N

N

Controllability of a quantum particle in a moving
potential well
Karine Beauchard, J.M. Coron

» To cite this version:

Karine Beauchard, J.M. Coron. Controllability of a quantum particle in a moving potential well.
Journal of Functional Analysis, 2006, 232, pp.328-389. hal-00825517

HAL Id: hal-00825517
https://hal.science/hal-00825517
Submitted on 23 May 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00825517
https://hal.archives-ouvertes.fr

Controllability of a quantum particle in a moving potential well

K. BEAUCHARD ¥ O. JEAN-MIicHEL CORON |

Résumé

We consider a non relativistic charged particle in a 1D moving potential well. This quantum
system is subject to a control, which is the acceleration of the well. It is represented by a wave
function solution of a Schrédinger equation. We prove the following controllability result for this
bilinear control system : given 1)y closed enough to an eigenstate and )¢ closed enough to another
eigenstate, the wave function can be moved exactly from 1y to 1 ¢ in finite time. Moreover, we can
control the position and the velocity of the well. Our proof uses moment theory, a Nash-Moser
implicit function theorem, the return method and expansion to the second order.

Keywords : Controllability, Schrodinger, Nash-Moser.

1 Introduction

Following P. Rouchon [14], we consider a quantum particle with a potential V'(z) in a non Galilean
frame of absolute position D(t), in a one dimension space. This system is represented by a complex
valued wave function (t, z) — ¢(t, z) solution of the Schrédinger equation
0¢ h? 9%¢

t2) =~ S5 (42) + V(= = D)Lt 2). (1)

Up to a change of variables, we can assume i = 1, m = 1. It was already noticed in [14] that the
change of space variable z — ¢ and function ¢ — 1, defined by

ih

qg:=z-—D,

Y(t, q) = FPEPD=3 [y DY gt 2y,

transforms (1) into

.0y 1 0%y
—_— = ——— — 2
i (ta)=—3 0 (t,q) + (V(g) —u(t)q) ¥(t, q), (2)
where u := —D. This equation also describes the non relativistic motion of a particle with a potential

V in a uniform electric field ¢ — u(t).
We study this quantum system in the case of a potential well (a box) :

V(q)=0forqe:=(-1/2,1/2) and V(q) = 400 for q ¢ I.

Therefore, our system is
» w(
( 0) IS (

This is a control system, where
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— the state is (¢, S, D) with [} [¢(¢, q)[*dg = 1 for every ¢,

— the control is the function ¢ — u(t) € R.
It means that we want to control at the same time the wave function ¢ of the particle, the speed S
and the position D of the box. The control is the acceleration of the box (with an easy change of
variable, we could instead take the force applied to the box).

Definition 1 Let T} < Ty be two real numbers and u € CO([T1,To),R). A function (1, S, D) is a
solution of (Xo) if
— 9 belongs to CO([Th, Tz), H?> N HY(I,C)) N CY([T, T»], L*(1,C)) and the first equality of (Xo)
holds in L*(I,C), for every t € [T1, T3],
- 8 € CH[Ty, T»],R) and satisfies the third equality of (Xo), for every t € [T1, T3],
- D € C%([T1,T5],R) and satisfies the fourth equality of (Xo), for every t € [Ty, T5).
Then, we say that (v, S, D,u) is a trajectory of the control system (X¢) (on [T1,T5]).

Note that the first equation of (X) guarantees the conservation of the L?(I,C)—norm of the wave
function. Indeed, we have

d 0 0
SO0y =< B(0), G (1) > + < SE(0),0(0) >=0,

where < .,. > denotes the usual scalar product on L?(I,C),
<P, >i= /Itb(q)w(q)dq
and ¥(t) := (¢, .).
It has already been proved in [1] that the subsystem

-0 9?
(Z) Z%(taQ):_%TJé)(t )_U(t)q¢(t,q),t€R+,q€I,
P(t,—1/2) =(t,1/2) =0,
where the state is 1) and the control is u, is locally controllable around any eigenstate state for u = 0,
which are the functions

'q
2)

Un(t,q) == pn(q)e ! n e N*,
Here \, := (nm)?/2 are the eigenvalues of the operator A defined on
D(A):= H>NH{(I,C) by Ap:=-1¢"
and the functions ¢, are the associated eigenvectors,

(q) = V/2sin(n7q), when n is even, (3)
Prld) = V2 cos(nmq), when n is odd.

Thus, we know that, for every eigenstate, the wave function can be moved arbitrarily in a neighbou-
rhood of this eigenstate, in finite time.

The aim of this paper is to prove that we can also change the energy level. For example, we can
move the wave function from any point in a neighbourhood of the ground state ¥; to any point in
a neighbourhood of the first excited state ¥s. We also prove that we can control the position D and
the speed S of the box at the same time.

Let us introduce few notations in order to state this result,

S:={p e L*(I,C); el r2(r.c) = 1},
Hgo)(I,(C) = {p e H'(I,C); A"p € H}(I,C) for n = 0,1,2,3}.

Our main result is the following one.



Theorem 1 For every n € N*, there exists n, > 0 such that, for every ng,ny € N*, for every
(wo, SOaDO)a (@ZJf,Sf,Df) € [‘S N H(70)(Ia C)] X R xR with

[0 = @noll e +[Sol + Dol <oy [1f = pnyllar + 1S5+ | Dsl < 1y

there exists a time T > 0 and a trajectory (¢, S, D,u) of (X0) on [0, T|, which satisfies (1(0), S(0), D(0)) =
(¢Oa SOa DO): (w(T)v S(T)a D(T)) = Wf, Sfa Df) and u € H&((Oa T)a R)

Thus, we also have the following corollary.

Corollary 1 For every ng,ny € N*, there exists a time T > 0 and a trajectory (¢, S, D,u) of (£¢) on
[07 7—] such that (¢(0)’ S(O)v D(O)) = (‘Pnov 0, 0), (¢(T)v S(T)7 D(T)) = (‘Pnfa 0, O)z and u € H&((O’ T)

For other results about the controllability of Schrédinger equations, we refer to the survey [16]

2 Sketch of the proof

2.1 Global strategy

Thanks to the reversibility of the control system (), in order to get Theorem 1, it is sufficient
to prove it with ny = ng + 1. We prove it with ng =1 and ny = 2 to simplify the notations.

First, we prove the local controllability of (3¢) around the trajectory (Y%%0 u = 0) for every
0 € [0,1], where
VOO0(1) i= ((t), S(t) = 0, D(t) = 0),

Po(t) 1= V1 — Oty (t) + VO (t) for 0 € (0,1),
YROO(t) = (Yr_1 (), S(t) = 0,D(t) = 0) for k =0, 1.

Thus we know that
— there exists an open ball Vj (resp. V) centered at Y%%0(0) (resp. Y1%:0(0)) such that (3g) can
be moved in finite time between any two points in V (resp. V1),
~ for every 6 € (0,1), there exists an open ball Vj centered at Y%%°(0) such that (3g) can be
moved in finite time between any two points in Vj.
Then, we conclude thanks to a compactness argument : the segment

[Y000(0), YH00(0)] = {VAY*00(0) + VI =AY "0(0); A € [0, 1]}

is compact in L?(I,R) x R x R and covered by Up<g<1Vp thus there exists a increasing finite family
(0n)1<n<n such that [Y099(0), Y1.09(0)] is covered by Ui<,<nVa,. We can assume V,, NV, 11 # 0 for
n=1,..,N—1. Given Yy € V; and Yy € Vi, we move (o) from Yj to a point Y1 € Vy, NV, in finite
time, from Y7 to a point Y3 € Vp, N Vp, in finite time...etc and we reach Yy in finite time.

Now, let us explain the proof of the local controllability of (X) around Y09 for every 6 € [0, 1].
The strategy for 0 € (0, 1) is different from the one for § € {0,1} but involves the same ideas. In the
next sections, we details the two approaches. We start with the simplest case 6 € (0,1).

2.2 Local controllability of (3,) around Y%%° for 0 € (0,1)

A classical approach to prove the local controllability around a trajectory consists in proving
the controllability of the linearized system around the trajectory studied and concluding with an
inverse mapping theorem. This strategy does not work here because the linearized system around
(Y909(),u = 0) is not controllable. In section 3.1, we justify that the linearized system misses



exactly two directions, which are (¢, S, D) = (£igp1,0,0) . We call this situation “controllability up
to codimension one ”.

First, we prove the local controllability up to codimension one of the non linear system (%), in
section 3.2. In the first paragraph of section 3.2.1, we explain that the situation is the same as in [1] :
because of a loss of regularity in the controllability (up to codimension one) of the linearized system,
the inverse mapping theorem cannot be applied. We deal with this difficulty by using a Nash-Moser
theorem stated in the second paragraph of section 3.2.2. This theorem is an adaptation of L. Hérman-
der’s one in [12], it is slightly different from the one used in [1]. The two last paragraphs of section
3.2.3 are dedicated to the application of this theorem.

Then, in section 3.3, we justify that the nonlinear term in (3g) allows to move in the two directions
which are missed by the linearized system. We fix the time, we perform a power series expansion and
we prove that the second order term allows to move in the two directions (¢, S, D) = (£ip1,0,0).
This method is classical to study the local controllability of finite dimensional systems. It has already
been used for an infinite dimensional one, the Korteweg-de Vries equation, in [6]. In this reference,
an expansion to the second order was not sufficient and it was needed to compute the third order term.

In section 3.4, we get the local controllability of (¥¢) around Y%%0 by applying the intermediate
values theorem.

2.3 Local controllability of (3,) around Y*%° for k € {0,1}

Again, the classical approach does not work because the linearized system around (Y*09 4 = 0)
is not controllable for k € {0,1}. This result was proved by P. Rouchon in [14]. He proved this li-
nearized system is steady-state controllable, but this result does not imply the same property for the
nonlinear system. As noticed in section 4.1, the situation is even worse than the previous one because
the linearized system misses an infinite number of directions (half of the projections).

The proof of the local controllability of (3g) around Y*00 for k € {0,1} relies on the return
method, a method introduced in [2] to solve a stabilisation problem, together with quasi-static trans-
formations as in [5]. The return method has already been used for controllability problems by J.-M.
Coron in [5], [3], [4], by A. V. Fursikov and O. Yu. Imanuvilov in [7], by O. Glass in [8], [9], by Th.
Horsin in [11] and by E. Sontag in [15].

This strategy is divided in two steps. We explain it with Y%%0 but everything works similarly
with Y100 instead of Y00, First, in section 4.2 , we propose an other trajectory (Y%""ﬁ, u = ) such
that (X¢) is locally controllable around Y7®# in time T*. Then, we deduce the local controllability
around Y%90 in section 4.3, by using quasi-static transformations, in the same way as in [5] and [1].
We fix Yy closed to Y%00(¢5) and Y closed to Y%90(t;) for some real constants ¢y and tf. We use
quasi-static transformations in order to move the system

— from Yj to a point Y7, which is closed to Y**#(0), for some real constants a, /3, 7,

— from a point Ya, which is closed to Y18 (T%), to Ys.

Thanks to the local controllability around y o8 , we can move the system from Y] to Y5 in finite
time, it gives the conclusion. By “quasi-static transformations ”, we mean that we use controls wu(t)
which change slowly.

Finally, in section 5, we prove the local controllability of (3g) around Y7®# . Again, this local
controllability result cannot be proved by using the classical approach because the linearized system
around Y7%# is not controllable. In section 5.1, we explain that this linearized system misses the two
directions (¢, 5, D) = (0,£1,0). We conclude with the same strategy as in section 2.2.



In subsection 5.2 we prove that the same strategy as in [1] leads to the local controllability, in
time T, of (3Zg), when the state is (1, D) and the control is u, around Y®#. A loss of regularity in
the controllability (up to codimension one) of the linearized system around (Y®# v = v) prevents
us from applying the inverse mapping theorem. We use the Nash-Moser theorem stated in section
3.2.2, in the context given in section 5.2.1. The two last paragraphs of section 5.2.2 are dedicated to
the application of this theorem.

In section 5.3, we prove that the second order term allows to move in the two directions (¢p =
0,S = +1, D = 0) which are missed by the linearized system.

In section 5.4, we get the local controllability around Y®# by applying the intermediate values
theorem.

3 Local controllability of (3,) around Y%0

In all the section 3, 8 € (0, 1) is fixed. The aim of this section is the proof of the following result

Theorem 2 Let T := 4/mw. There exists n > 0 such that, for every (1o, So, Do), (¥¢,Sf, Df) €

[S N H,(I,C)] x R x R with

140 — o (0)|| g7 + |So| + [Dol| < n,

1 = Po(T) a7 + 1S7| + [Dgl <,
there exists a trajectory (1, S, D) of (Xo) on [0,2T] such that

(4(0),5(0), D(0)) = (¢, So, Do),
(¥(2T), S(2T), D(2T)) = (¥y, 5§, Dy),

and u € H}((0,2T),R).

3.1 Controllability up to codimension one of the linearized system around
(YG’O’O, u=0)

Let us introduce, for ¢ € S, the tangent space Ts(¢)) to the L?(I,C)-sphere at the point 1,
Tsy :={p € L*(I,C); R < ¢,9 >= 0}
and for k = 2,...,9, the following subspace of H*(I,C),

H{y (1,C) := {p € H*(I,C); A™p € Hy(I,C) for n € N,n < (k — 1)/2}.

The linearized control system around (Yp,u = 0) is

= 2
9% = ~32¥ — wqun,
W(t,+1/2) =0,
(z){ YEL/2)
$=w,
d=s.

It is a control system where
— the state is (¥, s,d) with ¥(t) € Ts(1y(t)),
— the control is the real valued function ¢ — w(t).



Proposition 1 Let T > 0 and (¥, s,d) be a trajectory of (3) on [0,T]. Then, the function
s S(< WD), VT B () — V(1) )
is constant on [0,T]. Thus, the control system (X}) is not controllable.
Proof : Let us consider the function &(t) := v/1 — 0ty (t) — V0o (t). We have

o _ 1%

Yot T T 20g

d

g (S <), &0(1) >) = I(iw < qip(t), &o(t) >).

The explicit expressions of Yy and & provide, for every t,

< qipg(t), &(t) >€ iR,

which gives the conclusion.
Let T > 0, and Vg € Ts(1(0)), Vs € Ts(¢o(T)). A necessary condition for the existence of a
trajectory of (34) satisfying ¥(0) = ¥y and U(T) = U is

S(< Wy, VT = 091(T) = VOya(T) >) = (< o, V1 =01 — Voipy >).
This equality does not happen for an arbitrary choice of ¥ and ¥. Thus (Ele) is not controllable.[]

Proposition 2 Let T > 0, (Yo, s0,do), (U, 57, dy) € Hp) (I, R) x R x R be such that

R <o, 199(0) >=RN < Wy, hp(T) >=0, (4)

S < \Iff, v1-— 9@1€_MIT - \/58026_M2T >=3 < Uy, vV1—0p; — \/54,02 > (5)

There exists w € L*((0,T),R) such that the solution of (34) with control w and such that (¥(0), s(0),d(0)) =
(\IIOa 50, dO) Satisﬁes (\II(T)v S(T)a d(T)) = (\ija St df)

Remark 1 The condition (5) means that we miss exactly two directions, which are (V,s,d) =
(£i&p,0,0). Thus, if we want to control the components < V¥, ¢y > fork > 2 and R < ¥, ¢ > then, we
cannot control I < W, 1 >. This is why we say that we miss the two directions (¥, s,d) = (fip1,0,0).

Proof : Let (¥g,s0,dp) € L*(I,R) x R x R with Uy € Ts(1(0)) and T > 0. Let (¥, s,d) be a
solution of (24) with (¥(0),s(0),d(0)) = (¥o,s0,do) and a control w € L2((0,T),R). We have the
following equality in L?(I,C)

U(t) =Y ai(t)pr where zp(t) :=< U(t), g > Vk € N.
k=1

Using the equation satisfied by ¥, we get

t .
Top(t) = << o, por > +iv'1 — Oby, / w(T)ei“%—WdT) eIkt (6)
0
t . .
x%il(t) _ << W, Dop_1 > +7;\/502k1/ w(T>ez(/\2k1—/\2)‘rdT) e—zz\zk—lt7 (7)
0



where, for every k € N*, by :=< qpr, p1 > and ¢ :=< qpg, p2 >. Thanks to the explicit expression
of the functions @y, (see (3)), we get

bk:{Oifkisodd :{W—D’“W)glfklsodd

_ k/2 w2 (k+2)2(k—2
% if k is even , 0 if k is even

(8)

Let (Us,s7,ds) € LA(I,R) x R x R with U; € Ts(¢b(T)). The equality (¥(T),s(T),d(T)) =
(U, sp,dy) is equivalent to the following moment problem on w,

Jo w T (< Upypan > e — < g, oy >) W € N,

) (A2 —A1) tdt
fO w(t)e i(Aap—1—-A2)t gy — fi (< Ve, pop—1 > ePan—1T _ < Wy, ©og—1 >) vk € N*,
)d

Ocor—1 (9)

fo e
Jo (T
In the two first equalities of (9) with k£ = 1, the left hand sides are complex conjugate numbers be-

cause w is real valued. Thus a necessary condition on ¥g and Wy for the existence of w € L*((0,T),R)
solution of (9) is

1 -1 (

V1—10 Vo
The equality of the real parts of the two sides in (10) is guaranteed by (4). The equality of the imagi-
nary parts of the two sides in (10) is equivalent to (??). Under the assumption ¥o, ¥ € H(30) (I,C), the

right hand side of (9) defines a sequence in [?. Then, the existence, for every T' > 0, of w € L?((0,T), R)
solution of (9) is a classical result on trigonometric moment problems. [J

Lt = sy — so,
Hw(t)dt = dy — do — soT.

<< Ty, 09 e 2T 205 0 >> = <Up 1> M- < Wy, 0 >> . (10)

3.2 Local controllability up to codimension one of (3;) around (Y?%° u = 0)
Let us introduce the following closed subspace of L?(I,C)
V= Span{epy; k > 2}

and the orthogonal projection P : L?(I,C) — V. The aim of this section is the proof of the following
result.

Theorem 3 Let T :=4/7. There exists C >0, § > 0 and a continuous map

r: V(0) X NV(T) — H}((0,7),R)
((1/}07507D0) s (wfvsfan)) = u

where
V(0) := {(v0, S0, Do) € [S N Hg)(1,C)] x R x R; [[thg — 1 (0) | 7 + [So| + Dol < 6},
V(T) = {(¥, Sy, Dy) € [H{py(I,C) NV N Bp2(0,1)] x R x R; [l — Peby(T) || a7 + | S¢| + [ Dy| < 3,
such that, for every ((wo,So,Dg),(@Z)Nf,Sf,Df)) € V(0) x V(T'), the trajectory of (X0) with control
T(to, So. Do, v5, Sy, Dy) such that (1(0), S(0), D(0)) = (o, So, Do) satisfies
(PY(T), S(T), D(T)) = (45, 51, Dy)

and

IT (0. So, Do, ¥y St D)llayomry < ClUIP®o = bo(0)ll a7,y + S0l + [Dol+
15 = Po(T)ll a7 1,0y + 1S5 + [ D]



3.2.1 The inverse mapping theorem cannot be applied

In our situation, in order to prove the Theorem 3 with the classical approach, we would like to
apply the inverse mapping theorem to the map

® : (o, So, Do, u) — (o, So, Do, PY(T), S(T), D(T)),

where 1) solves

= 277/}” — uqy,

with (1(0), S(0), D(0)) = (v, So, Do)-
The map ® is C! between the following spaces

O : [SNH{, (I, C)| xRxRx L*((0,T),R) = [SNH{, (I, C)] xRxRx [VNB2(0, )NH (I, C)] xR xR,

® : [SNH ) (I, C)|xRxRx Hy ((0,T),R) = [SNH{y (I, C)] xRXRX[VNBL2 (0, 1)NHpy (I, C)] xRxR.

Thus, in order to apply the inverse mapping theorem, we would need to construct a right inverse to
the map d®(1y(0),0,0,0) which maps the following spaces

[Ts(¢9(0)) N Hiy] x R x R x [V N Hiyl xR x R — [Ts(¢9(0)) N Hiyl x R x R x L*((0,7),R),
[Ts(49(0)) N Hipy] x R x R x [V N Hip] x R x R — [Ts(9(0)) N Hy] x R x R x H((0,7),R).

The controllability up to codimension one proved for the linearized system around (Yp,u = 0) only
provides a right inverse for d®(19(0),0,0,0) which maps the following spaces

[Ts(16(0)) N Hip] x R x R x [V N Hiy] x R x R = [Ts(¢g(0)) N Hipy] x R x R x L?((0,T),R).

In order to deal with this loss of regularity in the controllability of the linearized system around
(Y900 4 = 0), we use a Nash-Moser implicit function theorem stated in the following section. It is
an adaptation of L. Hérmander’s one in [12], it is slightly different from the one proved in [1, section
3.2]. The use of the projection P introduce changes in the statement and the proof so we write them
completely.

3.2.2 The Nash-Moser theorem used

Asin [1], we consider a decreasing family of Hilbert spaces (Ea)qe1,... 01 With continuous injections
Ey — E, of norm < 1 when b > a. Suppose we have given linear operators Sy : £1 — FEg for A > 1.
We assume there exists a constant K > 0 such that for every a € {1,...,9}, for every A > 1 and for
every u € F, we have

[Sxullps < K||ullq, Vb € {1,...,a}, (11)
[1Sxulls < KA~ |ullq, Vb € {a+1 59}, (12)
Hu—SAqu < KX ul|q, Wb € {1, ...;a — 1}, (13)
= Swnb < KX a0, 0 € {1,..., 9} (14)

Then, we have the convexity of the norms (see [12] for the proof) there exists a constant ¢ > 1 such
that, for every A € [0, 1], for every a,b € {1,...,9} such that a < b, Aa+ (1 — )b € N and for every
u € Fy,

lullrara—np < ellullglully ™.



We fix a sequence 1 = 6y < 6 < ... — oo of the form ; = (j+1)° where § > 0. We set A; := 041 —0;
and we introduce

1
So Sp.)u if 7 > 0 and Rou := —Sp, u.

RJ'U, = Kj( i1 T i = AO

Thanks to (13), we have

u = Z AjRju
7=0

with convergence in Ej, when u € E, and a > b. As noticed in [1], it follows from (14) that there
exists K’ > 0 such that, for every a € {1,...,9}, for every u € E,, for every b € {1,...,9}, for every
0 € (0,2] and for every j € N¥,

1Rjulls < K'65|u]a-

Let a1,a2 € N and a € R be such that 1 < a1 < a < az < 9. We define the space

= {ZA ujsu; € Eqy, AM > 0/V7, |lujllp < M9b =1 for b = ay,as},
7=0

with the norm ||u||,, given by the infimum of M over all such decomposition of u. This space does not
depend on the choice of a; and as (see [12] for the proof). The norm ||.||/, is stronger than the norm
II-llp when b < a,

lulls < My,allully (15)

and ||.||’, is weaker than ||.||4,
lulle < K[lulla-

As noticed in [1] and [12], there exists a constant K” such that, for every a € {1,...,9}, for every
6 > 1, for every b < a and for every u € E!, we have

llu — Sgully < K"6°ul. (16)

We have another family (F)qe(1,....01 With the same properties as above, we use the same notations
for the smoothing operators Sy. Moreover, we assume the injection Fp, — F, is compact when b > a.

Theorem 4 Let « and 8 be fixed positive real numbers such that
d<a<fB<Tandf—o>2. (17)

Let P be a continuous linear operator from Fy to Fy of norm < 1, forb=1,...,9, such that PSy = SyP.
Let V be a convex Ea -neighbourhood of 0 and ® a map from VN E7 to Fg whz’ch 1s twice differentiable
and satisfies

19" (us v, w) 7 < C Y (14 [t [0l 0] (18)
where the sum is finite, all the subscripts belong to {1,3,5,7} and satisfy

max(mj — a,0) + max(m7, 2) + m}’ < 2a, Vj. (19)

m;

We assume that ® : E5 — F3 is continuous. We also assume that ®' (v), for v € V N Ey, has a right
inverse ¥ (v) mapping Fy into E7, that (v,g) — ¥(v)g is continuous from (V N Eg) x Fy to E7 and
that there exists a constant C' such that for every (v, g) € (V N Ey) x Fy,

[P (v)glly < Cll[Pglls + l[olisllglls],
[ (v)glls < CllIPglls + llvlisllglls + llvllsllglis],
I (0)glls < ClIPgllz + Iollsllgllz + l[vllsllglls + (lvllz + [l glls],

l4(w)gllz < ClIPgllo+vllsllgllo+IlvlisNgllz+vllz+ vl lglls+lvllo+lvllzllvlls+vl3)lgls)-
For every f € Fjy with sufficiently small norm, there exists u € E3 such that ®(u) = ®(0) + f.

20

21
22

)
)
)
23)

(
(
(
(
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Remark 2 The Nash-Moser theorem used in [1] corresponds to the case P =Id. In what follows, we
only emphasize where the projection P appears in the proof of [1, section 3.2].

Proof : Let g€ F /g There exist decompositions (see |1, proof of Theorem 6])
. b—B—1
g= ZAjgj with ||g;[s < K'Qj A HQH/B for every b € {1,...,9}, (24)

Pg =Y A;jPg; with [Py, < K'0) 7| Pg|; for every b € {1,...,9}. (25)

To get (25), we have used PSSy = SpP. We claim that if [|g]|; is small enough, we can define a sequence
u; € BEr NV with ug = 0 by the recursive formula

Ujt1 = Uj + Aj?lj, Uj 1= w(vj)gj, vy 1= nguj. (26)

We also claim that there exist constants C1, Co, C3 such that for every j € N|

lijlla < CilPglla65 " a € {1,3,5,7}, (27)
[vjlla < Col[Pgll365 ™, a € {5, 7,9}, (28)
lvjlls < Cal Pyl

luj —vjlla < Cs[|Pgll05 a € {1,3,5,7}. (29)

More precisely, we prove by induction on k the following property

(Py) : wuj is well defined for j =0,...,k + 1,
(27) is satisfied for j =0, ..., k,
(28), (29) are satisfied for j =0, ...,k + 1.

The property (FPp) is easy to be checked. Let k € N*. We suppose the property (Py_1) is true and we
prove (Py).

Let us introduce a real number p > 0 such that, for every u € E/, |Jull,, < p implies u € V. With
the same kind of calculus as in [1], we get (27), (28), (29) with

Cy :=8CK/',

1 90(a—4) 9dé(a—2
CQ I:K01maX{7_a7 9 }7

5—a o-—
1+ K
7T—a’

C3 := Cp max{ K"},

for every g € I} with
_P_ i}
KC, 0y’

The inequality (27) proves that (uj) converges in Ej to the vector u := Y 22 Aji; and

lglls < min{

ulls < C1|[Pglls where Cy :=Cy | Y A;077 | (30)
j=0

Now, let us consider the limit of (®(ug))ren. We have
D(uj1) — ®uy) = P(u; + Ajiy) — D(u;) = Aj(e; + €] + g5)

10



where
! 1

= A—] (<I>(uj + A]’ﬂj) — (b(uj) - (b/(uj)Ajaj) ’

e = (@' (u;) — @' (v))) ;.
Thanks to (18), (19), (27), (28), (29) and the same calculus as in [1] we get the existence of €, Cy, C5 > 0
such that, for every j € N,

lefllz < CallPgllF6;" =, llefllz < CsllPgllFo; "~ (31)

Thus 3 Aj(e; + €}) converges in Fy. Let us denote T'(g) its sum,

oo
ZA] e +e"
7=0

Thanks to (31), we get the existence of Cg > 0 such that
ITgllz < Csl|Pyl-
The continuity of ® gives ®(uy) — ®(u) in F3, thus we have the following equality in Fj
O(u) =2(0)+T(g9) +

Let us fix f € Fjj. We search u such that ®(u) = ®(0) + f. It is sufficient to find g € Fj such that
g+ Tg = f. This is equivalent to prove the existence of a fixed point for the map
. /
F: Fg — F
g = f-=T(g).

We conclude by applying the Leray-Shauder fixed point theorem. [J

In our situation, we need the continuity of the map f — u in order to apply the intermediate
values theorem in section 3.4. This property can be proved by applying the Banach fixed point theorem
instead of the Leray-Shauder fixed point theorem in the previous proof. In order to do this, we need
more assumptions, which are given in the next theorem.

Theorem 5 Let us consider the same assumptions as in Theorem 4. We assume moreover that, for
every u,u € VN Er,

19" (us 0, w) = & (@0, w) 7 < C Y (L4 [lw = @lly )0l 1wl (32)

where the sum is finite, all the subscripts belong to {1,3,5,7} and satisfy (19) with m; < n;. We also
assume that, for every v,v € VN Ey,

(¥ (v) = ¥(0))gllh < Cllv —3|[3]lglls, (33)

1 (v) = (0)glls < Clllv = vllsllglls + [lv = 2ll5]lglls], (34)

(% (v) =% (2))glls < Clllv = ollsllgliz + lv = Bllsllglls + (v — allz + o = TIZ)lgllsl,  (35)
1% (v) =P (0)gllz < Clllo —vllsllglle + [lv — vll5]lgll7+

(llv = vll7 + [lv = Dl13)llglls + (36)

(v = llo + llv = Dllzllv = Blls + [l — BlI3)llgls]-

11



Then, there exists C' > 0, € > 0 and a continuous map

H:VB'—>E3
f = u

where
Ve (£ € Fylflly < .
such that, for every f € Vg,
(II(f)) = @(0) + f,
IT(A)lls < C'IP£I[5- (37)

Proof : The first part of Theorem 5 has already been proved in [1, appendix C|. Here, we justify
the bound (37). Let us recall that under the assumptions (32), (33),(34),(35),(36), the map T is a
contraction on a small enough neighbourhood of zero in F} : there exists § € (0,1) such that

IT(9) = T(9)s < dllg — gll-

Thus, when f = g+ T(g) and f = §+ T(§), we also have

_ 1 =
g — lly < =1 — Fllp

Let f € I small enough. Let g € F5 be the solution of f = g + T/(g) given by the Banach fixed
point theorem. Using f =0, we have
1
/ < — r

lolly < —I1£Il

Let u € E3 be the vector built in the proof of Theorem 4. Using (30) and
Pg="Pf—PT(g), IIPTylls <ITgllz < CellPyls,

we get

1-6

IPglls < 2P £ls when £l < 5

thus .
ulls < 2C1|Pf|5.0

We apply Theorems 4 and 5 to the map ® defined in section 3.2.1, in a neighbourhood of
(19(0),0,0,0). Our spaces are defined, for k = 1,3,5,7,9, by

By := [SN Hfy (I,O)] x R x R x Hy V2((0,7),R)

Fy = [SNH(1,C)] x R x R x [V N Hf (I,C)] x R x R.

We work on the manifold § instead of a whole space. It does not matter because we can move the
problem to an hyperplane of L?(I,C) by studying a new map

&;(%7 SO> DOa U) = @(p_l(%)7 So,D(],U)

where p is a suitable local diffeomorphism from a neighbourhood of the trajectory ¢y in the sphere S
to an hyperplane of L?(I,C). For example, we can use the following one.

12



Proposition 3 Let U := {¢p € S;3t € [0,4/7], |t — Yo(t)l| 12(1,c) < €} where € > 0 is small enough,
H:={yp € L*(I,C);R < 9,03 >=0} and p: L*(I,C) — H defined by
P(¥) =1 = R(< 1,03 >)p3 + R(< ¥, 03 >) < 1,01 > 1.

The map p is a C! diffeomorphism from U to an open subset of H. Moreover, the norm of dp(v)
as linear operator from (Ts(y),|.||ms) to (H,|-||ms) is uniformly bounded on U for every integer
s €[1,7].

The proof is similar to the one of [1, Proposition 2 section 3.2].

Now, we build smoothing operators. First, we smooth the wave function. Note that we need a
smoothing operator preserving the space H defined in Proposition 3. Let s € C*°(R,R) be such that

s=1on|0,1],0<s<1,s=0o0n [2,+00).

We define

o0

~ k
Sxp = ZS(X) <,k > Pk
k=1

The proof of the following proposition is easy.

Proposition 4 There exists a constant K such that, for every a € {1,...,9}, for every ¢ € HFO)(I, C)
and for every A > 1, we have

ISx¢llrs < Kll@llga,b € {1,...,a},

1Sx@ e < KXol e, b € {a+1,..., 9},

lo = Saplle < KX “[l@lla, b € {1, ...,a = 1},
d

|5 Sxellm < KX lpl e b € {1, .., 9}

The suitable smoothing operators for the control, S \u, can be built with convolution products
and truncations with a C'°°-function with compact support as in [1, section 3.3.2]. This construction
is inspired from [10].

Finally, we take on the spaces Ej
Sx (10, S0, Do, w) = (Sx¢0, So, Do, Sx(w)),
and on the spaces Fj
Sx(to, S0, Do, ¢, S¢. D) := (Sxtbo, So, Do, Sx(¥y), 7. Dy)-

The bounds (18), (19), (32), (33), (34), (35), (36) can be checked in the same way as in [1]. In
the following two sections, we focus on the most difficult part in the application of the Nash-Moser

theorem, which is the proof of the existence of a right inverse for the differential, with the bounds
(20), (21), (22), (23).
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3.2.3 Controllability up to codimension one of the linearized system around
(Y990 4 = 0) and bounds (20), (21), (22), (23)

The aim of this section is the proof of the following proposition.
Proposition 5 Let T := 4/w. There exists C > 0 such that, for every
(Po, 50, do, Uy, 57, dy) € [Ts(1p(0)) N Hiyy (I,C)] x R x R x [V N Hig (I,C)] x R x R,

there exists w € H3((0,T),R) such that the solution of (X4) with control w such that (¥(0), s(0),d(0)) =
(Wo, s0,do) satisfies (PY(T),s(T),d(T)) = (Vys,s¢,df) and

H(P\I}[)v S0, d07 gca Sf7 df)HF57
H(P\I}[)v S0, d07 \ija Sf7 df)HFQ

HwHL2((O,T) R) X CH(P\IJ(% 50, do, \Ilf7 Sf, df)”F37 ”wHH1 ((0,7),R)

<
HwHHg((o,T)R gCH(P‘I’OaSO?do,‘I’f,Sf?df |7, ”wHH3 (0,7),R) S

Moreover, the map

[Tg(wg(o))mHE’O)} x R x R x [VﬁH(g)] x R x R — H0,7T),R)
(\IIO ’ S0 ) dU ; qlf y  Sf ) df) = w

18 continuous.
Remark 3 The function V(T') is the unique function Uy € Ts(vo(T)) which satisfies (??) and
Pl = ;.

Let us introduce the notations, for s € {0, ...,6}

oo 1/2
hS(N7 (C) =<d= (dk)keNS Hd”hS(N,(C) = (’do’ + Z |k5dk|2> < 400 p,
k=1

hf‘(N7 (C) = {d = (dk’)k’EN S hS(N’ (C);d()vdl S R}a

we write [2 instead of hY.
Proof : Let
(Wo, 50, do, U, 55, ds) € [Ts(19(0)) N Hipy (I,C)] x R x R x [V N Higy (I,C)] x R x R,

and (¥, s, d) be a solution of (£}) with (¥(0), s(0),d(0)) = (Po, s, dp) and a control w € HZ((0,T),R).
As noticed in section 3.1, the equality (PY(T),s(T),d(T)) = (¥¢,sf,dy) is equivalent to
Z(w) = D(Wo, s0,do, Uy, 51, dy)

where
Z(w) = (Z(w)g)ken and  D(Wo,s0,do,Vy,syr,ds) := (Dg)ken
are defined by

(w)o := fo t)dt, Z(w)y == fOTw t)dt
Z(w)% =[] w( ) ZM Mgt Z(w)gpyr =[] w(t)e!Prn=2)lge ke N*,
DO 2=df—d0—30T, D1 —Sf—S(),

Doy = \/17:7011;% < Wy — W, 09, >, Dopyr = \fc%H < \I/f Vo, por+1 >,k € N,

Using the behaviour of the coefficients ¢ and by given by (8) and standard results about Fourier
series, we get a constant C' > 0 such that, for every (Wo, so,do, V¢, sf,dy), for s =0,2,4,6,

||D(\IIO> s0, do, \Ilfa St df) ||h5(N,(C) < CH (P\IJO’ S0, do, \ij’ Sfs df) HF5+3'
Thus, it is sufficient to prove the following proposition to end this proof.]
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Proposition 6 The linear map Z si continuous from E to F for every
(B, F) € {(L2,12), (Hb, h2), (H2, 1), (H3, 1)},
There exist C > 0 and a continuous right inverse
Z ' h3(N,C) — H3((0,T),R)
such that, for every d € h8(N,C),

1Z= (D)l < Cldlliz, 127 Hd)] g < Clldllpe,
1Z= (D)lz < Clldllpa, 1274 d)] g < Clldllps-

Proof : The first statement comes from integrations by parts and standard results about Fourier
series. Let us introduce the notations

wi =0, wop = Az, — A1, Wakt1 1= Agpy1 — A2 for ke N*.
Let d € h¢(N,C). A suitable candidate for Z~1(d) is the function

w(t) - %[% + a2672w2t + @elwgt _|_ a3€72wgt +a—3€zw3t+

- 2 2
22024(%6 wit + erzwkt) + ae wt + aezwt] (6227r t 1) (6 15T t 1) 7

where
as = 6d23gd3’ as = 6d33gd2.
1, 2 2 P .
w=—mn” withméeNand {m,m+1,m+2}N{Swk, swrp+1, Swrp+2;keN} =10
2 w2 " 2 2

and « € C is such that fOT(T — Hw(t)dt = dy.O]
3.2.4 Controllability up to codimension one of the linearized system around (Y,u) and
bounds (20), (21), (22), (23)

Let (10, So, Do, u) € Eg The aim of this section is the proof of the existence of a right inverse to
d® ()9, So, Do, u) with the estimates (20), (21), (22), (23).

Let (1,5, D) be the solution of (Xg) with control u such that (¢(0),S(0), D(0)) = (%o, So, Do).
The linearized system around (v, S, D, u) is

iU = —%‘11” —uq¥ — waqrp,

U(t,£1/2) =0, (38)
i=w,
d=s.

It is a control system where
— the state is (¥, s,d) with W(t) € Ts(1(t)), for every t,
— the control is the real valued function w.
Let T :=4/7 and

(W0, 50, do, Uy, 57, dy) € [Ts(tbo) N Hipy (I,C)] x R x R x [V N Higy (I,C)] x R x R.

We look for w € H((0,7T),R) such that the solution of (38) with (¥(0),s(0),d(0)) = (¥o, so,do)
satisfies s
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and
HwHL2

C[H(P\POu S0, d07 {I—I/:fu Sf? df)H3 + A3”(\IIO7 S0, d07 \Il:f7 va df)”3]7
ool

Cll[(PWo, s0,do, Uy, 55, ds)ls + Asl| (Yo, s0,do, Uy, 57,dy)ls
+A5[(To, 50, do, Uy, 57, dy)|3],

Clll(P®o, s0,do, U, sp.dys)|l7 + As]|(Ro, 50, do, U, s, dy)7

+As (o, s0,do, Uy, s7,dp)|ls + (A7 + A2)[[(Po, 0, do, Uy, 57, dy)l|s],
Clll(P®o, s0,do, U, sp,ds)llo + Asll(To, 50, do, Uy, 57, dp)l

+As[ (o, s0,do, Uy, 57, dy)ll7 + (A7 + A2)[| (P, 50, do, Uy, 55, dy)ls
+(Dg + ArAs + AD) (Do, s0,do, Uy, 57, dy) 5],

I\ N

N

HwHHg (40)

N

ol g

where
Ak = H(’(/}O - ¢9(0), SOa D07u)HEk for k = 37 57 77 9.
Let us consider the decomposition (U, s,d) = (¥, s1,d1) + (Va, s2,ds) where
i, = —%\Il’l’ —uq¥q, iUy = —%\If’z’ —uq¥y — wqr,
Wy (t,+1/2) =0, Wy(t, £1/2) = 0,
U1(0) = Yo, Us(0) =0,
31 :0,81(0) = S0, $2 :w,SQ(O) :0,
d1 ZSl,dl Zd(). d2 ZSQ,dz(O) =0.

The equality (39) is equivalent to
(PUy(T), 59(T), do(T)) = (W — PU(T), 57 — s0,dy — do — soT). (41)

Let us introduce, for v € R the operator A, defined on

1
D(Ay) := H* 0 Ho(I,C) by Ay i=—5¢" = vqp

and (A )ken+ the increasing sequence of eigenvalues for A,. We know from |13, chapter 7, example
2.14| that Ay, are analytic functions of the parameter 7.

The equality (41) is equivalent to

M(wo,u) (U)) = D(zﬁo,u) (\:[107 S0, dO? \Ilf7 Sf, df)7

where

Mgy () = (2(T), 52(T), < Wa(T), ip2 > €0 220 < W (T), iy > 1o dar®s, )

D(wmu)(\PO,So,do,\/I/\}/C,Sf,df) = (df —dy — soT, Sy — 80, < ‘I’/vf — \Ill(T),QOQ > eifoT)‘Q’”(S)dS,
<) — Uy(T), 03 > e Asuods, ) .

Proposition 7 The linear map My, ) 1s continuous from E to F for every
(B, F) € {(L*, h}), (Hg, h7), (HE, hy), (HG, b))}
There exist C > 0 and n > 0 such that, for every (vo,u) € H(QO) (1,C) x R x R with

10 = %o(0)|| s (r.c) + llull g o,0).m) <75
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there exists a continuous right inverse

M_

such that, for every d € h)(N,C),

M3t 1y @l < Cll,
Mg @l < Cllls + Asldlo],

M40, @Dl < Clldlsz + A5l + (A7 -+ ADldls),

1M @ s < Clldlls + Aslldllyr + (A7 + AD)dllys + (Ao + ArAg + AZ)d]s],

where
Ap = 1t — (0), So, Do, w1, for k = 3,5,7,9.

In order to get this result, we prove that when (19, u) is closed to (g, 0) in H?O) (I,C)xH}((0,T),R),
the map My, . is closed enough to the map My, (0),0), in a sense presented in the following propo-
sition, so that

— the existence of a right inverse M ( (0) 0) guarantees the existence of a right inverse M (%o u),

— the bounds proved on M(we( 0),0) give the same kind of bounds on M(wom

More precisely, we apply the following proposition already proved in [1, Proposition 15 Section 3.6.1].

Proposition 8 Let T := 4/7, M and My be bounded linear operators from L*((0,T),R) to h3(N,C),
from H}((0,T),R) to h>(N,C), from HZ((0,T),R) to h(N,C) and from H3((0,T),R) to h®(N,C).
We assume there exist a continuous linear operator My ' : h®(N,C) — H((0,T),R) and a positive
constant Cy such that for every d € h%(N,C), Myo My ' (d) = d and | My (d)|| g < Col|d||F for every
(E,F) € {(L? h3),(HE, 0%, (HZ,hT), (H3,h%)}. We also assume there exist positive constants C1,
Az, As, A7, Ag with CoC1 A3 < 1/2, satisfying, for every w € H3((0,T),R)

(M = My)(w) 1 < Cis ]
(0 = My)(w)lss < CalAalw]y + Asljw]z2), )
(M = My)(w)ar < CalAallwlg + Asljwl gy + Arljw] 2],

(0 = Mo)()llao < Calallwl g + Aslfwl g + Aol gy + Aol ).

Then, there exists a continuous linear operator M1 : h9(N,C) — H3((0,T),R) such that for every
d e h’(N,C), M o M~Y(d) = d and the function w := M~1(d) satisfies

lwllrz < 2Colld]ps,

lwllgy < 2Co[lldllps + 2C2A5]d]|s],

lwllgz < 2Co[ld]lar +2C2A5]|d|lps + (2C2A7 + 8CIAZ) [|d|| 53],
lwllgs < 2Co[lldllne + 2C2Asld|| 7 + (2C2A7 + 8C3AZ)||d][ 5+

(20229 + 16C3 A7 A5 + 48C3A3)||d]| 53]
where Cy := CyC].

Let us recall that, for v € R, the space L?(I,C) has a complete orthonormal system (¢ )ken+ of
eigenvectors for A,

Ay Py = Moy Phyy-
We know from [13, chapter 7, example 2.14| that ¢y, , are analytic functions of the parameter . This

result gives sense to the notation
d@k,v

dy

Jro
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which means the derivative of the map v — ¢y, with respect to v evaluated at the point v = .

Proof of Proposition 7 : Let us consider the decomposition

Uo(t) = ak(t)@ru(e) where zg(t) :=< Ua(t), op () > -
k=1

Using u(T) = 0, we get

T T
Mwo,u) (w) = </ (T _ t)w(t)dt,/ w(t)dt,xg(T)eifOT /\z,u(s)dsva(T)ez'foT Ag,u(s)ds, ) ‘
0 0

The partial differential equation satisfied by Wo provides, for every k € N*, an ordinary differential
equation satisfied by the component xy,

. oA\ . d@k,
() =< wr (t)s Pru(r) > H0(t) < Wa(t), #]u(t) >,
0¥y ) ) .
w (1), Pruy >=< =iy Va(t) +iw(t)q(t), Orue) >= —iNpu@ Th(t) Fiw(t) < q(t), Orue >

) . ) ) d
Tr(t) = —idpup)Tr(t) +iw(t) < qb(t), Prue > +u(t) < Ya(t), %]u(t) >

Solving this equation, we get

. _ d o
MWJO,U) (’U))k = / (Z’U)(t) < (]’Qb(t), Phu(t) > +u(t) < ‘112(75), flrl;ﬁ]u(t) >> elfo )‘k,u(S)det, k> 2.
0

We introduce the following decomposition
(Mgo,u) = Migy(0),0)) (w) = 6M (w)" + 6M (w)*

where ‘
M (w)], =0for j=1,2and k= 0,1,

T
OM (w)}, = Z/ W[ (), Py > €0 Mot — < quy(t), pr, > Nt k > 2,
0
2 T . d@k ¥ ift A
IM(w)i, = u(t) < Wo(t), T’};]u(t) > e'JoMuls)dsdl | > 2.
0
Let us justify the bounds (42) on the terms 6 M (w)’ for j = 1,2. The study of M (w)' can be

done in the same way as in the proof of [1, section 3.6.2 Proposition 27| (with v = 0). The study of
SM (w)? can be done by applying [1, Propositions 18, 20, 23, 25 Section 3.6.2]. OJ

Proposition 9 We assume Az < 1. There exists C > 0 such that, for every
(o, s0, do, \I/f,Sf,df) € [Ts(vo) N H(O)(I,(C)] XxRxRx[VN H(U)(I, C)] x R x R,

we have

||D(\II07 50, dOa qj:ﬁ St df)”h3
”D(\Ij(% S0, do, \I]f7 St df)”h5

ClIl(PRo, so,do, Uy, s5,dg)lls + Az (Po, s0,do, Wy, s¢,dy)l|s],
C[H(P\I’U, S0, do, \I’f, Sf, df)H5 + Ag”(‘l’o, S0, do, \I/f, Sf, df)”5
+A5([(Wo, so, do, Yy, s¢, dy)|3];

CllI(PWo, s0,do, U, 57, dy)ll7 + As]|(Po, s0,do, U, 57, dy)|17
+A5|[(To, 0, do, Ty, 57, dy)|ls + (A7 + A3)[[(To, s0. do, Ty, 57, dy)]ls],
Cll[(PWo, s0,do, Wy, sy, dg)llo + Asl|(Wo, s0,do, Wy, 55, dy)llo
+A5(/(To, s0,do, Uy, sy, dy)||7 + (A7 + AZ)[[ (Lo, s0. do, Uy, 57, df) |5

NN

N

”D(\Ij(h S0, d07 \/1-1\}7 Sf, df)”h7

”D(\I](% S0, d07 {I-;}7 Sf, df)”hg

N
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Proof : Standard results about Fourier series provide the existence of C' > 0 such that, for every
(Po, 50, do, Uy, 57, dy) € [Ts (o) N Hipy (I,C)] x R x R x [V N Hip) (I,C)] x R x R,

for every s € {3,5,7,9},

1Dy (%0 50, do, U, 57, dp)|s ey < CUPULT) s + 197|115 + [0l + Ido] + [s¢] + [dy]
Thus, it is sufficient to prove the existence of C' > 0 such that

[Py
[Py
[Py
[Py

T)lls < ClPoll s + Asll(Po, )| groserns ]

T)lls < ClPoll s + Asll(Po, )| grsserzz + As | (Lo, )],

D)l < CUPollar + Asll(Wo, )| rrocrrs + sl (W0, )i 2 + Aall (o, 0)l| s -

Tl < ClUPoll o + Asll(Po, )| prorcrrs + As |l (To,w)ll sy + Arll (W0, )| sz
+ Dl (W0, )| g5z

o~ o~ o~ o~

(43)
For every s € {3,5,7,9}, we have

1/2
|PO(T) | s < (Z |kS 2 (T ) where (1) :=< W1(t), Pru@) >

because u(T') = 0. Thanks to the equation satisfied by ¥, we get

T
d , .
zp(T) = << o, 71 > +/0 u(t) < Uy (t), gi’”]u(t) > et )\k,u(s)dsdt) e o Mkutsyds

. 1/2 1/2
d ot
<Z ]ksack(T)\g) < ||PYollms + (Z |/~cs/ ) < Uy(t), kay’w]u(t) > et o Ak,u(s)dsdtP) .
k=2
Using [1, Propositions 17, 20, 23, 29|, we get (43). O
In conclusion, using Propositions 7 and 9, we get the bounds (40).

3.3 Motion in the directions (¢, S, D) = (+ip1,0,0)

The aim of this section is the proof of the following theorem.

Theorem 6 Let T := 4/n. There evists wy € H*N H3((0,T),R), vy € HZ((0,T),R) such that the
solutions of

’i\i/:t = —%\I’l — wxqiy,
v, (0)=0,
Uy(t,—1/2) =V4(t,1/2) =0, (44)

S = wi,si(()) =0,
dy = si,d(0) =0,
iéﬂ: = —%ﬁi w1 q¥y — viqy,

££(0) =
§+(t, —1/2) £+(t,1/2) =0, (45)
6+ =vy,04(0) =0,
op = 04,0.(0) =0,

satisfy V1 (T') =0, 5+(T) =0, d=(T') = 0, £&£(T") = iy, 0+ =0, 6+ = 0.
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We introduce the following subspace of L?((0,T),C),
X := Span(1,t, eFian— At oFilAokp1—=A2)t. ko o N*).
The symbol X+ denotes the orthogonal subspace to X in L2((0,T),C).

Proposition 10 There exists w € H* N HZ((0,T),R) N X+ such that

T
w(t) < qU(t), o1 > eMidt —
| w0 <. =

where W is the solution of
W= — 50" —wqyy,
U(0) =0,
U(t,£1/2) = 0.

Remark 4 If w € X' and U solves the previous system, then

T
/ w(t) < qU(t), o1 > eMidt — w(t) < qpg, ¥(t) > e~ P2dt € R.
0

Vv1—-60Jo
Indeed, we have (see (6) and (7))

ok (t) = iv/T — Obgge P2t [T ap(7)elM2k =27,

.%'Qk_l( ) —Z\fc% 1€ —tAgk— 1tf )\gk 1— /\Q)rdT

o

U(t)= > xx(t)pr, where {
k=1

where by and ci are given by (8). Thus, we get

T o0
/ w(t) < qU(t), p1 > eMidt = iv/1— 6 Z b3y fok,
0 k=1

T o)
/ W(t) < qpa, U(t) > et = —iV8S By forsn,
0 b=

where

T t
for == / w(t)eiul_A?k)t/ w(7)e!PRTATdrdE Yk e N*,
0 0

T t
fokt1 = / w(t)ei()‘z’“+1)‘2)t/ w(r)e' P2 AT drdt Yk € N,
0 0

Thanks to integrations by parts and the property w € X+, we get, for every k € N*, f;, € iR.

Proof of Proposition 10 : Let us consider functions of the form
. 2 . 2 .1 2
w(t) = alszn(§n17r t)+ agsm(§n27r t) + S’LTL(iTLgT(' t),
where n1,ng, ng are three distinct positive integers such that

ni,n2,n3 & {0, £[(2k)* — 1], £[(2k — 1)* — 4];k € N*},

and a1, as are defined by

ni (n3—n2) . n2 (nl_”3)

“= ng(n3—nf)’ @2 = ng(ny—nf)’
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t) < qp2,U(t) > e~ ¢ (0, +00)(resp.(—o0,0)),

(46)

(47)



Then,
we H*N H3((0,T),R) n X+

Let ¥ be the solution of (47). The condition (46) is equivalent to
0
Zkaf% tiT—g Zczk+1f2k+1 € (0, +00) (resp.(—00,0)). (51)
k=1

Using (8), the two previous infinite sums can be computed explicitly. We find
32T
ZZkaf%— ( An1+a An2 +AN3)7
k=1

32T
i Z 62k+1f2k+1 ( Bm + GZBM + an)

where
oo

1 1
kzzl 1+2k 1—2k) <n+4k2—1+—n+4k2—1>’

[e.9]

- 4(2k + 1)? 1 1
Bn '_I;O (34 2k)4(1 — 2k)* (—n+4— (2k 4+ 1)2 + n+4—(2k+1)2> '

Let us choose n1 =1, ng = 2, ng =4 (resp. ny = 1, ng =4, ng = 6) then
a3 A, + a3A,, + A, > 0 (resp. < 0),

@3By, + a3Bp, + By, > 0 (resp. < 0),
thus, for every 6 € (0,1), we have (51). O

Proof of Theorem 6 : Let w € H*N H3((0,T),R) N XL be such that

t) < qp2, U(t) > e M2t = +1 (resp. — 1).  (52)

T
w(t) < qU(t), o1 > eMidt —
| wo <avo.e =

Using (48) and the assumption w € X+, we get U(T) = 0, s(T) = 0, d(T) = 0. Let us prove that there
exists v € H3((0,T),R) such that the solution £ of (45) satisfies £(T') = iy (resp. —ig1), o(T) =0,

o(T) = 0. We have
) => ye(t)pr,
k=1

t
Yor (t </ ) < qV(T), por > _1_,/(7)@6%61',\17]61‘)\%7(17_) efi)\gkt7
0

t
Yarr1 (t (/ ) < q¥(7), part1 > +V(T)\/502k+1€_”\27]e“\2’“+”dr> e~ Parnt,
0

Thus the equality (£(7),0(T),0(T)) = (xie1,0,0) is equivalent to

1 T )
/ ()M A2ty — (il - / w(t) < qU(t), o1 > ez’\ltdt> ,
0 Ve 0
g iAok —A1)t —1 T ont
v(t)et'\ T = ————— w(t) < q¥(1), > "2kt Yk € N¥,
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T T

, 1 ,

/ ()Pt gy — / w(t) < qU(t), popi1 > e 2+1tdt Vk € N,
0 Vcory1 Jo

ATy@Mt:O,

T
/(T_ommﬁ:u
0

The left hand sides of the two first equalities with k = 1 are complex conjugate numbers when v
is real valued. Thus, a necessary condition for the existence of real-valued solution v to this problem
is

1 T : -1 7 :
— | +1 —/ w(t) < q¥(t), 1 > e”\ltdt> = w(t) < qpa, B(t) > e~ 2t
v1GRIACRTE iz |
1 g At -1 (7 ot
(resp. — (—1 —/ w(t) < q¥(t),p; > M dt) = / w(t) < qp2, U(t) > e "2'dt).
\/5 0 Vv1—-0Jo
This property is satisfied thanks to (52).
Let d = (dg)ren be the sequence defined by
do = 0, d1 = 0,

day, - < qU(t), par, > eP2ldt VE > 1,

-1 T
= — w(t)
barv'1—0 /0
-1 T 4
doy := / w(t) < qU(t), porrr > e +itde Vi > 1.
corr1V0 Jo

The previous moment problem can be written Z(v) = d, where the map Z has been defined in section
3.2.3. Thanks to (8) and Proposition 6, a sufficient condition for the existence of v € H3((0,7T),R)
solution of this equation is d € hS(N, C). We can get this result by applying [1, Proposition 24 Section
3.6.2].0

3.4 Proof of Theorem 2

In all this section T := 4/7. Let p € R, 4o, v € H(70
for t € [0, T

)(I, C), So, Do, S¢, Dy € R. Let us consider,

u(t) == V/lplw + [plv,

where w :=wq,v:=vy if p > 0and w:=w_,v :=v_ if p <0 and wy, vy are defined in Theorem
6. Let (¢, S, D) be the solution of () on [0,7T] with control u and such that

(4(0),:5(0), D(0)) = (0, So, Do)

Then, we have
S(T) =Sy, D(T)= Dy.

We have u € W3L((0,T),R) and u(0) = u(T) = @(0) = a(T) = 0 thus (see |1, Appendix B
Proposition 51]) the function ¢ (7T") belongs to H(70) (1,C).

Proposition 11 There exists C > 0 such that, for every p € (—1,1), we have

(T = (Wo(T) + ipen)ll sy < Cllivo — vo(O)l ) + oI,
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Proof : We have (T') — ) +ipp1) = (v — Z)(T) where Z := g + ¥ + € and U, & are the

solutions of
i = —30" — \/|plwgiy,
t j:1/2 =0,
i€

16” \/ |plwq¥ — |plvgipy,

The function A := ¢ — Z solves

iA = —FA" —ugA — [plvg(¥ + &) — \/Iplw,
A(t,£1/2) =0,

A(0) = 1o — 1p(0).
We know from [1, proposition 51, Appendix B], that the following quantities
1l cogo.r1,m7ys 1¥ e o, 25)s ¥ [ c2 0,7, 23> [ | 3 (0,77, E51)
are bounded by
A7(V) := Ol fllcoom, m5) + 1 fllerqo,ry,m3y + 1 w21 o,),m82) + 1 llws.a o), 515
where C'is a positive constant and f := \/|plwqiy. Thus, there exists a constant C; such that

) < C1y/pl.

In the same way, we prove that there exists a constant Co such that

1€ llcogo.r1,m7) 1l o7, 15) s 1€l 2 0,77, 13)s 1€l e3 o,y 11

are bounded by
A7(§) < Calpl.

Using [1, Appendix B, proposition 51| we get the existence of a constant C3 > 0 such that

IAT) |7 < Cslllo = o(0) |7 + /1ol A7(€) + |p| A7(P)].0

Now, we use the local controllability up to codimension one around Yjy. Let 6 > 0 be as in Theorem
3. We assume

)
1o = %o(O)llamr.0) < 45
)
|SO‘ + ’D0’ < 55

Pl — o(2D)]|| g7 + |S¢| + |Dys| < 6.

When p satisfies
)

p| <m:=min{l; ————},
4 Y el + 07

the previous proposition proves that

: )
1(T) = o (0) | 7 < (Il +C)lol>* + 1573
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Thus ((T'), So, Do) € V(0) and (P, Sy, Dy) € V(T'). Thanks to Theorem 3, there exists
@ :=T(Y(T), S, Do, Pvy, Sy, Dy) € Hy((T,27), R)

such that
(P(2T), S(2T), D(2T)) = (Pyy, Sf, Dy),

where (¢, S, D) is the solution of (X¢) with control v on [0, 277, with u extended to [0,2T] by u := @
on [T,2T]. The Theorem 3 and the previous proposition give the existence of a constant C' such that

el ¢ramy my < ClpI™? + 180 = %o (0) | a7 + 1Sl + [ Do| + P (w5 — o (2T)) || a7 + |S7| + Dyl (53)

We define the map
Foo(=nm) — R
p = S(<YET), o1 >).

Thanks to Theorem 3, F' is continuous on (—n, 7). We can assume ¢ is small enough so that
R(<¥(2T), 1 >) >0,
because 1 is closed enough to 1. Since ¥ € S and R(< ¢¥(2T"), 1 >) is positive, we have
Y(2T) = 1y if and only if F(p) = (< ¥y, 1 >).

Therefore, in order to get Theorem 2, it is sufficient to prove that F' is surjective on a neighbourhood
of 0.

Let z(t) :=< ¢(t), 1 > on [T,2T]. We have

2T

x(2T) = z(T) + z/T u(t) < qu(t), o1 > eMidt.
Thus o7
F(p) = p 4 [3(a(T)) — o] + 3 ( [t < avieyon > A) ,
where

[S((T)) = pl < [9(T) = (Wo(T) +ip)ll 2 < ClIpl** + o — 2o (0) ] 7],

2T
[ utt) < av0)1 > Mt < Tl o
Using (53), we get the existence of a constant K such that
17 () — ol < K + o — Yol e + Pl — vo(T)) s+ 171+ 1Dgl + 1] + Dol
There exists 7 € (0,7) such that

K|rP? < %

Let us assume that

Kllvbo = o (O)ll 7 + [Py — o (2T)l a7 + |Ss[ 4+ [Dgl + 150l + | Dol] <

w3

Then
-

F(r) > T and F(-1)< -5,
3 3
thus the intermediate values theorem guarantees that F is surjective on a neighbourhood of zero, this
ends the proof of Theorem 2.
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4 Local controllability of (3,) around Y%%°

The aim of this section is the proof of the following theorem.

Theorem 7 Let ¢g,¢1 € R. There exist T > 0 and n > 0 such that, for every (vo,So, Do),

(wf,Sf,Df) elSn HZO)(I’ C)] x R x R with

10 — 016" || g r.c) + 10| + [Do| <,

lr — @16 | gr(rcy + |Sg| + 1Dyl < m,
there exists a trajectory (1, S, D,u) of (X0) on [0,T] such that

(4(0), 5(0), D(0)) = (0, S0, Do),
((T),5(T), D(T)) = (¢, Sy, Dy)
and v € H}((0,7),R).
4.1 Non controllability of the linearized system around (Y%%° v = 0)
The linearized system around (Y% 4 = 0) is

i = —%\IJ” — waqiby,

W(t,£1/2) = 0
l ; )
(20) § = w,

d=s.

It is a control system where

— the state is (¥, s,d) with ¥(t) € Ts(11(t)) for every ¢,

— the control is the real valued function w.

Let (Wo, s0,do) € Ts(11(0)) xRxR and (¥, s, d) be the solution of (X}) such that (¥(0), s(0), d(0)) =
(Uo, 50, dp), with some control w € L%((0,T),R). We have the following equality in L?(I,C)

(18

U(t) = > zk(t)pr where xx(t) :=< V(t), o > Vk € N*.

k=1

Using the parity of the functions ¢ and the equation solved by ¥, we get
1Tk 41 = Aoky1T2k 1, Vh € N.

Half of the components have a dynamic independent of the control w. Thus the control system (Eé)
is not controllable.

4.2 Local controllability of (X)) around Y7*° for v # 0

Let v € R*. The ground state for u = + is the function

—i)xly,yt
)

V14(t,q) == v14(q)e

where A1, is the first eigenvalue and ¢, the associated normalised eigenvector of the operator A,
defined on

1
D(A,) := H*N H{(I,C) by A,p := —igo" — Yqep.
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When «, 8 € R, the function

Y1 (t) i= (Y14(t), a + 7, B+ at + 42 /2)

solves (3g) with u = . We define T := 4/7, T* := 2T and, for s = 1,3,5,7,9 the space

HE \(I,C) == {p € H*(I,C); Alp € HY(I,C) for n =0, ..., (s — 1)/2}.

We admit the following result which will be proved in section 5.

Theorem 8 There exists g > 0 such that, for every v € (0,v9), there exists § = d(vy) > 0, such thal,

for every (1o, So, Do), (@Z)fv Sy, Df) elsn H(77)

10 = ¥15(0) |57 + [So — af + [Do — 5] <9,

(I,C)] x R x R with

s = 1 (T ar(re) + 1Sy — @ =T+ |Dy — B — oT™ — T*?/2| <4,

for some real constants «, 3, there exists v € H}((0,T*),R) such that, the unigue solution of (X¢) on

[0, T*], with control u := v+ v, such that (1(0), S(0), D(0)) = (o, So, Do) satisfies
(W(T7), S(T7), D(T7)) = (4, Sy, Dy)-
4.3 Quasi-static transformations
Let v € (0,70) with 7o as in Theorem 8. Let f € C*([0, 3], R) be such that
F=0o0n10,1/2]U[5/2,3],

F(t) = tfor t € [1,3/2],
/f

ue: [0,3/¢] — R
t = f (et).
Let ¢g, ¢1 € R. Let 9, S¢, D) be the solution on [0, 1/¢] of

For € > 0, we define

2
165/1)56 (t7 Q) = _% aa(;ge (tv q) - ue(t)qw&
¥e(0,9) = p1(q)e,

"

The following result has been proved in [1, section 4].

Proposition 12 There exist ¢ > 0, Cy > 0 such that, for every e € (0, €],

- 1/e
‘|¢5(1/E) — (pl,’yel(ﬁbo_fo A1,wf'(5s)d5) HH7(I7(C) < 0071/861/32

The continuity with respect to initial conditions gives the following proposition.
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Proposition 13 Let € € (0,e). There exists no = no(e) > 0 such that, for every (1o, So, Do) €
H(70) (I,C) x R x R, with

10 — 016" || g 1.0y < o,

the solution (v, S, D) of (X¢) on [0,1/¢€] with initial condition (¢(0),S(0), D(0)) = (vo, So, Do) and

control ue satisfies

. 1/e
|¥(1/€) — (plﬁez(dm—fo )‘l,wf’(es)ds)”H,? 10 < 20y /3l/32.

s/o=so+ 2,0/ =po+ 243 [ s

Let (&, se,dc) be the solution on [(1/€) + T*, (3/€)] of
2
Z%gte (t q) % %q% ‘(tv Q) - ue(t)qgea

where ¢, is the unique solution in [gbl, o1 + 277) 0
3/e 1/e
Oe + / Ay fr(etydt = o — / Ay fienydt — AT, (mod 27). (57)
1/e+T*
In the same way as in [1, section 4| and thanks to (57), we get the following proposition.

Proposition 14 There exist ey > 0, Cy > 0 such that, for every e € (0, €],
(b [1/€ _ *
||§€((1/€) + T*) o 301,76Z(¢0 Jo Ay f! (es)@5— A1, T )||H7(I,(C) < Cf’yl/861/32.

Let us extend & to [(1/€) + T*,(3/€) + 7] in such way that &((3/€) + 7.) = p1€'®L. Let 7. be the
unique solution in [0,27/A;) of
Ge — AMiTe = ¢1 (mod 27).

We extend u, to [(1/€) + T%, (3/€) + 7| by zero :
ue(t) := 0, for every t € [3/¢,(3/€) + 7.
We still denote by (&, s, d¢) the solution of the last system on [(1/€) + T™, (3/€) + 7]. Then,
E((3/€) + 1) = 1!, Se((3/€) +7e) = 0, De((3/€) + 7) = 0.
Again, the continuity with respect to initial conditions gives the following proposition.

Proposition 15 Let € € (0,¢f) such that € < 1/(21*). There exists ny = n¢(e) > 0 such that, for
every (¢, Sy, Dy) € H(70)(I’ C) x R x R, with

lbf — 16" | g (r,c) < s

the solution (¢, S, D) of (3¢) on [(1/€) + T, (3/€) + 7] with initial condition ((v)(3/€)+7e), S((3/€) +
7e), D((3/€) + 7)) = (¥5, Sy, Dy) and control u. satisfies

. 1/e
[((1/€) + T%) = 1 g @ ho T Nuaaren® AT o o) < 2y 02,

S((1/e) +T%) = S; + 1 AT,

D((1/€) +T*) = Dy + S¢(T* —7—76 /f+ LT+ T*2
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Proof of Theorem 7 : We fix € € (0, ¢9) such that

€ < 1/(2T") and 2 max(Cy, Cf)fyl/gel/g2 < g,

where § is given by Theorem 8. Let (v, So, Do), (¢¢,S¢, Df) € [SN H(70)(Iv C)] x R x R be such that

Y0 — 1€ m7(1.c) < mo(e), (58)

17 — p14€ |7 (r.cy < min(nys(e), /3), (59)

[So| < 0/6, |S¢| < /6, (60)

|Do| + |Dy| + |So] ( +T*) + |S¢] < + T +27r> < 4§/3. (61)

Then, the solution (¢, S, D) of (¥¢) on [0, 1/€] with control u, such that (¢(0), S(0), D(0)) = (¢o, So, Do)
satisfies

[(1/¢€) = ¢1,V(06)HH7(1,C) < 200’}/1/861/32 < 0,

safo=so+ 2, 00/ =po+ 243 [
where 6. is such that
A1 fe = do — /01/6 Mo fr(es)ds.
The solution (1, S, D) of (X¢) on [(1/€) + T, (3/€) + 7] with control u. such that
(V((3/€) +7¢), S((3/€) + 7e), D((3/€) + 7)) = (¥7, 57, D),

satisfies
[((1/€) + T*) = Y140 + T e (r.c) < 205736 /32 < 673,

S(1/e) +T%) = Sy + 491",

D((1/e)+T*) =Dy + S¢(T" — (2/€) — 7e) / f—l—ﬂyT* 'yT*Q.
We apply Theorem 8 with
— 5(1/0).8 := D(1/e).
The assumptions (60) and (61) give
1S((1/e) +T7) — =T < 6/3,
D((1)e) +T*) — B — aT* —~T*?/2 < §/3.

Thus, there exists v € Hj((0,7%),R) such that the solution (1, S, D) of (2¢) on [0, T*] with control
u :=~ + v such that (1(0), 5(0), D(0)) = (¥(1/e), S(1/€), D(1/€)) satisfies

((T"), S(T*), D(T*)) = (& ((1/€) + T*), S((1/e) + T*), D((1/e) + T*)).
Thus, the control w : [0, (3/€) + 7] — R defined by
u=1ueon [0,1/e]U[(1/e) +T%, (3/€) + e,
u(t) =v+v(t—1/¢) for every t € [1/e,(1/€) + T

gives the result.
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5 Local controllability of (3,) around Y7/

The aim of this section is the proof of Theorem 8. In [1] a similar local controllability result has
been proved for the subsystem (X) defined in the Introduction. It is the following one.

Theorem 9 There exists vo > 0 such that, for every v € (0,79), there exist 6 > 0, C > 0 and a
continuous map
Lyt V(0) x Vy(T) — Hg((0,7),R)
(o Wyp) =0

where

(0) = {vo € SNH (1, C); [0 — ¥14(0) |7 (1.0) < 6},

Vy(T) = {vy € SNH{ (I, C); [y — 10Tl (rc) < 8},

such that, for every 1y € V4(0), ¥y € Vo (T), the unique solution of (X) with control w:=y + v such
that ¥ (0) = g satisfies Y(T') = Yy and

1Ty (o, Y o)l 0,1),R) < Clllvo = Y1y(0)a7 (1) + U5 = Y1y (D)l a7 (1.0))-

Let us recall the main ideas of the proof of this Theorem in order to emphasize the difficulty of
Theorem 8. We proved that the linearized system of (X) around (¢1,,u = ) is controllable and we
concluded by applying an implicit function theorem of Nash-Moser type.

This strategy does not work with (Xo) because the linearized system of (Xg) around Y7®# is not
controllable.

5.1 Controllability up to codimension one of the linearized system around
(Y7, u = )

In this section, we fix a, 8 € R and v € R*. The linearized control system around (Y78 u = 4)
is
OV

5 ot — ;% Vq\I/ - wqw1,77
) Wt —1/2) = B(t,1/2) =0,
(25) i 0,

d=s.

It is a control system where

— the state is (U, s,d) with U(t) € Ts(¢1,(1)),

— the control is the real valued function w.

Let us recall that the space L?(I,C) has a complete orthonormal system (¢ ~)ken+ of eigenfunc-
tions for the operator A, defined on

D(A,):=H?NH}I,C) by A,p:=—1¢"—vqp,

Ay = Moy Pl

where (A )ken- is an increasing sequence of positive real numbers. For technical reasons, we introduce
the notation

Oy =< Phys 401, >
It has already been proved in [1, Proposition 1, Section 3.1] that, for v small enough and different

from zero, by, is different from zero for every k € N* and, roughly speaking, behaves like 1/ k3 when
k — 4o0. In all this section, we assume we are in this situation.

29



Proposition 16 Let T'> 0 and (¥, s,d) be a trajectory of (Elv) on [0,T]. Then, for everyt € [0,T],
we have

1 .

s(t) = 5(0) + =— (< W), 1 > M= < W(0), 01, >). (62)
1y

Thus, the control system (Elw) is not controllable.

Proof : Let 1(t) :=< ¥(t), 1,5 >. We have

. ov . .
#1(t) =< E(ﬂ’ 1,y >=< =i A, U(t) +iw(t)qir (1), p14 >,

Zbl(t) = *Z')\l,,yfﬂl(t) + Z'b17,yw(t>€_i>\17t,

t
z1(t) = (ml(O) + ile/ w(T)dT) et
0
We get (62) by using
t
s(t) = s(0) +/ w(T)dr.
0
Let T'> 0, Wg € Ts(¢14(0)), ¥ € Ts(1,(T)), s0,5f € R. A necessary condition for the existence

of a trajectory of (Elw) such that W (0) = W, s(0) = so, V(1) = ¥y, s(T) = sy is

1 .
Sf— 80 = E (< \I/f,<p1,,y > €Z>\1‘7T— < \I’o,(pl,fy >) .

This equality does not happen for an arbitrary choice of W, Uy, so, s¢. Thus (Efy) is not, controllable.[]

Proposition 17 Let T' > 0, (Vo, s0,do), (¥¢,sf,dy) € H?O)(I, C) x R x R be such that

R < \IIOawl,'y(O) >=R < \I’f,L/}L—y(T) >= 0, (63)
sf— 80 = bi (< Vo, 014 > — < Vp, 014 > ei’\l-”T) ) (64)
Ly

Then there exists w € L*((0,T),R) such that the solution of (Efy) with control w and such that
(¥(0), 5(0),d(0)) = (Yo, s0,do) satisfies (¥(T),s(T),d(T)) = (Yy, s¢,dy).

Remark 5 We can control U and d but we cannot control s. We miss only two directions which are
(U, s,d) =(0,£1,0).

Proof : Let (o, sg,do) € Ts(¥1,,(0)) x Rx R and T" > 0. Let (¥, s,d) be a solution of (Elv) with
(¥(0), 5(0),d(0)) = (¥, s, do) and a control w € L((0,T),R). Let (Uf, sf,ds) € Ts(¢1,(T))xRxR.
The equality (¥U(7T'),s(T),d(T)) = (Vy,s¢,dy) is equivalent to the following moment problem on w,

T i _ ; . .
fO w(t)e (Ak,y At = ﬁ (< Uy, Pry > — < \Iff, Py > GZAkWT> ,Vk € N*,

Jo w(t)dt = 55 — so, (65)
JT = tyw(t)dt = dy — do — soT.

The left hand sides of the two first equalities with kK = 1 are equal, the equality of the right hand
sides is guaranteed by (64). Under the assumption W, ¥y € H?O)(I, C), the right hand side of (65)
defines a sequence in [2. Thus, under the assumptions (64), and ¥, LS H?O)(I, C), the existence of

a solution w € L2((0,T),R) of (65) can be proved in the same way as in [1, Theorem 5]. [J
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5.2 Local controllability up to codimension one of (¥;) around Y7*#

In this section, we fix a, 8 € R. The aim of this section is the proof of the following result.

Theorem 10 There exists yo > 0 such that, for every v € (0,7), for every Sy € R, there exist 6 > 0,
C > 0 and a continuous map

Tyse: V(00 x Vys(T) — Hy((0,7),R)
(Y0, Do), (g, Dy)) = v

where
V5(0) := {(¢0, Do) € [S N H,(I,C)] x R; [[h — 914 (0)l| 71,0y + | Do — B] < 6},

Vy50(T) == {(wy, Dy) € [SNH,(I.O) x ;

1y = 10Dl ey +1Dp — B — SoT —7T?/2| < 8},
such that, for every (Yo, Do) € V4(0), (15, Dyf) € V. 5,(T), the unique solution of (X¢) with control
u =y + v, such that

(4(0),5(0), D(0)) = (0, So, Do)
satisfies Y(T) = vy, D(T) = Dy and

ITy,80 (Mo, ¥ i)l oy < Cllvo = Y1y(0)larrcy + Do — Bl+
105 = 1A (Dllg7r,c) + |Dg — B = SoT —~T?/2]].

Remark 6 The same result is true if one replaces, 11,(0) by ¥1,(0) and 1,(T) by 1,0 +T)
for some 0 € R. Indeed, if (¥, S, D) solves (Xo) on [0, T] with initial condition (1(0),S(0), D(0)) =

(100,50, Do) and control u, then, (1 := Ye~ M0 S D) solves (Xo) on [0,T] with initial condition
(4(0), S(0), D(0)) = (oe~"11? Sy, Dg) and control wu.

The same loss of regularity as in section 3.2.1 prevents us from using the inverse mapping theorem.
We use exactly the same strategy as in [1]. We expose in the next sections the few differences in the
proof.

In [1], the local controllability of (X) in a neighbourhood of (1, u = 7) was got by proving a local
surjectivity result on the map @, : (10, v) — (1o, ¢ (T")), where ¢ is the solution of (¥) with v :=y+v
such that ¥(0) = 1. Thus, in order to prove the local controllability of (¥¢) in a neighbourhood of
(¢1,4, B+ at + vt /2) we consider the map

(5%5’0 : (¢0;D0,U) = (1/}07D07¢(T>7D(T))7

where (¢, S, D) is the solution of (Xy) with control u := « + v such that ¥(0) = 1, S(0) = So,
D(0) = Dy. As in [1] we get a local surjectivity result on this map by applying a Nash-Moser
theorem, stated in section 3.2.2.

5.2.1 Context for the Nash-Moser theorem

We apply the Theorem 4 to the map 57 with P = Id and the spaces defined, for £k =1,3,5,7,9,
by
E] =[S N HE,) (1,0 x R x H((0,7), R)

EY = [SNH)(I,C)] xR x [SN Hf,(I,C)] x R.
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The smoothing operators defined on the spaces
E] = [SnHE (1,C)] x B V2((0,T),R) and
Fl = [SNH)(I,C) x [SNHE,(I,C)] xR

in [1, section 3.3|, give easily suitable smoothing operators on the spaces EZ and F Y+ we don’t do
anything on the constants in R.

As in [1, section 3.4], the map ‘57,50 :NE; — %g is twice di@erentiable. The maps &)’%SO and (T)f;,so
do not depend on Sy, thus, we just write ®/, and ®. The map @) satisfies the inequality (18). Indeed,
if we write

@7 (Y0, v).((¢0, ), (&0, 1)) = (0, A(T)),
then, we have B
@7 (0, Do, v).((¢0, do, V), (€0, 90, 1)) = (0,0, h(T),0),

and the inequality (18) was already proved for @, in [1, section 3.4|.

The assumptions of Theorem 5 can be checked in the same way as in [1, appendix C]. In the
following two sections, we focus on the most difficult part in the application of the Nash-Moser
theorem, which is the existence of a right inverse to the differential with the bounds (20),(21),(22),(23).

5.2.2 Controllability up to codimension one of the linearized system around (1 ,(t), D(t) =
B+ Sot +~t%/2,u = ) and bounds (20), (21), (22), (23)

In [1, Section 3.5], in order to study the controllability of ¥, we introduced the map

T
Zy i w — </ w(t)ei(’\’“ﬂ_)‘lﬁ)tdt> .
0 kEN*

Thus, in order to study the controllability of (¥, d), it is natural to introduce the map Zy, defined by

~ T
Zy(w)g := /0 (T — t)yw(t)dt,

Z(w)g 1= Zy(w)p, Vk € N*.

Let Wo, Vs € L*(I,C), so, do, df € R, T > 0 and (¥, s,d) the solution of (Zlv) such that
(0(0), 5(0),d(0)) = (Vg, s0,do) with some control w € L?((0,T),R). As noticed in section 5.1, the
equality (U(T),s(T),d(T)) = (¥¢,sf,dys) is equivalent to Z,(w) = D where D = (Dy)ien is defined
by

Do :=dy — dy — soT,
¢ iAg AT *
Dy = bf << ‘l’o,tpk’7 > —< \I’f,(pkﬁ > e’k ) ,Vk € N*,
K,y

Proposition 18 Let T = 4/xw. There exists v9 > 0, C1 > 0 such that, for every v € (—y0,%),
1. the linear map 27 is continuous from L*((0,T),R) to I2(N,C), from H}((0,T),R) to h2(N,C),
from H2((0,T),R) to ht(N,C), from H3((0,T),R) to h$(N,C).
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2. for every w € H3((0,T),R),
1 = Zo)(w)llr < Cry*llwlle
for (E,F) = (L*,I7), (Hg, h7), (H§, hy), (HG, hy).

The same results have already been proved for the maps Z, in [1, Propositions 11,13|. The new
term in Z, has no influence.

Proposition 19 Let T = 4/xw. There exists a continuous linear map
Zy": BN, C) — H((0,T),R),
such that, for every d € hS(N, C), Zyo Zoj(d) = d. Moreover, there exists a constant Cy such that,
for every d € hS(N, C), the function w := Z, ' (d) satisfies
ol 2 < Colldlle, llwllzy < Colldllas Il 2 < Colldls, Il < Colldlle
Proof : As in [1, Proof of Proposition 12|, we introduce the notations, for k € N*,
Wk = g1 — A, W_f 1= —Wkg.
Let d € h8(N, C). We define d € hS(Z,C) by

Jk =dpy1, J,k = dj, for every k € N
A candidate for Z~1(d) is

w(t) — <1Z&keiwkt +a(ei%n7r2t + ei%nﬂ’%)) (1 _ ei%ﬂQt)Q(l _ e*’i%ﬂ'2t)2

T
kEZ

where n € N with {n,n+1,n+2}N{£(k*—1);k € N*} = ) and € R is such that fOT(T—t)w(t)dt =

do. There exists a constant C' = C(n) such that o] < Cl|d||;2(v,c)- O

Finally, we get the following proposition, which poof is the same as the one of [1, Proposition 14]

Proposition 20 Let T = 4/xw. There exists vo > 0, Cy > 0 such that, for every v € (—v0,7), there
exists a linear map N
Z:':hY(N,C) — Hj((0,T),R),
such that, for every d € hS(N,C), Zy o Z;l(d) = d. Moreover, for every d € h%(N,C), the function
w = Z1(d) satisfies
[wllr2 < Calldlliz, lwllmy < Calldlipz, [wllgz < Colldlp, lwl gz < Calld]lps.

Thanks to the behaviour of the coefficients by, , we get the following controllability result for the

linearized system around (¢1 ., 3 + at + vt2/2,u = 7).

Theorem 11 There exists vo > 0 such that, for every v € (—v0,7v) different from zero, there exist
C > 0 and a continuous map

m: [TonHL] x R x [TLenH] x R — E)
(Wo , do Wy , o dp) = (Yo, do, w)
where, for every t € R,
Tt = {p € L*(I,C); R(< @, 14(t) >) = 0},
such that, for every (Yo, do, Vs, dy) € ﬁg with W € Ty 0 and ¥y € T5 7, we have

P (01,4,0,0).IL, (W, do, ¥y, ds) = (Vo,do, Uy, dy),
|wlle < C|[(Yo,do, Yy, dy)Fs
for any (E7F) € {<L27F37)v (H(%?Fg)v (Hg,Fg),(Hg’,Fg)}
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5.2.3 Controllability up to codimension one of the linearized system around (Y (t), u(t))

Let v € (=70, 70) different from zero, where 7 is as in Theorem 11. Let T := 4 /7, (v, Do,v) € Eg
and Sy € R. As in [1, Section 3.6.3| we introduce

A3 Z:"}/—F(sg, A5 ::74_557
A7 :=v+07+ 02, Ag:i=~+ 08+ 6755 + 53,

where §; := ||(vo, do, v) — (@1,7,0,0)”5?.

Let Y (t) := (¢(t), S(t), D(t)) be the solution of (3¢) with control u := v+ v such that 1(0) = 1o,
S(0) =Sy and D(0) = Dy. The linearized system around (¢(t), D(t),u(t)) is

i%—%’ = —%%27‘%’ —uq¥ — wqp,
U(t,+1/2) =0,

s =w,

d=s.

If (¥(0),5s(0),d(0)) = (Vo,0,dy), the equality (V(T),d(T)) = (Y, ds) is equivalent to Mwmu)(w) =

d(\I/(), do, \I/f, df) where

]\Z(woyu)(w)o = fOT(T — t)w(t)dt, élv(\Ifo, do, \I/f, df)() = df — dp,

M(wo,u)(w)k = Mwmu(’w)k, d(\I’o, do, \I’f, df)k = d(\Ilo, \Iff)k,Vk e N*

and the map My, . is defined in [1, Section3.6.1].

As in [1], we prove a surjectivity result on M(wo,u) when Ag is small enough. The argument is the
following one : we know a right inverse for M, built in the previous subsection, and we prove

that, when Aj is small, ]\7(1/,0,“) and M(wm

"/7’7)’

) are close enough, in order to get a right inverse of ]\Af(¢07u).

The study of (M(y,.u) — ]\7(501,%7))(10) reduces to the study of (My,u) — My, ) (w) [1, section

3.6.3], because the new terms are equal. The study of the right hand side d(Vy, do, ¢, dy) is the same
as in [1, section 3.6.4]. In this way, we get the following theorem.

Theorem 12 Let v € (—v0,7) different from zero. Let (1o, Do, v) € Eg and (1, S, D) be the asso-

ciated solution of (Xo) with u = v +wv. If Az := v+ ||(v0, Do,v) — (©1,,0,0)| 50 is small enough,
3

then there exists a constant C > 0 and a continuous map

Myo: [TyoNHE x R x [TprNHZ] x R = E}
(Yo , do \ ;o dy) = (Wo,do,w)

where

Tos = {p € L*(I,C); R(< ¢, 9(t) >) = 0},
such that, for every (Yo, do, Vs, dy) € ﬁg with Wo € Ty, ¢ € Ty, we have

@, 5 (Yo, Do, v).I1y (P, do, Uy, dy) = (Vo,do, ¥y, dy),

and the same bounds as in [1, Theorem 9], with everywhere ||(¥o, \IIT)HFIZ replaced by ||(Wo,do, Vy,dy)l| 7
k

Now we can apply the Nash-Moser implicit function theorem stated in section 3.2.2 and we get
Theorem 10.
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5.3 Motion in the directions (¢, S, D) = (0,+1,0)

The aim of this section is to prove of the following theorem.

Theorem 13 There exists g > 0 such that, for every v € (0,70), there exist wy, v+ € H3((0,T),R)
such that the solutions of

i = L0 gl — wiqy s,

v, (0) =0,

\Il:l:(tv _1/2) - \Ij:l:(tv 1/2) =0,

S+ =wy,s4(0) =0,

di = s4,d+(0) =0,
% = —%8553[ =76 —wiqVy — viq 4,
£+(0) =0,

§£(t,—1/2) = &4(t,1/2) =0,
o4 = I/i,Ui(O) =0,
op = 04,04(0) =0,

satisfy V1 (T') = 0, 5+(T) = 0, d+(T') = 0, £&£(T) = 0, 0+(T') = £1, 0+(T) = 0.
Let us introduce new notations. Let v € R*. We define the subspace of L2((0,7),C)
X, := Span(t, et Pky =M1t e_i()‘kﬁ_)‘lﬁ)t; k e N¥).
The symbol /'\f'vL denotes the orthogonal subspace to X, in L%((0,T),C). We recall that we have

o 1 2 . [ V/2sin(kmq), when k in even,
Ak i= Ao = 3 (W) 0k 1= o = { \/icos(lmq), when k in odd.

The parity of the functions ¢y, gives baj41 1= bagy1,0 = 0 for every k € N.
One has the following proposition.

Proposition 21 There exists vo > 0 such that, for every v € (0,70), there exists w, € H{((0,T),R)N
X,YL such that

T
/0 wy (t) < q¥,(t),Y1,(t) > dt € (0,400), (resp. € (—o0,0)),

where V., is the solution of

.OW 02w
i = 3 gz — 0%y — Wy,
\I]’Y(O) =0,

U (t,—1/2) = Uy (t,1/2) = 0.

Remark 7 Let v € R. If w, € X

s and V. is the solution of the previous system, then

T
/0 W (£) < g, (1), 1. (£) > dt € R.

Indeed, we have

~+00 t
U, (t) = Z oy (t) ok, where xp(t) = ibkﬁe_“\’wt/ w,y(T)e’(Akﬂ_)‘M)TdT.
k=1 0
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Thus
+oo

T
/0 W (t) < qUA(E), Y1 (1) > dt = 3 b2 fir,

k=1

where

T t
fry ::/ wv(t)e_i()""ﬁ_)‘m)t/ wy(T)ei(/\’W_)‘lﬁ)Tdet.
0 0

Thanks to an integration by parts in the definition of fr, and the property w, € X , we get : for
every k € N*, fi. , € iR.

Proof of Proposition 21 : First, we study the case v = 0. Let us consider functions of the form
S S S S S S S
w(t) == sm(§noﬂ' t)+ alszn(§n17T t)+ azsm(ingw t)+ agszn(§n3ﬂ' t), (66)
where ng,n1,no, ng are four different positive integers such that
no,n1, N2, N3 §é {:t(k2 — 1);k S N*}

and ay,ag, a3 € R solve

1 1 1 1
ni n2 n3 a1 no
ny n2 n3 a2 = —no
nd nd nd as —nd

Then,
w e HY((0,T),R) N Xy

Let ¥ be the solution of
9 = 5%2(1\3 — wqir,
(0) =
W(t,

t —1/2) U(t,1/2) =0.
We have
t) = Zxk(t)g)k where x(t) :=< U(t), pp >,k € N,

T
/O w(t) < qU(t), vn(t) > dt = Zb% / w(t)zan (BN dt, (67)

¢
ok (1) = ibog (/ w(T)ei(’\2k>‘1)TdT> ekt
0

(—1)*16k
w2(1+ 2k)2(1 — 2k)2°
Thus, the right hand side of (67) can be explicitly computed. We find

bo, = —

32T

T
/ w(t) < qU(t), ¢1(t) > dt = =5 (Sng + a3 n, + a5, + a35,) ,
0

where, for every p € N with p ¢ {£(k* — 1); k € N*}, S,, is defined by

+00

M

(2k)? 1 . 1
S (T+2k) (1 -2k \—p+ 42 —1 " p+4k?—1)"
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Let us choose ng =1, ny =2, ng =4, ng =5 (resp. np =4, ny =5, ng =6, n3 =7), we get

T
/ w(t) < qU(t), r(t) > dt € (0,400) (resp.(—00,0)). (69)
0
Now, we study the case v # 0. We use the following proposition, which will be proved later on.

Proposition 22 Let T =4/xn. There exists v« > 0, C1, Cy > 0 such that, for every v € (—vs, V%),
1. the linear map Z’y is continuous from HG((0,T),R) to h¥(N,C),
2. for every w € H3((0,T),R),

1(Zs = Zo)(w)|lns < C1v°|[w] s,

3. there exists a linear map

, 1 BR(N, C) = Hy((0,T),R),
such that, for every d € h8(N,C), ZW o Z;l(d) = d and the function w := Z;l(d) satisfies

lwll gz < Calldlns-

Let v € (—7«,7«) different from zero. We define

where Z ! is defined in Proposition 22 and w is defined in (66). We have w € Hg((0,7),R), so
Z,(w) € hS(N C) and Z Y(Z,(w)) € HL((0,T),R), thus

w, € Hy((0,T),R) N Ag-.
We have N N B
[w = wyll s = 1257 ((Zy = Zo)(w)) | g < C2017*[[w]| .- (69)

Let us consider the map

G: (_’7*5 ’7*) - R
T
Y = fo w’y(t) < Q‘I/'y(t)ﬂﬁl;y(t) > dt
where, for every v € (=74, V), ¥, is the solution of the system written in Proposition 21. The bound

(69) proves that G is continuous at v = 0. We know from (68), that G(0) > 0 (resp. < 0). Thus, there
exists 79 > 0 such that, for every v € (—y0,%), G(7) > 0 (resp. < 0) . O

Proof of Proposition 22 : The strategy is the same as in Section 3.1.2. We just need to build a
right inverse for Zy which maps h8(N, C) into H4((O T),R). With the same notations as in the proof
of Proposition 19, a suitable candidate for Z Y(d) is

w(t) ( deezwkt +a( i Lo t+ e—z Lnm t)) (1 ezzﬂ t)g(l _ €_i%7r2t)3

kEZ

where n E N with {n,n £ 1,n £ 2,n + 3} N {£(k? — 1);k € N*} = ) and o € R is such that
Jhr t)dt = dy. O
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Proof of Theorem 13 : Let v € (0, ), where 7o is given in Proposition 21. Let w € Hg((0,T),R)N
2‘(7L be such that

T
/0 w(t) < q¥(t),Yr15(t) > dt = —b1 (resp. = +b15).

We have
—+o00

t
U(t) = z:a:;g(t)gah7 where z(t) = ibkﬁe_“‘kﬁt/ w(T)ei()"W_)‘M)TdT.
k=1 0

The assumption w € XWL gives U(T) = 0, s(T)) = 0 and d(T") = 0. Let us prove that there exists
v € L*((0,T),R) such that the solution of

i% = =355 — 74§ — wa¥ — vauu,,,
£(0) =0,

oc=v,0(0)=0,

§=0,6(0) =0,

satisfies £(T) =0, o(T) =1 (resp. = —1), 6(T") = 0. We have

“+oo
) = yr(t) ey,
k=1

t
yk(t) - z.el)\k”Yt/ (’U}(T) < q\II(T)a Pl > +V(T)bk,,yeil)‘l’77> eZ)‘kv’YTdT.
0

The equality (£(T),o(T),0(T)) = (0,1,0) (resp. = (0,—1,0)) is equivalent to

T

T
, 1 .
/ v(t)etPra=Mat gy — w(t) < qU(t), prq > e Mertdt, Vi € N*,
0

By Jo
T

/ v(t)dt =1 (resp. = —1),
0

T
/ (T — t)v(t)dt = 0.
0
A necessary condition for the existence of a solution v to this moment problem is
1 [T .
by w(t) < q¥(t), o1, > et = +1 (resp. = —1).
1y Jo

The choice of w has been done in order to satisfy this condition.
Then, a sufficient condition for the existence of a solution v € H3((0,T),R) is

T
([ o)< awon, > o) enzov.c) (70)
0 keN*

(see [1, Section 3.1], for the behaviour of by, and Proposition 20 for the existence of Zjl between
the suitable spaces).
The assumption w € Hg((0,T),R) implies (70). Indeed, integrations by parts lead to

T ; T 4
Jo w < q¥, .y > eMeatdt = ﬁ o (%TZ) <q¥, N >+
’3 . . .
4%773“ < q¥, ppy > +60 < qV, 0p 4 > +
. 3 4 .
dw < Q%Tgla Py > TW < q%TZI’, Py >) ePatdt.
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Moreover, when v € L2((0,T),R) and f € C°([0,7], L*(I,C)), we have

T
\/ ), Pk > ePatdt|? < HUH2L2((O,T),R)/O | < f(t), rny > [Pdt.

Therefore, since the family (g )ken+ is orthonormal in L?(I, C), the sequence

T
</ v(t) < f(t), pry > ei)"wtdt>
0 keN*

belongs to (?(N*,C). O

5.4 Proof of Theorem 8

In all this section, we fix v € (=79, 70) different from zero, where g is as in Theorem 13.
Let p € R, 9o,y € HV)( ,C), So, Do, Dy € R. Let us consider, for ¢t € [0, 7],

= Vlplw + |plv,

where w:=wq, v:=vy if p>0and w:=w_, v:=v_if p <O0. Let (¢, S, D) be the solution of (o)
on [0,7] with u := v+ v. Then,

S(T) = So +~T + p and D(T) = Do + SoT + ~T?/2.

We have v € W3L((0,T),R), v(0) = v(T) = ©(0) = 9(T) = 0, so [1, Appendix B, proposition 51 |,
¥ € C%([0,T), H(1,C)) and %(T) € H[\(I,C).

Proposition 23 There exists a constant C such that, for every p € (—1,1), we have

1 = 1) (Dl ey < Clllvo = 1,0 larre) + [ol*7].

Proof : We have (¢ — 1 ,)(T) = (¢ — Z)(T) where Z := 1, + ¥ + & and ¥, { are the solutions
of the following systems
2
% = =355 — ¥ — VIplwan 4,
W(0) =0,
U(t,—1/2) =¥(t,1/2) =0,

i% = *%% — g€ — V/Iplwg¥ — [plvgipr 4,
£(0) =0,
§(t> _1/2) = g(ta 1/2) = 0.

The function A : =1 — Z solves

1% = 128 — (v +v)gA — /Iplwgg — |plvg(¥ +¢),
( ) 7/)0 *@Z)L'y( )v (71)

A(t,—1/2) = A(t,1/2) = 0.
We know from [1, proposition 51, Appendix B|, that the following quantities

1| coco,,m27)s 1YWl qo,m,m5)s 1 o277, 153), 1% les o, 17,51

are bounded by
A7(Y) := Ol fllcoom, m5) + 1 fllerqo,ry,m3y + 1 lw21 o), m52) + 1 lws.x o), 515
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where C is a positive constant and f := \/|p|wgy 5. Thus, there exists a constant C; such that

A7 () < C1/]pl.-

In the same way, we prove that there exists a constant Cs such that

1€llcoqo,m,m7)s 11l e o, m5)> 1€l 20,77, 153)5 1€l 3 0,0, 11

are bounded by
A7(§) < Colpl.

Using (71) and [1, Appendix B, proposition 51| we get the existence of a constant C3 > 0 such that

AT e < Cs[ll0 — ¥14(0) | 7 + V/1p[A7(€) + |p| A7 (¥)].0

Now, we apply the local controllability of (¢, D) on [0,T] around (11 (t), 8 + at + vt2/2), with
a =Sy and B := Dy.

Let § > 0 as in Theorem 10. We assume

1)
%0 — 14 (0)| 71,0y < 20" (72)
b5 — 142D 71,y + 1Dy — Do — 250T — 2912 /2| < 6, (73)

5\ 2/3
ol <ni= (26) .

0
() = 17Dl a7 ) + ID(T) = (B + o +4T7/2)| < Clog + ] <o,

Then we have

s = 1y @D)lm7(r,c) + 1Dy — (B + 20T + 29T%)| < 6.
So there exists © € HE((T,2T),R) such that
$(2T) = by and D(2T) = Dy,

where (1, S, D) still the solution of (X) with control u := v+ wv on [0, 27, with v extended to [0, 27
by v := v on [T, 2T]. We know that ¥ can be chosen so that there exists a constant K such that

[ollreqromyr < Kllvo — ¥140)grirc) + 101 + 105 — 1, T grr.o)+
|Dy — (B + 20T + 29T%/2)|],

We used Proposition 23 in order to get this bound.
Moreover, we have

2T
SQ2T) =Sy +29T +p+ / v(t)dt.
T
We define the map
F: (-m,m) — R
p —  S(27)
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There exist 7 € (0,7) such that
VTK7/? < 7/3.

Let us assume
VTE||1p0 — 1,4(0)l|re(r,c) < 7/6,
VTEK (|5 — 1,27l rr,c) + 1Dy — (B + 20T + 29T%/2)|) < 7/6.
Then,
F(1) = (So +29T) > 7/3 > 0 and F(—7) — (So + 27T) < —7/3 < 0.

The map F' is continuous, thus, F' is surjective on a neighborhood of Sy + 2T, this ends the proof of
Theorem 2. [J
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