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We consider a non relativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation. We prove the following controllability result for this bilinear control system : given ψ 0 closed enough to an eigenstate and ψ f closed enough to another eigenstate, the wave function can be moved exactly from ψ 0 to ψ f in nite time. Moreover, we can control the position and the velocity of the well. Our proof uses moment theory, a Nash-Moser implicit function theorem, the return method and expansion to the second order.

Introduction

Following P. Rouchon [START_REF] Rouchon | Control of a quantum particule in a moving potential well[END_REF], we consider a quantum particle with a potential V (z) in a non Galilean frame of absolute position D(t), in a one dimension space. This system is represented by a complex valued wave function (t, z) → φ(t, z) solution of the Schrödinger equation

i ∂φ ∂t (t, z) = - 2 2m ∂ 2 φ ∂z 2 (t, z) + V (z -D(t))φ(t, z). (1) 
Up to a change of variables, we can assume = 1, m = 1. It was already noticed in [START_REF] Rouchon | Control of a quantum particule in a moving potential well[END_REF] that the change of space variable z → q and function φ → ψ, dened by q := z -D, ψ(t, q) := e i(-z Ḋ+D Ḋ-1 2 t 0 Ḋ2 ) φ(t, z), transforms (1) into i ∂ψ ∂t (t, q) = -1 2

∂ 2 ψ ∂q 2 (t, q) + (V (q) -u(t)q) ψ(t, q),

where u := -D. This equation also describes the non relativistic motion of a particle with a potential V in a uniform electric eld t → u(t).

We study this quantum system in the case of a potential well (a box) :

V (q) = 0 for q ∈ I := (-1/2, 1/2) and V (q) = +∞ for q / ∈ I.

Therefore, our system is

(Σ 0 )          i ∂ψ ∂t (t, q) = -1 2 ∂ 2 ψ
∂q 2 (t, q) -u(t)qψ(t, q), t ∈ R + , q ∈ I, ψ(t, -1/2) = ψ(t, 1/2) = 0, Ṡ(t) = u(t), Ḋ(t) = S(t). where < ., . > denotes the usual scalar product on L 2 (I, C), < ψ, ϕ >:= I ψ(q)ϕ(q)dq and ψ(t) := ψ(t, .).

It has already been proved in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF] that the subsystem (Σ) i ∂ψ ∂t (t, q) = -1 2 ∂ 2 ψ ∂q 2 (t, q) -u(t)qψ(t, q), t ∈ R + , q ∈ I, ψ(t, -1/2) = ψ(t, 1/2) = 0, where the state is ψ and the control is u, is locally controllable around any eigenstate state for u ≡ 0, which are the functions ψ n (t, q) := ϕ n (q)e -iλnt , n ∈ N * .

Here λ n := (nπ) 2 /2 are the eigenvalues of the operator A dened on D(A) := H 2 ∩ H 1 0 (I, C) by Aϕ := -1 2 ϕ

and the functions ϕ n are the associated eigenvectors, ϕ n (q) := √ 2 sin(nπq), when n is even, √ 2 cos(nπq), when n is odd.

(3)

Thus, we know that, for every eigenstate, the wave function can be moved arbitrarily in a neighbourhood of this eigenstate, in nite time.

The aim of this paper is to prove that we can also change the energy level. For example, we can move the wave function from any point in a neighbourhood of the ground state ψ 1 to any point in a neighbourhood of the rst excited state ψ 2 . We also prove that we can control the position D and the speed S of the box at the same time.

Let us introduce few notations in order to state this result, S := {ϕ ∈ L 2 (I, C); ϕ L 2 (I,C) = 1}, H 7 (0) (I, C) := {ϕ ∈ H 7 (I, C); A n ϕ ∈ H 1 0 (I, C) for n = 0, 1, 2, 3}.

Our main result is the following one.

Theorem 1 For every n ∈ N * , there exists η n > 0 such that, for every n 0 , n f ∈ N * , for every

(ψ 0 , S 0 , D 0 ), (ψ f , S f , D f ) ∈ [S ∩ H 7 (0) (I, C)] × R × R with ψ 0 -ϕ n 0 H 7 + |S 0 | + |D 0 | < η n 0 , ψ f -ϕ n f H 7 + |S f | + |D f | < η n f ,
there exists a time T > 0 and a trajectory (ψ, S, D, u) of (Σ 0 ) on [0, T ], which satises (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ), (ψ(T ), S(T ), D(T )) = (ψ f , S f , D f ) and u ∈ H 1 0 ((0, T ), R).

Thus, we also have the following corollary.

Corollary 1 For every n 0 , n f ∈ N * , there exists a time T > 0 and a trajectory (ψ, S, D, u) of (Σ 0 ) on [0, T ] such that (ψ(0), S(0), D(0)) = (ϕ n 0 , 0, 0), (ψ(T ), S(T ), D(T )) = (ϕ n f , 0, 0), and u ∈ H 1 0 ((0, T ).

For other results about the controllability of Schrödinger equations, we refer to the survey [START_REF] Zuazua | Remarks on the controllability of the Schrödinger equation[END_REF] 2 Sketch of the proof

Global strategy

Thanks to the reversibility of the control system (Σ 0 ), in order to get Theorem 1, it is sucient to prove it with n f = n 0 + 1. We prove it with n 0 = 1 and n f = 2 to simplify the notations.

First, we prove the local controllability of (Σ 0 ) around the trajectory (Y θ,0,0 , u ≡ 0) for every θ ∈ [0, 1], where Y θ,0,0 (t) := (ψ θ (t), S(t) ≡ 0, D(t) ≡ 0),

ψ θ (t) := √ 1 -θψ 1 (t) + √ θψ 2 (t) for θ ∈ (0, 1),
Y k,0,0 (t) = (ψ k-1 (t), S(t) ≡ 0, D(t) ≡ 0) for k = 0, 1.

Thus we know that

there exists an open ball V 0 (resp. V 1 ) centered at Y 0,0,0 (0) (resp. Y 1,0,0 (0)) such that (Σ 0 ) can be moved in nite time between any two points in V 0 (resp. V 1 ), for every θ ∈ (0, 1), there exists an open ball V θ centered at Y θ,0,0 (0) such that (Σ 0 ) can be moved in nite time between any two points in V θ .

Then, we conclude thanks to a compactness argument : the segment [Y 0,0,0 (0), Y 1,0,0 (0)] := { √ λY 0,0,0 (0) + √ 1 -λY 1,0,0 (0); λ ∈ [0, 1]} is compact in L 2 (I, R) × R × R and covered by ∪ 0 θ 1 V θ thus there exists a increasing nite family (θ n ) 1 n N such that [Y 0,0,0 (0), Y 1,0,0 (0)] is covered by ∪ 1 n N V θn . We can assume

V n ∩ V n+1 = ∅ for n = 1, ..., N -1. Given Y 0 ∈ V 1 and Y f ∈ V N , we move (Σ 0 ) from Y 0 to a point Y 1 ∈ V θ 1 ∩ V θ 2 in nite time, from Y 1 to a point Y 2 ∈ V θ 2 ∩ V θ 3 in nite time.
..etc and we reach Y f in nite time.

Now, let us explain the proof of the local controllability of (Σ 0 ) around Y θ,0,0 for every θ ∈ [0, 1]. The strategy for θ ∈ (0, 1) is dierent from the one for θ ∈ {0, 1} but involves the same ideas. In the next sections, we details the two approaches. We start with the simplest case θ ∈ (0, 1).

2.2

Local controllability of (Σ 0 ) around Y θ,0,0 for θ ∈ (0, 1)

A classical approach to prove the local controllability around a trajectory consists in proving the controllability of the linearized system around the trajectory studied and concluding with an inverse mapping theorem. This strategy does not work here because the linearized system around (Y θ,0,0 (t), u ≡ 0) is not controllable. In section 3.1, we justify that the linearized system misses exactly two directions, which are (ψ, S, D) = (±iϕ 1 , 0, 0) . We call this situation controllability up to codimension one . First, we prove the local controllability up to codimension one of the non linear system (Σ 0 ), in section 3.2. In the rst paragraph of section 3.2.1, we explain that the situation is the same as in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF] : because of a loss of regularity in the controllability (up to codimension one) of the linearized system, the inverse mapping theorem cannot be applied. We deal with this diculty by using a Nash-Moser theorem stated in the second paragraph of section 3.2.2. This theorem is an adaptation of L. Hörmander's one in [START_REF] Hörmander | On the Nash-Moser Implicit Function Theorem[END_REF], it is slightly dierent from the one used in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF]. The two last paragraphs of section 3.2.3 are dedicated to the application of this theorem.

Then, in section 3.3, we justify that the nonlinear term in (Σ 0 ) allows to move in the two directions which are missed by the linearized system. We x the time, we perform a power series expansion and we prove that the second order term allows to move in the two directions (ψ, S, D) = (±iϕ 1 , 0, 0).

This method is classical to study the local controllability of nite dimensional systems. It has already been used for an innite dimensional one, the Korteweg-de Vries equation, in [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]. In this reference, an expansion to the second order was not sucient and it was needed to compute the third order term.

In section 3.4, we get the local controllability of (Σ 0 ) around Y θ,0,0 by applying the intermediate values theorem.

2.3

Local controllability of (Σ 0 ) around Y k,0,0 for k ∈ {0, 1}

Again, the classical approach does not work because the linearized system around (Y k,0,0 , u ≡ 0) is not controllable for k ∈ {0, 1}. This result was proved by P. Rouchon in [START_REF] Rouchon | Control of a quantum particule in a moving potential well[END_REF]. He proved this linearized system is steady-state controllable, but this result does not imply the same property for the nonlinear system. As noticed in section 4.1, the situation is even worse than the previous one because the linearized system misses an innite number of directions (half of the projections).

The proof of the local controllability of (Σ 0 ) around Y k,0,0 for k ∈ {0, 1} relies on the return method, a method introduced in [START_REF] Coron | Global asymptotic stabilization for controllable systems without drift[END_REF] to solve a stabilisation problem, together with quasi-static transformations as in [START_REF] Coron | Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations[END_REF]. The return method has already been used for controllability problems by J.-M.

Coron in [START_REF] Coron | Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations[END_REF], [START_REF] Coron | Contrôlabilité exacte frontière de l'équation d'Euler des uides parfaits incompressibles bidimensionnels[END_REF], [START_REF] Coron | On the controllability of 2-D incompressible perfect uids[END_REF], by A. V. Fursikov and O. Yu. Imanuvilov in [START_REF] Fursikov | Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF], by O. Glass in [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF], [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF], by Th.

Horsin in [START_REF] Th | On the controllability of the Burgers equation[END_REF] and by E. Sontag in [START_REF] Sontag | Control of systems without drift via generic loops[END_REF]. This strategy is divided in two steps. We explain it with Y 0,0,0 but everything works similarly with Y 1,0,0 instead of Y 0,0,0 . First, in section 4.2 , we propose an other trajectory (Y γ,α,β , u ≡ γ) such that (Σ 0 ) is locally controllable around Y γ,α,β in time T * . Then, we deduce the local controllability around Y 0,0,0 in section 4.3, by using quasi-static transformations, in the same way as in [START_REF] Coron | Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations[END_REF] and [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF]. We x Y 0 closed to Y 0,0,0 (t 0 ) and Y f closed to Y 0,0,0 (t f ) for some real constants t 0 and t f . We use quasi-static transformations in order to move the system from Y 0 to a point Y 1 , which is closed to Y γ,α,β (0), for some real constants α, β, γ from a point Y 2 , which is closed to Y γ,α,β (T * ), to Y f . Thanks to the local controllability around Y γ,α,β , we can move the system from Y 1 to Y 2 in nite time, it gives the conclusion. By quasi-static transformations , we mean that we use controls u(t) which change slowly.

Finally, in section 5, we prove the local controllability of (Σ 0 ) around Y γ,α,β . Again, this local controllability result cannot be proved by using the classical approach because the linearized system around Y γ,α,β is not controllable. In section 5.1, we explain that this linearized system misses the two directions (ψ, S, D) = (0, ±1, 0). We conclude with the same strategy as in section 2.2.

In subsection 5.2 we prove that the same strategy as in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF] leads to the local controllability, in time T, of (Σ 0 ), when the state is (ψ, D) and the control is u, around Y γ,α,β . A loss of regularity in the controllability (up to codimension one) of the linearized system around (Y γ,α,β , u ≡ γ) prevents us from applying the inverse mapping theorem. We use the Nash-Moser theorem stated in section 3.2.2, in the context given in section 5.2.1. The two last paragraphs of section 5.2.2 are dedicated to the application of this theorem.

In section 5.3, we prove that the second order term allows to move in the two directions (ψ = 0, S = ±1, D = 0) which are missed by the linearized system.

In section 5.4, we get the local controllability around Y γ,α,β by applying the intermediate values theorem.

3 Local controllability of (Σ 0 ) around Y θ,0,0

In all the section 3, θ ∈ (0, 1) is xed. The aim of this section is the proof of the following result Theorem 2 Let T := 4/π. There exists η > 0 such that, for every

(ψ 0 , S 0 , D 0 ), (ψ f , S f , D f ) ∈ [S ∩ H 7 (0) (I, C)] × R × R with ψ 0 -ψ θ (0) H 7 + |S 0 | + |D 0 | < η, ψ f -ψ θ (T ) H 7 + |S f | + |D f | < η,
there exists a trajectory (ψ, S, D) of (Σ 0 ) on [0, 2T ] such that

(ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ), (ψ(2T ), S(2T ), D(2T )) = (ψ f , S f , D f ),
and u ∈ H 1 0 ((0, 2T ), R).

3.1

Controllability up to codimension one of the linearized system around (Y θ,0,0 , u ≡ 0)

Let us introduce, for ψ ∈ S, the tangent space T S (ψ) to the L 2 (I, C)-sphere at the point ψ,

T S ψ := {ϕ ∈ L 2 (I, C); < ϕ, ψ >= 0}
and for k = 2, ..., 9, the following subspace of H k (I, C),

H k (0) (I, C) := {ϕ ∈ H k (I, C); A n ϕ ∈ H 1 0 (I, C) for n ∈ N, n (k -1)/2}. The linearized control system around (Y θ , u ≡ 0) is (Σ l θ )          i ∂Ψ ∂t = -1 2 ∂ 2 Ψ ∂q 2 -wqψ θ , Ψ(t, ±1/2) = 0, ṡ = w, ḋ = s.
It is a control system where the state is (Ψ, s, d) with Ψ(t) ∈ T S (ψ θ (t)), the control is the real valued function t → w(t).

Proposition 1 Let T > 0 and (Ψ, s, d) be a trajectory of (Σ l θ ) on [0, T ]. Then, the function

t → (< Ψ(t), √ 1 -θψ 1 (t) - √ θψ 2 (t) >)
is constant on [0, T ]. Thus, the control system (Σ l θ ) is not controllable.

Proof : Let us consider the function ξ θ (t) :=

√ 1 -θψ 1 (t) - √ θψ 2 (t). We have i ∂ξ θ ∂t = - 1 2 ∂ 2 ξ θ ∂q 2 , d dt ( < Ψ(t), ξ θ (t) >) = (iw < qψ θ (t), ξ θ (t) >).
The explicit expressions of ψ θ and ξ θ provide, for every t, < qψ θ (t), ξ θ (t) >∈ iR, which gives the conclusion.

Let T > 0, and Ψ 0 ∈ T S (ψ θ (0)), Ψ f ∈ T S (ψ θ (T )). A necessary condition for the existence of a trajectory of (Σ l θ ) satisfying Ψ(0) = Ψ 0 and

Ψ(T ) = Ψ f is (< Ψ f , √ 1 -θψ 1 (T ) - √ θψ 2 (T ) >) = (< Ψ 0 , √ 1 -θϕ 1 - √ θϕ 2 >).
This equality does not happen for an arbitrary choice of Ψ 0 and Ψ f . Thus (Σ l θ ) is not controllable.

Proposition 2 Let

T > 0, (Ψ 0 , s 0 , d 0 ), (Ψ f , s f , d f ) ∈ H 3 (0) (I, R) × R × R be such that < Ψ 0 , ψ θ (0) >= < Ψ f , ψ θ (T ) >= 0, (4) 
< Ψ f , √ 1 -θϕ 1 e -iλ 1 T - √ θϕ 2 e -iλ 2 T >= < Ψ 0 , √ 1 -θϕ 1 - √ θϕ 2 > . (5) 
There exists w ∈ L 2 ((0, T ), R) such that the solution of (Σ l θ ) with control w and such that (Ψ(0), s(0), d(0)) = (Ψ 0 , s 0 , d 0 ) satises (Ψ(T ), s(T ), d(T )) = (Ψ f , s f , d f ).

Remark 1 The condition (5) means that we miss exactly two directions, which are (Ψ, s, d) = (±iξ θ , 0, 0). Thus, if we want to control the components < Ψ, ϕ k > for k 2 and < Ψ, ϕ 1 > then, we cannot control < Ψ, ϕ 1 >. This is why we say that we miss the two directions (Ψ, s, d) = (±iϕ 1 , 0, 0).

Proof : Let (Ψ 0 , s 0 , d 0 ) ∈ L 2 (I, R) × R × R with Ψ 0 ∈ T S (ψ θ (0)) and T > 0. Let (Ψ, s, d) be a solution of (Σ l θ ) with (Ψ(0), s(0), d(0)) = (Ψ 0 , s 0 , d 0 )
and a control w ∈ L 2 ((0, T ), R). We have the following equality in L 2 (I, C)

Ψ(t) = ∞ k=1 x k (t)ϕ k where x k (t) :=< Ψ(t), ϕ k > ∀k ∈ N.
Using the equation satised by Ψ, we get

x 2k (t) = < Ψ 0 , ϕ 2k > +i √ 1 -θb 2k t 0 w(τ )e i(λ 2k -λ 1 )τ dτ e -iλ 2k t , (6) 
x 2k-

1 (t) = < Ψ 0 , ϕ 2k-1 > +i √ θc 2k-1 t 0 w(τ )e i(λ 2k-1 -λ 2 )τ dτ e -iλ 2k-1 t , (7) 
where, for every k ∈ N * , b k :=< qϕ k , ϕ 1 > and c k :=< qϕ k , ϕ 2 >. Thanks to the explicit expression of the functions ϕ k (see (3)), we get

b k = 0 if k is odd, -8(-1) k/2 k π 2 (1+k) 2 (1-k) 2 if k is even , c k = 16(-1) (k-1)/2 k π 2 (k+2) 2 (k-2) 2 if k is odd, 0 if k is even . (8) Let (Ψ f , s f , d f ) ∈ L 2 (I, R) × R × R with Ψ f ∈ T S (ψ θ (T )). The equality (Ψ(T ), s(T ), d(T )) = (Ψ f , s f , d f ) is equivalent to the following moment problem on w,            T 0 w(t)e i(λ 2k -λ 1 )t dt = -i √ 1-θb 2k < Ψ f , ϕ 2k > e iλ 2k T -< Ψ 0 , ϕ 2k > , ∀k ∈ N * , T 0 w(t)e i(λ 2k-1 -λ 2 )t dt = -i √ θc 2k-1 < Ψ f , ϕ 2k-1 > e iλ 2k-1 T -< Ψ 0 , ϕ 2k-1 > , ∀k ∈ N * , T 0 w(t)dt = s f -s 0 , T 0 (T -t)w(t)dt = d f -d 0 -s 0 T. (9) 
In the two rst equalities of ( 9) with k = 1, the left hand sides are complex conjugate numbers because w is real valued. Thus a necessary condition on Ψ 0 and Ψ f for the existence of w ∈ L 2 ((0, T ), R) solution of ( 9) is

1 √ 1 -θ < Ψ f , ϕ 2 >e -iλ 2 T -< Ψ 0 , ϕ 2 > = -1 √ θ < Ψ f , ϕ 1 > e iλ 1 T -< Ψ 0 , ϕ 1 > . ( 10 
)
The equality of the real parts of the two sides in [START_REF] Gromov | Partial Dierential Relations[END_REF] is guaranteed by [START_REF] Coron | On the controllability of 2-D incompressible perfect uids[END_REF]. The equality of the imaginary parts of the two sides in [START_REF] Gromov | Partial Dierential Relations[END_REF] is equivalent to (??). Under the assumption Ψ 0 , Ψ f ∈ H 3 (0) (I, C), the right hand side of (9) denes a sequence in l 2 . Then, the existence, for every T > 0, of w ∈ L 2 ((0, T ), R) solution of (9) is a classical result on trigonometric moment problems.

3.2

Local controllability up to codimension one of (Σ 0 ) around (Y θ,0,0 , u ≡ 0)

Let us introduce the following closed subspace of L 2 (I, C)

V := Span{ϕ k ; k 2}
and the orthogonal projection P : L 2 (I, C) → V . The aim of this section is the proof of the following result.

Theorem 3 Let T := 4/π. There exists C > 0, δ > 0 and a continuous map

Γ : V(0) × V(T ) → H 1 0 ((0, T ), R) ((ψ 0 , S 0 , D 0 ) , ( ψ f , S f , D f )) → u
where

V(0) := {(ψ 0 , S 0 , D 0 ) ∈ [S ∩ H 7 (0) (I, C)] × R × R; ψ 0 -ψ θ (0) H 7 + |S 0 | + |D 0 | < δ}, V(T ) := {( ψ f , S f , D f ) ∈ [H 7 (0) (I, C) ∩ V ∩ B L 2 (0, 1)] × R × R; ψ f -Pψ θ (T ) H 7 + |S f | + |D f | < δ}, such that, for every ((ψ 0 , S 0 , D 0 ), ( ψ f , S f , D f )) ∈ V(0) × V(T ), the trajectory of (Σ 0 ) with control Γ(ψ 0 , S 0 , D 0 , ψ f , S f , D f ) such that (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ) satises (Pψ(T ), S(T ), D(T )) = ( ψ f , S f , D f ) and Γ(ψ 0 , S 0 , D 0 , ψ f , S f , D f ) H 1 0 ((0,T ),R) C[ P(ψ 0 -ψ θ (0)) H 7 (I,C) + |S 0 | + |D 0 |+ ψ f -Pψ θ (T ) H 7 (I,C) + |S f | + |D f |].

The inverse mapping theorem cannot be applied

In our situation, in order to prove the Theorem 3 with the classical approach, we would like to apply the inverse mapping theorem to the map Φ : (ψ 0 , S 0 , D 0 , u) → (ψ 0 , S 0 , D 0 , Pψ(T ), S(T ), D(T )),

where ψ solves    i ψ = -1 2 ψ -uqψ, Ṡ = w, Ḋ = S,
with (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ).

The map Φ is C 1 between the following spaces

Φ : [S ∩H 2 (0) (I, C)]×R×R×L 2 ((0, T ), R) → [S ∩H 2 (0) (I, C)]×R×R×[V ∩B L 2 (0, 1)∩H 2 (0) (I, C)]×R×R, Φ : [S∩H 3 (0) (I, C)]×R×R×H 1 0 ((0, T ), R) → [S∩H 3 (0) (I, C)]×R×R×[V ∩B L 2 (0, 1)∩H 3 (0) (I, C)]×R×R.
Thus, in order to apply the inverse mapping theorem, we would need to construct a right inverse to the map dΦ(ψ θ (0), 0, 0, 0) which maps the following spaces

[T S (ψ θ (0)) ∩ H 2 (0) ] × R × R × [V ∩ H 2 (0) ] × R × R → [T S (ψ θ (0)) ∩ H 2 (0) ] × R × R × L 2 ((0, T ), R), or [T S (ψ θ (0)) ∩ H 3 (0) ] × R × R × [V ∩ H 3 (0) ] × R × R → [T S (ψ θ (0)) ∩ H 3 (0) ] × R × R × H 1 0 ((0, T ), R).
The controllability up to codimension one proved for the linearized system around (Y θ , u ≡ 0) only provides a right inverse for dΦ(ψ θ (0), 0, 0, 0) which maps the following spaces

[T S (ψ θ (0)) ∩ H 3 (0) ] × R × R × [V ∩ H 3 (0) ] × R × R → [T S (ψ θ (0)) ∩ H 3 (0) ] × R × R × L 2 ((0, T ), R).
In order to deal with this loss of regularity in the controllability of the linearized system around (Y θ,0,0 , u ≡ 0), we use a Nash-Moser implicit function theorem stated in the following section. It is an adaptation of L. Hörmander's one in [START_REF] Hörmander | On the Nash-Moser Implicit Function Theorem[END_REF], it is slightly dierent from the one proved in [1, section 3.2]. The use of the projection P introduce changes in the statement and the proof so we write them completely.

The Nash-Moser theorem used

As in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF], we consider a decreasing family of Hilbert spaces (E a ) a∈{1,...,9} with continuous injections E b → E a of norm 1 when b a. Suppose we have given linear operators S λ : E 1 → E 9 for λ 1.

We assume there exists a constant K > 0 such that for every a ∈ {1, ..., 9}, for every λ 1 and for every u ∈ E a we have S λ u b K u a , ∀b ∈ {1, ..., a},

S λ u b Kλ b-a u a , ∀b ∈ {a + 1, ..., 9}, (11) 
u -S λ u b Kλ b-a u a , ∀b ∈ {1, ..., a -1},

d dλ S λ u b Kλ b-a-1 u a , ∀b ∈ {1, ..., 9}. (13) 
Then, we have the convexity of the norms (see [START_REF] Hörmander | On the Nash-Moser Implicit Function Theorem[END_REF] for the proof ) : there exists a constant c 1 such that, for every λ ∈ [0, 1], for every a, b ∈ {1, ..., 9} such that a b, λa

+ (1 -λ)b ∈ N and for every u ∈ E b , u λa+(1-λ)b c u λ a u 1-λ b .
We x a sequence 1 = θ 0 < θ 1 < ... → ∞ of the form θ j = (j +1) δ where δ > 0. We set ∆ j := θ j+1 -θ j and we introduce

R j u := 1 ∆ j (S θ j+1 -S θ j )u if j > 0 and R 0 u := 1 ∆ 0 S θ 1 u.
Thanks to (13), we have

u = ∞ j=0 ∆ j R j u
with convergence in E b when u ∈ E a and a > b. As noticed in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF], it follows from ( 14) that there exists K > 0 such that, for every a ∈ {1, ..., 9}, for every u ∈ E a , for every b ∈ {1, ..., 9}, for every δ ∈ (0, 2] and for every j

∈ N * , R j u b K θ b-a-1 j u a .
Let a 1 , a 2 ∈ N and a ∈ R be such that 1 a 1 < a < a 2 9. We dene the space

E a := { ∞ j=0 ∆ j u j ; u j ∈ E a 2 , ∃M > 0/∀j, u j b M θ b-a-1 j for b = a 1 , a 2 },
with the norm u a given by the inmum of M over all such decomposition of u. This space does not depend on the choice of a 1 and a 2 (see [START_REF] Hörmander | On the Nash-Moser Implicit Function Theorem[END_REF] for the proof ). The norm . a is stronger than the norm

. b when b < a, u b M b,a u a (15) 
and . a is weaker than . a , u a K u a .

As noticed in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF] and [START_REF] Hörmander | On the Nash-Moser Implicit Function Theorem[END_REF], there exists a constant K such that, for every a ∈ {1, ..., 9}, for every θ 1, for every b < a and for every u ∈ E a we have

u -S θ u b K θ b-a u a . (16) 
We have another family (F a ) a∈{1,...,9} with the same properties as above, we use the same notations for the smoothing operators S λ . Moreover, we assume the injection F b → F a is compact when b > a.

Theorem 4 Let α and β be xed positive real numbers such that 4 < α < β < 7 and β -α 2.

(17)

Let P be a continuous linear operator from

F b to F b of norm 1, for b = 1, ..., 9, such that PS θ = S θ P. Let V be a convex E α -neighbourhood of 0 and Φ a map from V ∩ E 7 to F β which is twice dierentiable and satises Φ (u; v, w) 7 C (1 + u m j ) v m j w m j (18)
where the sum is nite, all the subscripts belong to {1, 3, 5, 7} and satisfy

max(m j -α, 0) + max(m j , 2) + m j < 2α, ∀j. (19) 
We assume that Φ :

E 3 → F 3 is continuous. We also assume that Φ (v), for v ∈ V ∩ E 9 , has a right inverse ψ(v) mapping F 9 into E 7 , that (v, g) → ψ(v)g is continuous from (V ∩ E 9 ) × F 9 to E 7 and
that there exists a constant C such that for every

(v, g) ∈ (V ∩ E 9 ) × F 9 , ψ(v)g 1 C[ Pg 3 + v 3 g 3 ], (20) 
ψ(v)g 3 C[ Pg 5 + v 3 g 5 + v 5 g 3 ], (21) 
ψ(v)g 5 C[ Pg 7 + v 3 g 7 + v 5 g 5 + ( v 7 + v 2 5 ) g 3 ], (22) 
ψ(v)g 7 C[ Pg 9 + v 3 g 9 + v 5 g 7 +( v 7 + v 2 5 ) g 5 +( v 9 + v 7 v 5 + v 3 5 ) g 3 ]. (23) For every f ∈ F β with suciently small norm, there exists u ∈ E 3 such that Φ(u) = Φ(0) + f .
Remark 2 The Nash-Moser theorem used in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF] corresponds to the case P =Id. In what follows, we only emphasize where the projection P appears in the proof of [1, section 3.2].

Proof : Let g ∈ F β . There exist decompositions (see [1, proof of Theorem 6])

g = ∆ j g j with g j b K θ b-β-1 j g β for every b ∈ {1, ..., 9}, (24) 
Pg = ∆ j Pg j with Pg j b K θ b-β-1 j Pg β for every b ∈ {1, ..., 9}. (25) 
To get (25), we have used PS θ = S θ P. We claim that if g β is small enough, we can dene a sequence u j ∈ E 7 ∩ V with u 0 = 0 by the recursive formula

u j+1 := u j + ∆ j uj , uj := ψ(v j )g j , v j := S θ j u j . (26) 
We also claim that there exist constants C 1 , C 2 , C 3 such that for every j ∈ N,

uj a C 1 Pg β θ a-α-1 j , a ∈ {1, 3, 5, 7}, (27) 
v j a C 2 Pg β θ a-α j , a ∈ {5, 7, 9}, v j 3 C 2 Pg β , (28) u j -v j a C 3 Pg β θ a-α j , a ∈ {1, 3, 5, 7}. (29)
More precisely, we prove by induction on k the following property

(P k ) : u j is well dened for j = 0, ..., k + 1, ( 27 
) is satised for j = 0, ..., k, (28) 
, ( 29) are satised for j = 0, ..., k + 1.

The property (P 0 ) is easy to be checked. Let k ∈ N * . We suppose the property (P k-1 ) is true and we prove (P k ).

Let us introduce a real number ρ > 0 such that, for every u ∈ E α , u α ρ implies u ∈ V . With the same kind of calculus as in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF], we get ( 27), ( 28), (29) with

C 1 := 8CK , C 2 := KC 1 max{ 1 7 -α , 2 δ(α-4) 5 -α , 2 δ(α-2 α -1 }, C 3 := C 1 max{ 1 + K 7 -α , K }, for every g ∈ F β with g β min{ ρ KC 1 , 1 C 2 , }.
The inequality (27) proves that (u k ) converges in E 3 to the vector u := ∞ j=0 ∆ j uj and

u 3 C 1 Pg β where C 1 := C 1   ∞ j=0 ∆ j θ 2-α j   . (30) 
Now, let us consider the limit of (Φ(u k )) k∈N . We have

Φ(u j+1 ) -Φ(u j ) = Φ(u j + ∆ j uj ) -Φ(u j ) = ∆ j (e j + e j + g j )
where

e j := 1 ∆ j Φ(u j + ∆ j uj ) -Φ(u j ) -Φ (u j )∆ j uj , e j := Φ (u j ) -Φ (v j ) uj .
Thanks to (18), ( 19), ( 27), ( 28), ( 29) and the same calculus as in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF] we get the existence of , C 4 , C 5 > 0 such that, for every j ∈ N,

e j 7 C 4 Pg 2 β θ -1- j , e j 7 C 5 Pg 2 β θ -1- j . (31) 
Thus ∆ j (e j + e j ) converges in F 7 . Let us denote T (g) its sum,

T (g) := ∞ j=0 ∆ j (e j + e j ).
Thanks to (31), we get the existence of C 6 > 0 such that

T g 7 C 6 Pg 2 β .
The continuity of Φ gives Φ(u k ) → Φ(u) in F 3 , thus we have the following equality in F 3

Φ(u) = Φ(0) + T (g) + g. Let us x f ∈ F β . We search u such that Φ(u) = Φ(0) + f . It is sucient to nd g ∈ F β such that g + T g = f
. This is equivalent to prove the existence of a xed point for the map

F : F β → F β g → f -T (g).
We conclude by applying the Leray-Shauder xed point theorem.

In our situation, we need the continuity of the map f → u in order to apply the intermediate values theorem in section 3.4. This property can be proved by applying the Banach xed point theorem instead of the Leray-Shauder xed point theorem in the previous proof. In order to do this, we need more assumptions, which are given in the next theorem.

Theorem 5 Let us consider the same assumptions as in Theorem 4. We assume moreover that, for

every u, ũ ∈ V ∩ E 7 , Φ (u; v, w) -Φ (ũ; v, w) 7 C (1 + u -ũ n j ) v n j w n j , (32) 
where the sum is nite, all the subscripts belong to {1, 3, 5, 7} and satisfy (19) with m j ← n j . We also assume that, for every v, ṽ

∈ V ∩ E 9 , (ψ(v) -ψ(ṽ))g 1 C v -ṽ 3 g 3 , ( 33 
) (ψ(v) -ψ(ṽ))g 3 C[ v -ṽ 3 g 5 + v -ṽ 5 g 3 ], ( 34 
) (ψ(v) -ψ(ṽ))g 5 C[ v -ṽ 3 g 7 + v -ṽ 5 g 5 + ( v -ṽ 7 + v -ṽ 2 5 ) g 3 ], (35) 
(ψ(v) -ψ(ṽ))g 7 C[ v -ṽ 3 g 9 + v -ṽ 5 g 7 + ( v -ṽ 7 + v -ṽ 2 5 ) g 5 + ( v -ṽ 9 + v -ṽ 7 v -ṽ 5 + v -ṽ 3 5 ) g 3 ]. (36) 
Then, there exists C > 0, > 0 and a continuous map

Π : V β → E 3 f → u where V β := {f ∈ F β ; f β < }, such that, for every f ∈ V β , Φ(Π(f )) = Φ(0) + f, Π(f ) 3 C Pf β . (37) 
Proof : The rst part of Theorem 5 has already been proved in [1, appendix C]. Here, we justify the bound (37). Let us recall that under the assumptions (32), ( 33),(34),( 35),(36), the map T is a contraction on a small enough neighbourhood of zero in F β : there exists δ ∈ (0, 1) such that

T (g) -T (g) β δ g -g β .
Thus, when f = g + T (g) and f = g + T (g), we also have

g -g β 1 1 -δ f -f β .
Let f ∈ F β small enough. Let g ∈ F β be the solution of f = g + T (g) given by the Banach xed point theorem. Using f = 0, we have

g β 1 1 -δ f β .
Let u ∈ E 3 be the vector built in the proof of Theorem 4. Using (30) and

Pg = Pf -PT (g), PT g β T g β C 6 Pg 2 β , we get Pg β 2 Pf β when f β 1 -δ 2C 6 . thus u 3 2 C 1 Pf β .
We apply Theorems 4 and 5 to the map Φ dened in section 3.2.1, in a neighbourhood of (ψ θ (0), 0, 0, 0). Our spaces are dened, for k = 1, 3, 5, 7, 9, by

E k := [S ∩ H k (0) (I, C)] × R × R × H (k-1)/2 0 ((0, T ), R), F k := [S ∩ H k (0) (I, C)] × R × R × [V ∩ H k (0) (I, C)] × R × R.
We work on the manifold S instead of a whole space. It does not matter because we can move the problem to an hyperplane of L 2 (I, C) by studying a new map

Φ( ψ 0 , S 0 , D 0 , u) := Φ(p -1 ( ψ 0 ), S 0 , D 0 , u)
where p is a suitable local dieomorphism from a neighbourhood of the trajectory ψ θ in the sphere S to an hyperplane of L 2 (I, C). For example, we can use the following one.

Proposition 3 Let

U := {ψ ∈ S; ∃t ∈ [0, 4/π], ψ -ψ θ (t) L 2 (I,C) < } where > 0 is small enough, H := {ψ ∈ L 2 (I, C); < ψ, ϕ 3 >= 0} and p : L 2 (I, C) → H dened by p(ψ) := ψ -(< ψ, ϕ 3 >)ϕ 3 + (< ψ, ϕ 3 >) < ψ, ϕ 1 > ϕ 1 .
The map p is a C 1 dieomorphism from U to an open subset of H. Moreover, the norm of dp(ψ) as linear operator from (T S (ψ), . H s ) to (H, . H s ) is uniformly bounded on U for every integer s ∈ [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF][START_REF] Fursikov | Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF].

The proof is similar to the one of [1, Proposition 2 section 3.2]. Now, we build smoothing operators. First, we smooth the wave function. Note that we need a smoothing operator preserving the space

H dened in Proposition 3. Let s ∈ C ∞ (R, R) be such that s = 1 on [0, 1], 0 s 1, s = 0 on [2, +∞).
We dene

S λ ϕ := ∞ k=1 s( k λ ) < ϕ, ϕ k > ϕ k .
The proof of the following proposition is easy.

Proposition 4 There exists a constant K such that, for every a ∈ {1, ..., 9}, for every ϕ ∈ H a (0) (I, C) and for every λ 1, we have

S λ ϕ H b K ϕ H a , b ∈ {1, ..., a}, S λ ϕ H b Kλ b-a ϕ H a , b ∈ {a + 1, ..., 9}, ϕ -S α ϕ H b Kλ b-a ϕ H a , b ∈ {1, ..., a -1}, d dλ S λ ϕ H b Kλ b-a-1 ϕ H a , b ∈ {1, ..., 9}.
The suitable smoothing operators for the control, S λ u, can be built with convolution products and truncations with a C ∞ -function with compact support as in [1, section 3.3.2]. This construction is inspired from [START_REF] Gromov | Partial Dierential Relations[END_REF].

Finally, we take on the spaces E k S λ (ψ 0 , S 0 , D 0 , u) := ( S λ ψ 0 , S 0 , D 0 , S λ (u)), and on the spaces

F k S λ (ψ 0 , S 0 , D 0 , ψ f , S f , D f ) := ( S λ ψ 0 , S 0 , D 0 , S λ (ψ f ), S f , D f ).
The bounds (18), ( 19), (32), (33), (34), ( 35), (36) can be checked in the same way as in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF]. In the following two sections, we focus on the most dicult part in the application of the Nash-Moser theorem, which is the proof of the existence of a right inverse for the dierential, with the bounds (20), (21), ( 22), (23).

Controllability up to codimension one of the linearized system around

(Y θ,0,0 , u ≡ 0) and bounds (20), ( 21), ( 22), (

The aim of this section is the proof of the following proposition.

Proposition 5 Let T := 4/π. There exists C > 0 such that, for every

(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) ∈ [T S (ψ θ (0)) ∩ H 9 (0) (I, C)] × R × R × [V ∩ H 9 (0) (I, C)] × R × R, there exists w ∈ H 3 0 ((0, T ), R) such that the solution of (Σ l θ ) with control w such that (Ψ(0), s(0), d(0)) = (Ψ 0 , s 0 , d 0 ) satises (PΨ(T ), s(T ), d(T )) = ( Ψ f , s f , d f ) and w L 2 ((0,T ),R) C (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) F 3 , w H 1 0 ((0,T ),R) C (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) F 5 , w H 2 0 ((0,T ),R) C (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) F 7 , w H 3 0 ((0,T ),R) C (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) F 9 .
Moreover, the map

[T S (ψ θ (0)) ∩ H 9 (0) ] × R × R × [V ∩ H 9 (0) ] × R × R → H 3 0 ((0, T ), R) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) → w is continuous. Remark 3 The function Ψ(T ) is the unique function Ψ f ∈ T S (ψ θ (T ))
which satises (??) and

PΨ f = Ψ f .
Let us introduce the notations, for s ∈ {0, ..., 6}

h s (N, C) :=    d = (d k ) k∈N ; d h s (N,C) := |d 0 | + ∞ k=1 |k s d k | 2 1/2 < +∞    , h s r (N, C) := {d = (d k ) k∈N ∈ h s (N, C); d 0 , d 1 ∈ R}, we write l 2 r instead of h 0 r . Proof : Let (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) ∈ [T S (ψ θ (0)) ∩ H 9 (0) (I, C)] × R × R × [V ∩ H 9 (0) (I, C)] × R × R,
and (Ψ, s, d) be a solution of (Σ l θ ) with (Ψ(0), s(0), d(0)) = (Ψ 0 , s 0 , d 0 ) and a control w ∈ H 3 0 ((0, T ), R). As noticed in section 3.1, the equality (PΨ(T ), s(T ),

d(T )) = ( Ψ f , s f , d f ) is equivalent to Z(w) = D(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) where Z(w) := (Z(w) k ) k∈N and D(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) := (D k ) k∈N are dened by Z(w) 0 := T 0 (T -t)w(t)dt, Z(w) 1 := T 0 w(t)dt, Z(w) 2k := T 0 w(t)e i(λ 2k -λ 1 )t dt, Z(w) 2k+1 := T 0 w(t)e i(λ 2k+1 -λ 2 )t dt, k ∈ N * , D 0 := d f -d 0 -s 0 T, D 1 := s f -s 0 , D 2k := -i √ 1-θb 2k < Ψ f -Ψ 0 , ϕ 2k >, D 2k+1 := -i √ θc 2k+1 < Ψ f -Ψ 0 , ϕ 2k+1 >, k ∈ N * .
Using the behaviour of the coecients c k and b k given by [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF] and standard results about Fourier series, we get a constant C > 0 such that, for every (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ), for s = 0, 2, 4, 6,

D(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) h s (N,C) C (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) F s+3 .
Thus, it is sucient to prove the following proposition to end this proof.

Proposition 6 The linear map Z si continuous from E to F for every

(E, F ) ∈ {(L 2 , l 2 r ), (H 1 0 , h 2 r ), (H 2 0 , h 4 r ), (H 3 0 , h 6 r )}.
There exist C > 0 and a continuous right inverse

Z -1 : h 6 r (N, C) → H 3 0 ((0, T ), R)
such that, for every d ∈ h 6 r (N, C),

Z -1 (d) L 2 C d l 2 , Z -1 (d) H 1 0 C d h 2 , Z -1 (d) H 2 0 C d h 4 , Z -1 (d) H 3 0 C d h 6 .
Proof : The rst statement comes from integrations by parts and standard results about Fourier series. Let us introduce the notations

ω 1 := 0, ω 2k := λ 2k -λ 1 , ω 2k+1 := λ 2k+1 -λ 2 for k ∈ N * . Let d ∈ h 6 r (N, C). A suitable candidate for Z -1 (d) is the function w(t) := 1 T [ d 1 6 + a 2 e -iω 2 t + a 2 e iω 2 t + a 3 e -iω 3 t + a 3 e iω 3 t + ∞ k=4 ( d k 6 e -iω k t + d k 6 e iω k t ) + αe -iωt + αe iωt ] e i 1 2 π 2 t -1 2 e -i 1 2 π 2 t -1 2 ,
where

a 2 := 6d 2 -d 3 35 , a 3 := 6d 3 -d 2 35 . ω = 1 2 mπ 2 with m ∈ N and {m, m ± 1, m ± 2} ∩ { 2 π 2 ω k , 2 π 2 ω k ± 1, 2 π 2 ω k ± 2; k ∈ N * } = ∅ and α ∈ C is such that T 0 (T -t)w(t)dt = d 0 .
3.2.4 Controllability up to codimension one of the linearized system around (Y, u) and bounds (20), ( 21), ( 22), ( 23)

Let (ψ 0 , S 0 , D 0 , u) ∈ E 9 The aim of this section is the proof of the existence of a right inverse to dΦ(ψ 0 , S 0 , D 0 , u) with the estimates (20), (21), ( 22), (23).

Let (ψ, S, D) be the solution of (Σ 0 ) with control u such that (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ). The linearized system around (ψ, S, D, u) is

       i Ψ = -1 2 Ψ -uqΨ -wqψ, Ψ(t, ±1/2) = 0, ṡ = w, ḋ = s. ( 38 
)
It is a control system where the state is (Ψ, s, d) with Ψ(t) ∈ T S (ψ(t)), for every t, the control is the real valued function w. Let T := 4/π and

(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) ∈ [T S (ψ 0 ) ∩ H 9 (0) (I, C)] × R × R × [V ∩ H 9 (0) (I, C)] × R × R.
We look for w ∈ H 3 0 ((0, T ), R) such that the solution of (38) with (Ψ(0), s(0), d(0

)) = (Ψ 0 , s 0 , d 0 ) satises (Ψ(T ), s(T ), d(T )) = (P Ψ f , s f , d f ), (39) 
and

w L 2 C[ (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 + ∆ 3 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 ], w H 1 0 C[ (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) 5 + ∆ 3 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 5 +∆ 5 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 ], w H 2 0 C[ (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) 7 + ∆ 3 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 7 +∆ 5 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 5 + (∆ 7 + ∆ 2 5 ) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 ], w H 3 0 C[ (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) 9 + ∆ 3 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 9 +∆ 5 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 7 + (∆ 7 + ∆ 2 5 ) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 5 +(∆ 9 + ∆ 7 ∆ 5 + ∆ 3 5 ) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 ], (40) 
where

∆ k := (ψ 0 -ψ θ (0), S 0 , D 0 , u) E k for k = 3, 5, 7, 9.
Let us consider the decomposition (Ψ, s, d)

= (Ψ 1 , s 1 , d 1 ) + (Ψ 2 , s 2 , d 2 ) where            i Ψ1 = -1 2 Ψ 1 -uqΨ 1 , Ψ 1 (t, ±1/2) = 0, Ψ 1 (0) = Ψ 0 , ṡ1 = 0, s 1 (0) = s 0 , ḋ1 = s 1 , d 1 = d 0 .            i Ψ2 = -1 2 Ψ 2 -uqΨ 2 -wqψ, Ψ 2 (t, ±1/2) = 0, Ψ 2 (0) = 0, ṡ2 = w, s 2 (0) = 0, ḋ2 = s 2 , d 2 (0) = 0.
The equality (39) is equivalent to

(PΨ 2 (T ), s 2 (T ), d 2 (T )) = ( Ψ f -PΨ 1 (T ), s f -s 0 , d f -d 0 -s 0 T ). (41) 
Let us introduce, for γ ∈ R the operator A γ dened on

D(A γ ) := H 2 ∩ H 1 0 (I, C) by A γ ϕ := - 1 2 ϕ -γqϕ
and (λ k,γ ) k∈N * the increasing sequence of eigenvalues for A γ . We know from [13, chapter 7, example 2.14] that λ k,γ are analytic functions of the parameter γ.

The equality (41) is equivalent to

M (ψ 0 ,u) (w) = D (ψ 0 ,u) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ),
where

M (ψ 0 ,u) (w) := d 2 (T ), s 2 (T ), < Ψ 2 (T ), ϕ 2 > e i T 0 λ 2,u(s) ds , < Ψ 2 (T ), ϕ 3 > e i T 0 λ 3,u(s) ds , ... , D (ψ 0 ,u) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) := d f -d 0 -s 0 T, s f -s 0 , < Ψ f -Ψ 1 (T ), ϕ 2 > e i T 0 λ 2,u(s) ds , < Ψ f -Ψ 1 (T ), ϕ 3 > e i T 0 λ 3,u(s) ds , ... .

Proposition 7

The linear map M (ψ 0 ,u) is continuous from E to F for every

(E, F ) ∈ {(L 2 , h 3 r ), (H 1 0 , h 5 r ), (H 2 0 , h 7 r ), (H 3 0 , h 9 r )}.
There exist C > 0 and η > 0 such that, for every

(ψ 0 , u) ∈ H 9 (0) (I, C) × R × R with ψ 0 -ψ θ (0) H 3 (I,C) + u H 1 0 ((0,T ),R) < η,
there exists a continuous right inverse

M -1 (ψ 0 ,u) : h 9 r (N, C) → H 3 0 ((0, T ), R)
such that, for every d ∈ h 9 r (N, C),

M -1 (ψ 0 ,u) (d) L 2 C d h 3 , M -1 (ψ 0 ,u) (d) H 1 0 C[ d h 5 + ∆ 5 d h 3 ], M -1 (ψ 0 ,u) (d) H 2 0 C[ d h 7 + ∆ 5 d h 5 + (∆ 7 + ∆ 2 5 ) d h 3 ], M -1 (ψ 0 ,u) (d) H 3 0 C[ d h 9 + ∆ 5 d h 7 + (∆ 7 + ∆ 2 5 ) d h 5 + (∆ 9 + ∆ 7 ∆ 5 + ∆ 3 5 ) d h 3 ],
where ∆ k := (ψ 0 -ψ θ (0), S 0 , D 0 , u) E k for k = 3, 5, 7, 9.

In order to get this result, we prove that when (ψ 0 , u) is closed to (ψ θ , 0) in H 3 (0) (I, C)×H 1 0 ((0, T ), R), the map M (ψ 0 ,u) is closed enough to the map M (ψ θ (0),0) , in a sense presented in the following proposition, so that the existence of a right inverse M -1

(ψ θ (0),0) guarantees the existence of a right inverse M -1

(ψ 0 ,u) ,
the bounds proved on M -1 (ψ θ (0),0) give the same kind of bounds on M -1

(ψ 0 ,u) .
More precisely, we apply the following proposition already proved in [1, Proposition 15 Section 3.6.1].

Proposition 8 Let T := 4/π, M and M θ be bounded linear operators from

L 2 ((0, T ), R) to h 3 (N, C), from H 1 0 ((0, T ), R) to h 5 (N, C), from H 2 0 ((0, T ), R) to h 7 (N, C)
and from H 3 0 ((0, T ), R) to h 9 (N, C). We assume there exist a continuous linear operator

M -1 θ : h 9 (N, C) → H 3 0 ((0, T ), R) and a positive constant C 0 such that for every d ∈ h 9 (N, C), M θ • M -1 θ (d) = d and M -1 θ (d) E C 0 d F for every (E, F ) ∈ {(L 2 , h 3 ), (H 1 0 , h 5 ), (H 2 0 , h 7 ), (H 3 0 , h 9 )}.
We also assume there exist positive constants C 1 , ∆ 3 , ∆ 5 , ∆ 7 , ∆ 9 with C 0 C 1 ∆ 3 1/2, satisfying, for every w ∈ H 3 0 ((0, T ), R)

(M -M θ )(w) h 3 C 1 ∆ 3 w L 2 , (M -M θ )(w) h 5 C 1 [∆ 3 w H 1 0 + ∆ 5 w L 2 ], (M -M θ )(w) h 7 C 1 [∆ 3 w H 2 0 + ∆ 5 w H 1 0 + ∆ 7 w L 2 ], (M -M θ )(w) h 9 C 1 [∆ 3 w H 3 0 + ∆ 5 w H 2 0 + ∆ 7 w H 1 0 + ∆ 9 w L 2 ]. (42) 
Then, there exists a continuous linear operator M -1 : h 9 (N, C) → H 3 0 ((0, T ), R) such that for every

d ∈ h 9 (N, C), M • M -1 (d) = d and the function w := M -1 (d) satises w L 2 2C 0 d h 3 , w H 1 0 2C 0 [ d h 5 + 2C 2 ∆ 5 d h 3 ], w H 2 0 2C 0 [ d h 7 + 2C 2 ∆ 5 d h 5 + (2C 2 ∆ 7 + 8C 2 2 ∆ 2 5 ) d h 3 ], w H 3 0 2C 0 [ d h 9 + 2C 2 ∆ 5 d h 7 + (2C 2 ∆ 7 + 8C 2 2 ∆ 2 5 ) d h 5 + (2C 2 ∆ 9 + 16C 2 2 ∆ 7 ∆ 5 + 48C 3 2 ∆ 3 5 ) d h 3 ].
where

C 2 := C 0 C 1 .
Let us recall that, for γ ∈ R, the space L 2 (I, C) has a complete orthonormal system (ϕ k,γ ) k∈N * of eigenvectors for A γ :

A γ ϕ k,γ = λ k,γ ϕ k,γ .

We know from [13, chapter 7, example 2.14] that ϕ k,γ are analytic functions of the parameter γ. This result gives sense to the notation dϕ k,γ dγ ] γ 0 which means the derivative of the map γ → ϕ k,γ with respect to γ evaluated at the point γ = γ 0 .

Proof of Proposition 7 : Let us consider the decomposition

Ψ 2 (t) = ∞ k=1
x k (t)ϕ k,u(t) where x k (t) :=< Ψ 2 (t), ϕ k,u(t) > .

Using u(T ) = 0, we get

M (ψ 0 ,u) (w) = T 0 (T -t)w(t)dt, T 0 
w(t)dt, x 2 (T )e i T 0 λ 2,u(s) ds , x 3 (T )e i T 0 λ 3,u(s) ds , ... .

The partial dierential equation satised by Ψ 2 provides, for every k ∈ N * , an ordinary dierential equation satised by the component x k ,

ẋk (t) =< ∂Ψ 2 ∂t (t), ϕ k,u(t) > + u(t) < Ψ 2 (t), dϕ k,γ dγ ] u(t) >, < ∂Ψ 2 ∂t (t), ϕ k,u(t) >=< -iA u(t) Ψ 2 (t)+iw(t)qψ(t), ϕ k,u(t) >= -iλ k,u(t) x k (t)+iw(t) < qψ(t), ϕ k,u(t) >, ẋk (t) = -iλ k,u(t) x k (t) + iw(t) < qψ(t), ϕ k,u(t) > + u(t) < Ψ 2 (t), dϕ k,γ dγ ] u(t) > .
Solving this equation, we get

M (ψ 0 ,u) (w) k = T 0 iw(t) < qψ(t), ϕ k,u(t) > + u(t) < Ψ 2 (t), dϕ k,γ dγ ] u(t) > e i t 0 λ k,u(s)ds dt, k 2.
We introduce the following decomposition

(M (ψ 0 ,u) -M (ψ θ (0),0) )(w) = δM (w) 1 + δM (w) 2
where δM (w) j k = 0 for j = 1, 2 and k = 0, 1,

δM (w) 1 k = i T 0 w(t)[< qψ(t), ϕ k,u(t) > e i t 0 λ k,u(s)ds -< qψ θ (t), ϕ k > e iλ k t ]dt, k 2, δM (w) 2 k = T 0 u(t) < Ψ 2 (t), dϕ k,γ dγ ] u(t) > e i t 0 λ k,u(s)ds dt, k 2.
Let us justify the bounds (42) on the terms δM (w) j for j = 1, 2. The study of δM (w) 1 can be done in the same way as in the proof of [1, section 3.6.2 Proposition 27] (with γ = 0). The study of δM (w) 2 can be done by applying [1, Propositions 18, 20, 23, 25 Section 3.6.2].

Proposition 9 We assume ∆ 3 1. There exists C > 0 such that, for every

(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) ∈ [T S (ψ 0 ) ∩ H 9 (0) (I, C)] × R × R × [V ∩ H 9 (0) (I, C)] × R × R, we have D(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) h 3 C[ (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 + ∆ 3 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 ], D(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) h 5 C[ (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) 5 + ∆ 3 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 5 +∆ 5 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 ], D(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) h 7 C[ (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) 7 + ∆ 3 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 7 +∆ 5 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 5 + (∆ 7 + ∆ 2 5 ) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 ], D(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) h 9 C[ (PΨ 0 , s 0 , d 0 , Ψ f , s f , d f ) 9 + ∆ 3 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 9 +∆ 5 (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 7 + (∆ 7 + ∆ 2 5 ) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 5 (∆ 9 + ∆ 7 ∆ 5 + ∆ 3 5 ) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) 3 ].
Proof : Standard results about Fourier series provide the existence of C > 0 such that, for every

(Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) ∈ [T S (ψ 0 ) ∩ H 9 (0) (I, C)] × R × R × [V ∩ H 9 (0) (I, C)] × R × R,
for every s ∈ {3, 5, 7, 9},

D (ψ 0 ,u) (Ψ 0 , s 0 , d 0 , Ψ f , s f , d f ) h s (N,C) C[ PΨ 1 (T ) H s + Ψ f H s + |s 0 | + |d 0 | + |s f | + |d f |].
Thus, it is sucient to prove the existence of C > 0 such that

PΨ 1 (T ) H 3 C[ PΨ 0 H 3 + ∆ 3 (Ψ 0 , u) H 3 ×H 1 0 ], PΨ 1 (T ) H 5 C[ PΨ 0 H 5 + ∆ 3 (Ψ 0 , u) H 5 ×H 2 0 + ∆ 5 (Ψ 0 , u) H 3 ×H 1 0 ], PΨ 1 (T ) H 7 C[ PΨ 0 H 7 + ∆ 3 (Ψ 0 , u) H 7 ×H 3 0 + ∆ 5 (Ψ 0 , u) H 5 ×H 2 0 + ∆ 7 (Ψ 0 , u) H 3 ×H 1 0 ], PΨ 1 (T ) H 9 C[ PΨ 0 H 9 + ∆ 3 (Ψ 0 , u) H 9 ×H 4 0 + ∆ 5 (Ψ 0 , u) H 7 ×H 3 0 + ∆ 7 (Ψ 0 , u) H 5 ×H 2 0 +∆ 9 (Ψ 0 , u) H 3 ×H 1 0 ]. (43) 
For every s ∈ {3, 5, 7, 9}, we have

PΨ 1 (T ) H s C ∞ k=2 |k s x k (T )| 2 1/2 where x k (t) :=< Ψ 1 (t), ϕ k,u(t) >,
because u(T ) = 0. Thanks to the equation satised by Ψ 1 , we get

x k (T ) = < Ψ 0 , x k > + T 0 u(t) < Ψ 1 (t), dϕ k,γ dγ ] u(t) > e i t 0 λ k,u(s) ds dt e -i T 0 λ k,u(s) ds , ∞ k=2 |k s x k (T )| 2 1/2 PΨ 0 H s + ∞ k=2 |k s T 0 u(t) < Ψ 1 (t), dϕ k,γ dγ ] u(t) > e i t 0 λ k,u(s) ds dt| 2 1/2
.

Using [1, Propositions 17, 20, 23, 29], we get (43).

In conclusion, using Propositions 7 and 9, we get the bounds (40).

3.3

Motion in the directions (ψ, S, D) = (±iϕ 1 , 0, 0)

The aim of this section is the proof of the following theorem.

Theorem 6 Let T := 4/π. There exists

w ± ∈ H 4 ∩ H 3 0 ((0, T ), R), ν ± ∈ H 3 0 ((0, T ), R) such that the solutions of            i Ψ± = -1 2 Ψ ± -w ± qψ θ , Ψ ± (0) = 0, Ψ ± (t, -1/2) = Ψ ± (t, 1/2) = 0, ṡ± = w ± , s ± (0) = 0, ḋ± = s ± , d ± (0) = 0, (44)            i ξ± = -1 2 ξ ± -w ± qΨ ± -ν ± qψ θ , ξ ± (0) = 0, ξ ± (t, -1/2) = ξ ± (t, 1/2) = 0, σ± = ν ± , σ ± (0) = 0, δ± = σ ± , δ ± (0) = 0, (45) satisfy Ψ ± (T ) = 0, s ± (T ) = 0, d ± (T ) = 0, ξ ± (T ) = ±iϕ 1 , σ ± = 0, δ ± = 0.
We introduce the following subspace of L 2 ((0, T ), C), X := Span(1, t, e ±i(λ 2k -λ1 )t , e ±i(λ 2k+1 -λ 2 )t ; k ∈ N * ).

The symbol X ⊥ denotes the orthogonal subspace to X in L 2 ((0, T ), C).

Proposition 10 There exists

w ∈ H 4 ∩ H 3 0 ((0, T ), R) ∩ X ⊥ such that T 0 w(t) < qΨ(t), ϕ 1 > e iλ 1 t dt - √ θ √ 1 -θ T 0 w(t) < qϕ 2 , Ψ(t) > e -iλ 2 t dt ∈ (0, +∞)(resp.(-∞, 0)), ( 46 
)
where Ψ is the solution of

   i Ψ = -1 2 Ψ -wqψ θ , Ψ(0) = 0, Ψ(t, ±1/2) = 0. (47)
Remark 4 If w ∈ X ⊥ and Ψ solves the previous system, then

T 0 w(t) < qΨ(t), ϕ 1 > e iλ 1 t dt - √ θ √ 1 -θ T 0 w(t) < qϕ 2 , Ψ(t) > e -iλ 2 t dt ∈ R.
Indeed, we have (see ( 6) and ( 7))

Ψ(t) = ∞ k=1 x k (t)ϕ k , where x 2k (t) = i √ 1 -θb 2k e -iλ 2k t t 0 w(τ )e i(λ 2k -λ 1 )τ dτ, x 2k-1 (t) = i √ θc 2k-1 e -iλ 2k-1 t t 0 w(τ )e i(λ 2k-1 -λ 2 )τ dτ, (48) 
where b k and c k are given by ( 8). Thus, we get

T 0 w(t) < qΨ(t), ϕ 1 > e iλ 1 t dt = i √ 1 -θ ∞ k=1 b 2 2k f 2k , (49) 
T 0 w(t) < qϕ 2 , Ψ(t) > e -iλ 2 t dt = -i √ θ ∞ k=0 c 2 2k+1 f 2k+1 , (50) 
where

f 2k := T 0 w(t)e i(λ 1 -λ 2k )t t 0 w(τ )e i(λ 2k -λ 1 )τ dτ dt, ∀k ∈ N * , f 2k+1 := T 0 w(t)e i(λ 2k+1 -λ 2 )t t 0 w(τ )e i(λ 2 -λ 2k+1 )τ dτ dt, ∀k ∈ N.
Thanks to integrations by parts and the property w ∈ X ⊥ , we get, for every

k ∈ N * , f k ∈ iR.
Proof of Proposition 10 : Let us consider functions of the form

w(t) = a 1 sin( 1 2 n 1 π 2 t) + a 2 sin( 1 2 n 2 π 2 t) + sin( 1 2 n 3 π 2 t),
where n 1 , n 2 , n 3 are three distinct positive integers such that

n 1 , n 2 , n 3 / ∈ {0, ±[(2k) 2 -1], ±[(2k -1) 2 -4]; k ∈ N * },
and a 1 , a 2 are dened by a 1 :=

n 1 (n 2 3 -n 2 2 ) n 3 (n 2 2 -n 2 1 ) , a 2 := n 2 (n 2 1 -n 2 3 ) n 3 (n 2 2 -n 2 Then, w ∈ H 4 ∩ H 3 0 ((0, T ), R) ∩ X ⊥ .
Let Ψ be the solution of (47). The condition ( 46) is equivalent to

i ∞ k=1 b 2 2k f 2k + i θ 1 -θ ∞ k=0 c 2 2k+1 f 2k+1 ∈ (0, +∞) (resp.(-∞, 0)).
(51) Using ( 8), the two previous innite sums can be computed explicitly. We nd

i ∞ k=1 b 2 2k f 2k = 32T π 6 (a 2 1 A n 1 + a 2 2 A n 2 + A n 3 ), i ∞ k=0 c 2 2k+1 f 2k+1 = 32T π 6 (a 2 1 B n 1 + a 2 2 B n 2 + B n 3 ),
where

A n := ∞ k=1 (2k) 2 (1 + 2k) 4 (1 -2k) 4 1 n + 4k 2 -1 + 1 -n + 4k 2 -1 , B n := ∞ k=0 4(2k + 1) 2 (3 + 2k) 4 (1 -2k) 4 1 -n + 4 -(2k + 1) 2 + 1 n + 4 -(2k + 1) 2 . Let us choose n 1 = 1, n 2 = 2, n 3 = 4 (resp. n 1 = 1, n 2 = 4, n 3 = 6) then a 2 1 A n 1 + a 2 2 A n 2 + A n 3 > 0 (resp. < 0), a 2 1 B n 1 + a 2 2 B n 2 + B n 3 > 0 (resp. < 0),
thus, for every θ ∈ (0, 1), we have (51).

Proof of Theorem 6 : Let w ∈ H 4 ∩ H 3 0 ((0, T ), R) ∩ X ⊥ be such that

T 0 w(t) < qΨ(t), ϕ 1 > e iλ 1 t dt - √ θ √ 1 -θ T 0 w(t) < qϕ 2 , Ψ(t) > e -iλ 2 t dt = +1 (resp. -1). (52)
Using (48) and the assumption w ∈ X ⊥ , we get Ψ(T ) = 0, s(T ) = 0, d(T ) = 0. Let us prove that there exists ν ∈ H 3 0 ((0, T ), R) such that the solution ξ of (45) satises ξ(T ) = iϕ 1 (resp. -iϕ 1 ), σ(T ) = 0, δ(T ) = 0. We have

ξ(t) = ∞ k=1 y k (t)ϕ k , y 2k (t) = i t 0 [w(τ ) < qΨ(τ ), ϕ 2k > +ν(τ ) √ 1 -θb 2k e -iλ 1 τ ]e iλ 2k τ dτ e -iλ 2k t , y 2k+1 (t) = i t 0 [w(τ ) < qΨ(τ ), ϕ 2k+1 > +ν(τ )
√ θc 2k+1 e -iλ 2 τ ]e iλ 2k+1 τ dτ e -iλ 2k+1 t .

Thus the equality (ξ(T ), σ(T ), δ(T )) = (±iϕ 1 , 0, 0) is equivalent to

T 0 ν(t)e i(λ 1 -λ 2 )t dt = 1 √ θc 1 ±1 - T 0 w(t) < qΨ(t), ϕ 1 > e iλ 1 t dt , T 0 ν(t)e i(λ 2k -λ 1 )t dt = -1 √ 1 -θb 2k T 0 w(t) < qΨ(t), ϕ 2k > e iλ 2k t dt, ∀k ∈ N * , T 0 ν(t)e i(λ 2k+1 -λ 2 )t dt = -1 √ θc 2k+1 T 0 w(t) < qΨ(t), ϕ 2k+1 > e iλ 2k+1 t dt, ∀k ∈ N * , T 0 ν(t)dt = 0, T 0 (T -t)ν(t)dt = 0.
The left hand sides of the two rst equalities with k = 1 are complex conjugate numbers when ν is real valued. Thus, a necessary condition for the existence of real-valued solution ν to this problem is

1 √ θ +1 - T 0 w(t) < qΨ(t), ϕ 1 > e iλ 1 t dt = -1 √ 1 -θ T 0 w(t) < qϕ 2 , Ψ(t) > e -iλ 2 t dt (resp. 1 √ θ -1 - T 0 w(t) < qΨ(t), ϕ 1 > e iλ 1 t dt = -1 √ 1 -θ T 0 w(t) < qϕ 2 , Ψ(t) > e -iλ 2 t dt).
This property is satised thanks to (52).

Let d = (d k ) k∈N be the sequence dened by

d 0 := 0, d 1 = 0, d 2k := -1 b 2k √ 1 -θ T 0 w(t) < qΨ(t), ϕ 2k > e iλ 2k t dt, ∀k 1,
d 2k := -1 c 2k+1 √ θ T 0 w(t) < qΨ(t), ϕ 2k+1 > e iλ 2k+1 t dt, ∀k 1.
The previous moment problem can be written Z(ν) = d, where the map Z has been dened in section 3.2.3. Thanks to [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF] and Proposition 6, a sucient condition for the existence of ν ∈ H 3 0 ((0, T ), R) solution of this equation is d ∈ h 6 (N, C). We can get this result by applying [1, Proposition 24 Section 3.6.2].

Proof of Theorem 2

In all this section T :

= 4/π. Let ρ ∈ R, ψ 0 , ψ f ∈ H 7 (0) (I, C), S 0 , D 0 , S f , D f ∈ R. Let us consider, for t ∈ [0, T ] u(t) := |ρ|w + |ρ|ν,
where w := w + , ν := ν + if ρ 0 and w := w -, ν := ν -if ρ 0 and w ± , ν ± are dened in Theorem 6. Let (ψ, S, D) be the solution of (Σ 0 ) on [0, T ] with control u and such that (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ).

Then, we have

S(T ) = S 0 , D(T ) = D 0 .
We have u ∈ W 3,1 ((0, T ), R) and u(0

) = u(T ) = u(0) = u(T ) = 0 thus (see [1, Appendix B Proposition 51]) the function ψ(T ) belongs to H 7 (0) (I, C).
Proposition 11 There exists C > 0 such that, for every ρ ∈ (-1, 1), we have

ψ(T ) -(ψ θ (T ) + iρϕ 1 ) H 7 (I,C) C[ ψ 0 -ψ θ (0) H 7 (I,C) + |ρ| 3/2 ].
Proof : We have ψ(T ) -(ψ θ (T ) + iρϕ 1 ) = (ψ -Z)(T ) where Z := ψ θ + Ψ + ξ and Ψ, ξ are the solutions of

   i Ψ = -1 2 Ψ -|ρ|wqψ θ , Ψ(t, ±1/2) = 0, Ψ(0) = 0,    i ξ = -1 2 ξ -|ρ|wqΨ -|ρ|νqψ θ , ξ(t, ±1/2) = 0, ξ(0) = 0. The function ∆ := ψ -Z solves    i ∆ = -1 2 ∆ -uq∆ -|ρ|νq(Ψ + ξ) -|ρ|wqξ, ∆(t, ±1/2) = 0, ∆(0) = ψ 0 -ψ θ (0).
We know from [1, proposition 51, Appendix B], that the following quantities

Ψ C 0 ([0,T ],H 7 ) , Ψ C 1 ([0,T ],H 5 ) , Ψ C 2 ([0,T ],H 3 ) , Ψ C 3 ([0,T ],H 1 ) , are bounded by A 7 (Ψ) := C[ f C 0 ([0,T ],H 5 ) + f C 1 ([0,T ],H 3 ) + f W 2,1 ((0,T ),H 2 ) + f W 3,1 ((0,T ),H 1 ) ],
where C is a positive constant and f := |ρ|wqψ θ . Thus, there exists a constant C 1 such that

A 7 (Ψ) C 1 |ρ|.
In the same way, we prove that there exists a constant C 2 such that

ξ C 0 ([0,T ],H 7 ) , ξ C 1 ([0,T ],H 5 ) , ξ C 2 ([0,T ],H 3 ) , ξ C 3 ([0,T ],H 1 ) , are bounded by A 7 (ξ) C 2 |ρ|.
Using [1, Appendix B, proposition 51] we get the existence of a constant C 3 > 0 such that

∆(T ) H 7 C 3 [ ψ 0 -ψ θ (0) H 7 + |ρ|A 7 (ξ) + |ρ|A 7 (Ψ)].
Now, we use the local controllability up to codimension one around Y θ . Let δ > 0 be as in Theorem 3. We assume

ψ 0 -ψ θ (0) H 7 (I,C) < δ 4C , |S 0 | + |D 0 | < δ 2 , P[ψ f -ψ θ (2T )] H 7 + |S f | + |D f | < δ. When ρ satises |ρ| < η := min{1; δ 4( ϕ 1 H 7 + C) },
the previous proposition proves that

ψ(T ) -ψ θ (0) H 7 ( ϕ 1 H 7 + C)|ρ| 3/2 + δ 4 < δ 2 .
Thus (ψ(T ), S 0 , D 0 ) ∈ V(0) and (Pψ f , S f , D f ) ∈ V(T ). Thanks to Theorem 3, there exists

ũ := Γ(ψ(T ), S 0 , D 0 , Pψ f , S f , D f ) ∈ H 1 0 ((T, 2T ), R) such that (Pψ(2T ), S(2T ), D(2T )) = (Pψ f , S f , D f ),
where (ψ, S, D) is the solution of (Σ 0 ) with control u on [0, 2T ], with u extended to [0, 2T ] by u := ũ on [T, 2T ]. The Theorem 3 and the previous proposition give the existence of a constant C such that

u H 1 ((T,2T ),R) C[|ρ| 3/2 + ψ 0 -ψ θ (0) H 7 + |S 0 | + |D 0 | + P(ψ f -ψ θ (2T )) H 7 + |S f | + |D f |]. (53)
We dene the map

F : (-η, η) → R ρ → (< ψ(2T ), ϕ 1 >).
Thanks to Theorem 3, F is continuous on (-η, η). We can assume δ is small enough so that

(< ψ(2T ), ϕ 1 >) > 0, because ψ is closed enough to ψ θ . Since ψ ∈ S and (< ψ(2T ), ϕ 1 >) is positive, we have ψ(2T ) = ψ f if and only if F (ρ) = (< ψ f , ϕ 1 >).
Therefore, in order to get Theorem 2, it is sucient to prove that F is surjective on a neighbourhood of 0.

Let x(t) :=< ψ(t), ϕ 1 > on [T, 2T ]. We have x(2T ) = x(T ) + i 2T T u(t) < qψ(t), ϕ 1 > e iλ 1 t dt. Thus F (ρ) = ρ + [ (x(T )) -ρ] + i 2T T u(t) < qψ(t), ϕ 1 > e iλ 1 t , where | (x(T )) -ρ| ψ(T ) -(ψ θ (T ) + iρ) L 2 C[|ρ| 3/2 + ψ 0 -ψ θ (0) H 7 ], | 2T T u(t) < qψ(t), ϕ 1 > e iλ 1 t dt| T u L ∞ ((T,2T ),R) .
Using (53), we get the existence of a constant K such that

|F (ρ) -ρ| K[|ρ| 3/2 + ψ 0 -ψ θ (0)] H 7 + P[ψ f -ψ θ (2T )] H 7 + |S f | + |D f | + |S 0 | + |D 0 |].
There exists τ ∈ (0, η) such that K|τ | 3/2 < τ 3 .

Let us assume that

K[ ψ 0 -ψ θ (0)] H 7 + P[ψ f -ψ θ (2T )] H 7 + |S f | + |D f | + |S 0 | + |D 0 |] < τ 3 . Then F (τ ) > τ 3 and F (-τ ) < - τ 3 ,
thus the intermediate values theorem guarantees that F is surjective on a neighbourhood of zero, this ends the proof of Theorem 2.

4 Local controllability of (Σ 0 ) around Y 0,0,0

The aim of this section is the proof of the following theorem.

Theorem 7 Let φ 0 , φ 1 ∈ R. There exist T > 0 and η > 0 such that, for every (ψ 0 , S 0 , D 0 ),

(ψ f , S f , D f ) ∈ [S ∩ H 7 (0) (I, C)] × R × R with ψ 0 -ϕ 1 e iφ 0 H 7 (I,C) + |S 0 | + |D 0 | < η, ψ f -ϕ 1 e iφ 1 H 7 (I,C) + |S f | + |D f | < η, there exists a trajectory (ψ, S, D, u) of (Σ 0 ) on [0, T ] such that (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ), (ψ(T ), S(T ), D(T )) = (ψ f , S f , D f )
and u ∈ H 1 0 ((0, T ), R).

4.1

Non controllability of the linearized system around (Y 0,0,0 , u ≡ 0)

The linearized system around (Y 0,0,0 , u ≡ 0) is

(Σ l 0 )        i Ψ = -1 2 Ψ -wqψ 1 , Ψ(t, ±1/2) = 0, ṡ = w, ḋ = s.
It is a control system where the state is (Ψ, s, d) with Ψ(t) ∈ T S (ψ 1 (t)) for every t, the control is the real valued function w. Let (Ψ 0 , s 0 , d 0 ) ∈ T S (ψ 1 (0))×R×R and (Ψ, s, d) be the solution of (Σ l 0 ) such that (Ψ(0), s(0), d(0)) = (Ψ 0 , s 0 , d 0 ), with some control w ∈ L 2 ((0, T ), R). We have the following equality in L 2 (I, C)

Ψ(t) = ∞ k=1 x k (t)ϕ k where x k (t) :=< Ψ(t), ϕ k > ∀k ∈ N * .
Using the parity of the functions ϕ k and the equation solved by Ψ, we get i ẋ2k+1 = λ 2k+1 x 2k+1 , ∀k ∈ N.

Half of the components have a dynamic independent of the control w. Thus the control system (Σ l 0 )

is not controllable.

4.2

Local controllability of (Σ 0 ) around Y γ,0,0 for γ = 0

Let γ ∈ R * . The ground state for u ≡ γ is the function

ψ 1,γ (t, q) := ϕ 1,γ (q)e -iλ 1,γ t ,
where λ 1,γ is the rst eigenvalue and ϕ 1,γ the associated normalised eigenvector of the operator A γ dened on

D(A γ ) := H 2 ∩ H 1 0 (I, C) by A γ ϕ := - 1 2 ϕ -γqϕ. When α, β ∈ R, the function Y γ,α,β (t) := (ψ 1,γ (t), α + γt, β + αt + γt 2 /2)
solves (Σ 0 ) with u ≡ γ. We dene T := 4/π, T * := 2T and, for s = 1, 3, 5, 7, 9 the space

H s (γ) (I, C) := {ϕ ∈ H s (I, C); A n γ ϕ ∈ H 1 0 (I, C) for n = 0, ..., (s -1)/2}.
We admit the following result which will be proved in section 5.

Theorem 8 There exists γ 0 > 0 such that, for every γ ∈ (0, γ 0 ), there exists δ = δ(γ) > 0, such that, for every

(ψ 0 , S 0 , D 0 ), (ψ f , S f , D f ) ∈ [S ∩ H 7 (γ) (I, C)] × R × R with ψ 0 -ψ 1,γ (0) H 7 + |S 0 -α| + |D 0 -β| < δ, ψ f -ψ 1,γ (T * ) H 7 (I,C) + |S f -α -γT * | + |D f -β -αT * -γT * 2 /2| < δ,
for some real constants α, β, there exists v ∈ H 1 0 ((0, T * ), R) such that, the unique solution of (Σ 0 ) on [0, T * ], with control u := γ + v, such that (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ) satises

(ψ(T * ), S(T * ), D(T * )) = (ψ f , S f , D f ). 4.3 Quasi-static transformations Let γ ∈ (0, γ 0 ) with γ 0 as in Theorem 8. Let f ∈ C 4 ([0, 3], R) be such that f ≡ 0 on [0, 1/2] ∪ [5/2, 3], (54) 
f (t) = t for t ∈ [1, 3/2], (55) 
3 0 f (t)dt = 0. (56) 
For > 0, we dene u :

[0, 3/ ] → R t → γf ( t). Let φ 0 , φ 1 ∈ R. Let ψ , S , D ) be the solution on [0, 1/ ] of              i ∂ψ ∂t (t, q) = -1 2 ∂ 2 ψ ∂q 2 (t, q) -u (t)qψ , ψ (0, q) = ϕ 1 (q)e iφ 0 , ψ (t, -1/2) = ψ (t, 1/2) = 0, Ṡ (t) = u (t), S (0) = 0, Ḋ (t) = S (t), D (0) = 0.
The following result has been proved in [1, section 4].

Proposition 12 There exist 0 > 0, C 0 > 0 such that, for every ∈ (0, 0 ],

ψ (1/ ) -ϕ 1,γ e i(φ 0 -1/ 0 λ 1,γf ( s) ds) H 7 (I,C) C 0 γ 1/8 1/32 .
The continuity with respect to initial conditions gives the following proposition.

Proposition 13 Let ∈ (0, 0 ). There exists η 0 = η 0 ( ) > 0 such that, for every (ψ 0 , S 0 , D 0 ) ∈

H 7 (0) (I, C) × R × R, with ψ 0 -ϕ 1 e iφ 0 H 7 (I,C) η 0 ,
the solution (ψ, S, D) of (Σ 0 ) on [0, 1/ ] with initial condition (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ) and control u satises

ψ(1/ ) -ϕ 1,γ e i(φ 0 -1/ 0 λ 1,γf ( s) ds) H 7 (I,C) 2C 0 γ 1/8 1/32 . S(1/ ) = S 0 + γ , D(1/ ) = D 0 + S 0 + γ 2 1 0 f. Let (ξ , s , d ) be the solution on [(1/ ) + T * , (3/ )] of              i ∂ξ ∂t (t, q) = -1 2 ∂ 2 ξ ∂q 2 (t, q) -u (t)qξ , ξ (3/ , q) = ϕ 1 (q)e iφ , ξ (t, -1/2) = ξ (t, 1/2) = 0, ṡ (t) = u (t), s (3/ ) = 0, ḋ (t) = s (t), d (3/ ) = 0.
where φ is the unique solution in

[φ 1 , φ 1 + 2π) of φ + 3/ 1/ +T * λ 1,γf ( t) dt = φ 0 - 1/ 0 λ 1,γf ( t) dt -λ 1,γ T * , (mod 2π). (57) 
In the same way as in [1, section 4] and thanks to (57), we get the following proposition.

Proposition 14 There exist f > 0, C f > 0 such that, for every ∈ (0, f ], Again, the continuity with respect to initial conditions gives the following proposition.

ξ ((1/ ) + T * ) -ϕ 1,γ e i(φ 0 -1/ 0 λ 1,γf ( s) ds-λ 1,γ T * ) H 7 (I,C) C f γ 1/8 1/32 .
Proposition 15 Let ∈ (0, f ) such that < 1/(2T * ). There exists η f = η f ( ) > 0 such that, for 

every (ψ f , S f , D f ) ∈ H 7 (0) (I, C) × R × R, with ψ f -ϕ 1 e iφ 1
ψ((1/ ) + T * ) -ϕ 1,γ e i(φ 0 -1/ 0 λ 1,γf ( s) ds-λ 1,γ T * ) H 7 (I,C) 2C f γ 1/8 1/32 , S((1/ ) + T * ) = S f + γ + γT * , D((1/ ) + T * ) = D f + S f (T * - 2 -τ ) + γ 2 1 0 f + γ T * + 1 2 γT * 2 .
5 Local controllability of (Σ 0 ) around Y γ,α,β

The aim of this section is the proof of Theorem 8. In [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF] a similar local controllability result has been proved for the subsystem (Σ) dened in the Introduction. It is the following one.

Theorem 9 There exists γ 0 > 0 such that, for every γ ∈ (0, γ 0 ), there exist δ > 0, C > 0 and a continuous map

Γ γ : V γ (0) × V γ (T ) → H 1 0 ((0, T ), R) (ψ 0 , ψ f ) → v where V γ (0) := {ψ 0 ∈ S ∩ H 7 (γ) (I, C); ψ 0 -ψ 1,γ (0) H 7 (I,C) < δ}, V γ (T ) := {ψ f ∈ S ∩ H 7 (γ) (I, C); ψ f -ψ 1,γ ( 
T ) H 7 (I,C) < δ}, such that, for every ψ 0 ∈ V γ (0), ψ f ∈ V γ (T ), the unique solution of (Σ) with control u := γ + v such that ψ(0) = ψ 0 satises ψ(T ) = ψ f and

Γ γ (ψ 0 , ψ f ) H 1 0 ((0,T ),R) C[ ψ 0 -ψ 1,γ (0) H 7 (I,C) + ψ f -ψ 1,γ (T ) H 7 (I,C) ].
Let us recall the main ideas of the proof of this Theorem in order to emphasize the diculty of Theorem 8. We proved that the linearized system of (Σ) around (ψ 1,γ , u ≡ γ) is controllable and we concluded by applying an implicit function theorem of Nash-Moser type. This strategy does not work with (Σ 0 ) because the linearized system of (Σ 0 ) around Y γ,α,β is not controllable.

5.1

Controllability up to codimension one of the linearized system around (Y γ,α,β , u ≡ γ)

In this section, we x α, β ∈ R and γ ∈ R * . The linearized control system around (Y γ,α,β , u ≡ γ)

is (Σ l γ )          i ∂Ψ ∂t = -1 2 ∂ 2 Ψ ∂q 2 -γqΨ -wqψ 1,γ , Ψ(t, -1/2) = Ψ(t, 1/2) = 0, ṡ = w, ḋ = s.
It is a control system where the state is (Ψ, s, d) with Ψ(t) ∈ T S (ψ 1,γ (t)), the control is the real valued function w. Let us recall that the space L 2 (I, C) has a complete orthonormal system (ϕ k,γ ) k∈N * of eigenfunctions for the operator A γ dened on

D(A γ ) := H 2 ∩ H 1 0 (I, C) by A γ ϕ := -1 2 ϕ -γqϕ, A γ ϕ k,γ = λ k,γ ϕ k,γ ,
where (λ k,γ ) k∈N * is an increasing sequence of positive real numbers. For technical reasons, we introduce the notation b k,γ :=< ϕ k,γ , qϕ 1,γ > .

It has already been proved in [1, Proposition 1, Section 3.1] that, for γ small enough and dierent from zero, b k,γ is dierent from zero for every k ∈ N * and, roughly speaking, behaves like 1/k 3 when k → +∞. In all this section, we assume we are in this situation.

γ ) on [0, T ]. Then, for every t ∈ [0, T ], we have s(t) = s(0) + 1 ib 1,γ < Ψ(t), ϕ 1,γ > e iλ 1,γ t -< Ψ(0), ϕ 1,γ > .

(62)

Thus, the control system (Σ l γ ) is not controllable.

Proof : Let x 1 (t) :=< Ψ(t), ϕ 1,γ >. We have

ẋ1 (t) =< ∂Ψ ∂t (t), ϕ 1,γ >=< -iA γ Ψ(t) + iw(t)qψ 1,γ (t), ϕ 1,γ >, ẋ1 (t) = -iλ 1,γ x 1 (t) + ib 1,γ w(t)e -iλ 1γ t , x 1 (t) = x 1 (0) + ib 1,γ t 0 w(τ )dτ e -iλ 1,γ t .
We get (62) by using

s(t) = s(0) + t 0 w(τ )dτ.
Let T > 0, Ψ 0 ∈ T S (ψ 1,γ (0)), Ψ f ∈ T S (ψ 1,γ (T )), s 0 , s f ∈ R. A necessary condition for the existence of a trajectory of (Σ l γ ) such that Ψ(0) = Ψ 0 , s(0

) = s 0 , Ψ(T ) = Ψ f , s(T ) = s f is s f -s 0 = 1 ib 1,γ < Ψ f , ϕ 1,γ > e iλ 1,γ T -< Ψ 0 , ϕ 1,γ > .
This equality does not happen for an arbitrary choice of Ψ 0 , Ψ f , s 0 , s f . Thus (Σ l γ ) is not controllable.

Proposition 17 Let T > 0, (Ψ 0 , s 0 , d 0 ), (

Ψ f , s f , d f ) ∈ H 3 (0) (I, C) × R × R be such that < Ψ 0 , ψ 1,γ (0) >= < Ψ f , ψ 1,γ (T ) >= 0, (63) 
s f -s 0 = i b 1,γ < Ψ 0 , ϕ 1,γ > -< Ψ f , ϕ 1,γ > e iλ 1,γ T . ( 64 
)
Then there exists w ∈ L 2 ((0, T ), R) such that the solution of (Σ l γ ) with control w and such that (Ψ(0), s(0), d(0)) = (Ψ 0 , s 0 , d 0 ) satises (Ψ(T ), s(T ), d(T )) = (Ψ f , s f , d f ).

Remark 5 We can control Ψ and d but we cannot control s. We miss only two directions which are

(Ψ, s, d) = (0, ±1, 0). Proof : Let (Ψ 0 , s 0 , d 0 ) ∈ T S (ψ 1,γ (0)) × R × R and T > 0. Let (Ψ, s, d) be a solution of (Σ l γ ) with (Ψ(0), s(0), d(0)) = (Ψ 0 , s 0 , d 0 ) and a control w ∈ L 2 ((0, T ), R). Let (Ψ f , s f , d f ) ∈ T S (ψ 1,γ (T ))×R×R. The equality (Ψ(T ), s(T ), d(T )) = (Ψ f , s f , d f ) is equivalent to the following moment problem on w, T 0 w(t)e i(λ k,γ -λ 1,γ )t dt = i b k,γ < Ψ 0 , ϕ k,γ > -< Ψ f , ϕ k,γ > e iλ k,γ T , ∀k ∈ N * , T 0 w(t)dt = s f -s 0 , T 0 (T -t)w(t)dt = d f -d 0 -s 0 T. (65) 
The left hand sides of the two rst equalities with k = 1 are equal, the equality of the right hand sides is guaranteed by (64). Under the assumption Ψ 0 , Ψ f ∈ H 3 (0) (I, C), the right hand side of (65) denes a sequence in l 2 . Thus, under the assumptions (64), and Ψ 0 , Ψ f ∈ H 3 (0) (I, C), the existence of a solution w ∈ L 2 ((0, T ), R) of (65) can be proved in the same way as in [1, Theorem 5].

5.2

Local controllability up to codimension one of (Σ 0 ) around Y γ,α,β

In this section, we x α, β ∈ R. The aim of this section is the proof of the following result.

Theorem 10 There exists γ 0 > 0 such that, for every γ ∈ (0, γ 0 ), for every S 0 ∈ R, there exist δ > 0, C > 0 and a continuous map

Γ γ,S 0 : V γ (0) × V γ,S 0 (T ) → H 1 0 ((0, T ), R) ((ψ 0 , D 0 ) , (ψ f , D f )) → v where V γ (0) := {(ψ 0 , D 0 ) ∈ [S ∩ H 7 (γ) (I, C)] × R; ψ 0 -ψ 1,γ (0) H 7 (I,C) + |D 0 -β| < δ}, V γ,S 0 (T ) := {(ψ f , D f ) ∈ [S ∩ H 7 (γ) (I, C)] × R; ψ f -ψ 1,γ (T ) H 7 (I,C) + |D f -β -S 0 T -γT 2 /2| < δ}, such that, for every (ψ 0 , D 0 ) ∈ V γ (0), (ψ f , D f ) ∈ V γ,S 0 (T ), the unique solution of (Σ 0 ) with control u := γ + v, such that (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ) satises ψ(T ) = ψ f , D(T ) = D f and Γ γ,S 0 (ψ 0 , ψ f ) H 1 0 ((0,T ),R) C[ ψ 0 -ψ 1,γ (0) H 7 (I,C) + |D 0 -β|+ ψ f -ψ 1,γ (T ) H 7 (I,C) + |D f -β -S 0 T -γT 2 /2|].
Remark 6 The same result is true if one replaces, ψ 1,γ (0) by ψ 1,γ (θ) and ψ 1,γ (T ) by ψ 1,γ (θ + T )

for some θ ∈ R. Indeed, if (ψ, S, D) solves (Σ 0 ) on [0, T ] with initial condition (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ) and control u, then, ( ψ := ψe -iλ 1,γ θ , S, D) solves (Σ 0 ) on [0, T ] with initial condition ( ψ(0), S(0), D(0)) = (ψ 0 e -iλ 1,γ θ , S 0 , D 0 ) and control u.

The same loss of regularity as in section 3.2.1 prevents us from using the inverse mapping theorem.

We use exactly the same strategy as in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF]. We expose in the next sections the few dierences in the proof.

In [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF], the local controllability of (Σ) in a neighbourhood of (ψ 1,γ , u ≡ γ) was got by proving a local surjectivity result on the map Φ γ : (ψ 0 , v) → (ψ 0 , ψ(T )), where ψ is the solution of (Σ) with u := γ +v such that ψ(0) = ψ 0 . Thus, in order to prove the local controllability of (Σ 0 ) in a neighbourhood of (ψ 1,γ , β + αt + γt 2 /2) we consider the map

Φ γ,S 0 : (ψ 0 , D 0 , v) → (ψ 0 , D 0 , ψ(T ), D(T )),
where (ψ, S, D) is the solution of (Σ 0 ) with control u := γ + v such that ψ(0) = ψ 0 , S(0) = S 0 , D(0) = D 0 . As in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF] we get a local surjectivity result on this map by applying a Nash-Moser theorem, stated in section 3.2.2.

Context for the Nash-Moser theorem

We apply the Theorem 4 to the map Φ γ with P = Id and the spaces dened, for k = 1, 3, 5, 7, 9, by

E γ k := [S ∩ H k (γ) (I, C)] × R × H (k-1)/2 0 ((0, T ), R), F γ k := [S ∩ H k (γ) (I, C)] × R × [S ∩ H k (γ) (I, C)] × R.

for every

w ∈ H 3 0 ((0, T ), R), ( Z γ -Z 0 )(w) F C 1 γ 2 w E for (E, F ) = (L 2 , l 2 r ), (H 1 0 , h 2 r ), (H 2 0 , h 4 r ), (H 3 0 , h 6 r ).
The same results have already been proved for the maps Z γ in [1, Propositions 11,[START_REF] Kato | Perturbation Theory for Linear operators[END_REF]. The new term in Z γ has no inuence.

Proposition 19 Let T = 4/π. There exists a continuous linear map

Z -1 0 : h 6 r (N, C) → H 3 0 ((0, T ), R), such that, for every d ∈ h 6 r (N, C), Z 0 • Z -1 0 (d) = d.
Moreover, there exists a constant C 0 such that, for every d ∈ h 6 r (N, C), the function w

:= Z -1 0 (d) satises w L 2 C 0 d l 2 , w H 1 0 C 0 d h 2 , w H 2 0 C 0 d h 4 , w H 3 0 C 0 d h 6 .
Proof : As in [1, Proof of Proposition 12], we introduce the notations, for k ∈ N * ,

ω k := λ k+1 -λ 1 , ω -k := -ω k . Let d ∈ h 6 r (N, C). We dene d ∈ h 6 (Z, C) by d k := d k+1 , d -k := d k , for every k ∈ N A candidate for Z -1 (d) is w(t) := 1 T k∈Z dk e iω k t + α(e i 1 2 nπ 2 t + e -i 1 2 nπ 2 t ) (1 -e i 1 2 π 2 t ) 2 (1 -e -i 1 2 π 2 t ) 2 where n ∈ N with {n, n±1, n±2}∩{±(k 2 -1); k ∈ N * } = ∅ and α ∈ R is such that T 0 (T -t)w(t)dt = d 0 . There exists a constant C = C(n) such that |α| C d l 2 (N,C) .
Finally, we get the following proposition, which poof is the same as the one of [1, Proposition 14] Proposition 20 Let T = 4/π. There exists γ 0 > 0, C 2 > 0 such that, for every γ ∈ (-γ 0 , γ 0 ), there exists a linear map

Z -1 γ : h 6 r (N, C) → H 3 0 ((0, T ), R), such that, for every d ∈ h 6 r (N, C), Z γ • Z -1 γ (d) = d. Moreover, for every d ∈ h 6 r (N, C), the function w := Z -1 γ (d) satises w L 2 C 2 d l 2 , w H 1 0 C 2 d h 2 , w H 2 0 C 2 d h 4 , w H 3 0 C 2 d h 6 .
Thanks to the behaviour of the coecients b k,γ , we get the following controllability result for the linearized system around (ψ 1,γ , β + αt + γt 2 /2, u ≡ γ).

Theorem 11 There exists γ 0 > 0 such that, for every γ ∈ (-γ 0 , γ 0 ) dierent from zero, there exist C > 0 and a continuous map

Π γ : [T γ,0 ∩ H 9 (γ) ] × R × [T γ,T ∩ H 9 (γ) ] × R → E γ 7 (Ψ 0 , d 0 , Ψ f , d f ) → (Ψ 0 , d 0 , w)
where, for every

t ∈ R, T γ,t := {ϕ ∈ L 2 (I, C); (< ϕ, ψ 1,γ (t) >) = 0}, such that, for every (Ψ 0 , d 0 , Ψ f , d f ) ∈ F γ 9 with Ψ 0 ∈ T γ,0 and Ψ f ∈ T γ,T , we have Φ γ (ϕ 1,γ , 0, 0).Π γ (Ψ 0 , d 0 , Ψ f , d f ) = (Ψ 0 , d 0 , Ψ f , d f ), w E C (Ψ 0 , d 0 , Ψ f , d f ) F , for any (E, F ) ∈ {(L 2 , F γ 3 ), (H 1 0 , F γ 5 ), (H 2 0 , F γ 7 
), (H 3 0 , F γ 9 )}.

5.3

Motion in the directions (ψ, S, D) = (0, ±1, 0)

The aim of this section is to prove of the following theorem.

Theorem 13 There exists γ 0 > 0 such that, for every γ ∈ (0, γ 0 ), there exist w ± , ν ± ∈ H 3 0 ((0, T ), R) such that the solutions of

             i ∂Ψ ± ∂t = -1 2 ∂ 2 Ψ ± ∂q 2 -γqΨ ± -w ± qψ 1,γ , Ψ ± (0) = 0, Ψ ± (t, -1/2) = Ψ ± (t, 1/2) = 0, ṡ± = w ± , s ± (0) = 0, ḋ± = s ± , d ± (0) = 0,              i ∂ξ ± ∂t = -1 2 ∂ 2 ξ ± ∂q 2 -γqξ ± -w ± qΨ ± -ν ± qψ 1,γ , ξ ± (0) = 0, ξ ± (t, -1/2) = ξ ± (t, 1/2) = 0, σ± = ν ± , σ ± (0) = 0, δ± = σ ± , δ ± (0) = 0, satisfy Ψ ± (T ) = 0, s ± (T ) = 0, d ± (T ) = 0, ξ ± (T ) = 0, σ ± (T ) = ±1, δ ± (T ) = 0.
Let us introduce new notations. Let γ ∈ R * . We dene the subspace of L 2 ((0, T ), C)

X γ := Span(t, e i(λ k,γ -λ 1,γ )t , e -i(λ k,γ -λ 1,γ )t ; k ∈ N * ).
The symbol X ⊥ γ denotes the orthogonal subspace to X γ in L 2 ((0, T ), C). We recall that we have

λ k := λ k,0 = 1 2 (kπ) 2 , ϕ k := ϕ k,0 = √ 2 sin(kπq), when k in even, √ 2 
cos(kπq), when k in odd.

The parity of the functions ϕ k gives b 2k+1 := b 2k+1,0 = 0 for every k ∈ N.

One has the following proposition.

Proposition 21 There exists γ 0 > 0 such that, for every γ ∈ (0, γ 0 ), there exists

w γ ∈ H 4 0 ((0, T ), R)∩ X ⊥ γ such that T 0 w γ (t) < qΨ γ (t), ψ 1,γ (t) > dt ∈ (0, +∞), (resp. ∈ (-∞, 0)),
where Ψ γ is the solution of

     i ∂Ψγ ∂t = -1 2 ∂ 2 Ψγ
∂q 2 -γqΨ γ -w γ qψ 1,γ , Ψ γ (0) = 0, Ψ γ (t, -1/2) = Ψ γ (t, 1/2) = 0.

Remark 7 Let γ ∈ R. If w γ ∈ X ⊥ γ , and Ψ γ is the solution of the previous system, then T 0 w γ (t) < qΨ γ (t), ψ 1,γ (t) > dt ∈ R.

Indeed, we have

Ψ γ (t) = +∞ k=1
x k (t)ϕ k,γ , where x k (t) = ib k,γ e -iλ k,γ t t 0 w γ (τ )e i(λ k,γ -λ 1,γ )τ dτ. w γ (t)e -i(λ k,γ -λ 1,γ )t t 0 w γ (τ )e i(λ k,γ -λ 1,γ )τ dτ dt.

Thanks to an integration by parts in the denition of f k,γ and the property w γ ∈ X ⊥ γ , we get : for every k ∈ N * , f k,γ ∈ iR.

Proof of Proposition 21 : First, we study the case γ = 0. Thus, the right hand side of (67) can be explicitly computed. We nd T 0 w(t) < qΨ(t), ψ 1 (t) > dt = 32T π 6 S n 0 + a Proof of Theorem 13 : Let γ ∈ (0, γ 0 ), where γ 0 is given in Proposition 21. Let w ∈ H 4 0 ((0, T ), R)∩ X ⊥ γ be such that T 0 w(t) < qΨ(t), ψ 1,γ (t) > dt = -b 1,γ ( resp. = +b 1,γ ).

We have

Ψ(t) = +∞ k=1
x k (t)ϕ k,γ where x k (t) = ib k,γ e -iλ k,γ t t 0 w(τ )e i(λ k,γ -λ 1,γ )τ dτ.

The assumption w ∈ X ⊥ γ gives Ψ(T ) = 0, s(T ) = 0 and d(T ) = 0. Let us prove that there exists ν ∈ L 2 ((0, T ), R) such that the solution of

             i ∂ξ ∂t = -1 2 ∂ 2 ξ
∂q 2 -γqξ -wqΨ -νqψ 1,γ , ξ(0) = 0, ξ(t, -1/2) = ξ(t, 1/2) = 0 σ = ν, σ(0) = 0, δ = σ, δ(0) = 0, satises ξ(T ) = 0, σ(T ) = 1 (resp. = -1), δ(T ) = 0. We have ξ(t) = The assumption w ∈ H 4 0 ((0, T ), R) implies (70). Indeed, integrations by parts lead to T 0 w < qΨ, ϕ k,γ > e iλ k,γ t dt = ∂t 3 < q Ψ, ϕ k,γ > +6 ẅ < q Ψ, ϕ k,γ > + 4 ẇ < q ∂ 3 Ψ ∂t 3 , ϕ k,γ > +w < q ∂ 4 Ψ ∂t 4 , ϕ k,γ > e iλ k,γ t dt. belongs to l 2 (N * , C).

Proof of Theorem 8

In all this section, we x γ ∈ (-γ 0 , γ 0 ) dierent from zero, where γ 0 is as in Theorem 13. Let ρ ∈ R, ψ 0 , ψ f ∈ H Proposition 23 There exists a constant C such that, for every ρ ∈ (-1, 1), we have The map F is continuous, thus, F is surjective on a neighborhood of S 0 + 2γT , this ends the proof of Theorem 2.

  Let us extend ξ to [(1/ ) + T * , (3/ ) + τ ] in such way that ξ ((3/ ) + τ ) = ϕ 1 e iφ 1 . Let τ be the unique solution in [0, 2π/λ 1 ) of φ -λ 1 τ = φ 1 (mod 2π).We extend u to [(1/ ) + T * , (3/ ) + τ ] by zero : u (t) := 0, for every t ∈ [3/ , (3/ ) + τ ]. We still denote by (ξ , s , d ) the solution of the last system on [(1/ ) + T * , (3/ ) + τ ]. Then, ξ ((3/ ) + τ ) = ϕ 1 e iφ 1 , S ((3/ ) + τ ) = 0, D ((3/ ) + τ ) = 0.

H 7 (

 7 I,C) η f , the solution (ψ, S, D) of (Σ 0 ) on [(1/ ) + T * , (3/ ) + τ ] with initial condition ((ψ(3/ ) + τ ), S((3/ ) + τ ), D((3/ ) + τ )) = (ψ f , S f , D f ) and control u satises

Thus

  

T 0 w

 0 γ (t) < qΨ γ (t), ψ 1,γ (t) > dt = +∞ k=1 ib 2 k,γ f k,γ ,wheref k,γ := T 0

∂q 2 -

 2 wqψ 1 , Ψ(0) = 0, Ψ(t, -1/2) = Ψ(t, 1/2) = 0.We haveΨ(t) = +∞ k=1 x k (t)ϕ k where x k (t) :=< Ψ(t), ϕ k >, ∀k ∈ N * , T 0 w(t) < qΨ(t), ψ 1 (t) > dt = +∞ k=1 b 2k T 0 w(t)x 2k (t)e iλ 1 t dt, (67) x 2k (t) = ib 2k t 0 w(τ )e i(λ 2k -λ 1 )τ dτ e -iλ 2k t , b 2k = -(-1) k 16k π 2 (1 + 2k) 2 (1 -2k) 2 .

  +∞ k=1 y k (t)ϕ k,γ , y k (t) = ie -iλ k,γ t t 0 w(τ ) < qΨ(τ ), ϕ k,γ > +ν(τ )b k,γ e -iλ 1,γ τ e iλ k,γ τ dτ.

1 ,

 1 The equality (ξ(T ), σ(T ), δ(T )) = (0, 1, 0) (resp. = (0, -1, 0)) is equivalent toT 0 ν(t)e i(λ k,γ -λ 1,γ )t dt = -1 b k,γ T 0 w(t) < qΨ(t), ϕ k,γ > e iλ k,γ t dt, ∀k ∈ N * , T 0 ν(t)dt = 1 ( resp. = -1), T 0 (T -t)ν(t)dt = 0.A necessary condition for the existence of a solution ν to this moment problem is ) < qΨ(t), ϕ 1,γ > e iλ 1,γ t dt = +1 ( resp. = -1).The choice of w has been done in order to satisfy this condition.Then, a sucient condition for the existence of a solution ν ∈H 3 0 ((0, T ), R) is T 0 w(t) < qΨ(t), ϕ k,γ > e iλ k,γ t dt k∈N * ∈ h 9 r (N * , C) Section 3.1],for the behaviour of b k,γ and Proposition 20 for the existence of Z -1 γ between the suitable spaces).

  ∂t 4 < qΨ, ϕ k,γ > + 4 ∂ 3 w

Moreover, when v ∈ L 2 ( 2 L 2 ( 0 |

 2220 (0, T ), R) and f ∈ C 0 ([0, T ], L 2 (I, C)), we have | T 0 v(t) < f (t), ϕ k,γ > e iλ k,γ t dt| 2 v (0,T ),R) T < f (t), ϕ k,γ > | 2 dt.Therefore, since the family (ϕ k,γ ) k∈N * is orthonormal in L 2 (I, C), the sequenceT 0 v(t) < f (t), ϕ k,γ > e iλ k,γ t dt k∈N *

2 .

 2 7 (γ) (I, C), S 0 , D 0 , D f ∈ R. Let us consider, for t ∈ [0, T ],v(t) := |ρ|w + |ρ|ν, where w := w + , ν := ν + if ρ 0 and w := w -, ν := ν -if ρ < 0. Let (ψ, S, D) be the solution of (Σ 0 ) on [0, T ] with u := γ + v. Then, S(T ) = S 0 + γT + ρ and D(T ) = D 0 + S 0 T + γT 2 /We have v ∈ W 3,1 ((0, T ), R), v(0) = v(T ) = v(0) = v(T ) = 0, so [1, Appendix B, proposition 51 ], ψ ∈ C 0 ([0, T ],H 7 (I, C)) and ψ(T ) ∈ H 7 (γ) (I, C).

(ψ -ψ 1 ∂q 2 - 2 -∂q 2 -

 1222 ,γ )(T ) H 7 (I,C) C[ ψ 0 -ψ 1,γ (0) H 7 (I,C) + |ρ| 3/2 ].Proof : We have (ψ -ψ 1,γ )(T ) = (ψ -Z)(T ) where Z := ψ 1,γ + Ψ + ξ and Ψ, ξ are the solutions of the following systems γqΨ -|ρ|wqψ 1,γ ,Ψ(0) = 0, Ψ(t, -1/2) = Ψ(t, 1/2) = 0, γqξ -|ρ|wqΨ -|ρ|νqψ 1,γ , ξ(0) = 0, ξ(t, -1/2) = ξ(t, 1/2) = 0. The function ∆ := ψ -Z solves (γ + v)q∆ -|ρ|wqξ -|ρ|νq(Ψ + ξ), ∆(0) = ψ 0 -ψ 1,γ(0), ∆(t, -1/2) = ∆(t, 1/2) = 0.

F

  know from [1, proposition 51, Appendix B], that the following quantitiesΨ C 0 ([0,T ],H 7 ) , Ψ C 1 ([0,T ],H 5 ) , Ψ C 2 ([0,T ],H 3 ) , Ψ C 3 ([0,T ],H 1 ) , are bounded by A 7 (Ψ) := C[ f C 0 ([0,T ],H 5 ) + f C 1 ([0,T ],H 3 ) + f W 2,1 ((0,T ),H 2 ) + f W 3,1 ((0,T ),H 1 ) ],There exist τ ∈ (0, η) such that √ T Kτ 3/2 < τ /3.Let us assume√ T K ψ 0 -ψ 1,γ (0) H 7 (I,C) < τ /6, √ T K ψ f -ψ 1,γ (2T ) H 7 (I,C) + |D f -(β + 2αT + 2γT 2 /2)| < τ /6.Then, (τ ) -(S 0 + 2γT ) > τ /3 > 0 and F (-τ ) -(S 0 + 2γT ) < -τ /3 < 0.

  Let us consider functions of the formw(t) := sin( 1 2 n 0 π 2 t) + a 1 sin( 1 2 n 1 π 2 t) + a 2 sin( 1 2 n 2 π 2 t) + a 3 sin( 1 2 n 3 π 2 t), n 0 , n 1 , n 2 , n 3 are four dierent positive integers such that n 0 , n 1 , n 2 , n 3 / ∈ {±(k 2 -1); k ∈ N * }and a 1 , a 2 , a 3 ∈ R solve 

				(66)
		1	1	1
		n 1	n 2	n 3
		n 1 n 2 n 3
		n 3 1 n 3 2 n 3

where

  2 1 S n 1 + a 2 2 S n 2 + a 2 3 S n 3 ,where, for every p ∈ N with p / ∈ {±(k 2 -1); k ∈ N

	+∞ k=1	(2k) 2 (1 + 2k) 4 (1 -2k) 4	1 -p + 4k 2 -1	+	1 p + 4k 2 -1	.

* }, S p is dened by S p :=

) .

Proof of Theorem 7 : We x ∈ (0, 0 ) such that < 1/(2T * ) and 2 max(C 0 , C f )γ 1/8 1/32 < δ 3 ,

where δ is given by Theorem 8. Let (ψ 0 , S 0 , D 0 ), (ψ f , S f , D f ) ∈ [S ∩ H 7 (0) (I, C)] × R × R be such that ψ 0 -ϕ 1,γ e iφ 0 H 7 (I,C) < η 0 ( ),

ψ f -ϕ 1,γ e iφ 1 H 7 (I,C) < min(η f ( ), δ/3),

Then, the solution (ψ, S, D) of (Σ 0 ) on [0, 1/ ] with control u such that (ψ(0), S(0), D(0)) = (ψ 0 , S 0 , D 0 ) satises ψ(1/ ) -ψ 1,γ (θ ) H 7 (I,C) 2C 0 γ 1/8 1/32 < δ,

where θ is such that

The solution (ψ, S, D) of (Σ 0 ) on [(1/ ) + T * , (3/ ) + τ ] with control u such that

We apply Theorem 8 with

The assumptions (60) and (61) give

Thus, the control u : [0, [START_REF] Coron | Contrôlabilité exacte frontière de l'équation d'Euler des uides parfaits incompressibles bidimensionnels[END_REF]

gives the result.

The smoothing operators dened on the spaces

give easily suitable smoothing operators on the spaces E γ k and F γ k : we don't do anything on the constants in R.

As in [1, section 3.4], the map Φ γ,S 0 : E γ 7 → F γ β is twice dierentiable. The maps Φ γ,S 0 and Φ γ,S 0 do not depend on S 0 , thus, we just write Φ γ and Φ γ . The map Φ γ satises the inequality (18). Indeed, if we write Φ γ (ψ 0 , v).((φ 0 , ν), (ξ 0 , µ)) = (0, h(T )), then, we have Φ γ (ψ 0 , D 0 , v).((φ 0 , d 0 , ν), (ξ 0 , δ 0 , µ)) = (0, 0, h(T ), 0), and the inequality (18) was already proved for Φ γ in [1, section 3.4].

The assumptions of Theorem 5 can be checked in the same way as in [1, appendix C]. In the following two sections, we focus on the most dicult part in the application of the Nash-Moser theorem, which is the existence of a right inverse to the dierential with the bounds (20),( 21),( 22),(23).

Controllability up to codimension one of the linearized system around

and bounds (20), ( 21), ( 22), (

In [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF]Section 3.5], in order to study the controllability of Ψ, we introduced the map

Thus, in order to study the controllability of (Ψ, d), it is natural to introduce the map Z γ , dened by

Proposition 18 Let T = 4/π. There exists γ 0 > 0, C 1 > 0 such that, for every γ ∈ (-γ 0 , γ 0 ),

Controllability up to codimension one of the linearized system around (Y (t), u(t))

Let γ ∈ (-γ 0 , γ 0 ) dierent from zero, where γ 0 is as in Theorem 11. Let T := 4/π, (ψ 0 , D 0 , v) ∈ E γ 9 and S 0 ∈ R. As in [1, Section 3.6.3] we introduce

,

Let Y (t) := (ψ(t), S(t), D(t)) be the solution of (Σ 0 ) with control u := γ + v such that ψ(0) = ψ 0 , S(0) = S 0 and D(0) = D 0 . The linearized system around (ψ(t),

As in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF], we prove a surjectivity result on M (ψ 0 ,u) when ∆ 3 is small enough. The argument is the following one : we know a right inverse for M (ϕ 1,γ ,γ) , built in the previous subsection, and we prove that, when ∆ 3 is small, M (ψ 0 ,u) and M (ϕ 1,γ ,γ) are close enough, in order to get a right inverse of M (ψ 0 ,u) .

The study of ( M (ψ 0 ,u) -M (ϕ 1,γ ,γ) )(w) reduces to the study of (M (ψ 0 ,u) -M (ϕ 1,γ ,γ) )(w) [1, section 3.6.3], because the new terms are equal. The study of the right hand side d(Ψ 0 , d 0 , Ψ f , d f ) is the same as in [1, section 3.6.4]. In this way, we get the following theorem.

Theorem 12 Let γ ∈ (-γ 0 , γ 0 ) dierent from zero. Let (ψ 0 , D 0 , v) ∈ E γ 9 and (ψ, S, D) be the associated solution of (Σ 0 ) with u :

is small enough, then there exists a constant C > 0 and a continuous map

where

such that, for every

and the same bounds as in [1, Theorem 9], with everywhere

Now we can apply the Nash-Moser implicit function theorem stated in section 3.2.2 and we get Theorem 10.

Let us choose n

Now, we study the case γ = 0. We use the following proposition, which will be proved later on.

Proposition 22 Let T = 4/π. There exists γ * > 0, C 1 , C 2 > 0 such that, for every γ ∈ (-γ * , γ * ),

1. the linear map Z γ is continuous from H 4 0 ((0, T ), R) to h 8 r (N, C), 2. for every w ∈ H 4 0 ((0, T ), R),

3. there exists a linear map

such that, for every

Let γ ∈ (-γ * , γ * ) dierent from zero. We dene

where Z -1 γ is dened in Proposition 22 and w is dened in (66). We have w ∈

We have

Let us consider the map

where, for every γ ∈ (-γ * , γ * ), Ψ γ is the solution of the system written in Proposition 21. The bound (69) proves that G is continuous at γ = 0. We know from (68), that G(0) > 0 (resp. < 0). Thus, there exists γ 0 > 0 such that, for every γ ∈ (-γ 0 , γ 0 ), G(γ) > 0 (resp. < 0) .

Proof of Proposition 22 :

The strategy is the same as in Section 3.1.2. We just need to build a right inverse for Z 0 which maps h 8 r (N, C) into H 4 0 ((0, T ), R). With the same notations as in the proof of Proposition 19, a suitable candidate for Z

where C is a positive constant and f := |ρ|wqψ 1,γ . Thus, there exists a constant C 1 such that A 7 (Ψ) C 1 |ρ|.

In the same way, we prove that there exists a constant C 2 such that 

Now, we apply the local controllability of (ψ, D) on [0, T ] around (ψ 1,γ (t), β + αt + γt 2 /2), with α := S 0 and β := D 0 .

Let δ > 0 as in Theorem 10. We assume We dene the map F : (-η, η) → R ρ → S(2T )