TS(ψ), ‖.‖Hs) to (H, ‖.‖Hs) is uniformly bounded on U for every integer
s ∈ [1, 7].

The proof is similar to the one of [1, Proposition 2 section 3.2].

Now, we build smoothing operators. First, we smooth the wave function. Note that we need a
smoothing operator preserving the space H de�ned in Proposition 3. Let s ∈ C∞(R,R) be such that

s = 1 on [0, 1], 0 6 s 6 1, s = 0 on [2,+∞).

We de�ne

S̃λϕ :=
∞∑
k=1

s(
k

λ
) < ϕ,ϕk > ϕk.

The proof of the following proposition is easy.

Proposition 4 There exists a constant K such that, for every a ∈ {1, ..., 9}, for every ϕ ∈ Ha
(0)(I,C)

and for every λ > 1, we have

‖S̃λϕ‖Hb 6 K‖ϕ‖Ha , b ∈ {1, ..., a},

‖S̃λϕ‖Hb 6 Kλb−a‖ϕ‖Ha , b ∈ {a+ 1, ..., 9},

‖ϕ− S̃αϕ‖Hb 6 Kλb−a‖ϕ‖Ha , b ∈ {1, ..., a− 1},

‖ d
dλ
S̃λϕ‖Hb 6 Kλb−a−1‖ϕ‖Ha , b ∈ {1, ..., 9}.

The suitable smoothing operators for the control, Ŝλu, can be built with convolution products
and truncations with a C∞-function with compact support as in [1, section 3.3.2]. This construction
is inspired from [10].

Finally, we take on the spaces Ek

Sλ(ψ0, S0, D0, u) := (S̃λψ0, S0, D0, Ŝλ(u)),

and on the spaces Fk

Sλ(ψ0, S0, D0, ψf , Sf , Df ) := (S̃λψ0, S0, D0, S̃λ(ψf ), Sf , Df ).

The bounds (18), (19), (32), (33), (34), (35), (36) can be checked in the same way as in [1]. In
the following two sections, we focus on the most di�cult part in the application of the Nash-Moser
theorem, which is the proof of the existence of a right inverse for the di�erential, with the bounds
(20), (21), (22), (23).
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3.2.3 Controllability up to codimension one of the linearized system around

(Y θ,0,0, u ≡ 0) and bounds (20), (21), (22), (23)

The aim of this section is the proof of the following proposition.

Proposition 5 Let T := 4/π. There exists C > 0 such that, for every

(Ψ0, s0, d0, Ψ̃f , sf , df ) ∈ [TS(ψθ(0)) ∩H9
(0)(I,C)]× R× R× [V ∩H9

(0)(I,C)]× R× R,

there exists w ∈ H3
0 ((0, T ),R) such that the solution of (Σl

θ) with control w such that (Ψ(0), s(0), d(0)) =

(Ψ0, s0, d0) satis�es (PΨ(T ), s(T ), d(T )) = (Ψ̃f , sf , df ) and

‖w‖L2((0,T ),R) 6 C‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖F3 , ‖w‖H1
0 ((0,T ),R) 6 C‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖F5 ,

‖w‖H2
0 ((0,T ),R) 6 C‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖F7 , ‖w‖H3

0 ((0,T ),R) 6 C‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖F9 .

Moreover, the map

[TS(ψθ(0)) ∩H9
(0)] × R × R × [V ∩H9

(0)] × R × R → H3
0 ((0, T ),R)

(Ψ0 , s0 , d0 , Ψ̃f , sf , df ) 7→ w

is continuous.

Remark 3 The function Ψ(T ) is the unique function Ψf ∈ TS(ψθ(T )) which satis�es (??) and

PΨf = Ψ̃f .

Let us introduce the notations, for s ∈ {0, ..., 6}

hs(N,C) :=

d = (dk)k∈N; ‖d‖hs(N,C) :=

(
|d0|+

∞∑
k=1

|ksdk|2
)1/2

< +∞

 ,

hsr(N,C) := {d = (dk)k∈N ∈ hs(N,C); d0, d1 ∈ R},
we write l2r instead of h0

r .

Proof : Let

(Ψ0, s0, d0, Ψ̃f , sf , df ) ∈ [TS(ψθ(0)) ∩H9
(0)(I,C)]× R× R× [V ∩H9

(0)(I,C)]× R× R,

and (Ψ, s, d) be a solution of (Σl
θ) with (Ψ(0), s(0), d(0)) = (Ψ0, s0, d0) and a control w ∈ H3

0 ((0, T ),R).

As noticed in section 3.1, the equality (PΨ(T ), s(T ), d(T )) = (Ψ̃f , sf , df ) is equivalent to

Z(w) = D(Ψ0, s0, d0, Ψ̃f , sf , df )

where
Z(w) := (Z(w)k)k∈N and D(Ψ0, s0, d0,Ψf , sf , df ) := (Dk)k∈N

are de�ned by

Z(w)0 :=
∫ T

0 (T − t)w(t)dt, Z(w)1 :=
∫ T

0 w(t)dt,

Z(w)2k :=
∫ T

0 w(t)ei(λ2k−λ1)tdt, Z(w)2k+1 :=
∫ T

0 w(t)ei(λ2k+1−λ2)tdt, k ∈ N∗,

D0 := df − d0 − s0T, D1 := sf − s0,

D2k := −i√
1−θb2k

< Ψ̃f −Ψ0, ϕ2k >, D2k+1 := −i√
θc2k+1

< Ψ̃f −Ψ0, ϕ2k+1 >, k ∈ N∗.

Using the behaviour of the coe�cients ck and bk given by (8) and standard results about Fourier

series, we get a constant C > 0 such that, for every (Ψ0, s0, d0, Ψ̃f , sf , df ), for s = 0, 2, 4, 6,

‖D(Ψ0, s0, d0, Ψ̃f , sf , df )‖hs(N,C) 6 C‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖Fs+3 .

Thus, it is su�cient to prove the following proposition to end this proof.�
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Proposition 6 The linear map Z si continuous from E to F for every

(E,F ) ∈ {(L2, l2r), (H
1
0 , h

2
r), (H

2
0 , h

4
r), (H

3
0 , h

6
r)}.

There exist C > 0 and a continuous right inverse

Z−1 : h6
r(N,C)→ H3

0 ((0, T ),R)

such that, for every d ∈ h6
r(N,C),

‖Z−1(d)‖L2 6 C‖d‖l2 , ‖Z−1(d)‖H1
0
6 C‖d‖h2 ,

‖Z−1(d)‖H2
0
6 C‖d‖h4 , ‖Z−1(d)‖H3

0
6 C‖d‖h6 .

Proof : The �rst statement comes from integrations by parts and standard results about Fourier
series. Let us introduce the notations

ω1 := 0, ω2k := λ2k − λ1, ω2k+1 := λ2k+1 − λ2 for k ∈ N∗.

Let d ∈ h6
r(N,C). A suitable candidate for Z−1(d) is the function

w(t) := 1
T [d16 + a2e

−iω2t + a2e
iω2t + a3e

−iω3t + a3e
iω3t+∑∞

k=4(dk6 e
−iωkt + dk

6 e
iωkt) + αe−iωt + αeiωt]

(
ei

1
2
π2t − 1

)2 (
e−i

1
2
π2t − 1

)2
,

where

a2 := 6d2−d3
35 , a3 := 6d3−d2

35 .

ω =
1

2
mπ2 with m ∈ N and {m,m± 1,m± 2} ∩ { 2

π2
ωk,

2

π2
ωk ± 1,

2

π2
ωk ± 2; k ∈ N∗} = ∅

and α ∈ C is such that
∫ T

0 (T − t)w(t)dt = d0.�

3.2.4 Controllability up to codimension one of the linearized system around (Y, u) and
bounds (20), (21), (22), (23)

Let (ψ0, S0, D0, u) ∈ E9 The aim of this section is the proof of the existence of a right inverse to
dΦ(ψ0, S0, D0, u) with the estimates (20), (21), (22), (23).

Let (ψ, S,D) be the solution of (Σ0) with control u such that (ψ(0), S(0), D(0)) = (ψ0, S0, D0).
The linearized system around (ψ, S,D, u) is

iΨ̇ = −1
2Ψ′′ − uqΨ− wqψ,

Ψ(t,±1/2) = 0,
ṡ = w,

ḋ = s.

(38)

It is a control system where
� the state is (Ψ, s, d) with Ψ(t) ∈ TS(ψ(t)), for every t,
� the control is the real valued function w.
Let T := 4/π and

(Ψ0, s0, d0, Ψ̃f , sf , df ) ∈ [TS(ψ0) ∩H9
(0)(I,C)]× R× R× [V ∩H9

(0)(I,C)]× R× R.

We look for w ∈ H3
0 ((0, T ),R) such that the solution of (38) with (Ψ(0), s(0), d(0)) = (Ψ0, s0, d0)

satis�es
(Ψ(T ), s(T ), d(T )) = (PΨ̃f , sf , df ), (39)
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and
‖w‖L2 6 C[‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖3 + ∆3‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖3],

‖w‖H1
0
6 C[‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖5 + ∆3‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖5

+∆5‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖3],

‖w‖H2
0
6 C[‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖7 + ∆3‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖7

+∆5‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖5 + (∆7 + ∆2
5)‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖3],

‖w‖H3
0
6 C[‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖9 + ∆3‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖9

+∆5‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖7 + (∆7 + ∆2
5)‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖5

+(∆9 + ∆7∆5 + ∆3
5)‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖3],

(40)

where
∆k := ‖(ψ0 − ψθ(0), S0, D0, u)‖Ek for k = 3, 5, 7, 9.

Let us consider the decomposition (Ψ, s, d) = (Ψ1, s1, d1) + (Ψ2, s2, d2) where
iΨ̇1 = −1

2Ψ′′1 − uqΨ1,
Ψ1(t,±1/2) = 0,
Ψ1(0) = Ψ0,
ṡ1 = 0, s1(0) = s0,

ḋ1 = s1, d1 = d0.


iΨ̇2 = −1

2Ψ′′2 − uqΨ2 − wqψ,
Ψ2(t,±1/2) = 0,
Ψ2(0) = 0,
ṡ2 = w, s2(0) = 0,

ḋ2 = s2, d2(0) = 0.

The equality (39) is equivalent to

(PΨ2(T ), s2(T ), d2(T )) = (Ψ̃f − PΨ1(T ), sf − s0, df − d0 − s0T ). (41)

Let us introduce, for γ ∈ R the operator Aγ de�ned on

D(Aγ) := H2 ∩H1
0 (I,C) by Aγϕ := −1

2
ϕ′′ − γqϕ

and (λk,γ)k∈N∗ the increasing sequence of eigenvalues for Aγ . We know from [13, chapter 7, example
2.14] that λk,γ are analytic functions of the parameter γ.

The equality (41) is equivalent to

M(ψ0,u)(w) = D(ψ0,u)(Ψ0, s0, d0, Ψ̃f , sf , df ),

where

M(ψ0,u)(w) :=
(
d2(T ), s2(T ), < Ψ2(T ), ϕ2 > ei

∫ T
0 λ2,u(s)ds, < Ψ2(T ), ϕ3 > ei

∫ T
0 λ3,u(s)ds, ...

)
,

D(ψ0,u)(Ψ0, s0, d0, Ψ̃f , sf , df ) :=
(
df − d0 − s0T, sf − s0, < Ψ̃f −Ψ1(T ), ϕ2 > ei

∫ T
0 λ2,u(s)ds,

< Ψ̃f −Ψ1(T ), ϕ3 > ei
∫ T
0 λ3,u(s)ds, ...

)
.

Proposition 7 The linear map M(ψ0,u) is continuous from E to F for every

(E,F ) ∈ {(L2, h3
r), (H

1
0 , h

5
r), (H

2
0 , h

7
r), (H

3
0 , h

9
r)}.

There exist C > 0 and η > 0 such that, for every (ψ0, u) ∈ H9
(0)(I,C)× R× R with

‖ψ0 − ψθ(0)‖H3(I,C) + ‖u‖H1
0 ((0,T ),R) < η,
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there exists a continuous right inverse

M−1
(ψ0,u) : h9

r(N,C)→ H3
0 ((0, T ),R)

such that, for every d ∈ h9
r(N,C),

‖M−1
(ψ0,u)(d)‖L2 6 C‖d‖h3 ,

‖M−1
(ψ0,u)(d)‖H1

0
6 C[‖d‖h5 + ∆5‖d‖h3 ],

‖M−1
(ψ0,u)(d)‖H2

0
6 C[‖d‖h7 + ∆5‖d‖h5 + (∆7 + ∆2

5)‖d‖h3 ],

‖M−1
(ψ0,u)(d)‖H3

0
6 C[‖d‖h9 + ∆5‖d‖h7 + (∆7 + ∆2

5)‖d‖h5 + (∆9 + ∆7∆5 + ∆3
5)‖d‖h3 ],

where
∆k := ‖(ψ0 − ψθ(0), S0, D0, u)‖Ek for k = 3, 5, 7, 9.

In order to get this result, we prove that when (ψ0, u) is closed to (ψθ, 0) inH3
(0)(I,C)×H1

0 ((0, T ),R),
the map M(ψ0,u) is closed enough to the map M(ψθ(0),0), in a sense presented in the following propo-
sition, so that

� the existence of a right inverse M−1
(ψθ(0),0) guarantees the existence of a right inverse M−1

(ψ0,u),

� the bounds proved on M−1
(ψθ(0),0) give the same kind of bounds on M−1

(ψ0,u).

More precisely, we apply the following proposition already proved in [1, Proposition 15 Section 3.6.1].

Proposition 8 Let T := 4/π, M and Mθ be bounded linear operators from L2((0, T ),R) to h3(N,C),
from H1

0 ((0, T ),R) to h5(N,C), from H2
0 ((0, T ),R) to h7(N,C) and from H3

0 ((0, T ),R) to h9(N,C).
We assume there exist a continuous linear operator M−1

θ : h9(N,C) → H3
0 ((0, T ),R) and a positive

constant C0 such that for every d ∈ h9(N,C), Mθ ◦M−1
θ (d) = d and ‖M−1

θ (d)‖E 6 C0‖d‖F for every
(E,F ) ∈ {(L2, h3), (H1

0 , h
5), (H2

0 , h
7), (H3

0 , h
9)}. We also assume there exist positive constants C1,

∆3, ∆5, ∆7, ∆9 with C0C1∆3 6 1/2, satisfying, for every w ∈ H3
0 ((0, T ),R)

‖(M −Mθ)(w)‖h3 6 C1∆3‖w‖L2 ,
‖(M −Mθ)(w)‖h5 6 C1[∆3‖w‖H1

0
+ ∆5‖w‖L2 ],

‖(M −Mθ)(w)‖h7 6 C1[∆3‖w‖H2
0

+ ∆5‖w‖H1
0

+ ∆7‖w‖L2 ],

‖(M −Mθ)(w)‖h9 6 C1[∆3‖w‖H3
0

+ ∆5‖w‖H2
0

+ ∆7‖w‖H1
0

+ ∆9‖w‖L2 ].

(42)

Then, there exists a continuous linear operator M−1 : h9(N,C) → H3
0 ((0, T ),R) such that for every

d ∈ h9(N,C), M ◦M−1(d) = d and the function w := M−1(d) satis�es

‖w‖L2 6 2C0‖d‖h3 ,
‖w‖H1

0
6 2C0[‖d‖h5 + 2C2∆5‖d‖h3 ],

‖w‖H2
0
6 2C0[‖d‖h7 + 2C2∆5‖d‖h5 + (2C2∆7 + 8C2

2∆2
5)‖d‖h3 ],

‖w‖H3
0
6 2C0[‖d‖h9 + 2C2∆5‖d‖h7 + (2C2∆7 + 8C2

2∆2
5)‖d‖h5+

(2C2∆9 + 16C2
2∆7∆5 + 48C3

2∆3
5)‖d‖h3 ].

where C2 := C0C1.

Let us recall that, for γ ∈ R, the space L2(I,C) has a complete orthonormal system (ϕk,γ)k∈N∗ of
eigenvectors for Aγ :

Aγϕk,γ = λk,γϕk,γ .

We know from [13, chapter 7, example 2.14] that ϕk,γ are analytic functions of the parameter γ. This
result gives sense to the notation

dϕk,γ
dγ

]γ0
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which means the derivative of the map γ 7→ ϕk,γ with respect to γ evaluated at the point γ = γ0.

Proof of Proposition 7 : Let us consider the decomposition

Ψ2(t) =

∞∑
k=1

xk(t)ϕk,u(t) where xk(t) :=< Ψ2(t), ϕk,u(t) > .

Using u(T ) = 0, we get

M(ψ0,u)(w) =

(∫ T

0
(T − t)w(t)dt,

∫ T

0
w(t)dt, x2(T )ei

∫ T
0 λ2,u(s)ds, x3(T )ei

∫ T
0 λ3,u(s)ds, ...

)
.

The partial di�erential equation satis�ed by Ψ2 provides, for every k ∈ N∗, an ordinary di�erential
equation satis�ed by the component xk,

ẋk(t) =<
∂Ψ2

∂t
(t), ϕk,u(t) > +u̇(t) < Ψ2(t),

dϕk,γ
dγ

]u(t) >,

<
∂Ψ2

∂t
(t), ϕk,u(t) >=< −iAu(t)Ψ2(t)+iw(t)qψ(t), ϕk,u(t) >= −iλk,u(t)xk(t)+iw(t) < qψ(t), ϕk,u(t) >,

ẋk(t) = −iλk,u(t)xk(t) + iw(t) < qψ(t), ϕk,u(t) > +u̇(t) < Ψ2(t),
dϕk,γ
dγ

]u(t) > .

Solving this equation, we get

M(ψ0,u)(w)k =

∫ T

0

(
iw(t) < qψ(t), ϕk,u(t) > +u̇(t) < Ψ2(t),

dϕk,γ
dγ

]u(t) >

)
ei

∫ t
0 λk,u(s)dsdt, k > 2.

We introduce the following decomposition

(M(ψ0,u) −M(ψθ(0),0))(w) = δM(w)1 + δM(w)2

where
δM(w)jk = 0 for j = 1, 2 and k = 0, 1,

δM(w)1
k = i

∫ T

0
w(t)[< qψ(t), ϕk,u(t) > ei

∫ t
0 λk,u(s)ds− < qψθ(t), ϕk > eiλkt]dt, k > 2,

δM(w)2
k =

∫ T

0
u̇(t) < Ψ2(t),

dϕk,γ
dγ

]u(t) > ei
∫ t
0 λk,u(s)dsdt, k > 2.

Let us justify the bounds (42) on the terms δM(w)j for j = 1, 2. The study of δM(w)1 can be
done in the same way as in the proof of [1, section 3.6.2 Proposition 27] (with γ = 0). The study of
δM(w)2 can be done by applying [1, Propositions 18, 20, 23, 25 Section 3.6.2]. �

Proposition 9 We assume ∆3 6 1. There exists C > 0 such that, for every

(Ψ0, s0, d0, Ψ̃f , sf , df ) ∈ [TS(ψ0) ∩H9
(0)(I,C)]× R× R× [V ∩H9

(0)(I,C)]× R× R,

we have

‖D(Ψ0, s0, d0, Ψ̃f , sf , df )‖h3 6 C[‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖3 + ∆3‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖3],

‖D(Ψ0, s0, d0, Ψ̃f , sf , df )‖h5 6 C[‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖5 + ∆3‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖5
+∆5‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖3],

‖D(Ψ0, s0, d0, Ψ̃f , sf , df )‖h7 6 C[‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖7 + ∆3‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖7
+∆5‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖5 + (∆7 + ∆2

5)‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖3],

‖D(Ψ0, s0, d0, Ψ̃f , sf , df )‖h9 6 C[‖(PΨ0, s0, d0, Ψ̃f , sf , df )‖9 + ∆3‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖9
+∆5‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖7 + (∆7 + ∆2

5)‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖5
(∆9 + ∆7∆5 + ∆3

5)‖(Ψ0, s0, d0, Ψ̃f , sf , df )‖3].
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Proof : Standard results about Fourier series provide the existence of C > 0 such that, for every

(Ψ0, s0, d0, Ψ̃f , sf , df ) ∈ [TS(ψ0) ∩H9
(0)(I,C)]× R× R× [V ∩H9

(0)(I,C)]× R× R,

for every s ∈ {3, 5, 7, 9},

‖D(ψ0,u)(Ψ0, s0, d0, Ψ̃f , sf , df )‖hs(N,C) 6 C[‖PΨ1(T )‖Hs + ‖Ψ̃f‖Hs + |s0|+ |d0|+ |sf |+ |df |].

Thus, it is su�cient to prove the existence of C > 0 such that

‖PΨ1(T )‖H3 6 C[‖PΨ0‖H3 + ∆3‖(Ψ0, u)‖H3×H1
0
],

‖PΨ1(T )‖H5 6 C[‖PΨ0‖H5 + ∆3‖(Ψ0, u)‖H5×H2
0

+ ∆5‖(Ψ0, u)‖H3×H1
0
],

‖PΨ1(T )‖H7 6 C[‖PΨ0‖H7 + ∆3‖(Ψ0, u)‖H7×H3
0

+ ∆5‖(Ψ0, u)‖H5×H2
0

+ ∆7‖(Ψ0, u)‖H3×H1
0
],

‖PΨ1(T )‖H9 6 C[‖PΨ0‖H9 + ∆3‖(Ψ0, u)‖H9×H4
0

+ ∆5‖(Ψ0, u)‖H7×H3
0

+ ∆7‖(Ψ0, u)‖H5×H2
0

+∆9‖(Ψ0, u)‖H3×H1
0
].

(43)
For every s ∈ {3, 5, 7, 9}, we have

‖PΨ1(T )‖Hs 6 C

( ∞∑
k=2

|ksxk(T )|2
)1/2

where xk(t) :=< Ψ1(t), ϕk,u(t) >,

because u(T ) = 0. Thanks to the equation satis�ed by Ψ1, we get

xk(T ) =

(
< Ψ0, xk > +

∫ T

0
u̇(t) < Ψ1(t),

dϕk,γ
dγ

]u(t) > ei
∫ t
0 λk,u(s)dsdt

)
e−i

∫ T
0 λk,u(s)ds,

( ∞∑
k=2

|ksxk(T )|2
)1/2

6 ‖PΨ0‖Hs +

( ∞∑
k=2

|ks
∫ T

0
u̇(t) < Ψ1(t),

dϕk,γ
dγ

]u(t) > ei
∫ t
0 λk,u(s)dsdt|2

)1/2

.

Using [1, Propositions 17, 20, 23, 29], we get (43). �

In conclusion, using Propositions 7 and 9, we get the bounds (40).

3.3 Motion in the directions (ψ, S,D) = (±iϕ1, 0, 0)

The aim of this section is the proof of the following theorem.

Theorem 6 Let T := 4/π. There exists w± ∈ H4 ∩H3
0 ((0, T ),R), ν± ∈ H3

0 ((0, T ),R) such that the
solutions of 

iΨ̇± = −1
2Ψ′′± − w±qψθ,

Ψ±(0) = 0,
Ψ±(t,−1/2) = Ψ±(t, 1/2) = 0,
ṡ± = w±, s±(0) = 0,

ḋ± = s±, d±(0) = 0,

(44)


iξ̇± = −1

2ξ
′′
± − w±qΨ± − ν±qψθ,

ξ±(0) = 0,
ξ±(t,−1/2) = ξ±(t, 1/2) = 0,
σ̇± = ν±, σ±(0) = 0,

δ̇± = σ±, δ±(0) = 0,

(45)

satisfy Ψ±(T ) = 0, s±(T ) = 0, d±(T ) = 0, ξ±(T ) = ±iϕ1, σ± = 0, δ± = 0.

19



We introduce the following subspace of L2((0, T ),C),

X := Span(1, t, e±i(λ2k−λ1)t, e±i(λ2k+1−λ2)t; k ∈ N∗).

The symbol X⊥ denotes the orthogonal subspace to X in L2((0, T ),C).

Proposition 10 There exists w ∈ H4 ∩H3
0 ((0, T ),R) ∩ X⊥ such that∫ T

0
w(t) < qΨ(t), ϕ1 > eiλ1tdt−

√
θ√

1− θ

∫ T

0
w(t) < qϕ2,Ψ(t) > e−iλ2tdt ∈ (0,+∞)(resp.(−∞, 0)),

(46)
where Ψ is the solution of 

iΨ̇ = −1
2Ψ′′ − wqψθ,

Ψ(0) = 0,
Ψ(t,±1/2) = 0.

(47)

Remark 4 If w ∈ X⊥ and Ψ solves the previous system, then∫ T

0
w(t) < qΨ(t), ϕ1 > eiλ1tdt−

√
θ√

1− θ

∫ T

0
w(t) < qϕ2,Ψ(t) > e−iλ2tdt ∈ R.

Indeed, we have (see (6) and (7))

Ψ(t) =
∞∑
k=1

xk(t)ϕk, where

{
x2k(t) = i

√
1− θb2ke−iλ2kt

∫ t
0 w(τ)ei(λ2k−λ1)τdτ,

x2k−1(t) = i
√
θc2k−1e

−iλ2k−1t
∫ t

0 w(τ)ei(λ2k−1−λ2)τdτ,
(48)

where bk and ck are given by (8). Thus, we get∫ T

0
w(t) < qΨ(t), ϕ1 > eiλ1tdt = i

√
1− θ

∞∑
k=1

b22kf2k, (49)

∫ T

0
w(t) < qϕ2,Ψ(t) > e−iλ2tdt = −i

√
θ
∞∑
k=0

c2
2k+1f2k+1, (50)

where

f2k :=

∫ T

0
w(t)ei(λ1−λ2k)t

∫ t

0
w(τ)ei(λ2k−λ1)τdτdt, ∀k ∈ N∗,

f2k+1 :=

∫ T

0
w(t)ei(λ2k+1−λ2)t

∫ t

0
w(τ)ei(λ2−λ2k+1)τdτdt, ∀k ∈ N.

Thanks to integrations by parts and the property w ∈ X⊥, we get, for every k ∈ N∗, fk ∈ iR.

Proof of Proposition 10 : Let us consider functions of the form

w(t) = a1sin(
1

2
n1π

2t) + a2sin(
1

2
n2π

2t) + sin(
1

2
n3π

2t),

where n1, n2, n3 are three distinct positive integers such that

n1, n2, n3 /∈ {0,±[(2k)2 − 1],±[(2k − 1)2 − 4]; k ∈ N∗},

and a1, a2 are de�ned by

a1 :=
n1(n2

3−n2
2)

n3(n2
2−n2

1)
, a2 :=

n2(n2
1−n2

3)

n3(n2
2−n2

1)
.
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Then,
w ∈ H4 ∩H3

0 ((0, T ),R) ∩ X⊥.

Let Ψ be the solution of (47). The condition (46) is equivalent to

i
∞∑
k=1

b22kf2k + i
θ

1− θ

∞∑
k=0

c2
2k+1f2k+1 ∈ (0,+∞) (resp.(−∞, 0)). (51)

Using (8), the two previous in�nite sums can be computed explicitly. We �nd

i

∞∑
k=1

b22kf2k =
32T

π6
(a2

1An1 + a2
2An2 +An3),

i
∞∑
k=0

c2
2k+1f2k+1 =

32T

π6
(a2

1Bn1 + a2
2Bn2 +Bn3),

where

An :=

∞∑
k=1

(2k)2

(1 + 2k)4(1− 2k)4

(
1

n+ 4k2 − 1
+

1

−n+ 4k2 − 1

)
,

Bn :=

∞∑
k=0

4(2k + 1)2

(3 + 2k)4(1− 2k)4

(
1

−n+ 4− (2k + 1)2
+

1

n+ 4− (2k + 1)2

)
.

Let us choose n1 = 1, n2 = 2, n3 = 4 (resp. n1 = 1, n2 = 4, n3 = 6) then

a2
1An1 + a2

2An2 +An3 > 0 (resp. < 0),

a2
1Bn1 + a2

2Bn2 +Bn3 > 0 (resp. < 0),

thus, for every θ ∈ (0, 1), we have (51). �

Proof of Theorem 6 : Let w ∈ H4 ∩H3
0 ((0, T ),R) ∩ X⊥ be such that∫ T

0
w(t) < qΨ(t), ϕ1 > eiλ1tdt−

√
θ√

1− θ

∫ T

0
w(t) < qϕ2,Ψ(t) > e−iλ2tdt = +1 (resp.− 1). (52)

Using (48) and the assumption w ∈ X⊥, we get Ψ(T ) = 0, s(T ) = 0, d(T ) = 0. Let us prove that there
exists ν ∈ H3

0 ((0, T ),R) such that the solution ξ of (45) satis�es ξ(T ) = iϕ1 (resp. −iϕ1), σ(T ) = 0,
δ(T ) = 0. We have

ξ(t) =
∞∑
k=1

yk(t)ϕk,

y2k(t) = i

(∫ t

0
[w(τ) < qΨ(τ), ϕ2k > +ν(τ)

√
1− θb2ke−iλ1τ ]eiλ2kτdτ

)
e−iλ2kt,

y2k+1(t) = i

(∫ t

0
[w(τ) < qΨ(τ), ϕ2k+1 > +ν(τ)

√
θc2k+1e

−iλ2τ ]eiλ2k+1τdτ

)
e−iλ2k+1t.

Thus the equality (ξ(T ), σ(T ), δ(T )) = (±iϕ1, 0, 0) is equivalent to∫ T

0
ν(t)ei(λ1−λ2)tdt =

1√
θc1

(
±1−

∫ T

0
w(t) < qΨ(t), ϕ1 > eiλ1tdt

)
,

∫ T

0
ν(t)ei(λ2k−λ1)tdt =

−1√
1− θb2k

∫ T

0
w(t) < qΨ(t), ϕ2k > eiλ2ktdt,∀k ∈ N∗,
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∫ T

0
ν(t)ei(λ2k+1−λ2)tdt =

−1√
θc2k+1

∫ T

0
w(t) < qΨ(t), ϕ2k+1 > eiλ2k+1tdt,∀k ∈ N∗,

∫ T

0
ν(t)dt = 0,∫ T

0
(T − t)ν(t)dt = 0.

The left hand sides of the two �rst equalities with k = 1 are complex conjugate numbers when ν
is real valued. Thus, a necessary condition for the existence of real-valued solution ν to this problem
is

1√
θ

(
+1−

∫ T

0
w(t) < qΨ(t), ϕ1 > eiλ1tdt

)
=

−1√
1− θ

∫ T

0
w(t) < qϕ2,Ψ(t) > e−iλ2tdt

(resp.
1√
θ

(
−1−

∫ T

0
w(t) < qΨ(t), ϕ1 > eiλ1tdt

)
=

−1√
1− θ

∫ T

0
w(t) < qϕ2,Ψ(t) > e−iλ2tdt).

This property is satis�ed thanks to (52).
Let d = (dk)k∈N be the sequence de�ned by

d0 := 0, d1 = 0,

d2k :=
−1

b2k
√

1− θ

∫ T

0
w(t) < qΨ(t), ϕ2k > eiλ2ktdt,∀k > 1,

d2k :=
−1

c2k+1

√
θ

∫ T

0
w(t) < qΨ(t), ϕ2k+1 > eiλ2k+1tdt,∀k > 1.

The previous moment problem can be written Z(ν) = d, where the map Z has been de�ned in section
3.2.3. Thanks to (8) and Proposition 6, a su�cient condition for the existence of ν ∈ H3

0 ((0, T ),R)
solution of this equation is d ∈ h6(N,C). We can get this result by applying [1, Proposition 24 Section
3.6.2].�

3.4 Proof of Theorem 2

In all this section T := 4/π. Let ρ ∈ R, ψ0, ψf ∈ H7
(0)(I,C), S0, D0, Sf , Df ∈ R. Let us consider,

for t ∈ [0, T ]
u(t) :=

√
|ρ|w + |ρ|ν,

where w := w+, ν := ν+ if ρ > 0 and w := w−, ν := ν− if ρ 6 0 and w±, ν± are de�ned in Theorem
6. Let (ψ, S,D) be the solution of (Σ0) on [0, T ] with control u and such that

(ψ(0), S(0), D(0)) = (ψ0, S0, D0).

Then, we have
S(T ) = S0, D(T ) = D0.

We have u ∈ W 3,1((0, T ),R) and u(0) = u(T ) = u̇(0) = u̇(T ) = 0 thus (see [1, Appendix B
Proposition 51]) the function ψ(T ) belongs to H7

(0)(I,C).

Proposition 11 There exists C > 0 such that, for every ρ ∈ (−1, 1), we have

‖ψ(T )− (ψθ(T ) + iρϕ1)‖H7(I,C) 6 C[‖ψ0 − ψθ(0)‖H7(I,C) + |ρ|3/2].
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Proof : We have ψ(T )− (ψθ(T ) + iρϕ1) = (ψ − Z)(T ) where Z := ψθ + Ψ + ξ and Ψ, ξ are the
solutions of  iΨ̇ = −1

2Ψ′′ −
√
|ρ|wqψθ,

Ψ(t,±1/2) = 0,
Ψ(0) = 0, iξ̇ = −1

2ξ
′′ −

√
|ρ|wqΨ− |ρ|νqψθ,

ξ(t,±1/2) = 0,
ξ(0) = 0.

The function ∆ := ψ − Z solves i∆̇ = −1
2∆′′ − uq∆− |ρ|νq(Ψ + ξ)−

√
|ρ|wqξ,

∆(t,±1/2) = 0,
∆(0) = ψ0 − ψθ(0).

We know from [1, proposition 51, Appendix B], that the following quantities

‖Ψ‖C0([0,T ],H7), ‖Ψ‖C1([0,T ],H5), ‖Ψ‖C2([0,T ],H3), ‖Ψ‖C3([0,T ],H1),

are bounded by

A7(Ψ) := C[‖f‖C0([0,T ],H5) + ‖f‖C1([0,T ],H3) + ‖f‖W 2,1((0,T ),H2) + ‖f‖W 3,1((0,T ),H1)],

where C is a positive constant and f :=
√
|ρ|wqψθ. Thus, there exists a constant C1 such that

A7(Ψ) 6 C1

√
|ρ|.

In the same way, we prove that there exists a constant C2 such that

‖ξ‖C0([0,T ],H7), ‖ξ‖C1([0,T ],H5), ‖ξ‖C2([0,T ],H3), ‖ξ‖C3([0,T ],H1),

are bounded by
A7(ξ) 6 C2|ρ|.

Using [1, Appendix B, proposition 51] we get the existence of a constant C3 > 0 such that

‖∆(T )‖H7 6 C3[‖ψ0 − ψθ(0)‖H7 +
√
|ρ|A7(ξ) + |ρ|A7(Ψ)].�

Now, we use the local controllability up to codimension one around Yθ. Let δ > 0 be as in Theorem
3. We assume

‖ψ0 − ψθ(0)‖H7(I,C) <
δ

4C
,

|S0|+ |D0| <
δ

2
,

‖P[ψf − ψθ(2T )]‖H7 + |Sf |+ |Df | < δ.

When ρ satis�es

|ρ| < η := min{1;
δ

4(‖ϕ1‖H7 + C)
},

the previous proposition proves that

‖ψ(T )− ψθ(0)‖H7 6 (‖ϕ1‖H7 + C)|ρ|3/2 +
δ

4
<
δ

2
.

23



Thus (ψ(T ), S0, D0) ∈ V(0) and (Pψf , Sf , Df ) ∈ V(T ). Thanks to Theorem 3, there exists

ũ := Γ(ψ(T ), S0, D0,Pψf , Sf , Df ) ∈ H1
0 ((T, 2T ),R)

such that
(Pψ(2T ), S(2T ), D(2T )) = (Pψf , Sf , Df ),

where (ψ, S,D) is the solution of (Σ0) with control u on [0, 2T ], with u extended to [0, 2T ] by u := ũ
on [T, 2T ]. The Theorem 3 and the previous proposition give the existence of a constant C such that

‖u‖H1((T,2T ),R) 6 C[|ρ|3/2 + ‖ψ0−ψθ(0)‖H7 + |S0|+ |D0|+ ‖P(ψf −ψθ(2T ))‖H7 + |Sf |+ |Df |]. (53)

We de�ne the map
F : (−η, η) → R

ρ 7→ =(< ψ(2T ), ϕ1 >).

Thanks to Theorem 3, F is continuous on (−η, η). We can assume δ is small enough so that

<(< ψ(2T ), ϕ1 >) > 0,

because ψ is closed enough to ψθ. Since ψ ∈ S and <(< ψ(2T ), ϕ1 >) is positive, we have

ψ(2T ) = ψf if and only if F (ρ) = =(< ψf , ϕ1 >).

Therefore, in order to get Theorem 2, it is su�cient to prove that F is surjective on a neighbourhood
of 0.

Let x(t) :=< ψ(t), ϕ1 > on [T, 2T ]. We have

x(2T ) = x(T ) + i

∫ 2T

T
u(t) < qψ(t), ϕ1 > eiλ1tdt.

Thus

F (ρ) = ρ+ [=(x(T ))− ρ] + =
(
i

∫ 2T

T
u(t) < qψ(t), ϕ1 > eiλ1t

)
,

where
|=(x(T ))− ρ| 6 ‖ψ(T )− (ψθ(T ) + iρ)‖L2 6 C[|ρ|3/2 + ‖ψ0 − ψθ(0)‖H7 ],

|
∫ 2T

T
u(t) < qψ(t), ϕ1 > eiλ1tdt| 6 T‖u‖L∞((T,2T ),R).

Using (53), we get the existence of a constant K such that

|F (ρ)− ρ| 6 K[|ρ|3/2 + ‖ψ0 − ψθ(0)]‖H7 + ‖P[ψf − ψθ(2T )]‖H7 + |Sf |+ |Df |+ |S0|+ |D0|].

There exists τ ∈ (0, η) such that

K|τ |3/2 < τ

3
.

Let us assume that

K[‖ψ0 − ψθ(0)]‖H7 + ‖P[ψf − ψθ(2T )]‖H7 + |Sf |+ |Df |+ |S0|+ |D0|] <
τ

3
.

Then
F (τ) >

τ

3
and F (−τ) < −τ

3
,

thus the intermediate values theorem guarantees that F is surjective on a neighbourhood of zero, this
ends the proof of Theorem 2.
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4 Local controllability of (Σ0) around Y 0,0,0

The aim of this section is the proof of the following theorem.

Theorem 7 Let φ0, φ1 ∈ R. There exist T > 0 and η > 0 such that, for every (ψ0, S0, D0),
(ψf , Sf , Df ) ∈ [S ∩H7

(0)(I,C)]× R× R with

‖ψ0 − ϕ1e
iφ0‖H7(I,C) + |S0|+ |D0| < η,

‖ψf − ϕ1e
iφ1‖H7(I,C) + |Sf |+ |Df | < η,

there exists a trajectory (ψ, S,D, u) of (Σ0) on [0, T ] such that

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),

(ψ(T ), S(T ), D(T )) = (ψf , Sf , Df )

and u ∈ H1
0 ((0, T ),R).

4.1 Non controllability of the linearized system around (Y 0,0,0, u ≡ 0)

The linearized system around (Y 0,0,0, u ≡ 0) is

(Σl
0)


iΨ̇ = −1

2Ψ′′ − wqψ1,
Ψ(t,±1/2) = 0,
ṡ = w,

ḋ = s.

It is a control system where
� the state is (Ψ, s, d) with Ψ(t) ∈ TS(ψ1(t)) for every t,
� the control is the real valued function w.
Let (Ψ0, s0, d0) ∈ TS(ψ1(0))×R×R and (Ψ, s, d) be the solution of (Σl

0) such that (Ψ(0), s(0), d(0)) =
(Ψ0, s0, d0), with some control w ∈ L2((0, T ),R). We have the following equality in L2(I,C)

Ψ(t) =
∞∑
k=1

xk(t)ϕk where xk(t) :=< Ψ(t), ϕk > ∀k ∈ N∗.

Using the parity of the functions ϕk and the equation solved by Ψ, we get

iẋ2k+1 = λ2k+1x2k+1,∀k ∈ N.

Half of the components have a dynamic independent of the control w. Thus the control system (Σl
0)

is not controllable.

4.2 Local controllability of (Σ0) around Y γ,0,0 for γ 6= 0

Let γ ∈ R∗. The ground state for u ≡ γ is the function

ψ1,γ(t, q) := ϕ1,γ(q)e−iλ1,γt,

where λ1,γ is the �rst eigenvalue and ϕ1,γ the associated normalised eigenvector of the operator Aγ
de�ned on

D(Aγ) := H2 ∩H1
0 (I,C) by Aγϕ := −1

2
ϕ′′ − γqϕ.
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When α, β ∈ R, the function

Y γ,α,β(t) := (ψ1,γ(t), α+ γt, β + αt+ γt2/2)

solves (Σ0) with u ≡ γ. We de�ne T := 4/π, T ∗ := 2T and, for s = 1, 3, 5, 7, 9 the space

Hs
(γ)(I,C) := {ϕ ∈ Hs(I,C);Anγϕ ∈ H1

0 (I,C) for n = 0, ..., (s− 1)/2}.

We admit the following result which will be proved in section 5.

Theorem 8 There exists γ0 > 0 such that, for every γ ∈ (0, γ0), there exists δ = δ(γ) > 0, such that,
for every (ψ0, S0, D0), (ψf , Sf , Df ) ∈ [S ∩H7

(γ)(I,C)]× R× R with

‖ψ0 − ψ1,γ(0)‖H7 + |S0 − α|+ |D0 − β| < δ,

‖ψf − ψ1,γ(T ∗)‖H7(I,C) + |Sf − α− γT ∗|+ |Df − β − αT ∗ − γT ∗2/2| < δ,

for some real constants α, β, there exists v ∈ H1
0 ((0, T ∗),R) such that, the unique solution of (Σ0) on

[0, T ∗], with control u := γ + v, such that (ψ(0), S(0), D(0)) = (ψ0, S0, D0) satis�es

(ψ(T ∗), S(T ∗), D(T ∗)) = (ψf , Sf , Df ).

4.3 Quasi-static transformations

Let γ ∈ (0, γ0) with γ0 as in Theorem 8. Let f ∈ C4([0, 3],R) be such that

f ≡ 0 on [0, 1/2] ∪ [5/2, 3], (54)

f(t) = t for t ∈ [1, 3/2], (55)∫ 3

0
f(t)dt = 0. (56)

For ε > 0, we de�ne
uε : [0, 3/ε] → R

t 7→ γf ′(εt).

Let φ0, φ1 ∈ R. Let ψε, Sε, Dε) be the solution on [0, 1/ε] of
i∂ψε∂t (t, q) = −1

2
∂2ψε
∂q2

(t, q)− uε(t)qψε,
ψε(0, q) = ϕ1(q)eiφ0 ,
ψε(t,−1/2) = ψε(t, 1/2) = 0,

Ṡε(t) = uε(t), Sε(0) = 0,

Ḋε(t) = Sε(t), Dε(0) = 0.

The following result has been proved in [1, section 4].

Proposition 12 There exist ε0 > 0, C0 > 0 such that, for every ε ∈ (0, ε0],

‖ψε(1/ε)− ϕ1,γe
i(φ0−

∫ 1/ε
0 λ1,γf ′(εs)ds)‖H7(I,C) 6 C0γ

1/8ε1/32.

The continuity with respect to initial conditions gives the following proposition.
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Proposition 13 Let ε ∈ (0, ε0). There exists η0 = η0(ε) > 0 such that, for every (ψ0, S0, D0) ∈
H7

(0)(I,C)× R× R, with
‖ψ0 − ϕ1e

iφ0‖H7(I,C) 6 η0,

the solution (ψ, S,D) of (Σ0) on [0, 1/ε] with initial condition (ψ(0), S(0), D(0)) = (ψ0, S0, D0) and
control uε satis�es

‖ψ(1/ε)− ϕ1,γe
i(φ0−

∫ 1/ε
0 λ1,γf ′(εs)ds)‖H7(I,C) 6 2C0γ

1/8ε1/32.

S(1/ε) = S0 +
γ

ε
, D(1/ε) = D0 +

S0

ε
+
γ

ε2

∫ 1

0
f.

Let (ξε, sε, dε) be the solution on [(1/ε) + T ∗, (3/ε)] of
i∂ξε∂t (t, q) = −1

2
∂2ξε
∂q2

(t, q)− uε(t)qξε,
ξε(3/ε, q) = ϕ1(q)eiφε ,
ξε(t,−1/2) = ξε(t, 1/2) = 0,
ṡε(t) = uε(t), sε(3/ε) = 0,

ḋε(t) = sε(t), dε(3/ε) = 0.

where φε is the unique solution in [φ1, φ1 + 2π) of

φε +

∫ 3/ε

1/ε+T ∗
λ1,γf ′(εt)dt = φ0 −

∫ 1/ε

0
λ1,γf ′(εt)dt− λ1,γT

∗, (mod 2π). (57)

In the same way as in [1, section 4] and thanks to (57), we get the following proposition.

Proposition 14 There exist εf > 0, Cf > 0 such that, for every ε ∈ (0, εf ],

‖ξε((1/ε) + T ∗)− ϕ1,γe
i(φ0−

∫ 1/ε
0 λ1,γf ′(εs)ds−λ1,γT ∗)‖H7(I,C) 6 Cfγ

1/8ε1/32.

Let us extend ξε to [(1/ε) + T ∗, (3/ε) + τε] in such way that ξε((3/ε) + τε) = ϕ1e
iφ1 . Let τε be the

unique solution in [0, 2π/λ1) of
φε − λ1τε = φ1 (mod 2π).

We extend uε to [(1/ε) + T ∗, (3/ε) + τε] by zero :

uε(t) := 0, for every t ∈ [3/ε, (3/ε) + τε].

We still denote by (ξε, sε, dε) the solution of the last system on [(1/ε) + T ∗, (3/ε) + τε]. Then,

ξε((3/ε) + τε) = ϕ1e
iφ1 , Sε((3/ε) + τε) = 0, Dε((3/ε) + τε) = 0.

Again, the continuity with respect to initial conditions gives the following proposition.

Proposition 15 Let ε ∈ (0, εf ) such that ε < 1/(2T ∗). There exists ηf = ηf (ε) > 0 such that, for
every (ψf , Sf , Df ) ∈ H7

(0)(I,C)× R× R, with

‖ψf − ϕ1e
iφ1‖H7(I,C) 6 ηf ,

the solution (ψ, S,D) of (Σ0) on [(1/ε)+T ∗, (3/ε)+τε] with initial condition ((ψ(3/ε)+τε), S((3/ε)+
τε), D((3/ε) + τε)) = (ψf , Sf , Df ) and control uε satis�es

‖ψ((1/ε) + T ∗)− ϕ1,γe
i(φ0−

∫ 1/ε
0 λ1,γf ′(εs)ds−λ1,γT ∗)‖H7(I,C) 6 2Cfγ

1/8ε1/32,

S((1/ε) + T ∗) = Sf +
γ

ε
+ γT ∗,

D((1/ε) + T ∗) = Df + Sf (T ∗ − 2

ε
− τε) +

γ

ε2

∫ 1

0
f +

γ

ε
T ∗ +

1

2
γT ∗2.
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Proof of Theorem 7 : We �x ε ∈ (0, ε0) such that

ε < 1/(2T ∗) and 2 max(C0, Cf )γ1/8ε1/32 <
δ

3
,

where δ is given by Theorem 8. Let (ψ0, S0, D0), (ψf , Sf , Df ) ∈ [S ∩H7
(0)(I,C)]×R×R be such that

‖ψ0 − ϕ1,γe
iφ0‖H7(I,C) < η0(ε), (58)

‖ψf − ϕ1,γe
iφ1‖H7(I,C) < min(ηf (ε), δ/3), (59)

|S0| < δ/6 , |Sf | < δ/6, (60)

|D0|+ |Df |+ |S0|
(

1

ε
+ T ∗

)
+ |Sf |

(
2

ε
+ T ∗ + 2π

)
< δ/3. (61)

Then, the solution (ψ, S,D) of (Σ0) on [0, 1/ε] with control uε such that (ψ(0), S(0), D(0)) = (ψ0, S0, D0)
satis�es

‖ψ(1/ε)− ψ1,γ(θε)‖H7(I,C) 6 2C0γ
1/8ε1/32 < δ,

S(1/ε) = S0 +
γ

ε
, D(1/ε) = D0 +

S0

ε
+
γ

ε2

∫ 1

0
f,

where θε is such that

−λ1,γθε = φ0 −
∫ 1/ε

0
λ1,γf ′(εs)ds.

The solution (ψ, S,D) of (Σ0) on [(1/ε) + T ∗, (3/ε) + τε] with control uε such that

(ψ((3/ε) + τε), S((3/ε) + τε), D((3/ε) + τε)) = (ψf , Sf , Df ),

satis�es
‖ψ((1/ε) + T ∗)− ψ1,γ(θε + T ∗)‖H7(I,C) 6 2Cfγ

1/8ε1/32 < δ/3,

S((1/ε) + T ∗) = Sf +
γ

ε
+ γT ∗,

D((1/ε) + T ∗) = Df + Sf (T ∗ − (2/ε)− τε) +
γ

ε2

∫ 1

0
f +

γ

ε
T ∗ +

1

2
γT ∗2.

We apply Theorem 8 with
α := S(1/ε), β := D(1/ε).

The assumptions (60) and (61) give

|S((1/ε) + T ∗)− α− γT ∗| < δ/3,

|D((1/ε) + T ∗)− β − αT ∗ − γT ∗2/2 < δ/3.

Thus, there exists v ∈ H1
0 ((0, T ∗),R) such that the solution (ψ̃, S̃, D̃) of (Σ0) on [0, T ∗] with control

u := γ + v such that (ψ̃(0), S̃(0), D̃(0)) = (ψ(1/ε), S(1/ε), D(1/ε)) satis�es

(ψ̃(T ∗), S̃(T ∗), D̃(T ∗)) = (ψ((1/ε) + T ∗), S((1/ε) + T ∗), D((1/ε) + T ∗)).

Thus, the control u : [0, (3/ε) + τε]→ R de�ned by

u = uε on [0, 1/ε] ∪ [(1/ε) + T ∗, (3/ε) + τε],

u(t) = γ + v(t− 1/ε) for every t ∈ [1/ε, (1/ε) + T ∗]

gives the result.
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5 Local controllability of (Σ0) around Y γ,α,β

The aim of this section is the proof of Theorem 8. In [1] a similar local controllability result has
been proved for the subsystem (Σ) de�ned in the Introduction. It is the following one.

Theorem 9 There exists γ0 > 0 such that, for every γ ∈ (0, γ0), there exist δ > 0, C > 0 and a
continuous map

Γγ : Vγ(0) × Vγ(T ) → H1
0 ((0, T ),R)

(ψ0 , ψf ) 7→ v

where
Vγ(0) := {ψ0 ∈ S ∩H7

(γ)(I,C); ‖ψ0 − ψ1,γ(0)‖H7(I,C) < δ},

Vγ(T ) := {ψf ∈ S ∩H7
(γ)(I,C); ‖ψf − ψ1,γ(T )‖H7(I,C) < δ},

such that, for every ψ0 ∈ Vγ(0), ψf ∈ Vγ(T ), the unique solution of (Σ) with control u := γ + v such
that ψ(0) = ψ0 satis�es ψ(T ) = ψf and

‖Γγ(ψ0, ψf )‖H1
0 ((0,T ),R) 6 C[‖ψ0 − ψ1,γ(0)‖H7(I,C) + ‖ψf − ψ1,γ(T )‖H7(I,C)].

Let us recall the main ideas of the proof of this Theorem in order to emphasize the di�culty of
Theorem 8. We proved that the linearized system of (Σ) around (ψ1,γ , u ≡ γ) is controllable and we
concluded by applying an implicit function theorem of Nash-Moser type.

This strategy does not work with (Σ0) because the linearized system of (Σ0) around Y γ,α,β is not
controllable.

5.1 Controllability up to codimension one of the linearized system around

(Y γ,α,β, u ≡ γ)

In this section, we �x α, β ∈ R and γ ∈ R∗. The linearized control system around (Y γ,α,β, u ≡ γ)
is

(Σl
γ)


i∂Ψ
∂t = −1

2
∂2Ψ
∂q2
− γqΨ− wqψ1,γ ,

Ψ(t,−1/2) = Ψ(t, 1/2) = 0,
ṡ = w,

ḋ = s.

It is a control system where
� the state is (Ψ, s, d) with Ψ(t) ∈ TS(ψ1,γ(t)),
� the control is the real valued function w.
Let us recall that the space L2(I,C) has a complete orthonormal system (ϕk,γ)k∈N∗ of eigenfunc-

tions for the operator Aγ de�ned on

D(Aγ) := H2 ∩H1
0 (I,C) by Aγϕ := −1

2ϕ
′′ − γqϕ,

Aγϕk,γ = λk,γϕk,γ ,

where (λk,γ)k∈N∗ is an increasing sequence of positive real numbers. For technical reasons, we introduce
the notation

bk,γ :=< ϕk,γ , qϕ1,γ > .

It has already been proved in [1, Proposition 1, Section 3.1] that, for γ small enough and di�erent
from zero, bk,γ is di�erent from zero for every k ∈ N∗ and, roughly speaking, behaves like 1/k3 when
k → +∞. In all this section, we assume we are in this situation.

29



Proposition 16 Let T > 0 and (Ψ, s, d) be a trajectory of (Σl
γ) on [0, T ]. Then, for every t ∈ [0, T ],

we have

s(t) = s(0) +
1

ib1,γ

(
< Ψ(t), ϕ1,γ > eiλ1,γt− < Ψ(0), ϕ1,γ >

)
. (62)

Thus, the control system (Σl
γ) is not controllable.

Proof : Let x1(t) :=< Ψ(t), ϕ1,γ >. We have

ẋ1(t) =<
∂Ψ

∂t
(t), ϕ1,γ >=< −iAγΨ(t) + iw(t)qψ1,γ(t), ϕ1,γ >,

ẋ1(t) = −iλ1,γx1(t) + ib1,γw(t)e−iλ1γt,

x1(t) =

(
x1(0) + ib1,γ

∫ t

0
w(τ)dτ

)
e−iλ1,γt.

We get (62) by using

s(t) = s(0) +

∫ t

0
w(τ)dτ.

Let T > 0, Ψ0 ∈ TS(ψ1,γ(0)), Ψf ∈ TS(ψ1,γ(T )), s0, sf ∈ R. A necessary condition for the existence
of a trajectory of (Σl

γ) such that Ψ(0) = Ψ0, s(0) = s0, Ψ(T ) = Ψf , s(T ) = sf is

sf − s0 =
1

ib1,γ

(
< Ψf , ϕ1,γ > eiλ1,γT− < Ψ0, ϕ1,γ >

)
.

This equality does not happen for an arbitrary choice of Ψ0, Ψf , s0, sf . Thus (Σl
γ) is not controllable.�

Proposition 17 Let T > 0, (Ψ0, s0, d0), (Ψf , sf , df ) ∈ H3
(0)(I,C)× R× R be such that

< < Ψ0, ψ1,γ(0) >= < < Ψf , ψ1,γ(T ) >= 0, (63)

sf − s0 =
i

b1,γ

(
< Ψ0, ϕ1,γ > − < Ψf , ϕ1,γ > eiλ1,γT

)
. (64)

Then there exists w ∈ L2((0, T ),R) such that the solution of (Σl
γ) with control w and such that

(Ψ(0), s(0), d(0)) = (Ψ0, s0, d0) satis�es (Ψ(T ), s(T ), d(T )) = (Ψf , sf , df ).

Remark 5 We can control Ψ and d but we cannot control s. We miss only two directions which are
(Ψ, s, d) = (0,±1, 0).

Proof : Let (Ψ0, s0, d0) ∈ TS(ψ1,γ(0))×R×R and T > 0. Let (Ψ, s, d) be a solution of (Σl
γ) with

(Ψ(0), s(0), d(0)) = (Ψ0, s0, d0) and a control w ∈ L2((0, T ),R). Let (Ψf , sf , df ) ∈ TS(ψ1,γ(T ))×R×R.
The equality (Ψ(T ), s(T ), d(T )) = (Ψf , sf , df ) is equivalent to the following moment problem on w,∫ T

0 w(t)ei(λk,γ−λ1,γ)tdt = i
bk,γ

(
< Ψ0, ϕk,γ > − < Ψf , ϕk,γ > eiλk,γT

)
,∀k ∈ N∗,∫ T

0 w(t)dt = sf − s0,∫ T
0 (T − t)w(t)dt = df − d0 − s0T.

(65)

The left hand sides of the two �rst equalities with k = 1 are equal, the equality of the right hand
sides is guaranteed by (64). Under the assumption Ψ0,Ψf ∈ H3

(0)(I,C), the right hand side of (65)

de�nes a sequence in l2. Thus, under the assumptions (64), and Ψ0,Ψf ∈ H3
(0)(I,C), the existence of

a solution w ∈ L2((0, T ),R) of (65) can be proved in the same way as in [1, Theorem 5]. �

30



5.2 Local controllability up to codimension one of (Σ0) around Y γ,α,β

In this section, we �x α, β ∈ R. The aim of this section is the proof of the following result.

Theorem 10 There exists γ0 > 0 such that, for every γ ∈ (0, γ0), for every S0 ∈ R, there exist δ > 0,
C > 0 and a continuous map

Γγ,S0 : Vγ(0) × Vγ,S0(T ) → H1
0 ((0, T ),R)

((ψ0, D0) , (ψf , Df )) 7→ v

where

Vγ(0) := {(ψ0, D0) ∈ [S ∩H7
(γ)(I,C)]× R; ‖ψ0 − ψ1,γ(0)‖H7(I,C) + |D0 − β| < δ},

Vγ,S0(T ) := {(ψf , Df ) ∈ [S ∩H7
(γ)(I,C)]× R;

‖ψf − ψ1,γ(T )‖H7(I,C) + |Df − β − S0T − γT 2/2| < δ},

such that, for every (ψ0, D0) ∈ Vγ(0), (ψf , Df ) ∈ Vγ,S0(T ), the unique solution of (Σ0) with control
u := γ + v, such that

(ψ(0), S(0), D(0)) = (ψ0, S0, D0)

satis�es ψ(T ) = ψf , D(T ) = Df and

‖Γγ,S0(ψ0, ψf )‖H1
0 ((0,T ),R) 6 C[‖ψ0 − ψ1,γ(0)‖H7(I,C) + |D0 − β|+

‖ψf − ψ1,γ(T )‖H7(I,C) + |Df − β − S0T − γT 2/2|].

Remark 6 The same result is true if one replaces, ψ1,γ(0) by ψ1,γ(θ) and ψ1,γ(T ) by ψ1,γ(θ + T )
for some θ ∈ R. Indeed, if (ψ, S,D) solves (Σ0) on [0, T ] with initial condition (ψ(0), S(0), D(0)) =
(ψ0, S0, D0) and control u, then, (ψ̃ := ψe−iλ1,γθ, S,D) solves (Σ0) on [0, T ] with initial condition
(ψ̃(0), S(0), D(0)) = (ψ0e

−iλ1,γθ, S0, D0) and control u.

The same loss of regularity as in section 3.2.1 prevents us from using the inverse mapping theorem.
We use exactly the same strategy as in [1]. We expose in the next sections the few di�erences in the
proof.

In [1], the local controllability of (Σ) in a neighbourhood of (ψ1,γ , u ≡ γ) was got by proving a local
surjectivity result on the map Φγ : (ψ0, v) 7→ (ψ0, ψ(T )), where ψ is the solution of (Σ) with u := γ+v
such that ψ(0) = ψ0. Thus, in order to prove the local controllability of (Σ0) in a neighbourhood of
(ψ1,γ , β + αt+ γt2/2) we consider the map

Φ̃γ,S0 : (ψ0, D0, v) 7→ (ψ0, D0, ψ(T ), D(T )),

where (ψ, S,D) is the solution of (Σ0) with control u := γ + v such that ψ(0) = ψ0, S(0) = S0,
D(0) = D0. As in [1] we get a local surjectivity result on this map by applying a Nash-Moser
theorem, stated in section 3.2.2.

5.2.1 Context for the Nash-Moser theorem

We apply the Theorem 4 to the map Φ̃γ with P = Id and the spaces de�ned, for k = 1, 3, 5, 7, 9,
by

Ẽγk := [S ∩Hk
(γ)(I,C)]× R×H(k−1)/2

0 ((0, T ),R),

F̃ γk := [S ∩Hk
(γ)(I,C)]× R× [S ∩Hk

(γ)(I,C)]× R.
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The smoothing operators de�ned on the spaces

Eγk := [S ∩Hk
(γ)(I,C)]×H(k−1)/2

0 ((0, T ),R) and

F γk := [S ∩Hk
(γ)(I,C)× [S ∩Hk

(γ)(I,C)]× R

in [1, section 3.3], give easily suitable smoothing operators on the spaces Ẽγk and F̃ γk : we don't do
anything on the constants in R.

As in [1, section 3.4], the map Φ̃γ,S0 : Ẽγ7 → F̃ γβ is twice di�erentiable. The maps Φ̃′γ,S0
and Φ̃′′γ,S0

do not depend on S0, thus, we just write Φ̃′γ and Φ̃′′γ . The map Φ̃′′γ satis�es the inequality (18). Indeed,
if we write

Φ′′γ(ψ0, v).((φ0, ν), (ξ0, µ)) = (0, h(T )),

then, we have
Φ̃′′γ(ψ0, D0, v).((φ0, d0, ν), (ξ0, δ0, µ)) = (0, 0, h(T ), 0),

and the inequality (18) was already proved for Φγ in [1, section 3.4].

The assumptions of Theorem 5 can be checked in the same way as in [1, appendix C]. In the
following two sections, we focus on the most di�cult part in the application of the Nash-Moser
theorem, which is the existence of a right inverse to the di�erential with the bounds (20),(21),(22),(23).

5.2.2 Controllability up to codimension one of the linearized system around (ψ1,γ(t), D(t) =
β + S0t+ γt2/2, u ≡ γ) and bounds (20), (21), (22), (23)

In [1, Section 3.5], in order to study the controllability of Ψ, we introduced the map

Zγ : w 7→
(∫ T

0
w(t)ei(λk,γ−λ1,γ)tdt

)
k∈N∗

.

Thus, in order to study the controllability of (Ψ, d), it is natural to introduce the map Z̃γ , de�ned by

Z̃γ(w)0 :=

∫ T

0
(T − t)w(t)dt,

Z̃γ(w)k := Zγ(w)k, ∀k ∈ N∗.

Let Ψ0, Ψf ∈ L2(I,C), s0, d0, df ∈ R, T > 0 and (Ψ, s, d) the solution of (Σl
γ) such that

(Ψ(0), s(0), d(0)) = (Ψ0, s0, d0) with some control w ∈ L2((0, T ),R). As noticed in section 5.1, the
equality (Ψ(T ), s(T ), d(T )) = (Ψf , sf , df ) is equivalent to Zγ(w) = D where D = (Dk)k∈N is de�ned
by

D0 := df − d0 − s0T,

Dk :=
i

bk,γ

(
< Ψ0, ϕk,γ > − < Ψf , ϕk,γ > eiλk,γT

)
,∀k ∈ N∗.

Proposition 18 Let T = 4/π. There exists γ0 > 0, C1 > 0 such that, for every γ ∈ (−γ0, γ0),

1. the linear map Z̃γ is continuous from L2((0, T ),R) to l2r(N,C), from H1
0 ((0, T ),R) to h2

r(N,C),
from H2

0 ((0, T ),R) to h4
r(N,C), from H3

0 ((0, T ),R) to h6
r(N,C).
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2. for every w ∈ H3
0 ((0, T ),R),

‖(Z̃γ − Z̃0)(w)‖F 6 C1γ
2‖w‖E

for (E,F ) = (L2, l2r), (H
1
0 , h

2
r), (H

2
0 , h

4
r), (H

3
0 , h

6
r).

The same results have already been proved for the maps Zγ in [1, Propositions 11,13]. The new

term in Z̃γ has no in�uence.

Proposition 19 Let T = 4/π. There exists a continuous linear map

Z̃−1
0 : h6

r(N,C)→ H3
0 ((0, T ),R),

such that, for every d ∈ h6
r(N,C), Z̃0 ◦ Z̃−1

0 (d) = d. Moreover, there exists a constant C0 such that,

for every d ∈ h6
r(N,C), the function w := Z̃−1

0 (d) satis�es

‖w‖L2 6 C0‖d‖l2 , ‖w‖H1
0
6 C0‖d‖h2 , ‖w‖H2

0
6 C0‖d‖h4 , ‖w‖H3

0
6 C0‖d‖h6 .

Proof : As in [1, Proof of Proposition 12], we introduce the notations, for k ∈ N∗,

ωk := λk+1 − λ1, ω−k := −ωk.
Let d ∈ h6

r(N,C). We de�ne d̃ ∈ h6(Z,C) by

d̃k := dk+1, d̃−k := d̃k, for every k ∈ N

A candidate for Z̃−1(d) is

w(t) :=

(
1

T

∑
k∈Z

d̃ke
iωkt + α(ei

1
2
nπ2t + e−i

1
2
nπ2t)

)
(1− ei

1
2
π2t)2(1− e−i

1
2
π2t)2

where n ∈ N with {n, n±1, n±2}∩{±(k2−1); k ∈ N∗} = ∅ and α ∈ R is such that
∫ T

0 (T −t)w(t)dt =
d0. There exists a constant C = C(n) such that |α| 6 C‖d‖l2(N,C). �

Finally, we get the following proposition, which poof is the same as the one of [1, Proposition 14]

Proposition 20 Let T = 4/π. There exists γ0 > 0, C2 > 0 such that, for every γ ∈ (−γ0, γ0), there
exists a linear map

Z̃−1
γ : h6

r(N,C)→ H3
0 ((0, T ),R),

such that, for every d ∈ h6
r(N,C), Z̃γ ◦ Z̃−1

γ (d) = d. Moreover, for every d ∈ h6
r(N,C), the function

w := Z̃−1
γ (d) satis�es

‖w‖L2 6 C2‖d‖l2 , ‖w‖H1
0
6 C2‖d‖h2 , ‖w‖H2

0
6 C2‖d‖h4 , ‖w‖H3

0
6 C2‖d‖h6 .

Thanks to the behaviour of the coe�cients bk,γ , we get the following controllability result for the
linearized system around (ψ1,γ , β + αt+ γt2/2, u ≡ γ).

Theorem 11 There exists γ0 > 0 such that, for every γ ∈ (−γ0, γ0) di�erent from zero, there exist
C > 0 and a continuous map

Πγ : [Tγ,0 ∩H9
(γ)] × R × [Tγ,T ∩H9

(γ)] × R → Ẽγ7
(Ψ0 , d0 , Ψf , df ) 7→ (Ψ0, d0, w)

where, for every t ∈ R,
Tγ,t := {ϕ ∈ L2(I,C);<(< ϕ,ψ1,γ(t) >) = 0},

such that, for every (Ψ0, d0,Ψf , df ) ∈ F̃ γ9 with Ψ0 ∈ Tγ,0 and Ψf ∈ Tγ,T , we have

Φ̃′γ(ϕ1,γ , 0, 0).Πγ(Ψ0, d0,Ψf , df ) = (Ψ0, d0,Ψf , df ),

‖w‖E 6 C‖(Ψ0, d0,Ψf , df )‖F ,
for any (E,F ) ∈ {(L2, F̃ γ3 ), (H1

0 , F̃
γ
5 ), (H2

0 , F̃
γ
7 ), (H3

0 , F̃
γ
9 )}.
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5.2.3 Controllability up to codimension one of the linearized system around (Y (t), u(t))

Let γ ∈ (−γ0, γ0) di�erent from zero, where γ0 is as in Theorem 11. Let T := 4/π, (ψ0, D0, v) ∈ Ẽγ9
and S0 ∈ R. As in [1, Section 3.6.3] we introduce

∆3 := γ + δ3, ∆5 := γ + δ5,
∆7 := γ + δ7 + δ2

5 , ∆9 := γ + δ9 + δ7δ5 + δ3
5 ,

where δi := ‖(ψ0, d0, v)− (ϕ1,γ , 0, 0)‖
Ẽ0
i
.

Let Y (t) := (ψ(t), S(t), D(t)) be the solution of (Σ0) with control u := γ+ v such that ψ(0) = ψ0,
S(0) = S0 and D(0) = D0. The linearized system around (ψ(t), D(t), u(t)) is

i∂Ψ
∂t = −1

2
∂2Ψ
∂q2
− uqΨ− wqψ,

Ψ(t,±1/2) = 0,
ṡ = w,

ḋ = s.

If (Ψ(0), s(0), d(0)) = (Ψ0, 0, d0), the equality (Ψ(T ), d(T )) = (Ψf , df ) is equivalent to M̃(ψ0,u)(w) =

d̃(Ψ0, d0,Ψf , df ) where

M̃(ψ0,u)(w)0 :=
∫ T

0 (T − t)w(t)dt, d̃(Ψ0, d0,Ψf , df )0 := df − d0,

M̃(ψ0,u)(w)k := Mψ0,u(w)k, d̃(Ψ0, d0,Ψf , df )k := d(Ψ0,Ψf )k, ∀k ∈ N∗

and the map M(ψ0,u) is de�ned in [1, Section3.6.1].

As in [1], we prove a surjectivity result on M̃(ψ0,u) when ∆3 is small enough. The argument is the

following one : we know a right inverse for M̃(ϕ1,γ ,γ), built in the previous subsection, and we prove

that, when ∆3 is small, M̃(ψ0,u) and M̃(ϕ1,γ ,γ) are close enough, in order to get a right inverse of M̃(ψ0,u).

The study of (M̃(ψ0,u) − M̃(ϕ1,γ ,γ))(w) reduces to the study of (M(ψ0,u) −M(ϕ1,γ ,γ))(w) [1, section

3.6.3], because the new terms are equal. The study of the right hand side d̃(Ψ0, d0,Ψf , df ) is the same
as in [1, section 3.6.4]. In this way, we get the following theorem.

Theorem 12 Let γ ∈ (−γ0, γ0) di�erent from zero. Let (ψ0, D0, v) ∈ Ẽγ9 and (ψ, S,D) be the asso-
ciated solution of (Σ0) with u := γ + v. If ∆3 := γ + ‖(ψ0, D0, v) − (ϕ1,γ , 0, 0)‖

Ẽ0
3
is small enough,

then there exists a constant C > 0 and a continuous map

Πψ,v : [Tψ,0 ∩H9
(γ)] × R × [Tψ,T ∩H9

(γ)] × R → Ẽγ7
(Ψ0 , d0 , Ψf , df ) 7→ (Ψ0, d0, w)

where
Tψ,t := {ϕ ∈ L2(I,C);<(< ϕ,ψ(t) >) = 0},

such that, for every (Ψ0, d0,Ψf , df ) ∈ F̃ γ9 with Ψ0 ∈ Tψ,0, Ψf ∈ Tψ,T , we have

Φ̃′γ,S0
(ψ0, D0, v).Πψ,v(Ψ0, d0,Ψf , df ) = (Ψ0, d0,Ψf , df ),

and the same bounds as in [1, Theorem 9], with everywhere ‖(Ψ0,ΨT )‖F γk replaced by ‖(Ψ0, d0,Ψf , df )‖
F̃ γk
.

Now we can apply the Nash-Moser implicit function theorem stated in section 3.2.2 and we get
Theorem 10.
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5.3 Motion in the directions (ψ, S,D) = (0,±1, 0)

The aim of this section is to prove of the following theorem.

Theorem 13 There exists γ0 > 0 such that, for every γ ∈ (0, γ0), there exist w±, ν± ∈ H3
0 ((0, T ),R)

such that the solutions of 
i∂Ψ±
∂t = −1

2
∂2Ψ±
∂q2
− γqΨ± − w±qψ1,γ ,

Ψ±(0) = 0,
Ψ±(t,−1/2) = Ψ±(t, 1/2) = 0,
ṡ± = w±, s±(0) = 0,

ḋ± = s±, d±(0) = 0,
i∂ξ±∂t = −1

2
∂2ξ±
∂q2
− γqξ± − w±qΨ± − ν±qψ1,γ ,

ξ±(0) = 0,
ξ±(t,−1/2) = ξ±(t, 1/2) = 0,
σ̇± = ν±, σ±(0) = 0,

δ̇± = σ±, δ±(0) = 0,

satisfy Ψ±(T ) = 0, s±(T ) = 0, d±(T ) = 0, ξ±(T ) = 0, σ±(T ) = ±1, δ±(T ) = 0.

Let us introduce new notations. Let γ ∈ R∗. We de�ne the subspace of L2((0, T ),C)

Xγ := Span(t, ei(λk,γ−λ1,γ)t, e−i(λk,γ−λ1,γ)t; k ∈ N∗).

The symbol X⊥γ denotes the orthogonal subspace to Xγ in L2((0, T ),C). We recall that we have

λk := λk,0 = 1
2(kπ)2, ϕk := ϕk,0 =

{ √
2 sin(kπq), when k in even,√
2 cos(kπq), when k in odd.

The parity of the functions ϕk gives b2k+1 := b2k+1,0 = 0 for every k ∈ N.
One has the following proposition.

Proposition 21 There exists γ0 > 0 such that, for every γ ∈ (0, γ0), there exists wγ ∈ H4
0 ((0, T ),R)∩

X⊥γ such that ∫ T

0
wγ(t) < qΨγ(t), ψ1,γ(t) > dt ∈ (0,+∞), (resp. ∈ (−∞, 0)),

where Ψγ is the solution of 
i
∂Ψγ
∂t = −1

2
∂2Ψγ
∂q2
− γqΨγ − wγqψ1,γ ,

Ψγ(0) = 0,
Ψγ(t,−1/2) = Ψγ(t, 1/2) = 0.

Remark 7 Let γ ∈ R. If wγ ∈ X⊥γ , and Ψγ is the solution of the previous system, then∫ T

0
wγ(t) < qΨγ(t), ψ1,γ(t) > dt ∈ R.

Indeed, we have

Ψγ(t) =

+∞∑
k=1

xk(t)ϕk,γ , where xk(t) = ibk,γe
−iλk,γt

∫ t

0
wγ(τ)ei(λk,γ−λ1,γ)τdτ.
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Thus ∫ T

0
wγ(t) < qΨγ(t), ψ1,γ(t) > dt =

+∞∑
k=1

ib2k,γfk,γ ,

where

fk,γ :=

∫ T

0
wγ(t)e−i(λk,γ−λ1,γ)t

∫ t

0
wγ(τ)ei(λk,γ−λ1,γ)τdτdt.

Thanks to an integration by parts in the de�nition of fk,γ and the property wγ ∈ X⊥γ , we get : for
every k ∈ N∗, fk,γ ∈ iR.

Proof of Proposition 21 : First, we study the case γ = 0. Let us consider functions of the form

w(t) := sin(
1

2
n0π

2t) + a1sin(
1

2
n1π

2t) + a2sin(
1

2
n2π

2t) + a3sin(
1

2
n3π

2t), (66)

where n0, n1, n2, n3 are four di�erent positive integers such that

n0, n1, n2, n3 /∈ {±(k2 − 1); k ∈ N∗}

and a1, a2, a3 ∈ R solve  1
n1

1
n2

1
n3

n1 n2 n3

n3
1 n3

2 n3
3

 a1

a2

a3

 =

 − 1
n0

−n0

−n3
0

 .

Then,
w ∈ H4

0 ((0, T ),R) ∩ X⊥0 .

Let Ψ be the solution of 
i∂Ψ
∂t = −1

2
∂2Ψ
∂q2
− wqψ1,

Ψ(0) = 0,
Ψ(t,−1/2) = Ψ(t, 1/2) = 0.

We have

Ψ(t) =

+∞∑
k=1

xk(t)ϕk where xk(t) :=< Ψ(t), ϕk >,∀k ∈ N∗,

∫ T

0
w(t) < qΨ(t), ψ1(t) > dt =

+∞∑
k=1

b2k

∫ T

0
w(t)x2k(t)e

iλ1tdt, (67)

x2k(t) = ib2k

(∫ t

0
w(τ)ei(λ2k−λ1)τdτ

)
e−iλ2kt,

b2k = − (−1)k16k

π2(1 + 2k)2(1− 2k)2
.

Thus, the right hand side of (67) can be explicitly computed. We �nd∫ T

0
w(t) < qΨ(t), ψ1(t) > dt =

32T

π6

(
Sn0 + a2

1Sn1 + a2
2Sn2 + a2

3Sn3

)
,

where, for every p ∈ N with p /∈ {±(k2 − 1); k ∈ N∗}, Sp is de�ned by

Sp :=
+∞∑
k=1

(2k)2

(1 + 2k)4(1− 2k)4

(
1

−p+ 4k2 − 1
+

1

p+ 4k2 − 1

)
.
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Let us choose n0 = 1, n1 = 2, n2 = 4, n3 = 5 (resp. n0 = 4, n1 = 5, n2 = 6, n3 = 7), we get∫ T

0
w(t) < qΨ(t), ψ1(t) > dt ∈ (0,+∞) (resp.(−∞, 0)). (68)

Now, we study the case γ 6= 0. We use the following proposition, which will be proved later on.

Proposition 22 Let T = 4/π. There exists γ∗ > 0, C1, C2 > 0 such that, for every γ ∈ (−γ∗, γ∗),
1. the linear map Z̃γ is continuous from H4

0 ((0, T ),R) to h8
r(N,C),

2. for every w ∈ H4
0 ((0, T ),R),

‖(Z̃γ − Z̃0)(w)‖h8 6 C1γ
2‖w‖H4

0
,

3. there exists a linear map
Z̃−1
γ : h8

r(N,C)→ H4
0 ((0, T ),R),

such that, for every d ∈ h8
r(N,C), Z̃γ ◦ Z̃−1

γ (d) = d and the function w := Z̃−1
γ (d) satis�es

‖w‖H4
0
6 C2‖d‖h8 .

Let γ ∈ (−γ∗, γ∗) di�erent from zero. We de�ne

wγ := w − Z̃−1
γ (Z̃γ(w))

where Z̃−1
γ is de�ned in Proposition 22 and w is de�ned in (66). We have w ∈ H4

0 ((0, T ),R), so

Z̃γ(w) ∈ h8
r(N,C) and Z̃−1

γ (Z̃γ(w)) ∈ H4
0 ((0, T ),R), thus

wγ ∈ H4
0 ((0, T ),R) ∩ X⊥0 .

We have
‖w − wγ‖H4

0
= ‖Z̃−1

γ ((Z̃γ − Z̃0)(w))‖H4
0
6 C2C1γ

2‖w‖H4
0
. (69)

Let us consider the map

G : (−γ∗, γ∗) → R
γ 7→

∫ T
0 wγ(t) < qΨγ(t), ψ1,γ(t) > dt

where, for every γ ∈ (−γ∗, γ∗), Ψγ is the solution of the system written in Proposition 21. The bound
(69) proves that G is continuous at γ = 0. We know from (68), that G(0) > 0 (resp. < 0). Thus, there
exists γ0 > 0 such that, for every γ ∈ (−γ0, γ0), G(γ) > 0 (resp. < 0) . �

Proof of Proposition 22 : The strategy is the same as in Section 3.1.2. We just need to build a
right inverse for Z̃0 which maps h8

r(N,C) into H4
0 ((0, T ),R). With the same notations as in the proof

of Proposition 19, a suitable candidate for Z̃−1
0 (d) is

w(t) :=

(
1

T

∑
k∈Z

d̃ke
iωkt + α(ei

1
2
nπ2t + e−i

1
2
nπ2t)

)
(1− ei

1
2
π2t)3(1− e−i

1
2
π2t)3

where n ∈ N with {n, n ± 1, n ± 2, n ± 3} ∩ {±(k2 − 1); k ∈ N∗} = ∅ and α ∈ R is such that∫ T
0 (T − t)w(t)dt = d0. �
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Proof of Theorem 13 : Let γ ∈ (0, γ0), where γ0 is given in Proposition 21. Let w ∈ H4
0 ((0, T ),R)∩

X⊥γ be such that ∫ T

0
w(t) < qΨ(t), ψ1,γ(t) > dt = −b1,γ ( resp. = +b1,γ).

We have

Ψ(t) =

+∞∑
k=1

xk(t)ϕk,γ where xk(t) = ibk,γe
−iλk,γt

∫ t

0
w(τ)ei(λk,γ−λ1,γ)τdτ.

The assumption w ∈ X⊥γ gives Ψ(T ) = 0, s(T ) = 0 and d(T ) = 0. Let us prove that there exists
ν ∈ L2((0, T ),R) such that the solution of

i∂ξ∂t = −1
2
∂2ξ
∂q2
− γqξ − wqΨ− νqψ1,γ ,

ξ(0) = 0,
ξ(t,−1/2) = ξ(t, 1/2) = 0
σ̇ = ν, σ(0) = 0,

δ̇ = σ, δ(0) = 0,

satis�es ξ(T ) = 0, σ(T ) = 1 (resp. = −1), δ(T ) = 0. We have

ξ(t) =

+∞∑
k=1

yk(t)ϕk,γ ,

yk(t) = ie−iλk,γt
∫ t

0

(
w(τ) < qΨ(τ), ϕk,γ > +ν(τ)bk,γe

−iλ1,γτ
)
eiλk,γτdτ.

The equality (ξ(T ), σ(T ), δ(T )) = (0, 1, 0) (resp. = (0,−1, 0)) is equivalent to∫ T

0
ν(t)ei(λk,γ−λ1,γ)tdt = − 1

bk,γ

∫ T

0
w(t) < qΨ(t), ϕk,γ > eiλk,γtdt,∀k ∈ N∗,

∫ T

0
ν(t)dt = 1 ( resp. = −1),∫ T

0
(T − t)ν(t)dt = 0.

A necessary condition for the existence of a solution ν to this moment problem is

− 1

b1,γ

∫ T

0
w(t) < qΨ(t), ϕ1,γ > eiλ1,γtdt = +1 ( resp. = −1).

The choice of w has been done in order to satisfy this condition.
Then, a su�cient condition for the existence of a solution ν ∈ H3

0 ((0, T ),R) is(∫ T

0
w(t) < qΨ(t), ϕk,γ > eiλk,γtdt

)
k∈N∗

∈ h9
r(N∗,C) (70)

(see [1, Section 3.1], for the behaviour of bk,γ and Proposition 20 for the existence of Z̃−1
γ between

the suitable spaces).
The assumption w ∈ H4

0 ((0, T ),R) implies (70). Indeed, integrations by parts lead to∫ T
0 w < qΨ, ϕk,γ > eiλk,γtdt = 1

λ4k,γ

∫ T
0

(
∂4w
∂t4

< qΨ, ϕk,γ > +

4∂
3w
∂t3

< qΨ̇, ϕk,γ > +6ẅ < qΨ̈, ϕk,γ > +

4ẇ < q ∂
3Ψ
∂t3

, ϕk,γ > +w < q ∂
4Ψ
∂t4

, ϕk,γ >
)
eiλk,γtdt.
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Moreover, when v ∈ L2((0, T ),R) and f ∈ C0([0, T ], L2(I,C)), we have

|
∫ T

0
v(t) < f(t), ϕk,γ > eiλk,γtdt|2 6 ‖v‖2L2((0,T ),R)

∫ T

0
| < f(t), ϕk,γ > |2dt.

Therefore, since the family (ϕk,γ)k∈N∗ is orthonormal in L2(I,C), the sequence(∫ T

0
v(t) < f(t), ϕk,γ > eiλk,γtdt

)
k∈N∗

belongs to l2(N∗,C). �

5.4 Proof of Theorem 8

In all this section, we �x γ ∈ (−γ0, γ0) di�erent from zero, where γ0 is as in Theorem 13.
Let ρ ∈ R, ψ0, ψf ∈ H7

(γ)(I,C), S0, D0, Df ∈ R. Let us consider, for t ∈ [0, T ],

v(t) :=
√
|ρ|w + |ρ|ν,

where w := w+, ν := ν+ if ρ > 0 and w := w−, ν := ν− if ρ < 0. Let (ψ, S,D) be the solution of (Σ0)
on [0, T ] with u := γ + v. Then,

S(T ) = S0 + γT + ρ and D(T ) = D0 + S0T + γT 2/2.

We have v ∈ W 3,1((0, T ),R), v(0) = v(T ) = v̇(0) = v̇(T ) = 0, so [1, Appendix B, proposition 51 ],
ψ ∈ C0([0, T ], H7(I,C)) and ψ(T ) ∈ H7

(γ)(I,C).

Proposition 23 There exists a constant C such that, for every ρ ∈ (−1, 1), we have

‖(ψ − ψ1,γ)(T )‖H7(I,C) 6 C[‖ψ0 − ψ1,γ(0)‖H7(I,C) + |ρ|3/2].

Proof : We have (ψ−ψ1,γ)(T ) = (ψ−Z)(T ) where Z := ψ1,γ + Ψ + ξ and Ψ, ξ are the solutions
of the following systems 

i∂Ψ
∂t = −1

2
∂2Ψ
∂q2
− γqΨ−

√
|ρ|wqψ1,γ ,

Ψ(0) = 0,
Ψ(t,−1/2) = Ψ(t, 1/2) = 0,

i∂ξ∂t = −1
2
∂2ξ
∂q2
− γqξ −

√
|ρ|wqΨ− |ρ|νqψ1,γ ,

ξ(0) = 0,
ξ(t,−1/2) = ξ(t, 1/2) = 0.

The function ∆ := ψ − Z solves
i∂∆
∂t = −1

2
∂2∆
∂q2
− (γ + v)q∆−

√
|ρ|wqξ − |ρ|νq(Ψ + ξ),

∆(0) = ψ0 − ψ1,γ(0),
∆(t,−1/2) = ∆(t, 1/2) = 0.

(71)

We know from [1, proposition 51, Appendix B], that the following quantities

‖Ψ‖C0([0,T ],H7), ‖Ψ‖C1([0,T ],H5), ‖Ψ‖C2([0,T ],H3), ‖Ψ‖C3([0,T ],H1),

are bounded by

A7(Ψ) := C[‖f‖C0([0,T ],H5) + ‖f‖C1([0,T ],H3) + ‖f‖W 2,1((0,T ),H2) + ‖f‖W 3,1((0,T ),H1)],
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where C is a positive constant and f :=
√
|ρ|wqψ1,γ . Thus, there exists a constant C1 such that

A7(Ψ) 6 C1

√
|ρ|.

In the same way, we prove that there exists a constant C2 such that

‖ξ‖C0([0,T ],H7), ‖ξ‖C1([0,T ],H5), ‖ξ‖C2([0,T ],H3), ‖ξ‖C3([0,T ],H1),

are bounded by
A7(ξ) 6 C2|ρ|.

Using (71) and [1, Appendix B, proposition 51] we get the existence of a constant C3 > 0 such that

‖∆(T )‖H7 6 C3[‖ψ0 − ψ1,γ(0)‖H7 +
√
|ρ|A7(ξ) + |ρ|A7(Ψ)].�

Now, we apply the local controllability of (ψ,D) on [0, T ] around (ψ1,γ(t), β + αt+ γt2/2), with

α := S0 and β := D0.

Let δ > 0 as in Theorem 10. We assume

‖ψ0 − ψ1,γ(0)‖H7(I,C) <
δ

2C
, (72)

‖ψf − ψ1,γ(2T )‖H7(I,C) + |Df −D0 − 2S0T − 2γT 2/2| < δ, (73)

|ρ| < η :=

(
δ

2C

)2/3

.

Then we have

‖ψ(T )− ψ1,γ(T )‖H7(I,C) + |D(T )− (β + αT + γT 2/2)| < C[ δ
2C

+ η3/2] < δ,

‖ψf − ψ1,γ(2T )‖H7(I,C) + |Df − (β + 2αT + 2γT 2)| < δ.

So there exists ṽ ∈ H1
0 ((T, 2T ),R) such that

ψ(2T ) = ψf and D(2T ) = Df ,

where (ψ, S,D) still the solution of (Σ0) with control u := γ+ v on [0, 2T ], with v extended to [0, 2T ]
by v := ṽ on [T, 2T ]. We know that ṽ can be chosen so that there exists a constant K such that

‖v‖L2((T,2T ),R) 6 K[‖ψ0 − ψ1,γ(0)‖H7(I,C) + |ρ|3/2 + ‖ψf − ψ1,γ(2T )‖H7(I,C)+

|Df − (β + 2αT + 2γT 2/2)|],

We used Proposition 23 in order to get this bound.
Moreover, we have

S(2T ) = S0 + 2γT + ρ+

∫ 2T

T
v(t)dt.

We de�ne the map
F : (−η, η) → R

ρ 7→ S(2T )

40



There exist τ ∈ (0, η) such that √
TKτ3/2 < τ/3.

Let us assume √
TK‖ψ0 − ψ1,γ(0)‖H7(I,C) < τ/6,

√
TK

(
‖ψf − ψ1,γ(2T )‖H7(I,C) + |Df − (β + 2αT + 2γT 2/2)|

)
< τ/6.

Then,
F (τ)− (S0 + 2γT ) > τ/3 > 0 and F (−τ)− (S0 + 2γT ) < −τ/3 < 0.

The map F is continuous, thus, F is surjective on a neighborhood of S0 + 2γT , this ends the proof of
Theorem 2. �
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