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Abstract: We consider a non relativistic charged particle in a 1-D box of potential. This quan-
tum system is subject to a control, which is a uniform electric field. It is represented by a complex
probability amplitude solution of a Schrödinger equation. We prove the local controllability of this
nonlinear system around the ground state. Our proof uses the return method, a Nash-Moser implicit
function theorem and moment theory.

Résumé: On considère une particule non relativiste dans un puits de potentiel en dimension un
d’espace. Ce systeme quantique est soumis à un champ électrique uniforme, qui constitue un contrôle.
Il est représenté par une densité de probabilité complexe solution d’une équation de Schrödinger. On
démontre la contrôlabilité locale de ce système non linéaire au voisinage de l’état fondamental. La
preuve utilise la méthode du retour, un théorème de Nash-Moser et la théorie des moments.

Keywords: controllability, Schrödinger equation, Nash-Moser theorem, moment theory.

1 Introduction

We consider a non relativistic single charged particle in a one dimension space, with a potential V , in
a uniform electric field t 7→ u(t). Assuming the mass of the particle is 1 and the constant ~ is equal to
1, it is represented by a probability complex amplitude q ∈ R 7→ ψ(t, q) solution of the Schrödinger
equation

i
∂ψ

∂t
= −1

2
∂2ψ

∂q2
+ (V (q)− u(t)q)ψ.

We study this quantum system in the case of a box potential: V (q) = 0 for q ∈ I := (−1/2, 1/2) and
V (q) = +∞ for q outside I. Therefore our system is

i
∂ψ

∂t
(t, q) = −1

2
∂2ψ

∂q2
(t, q)− u(t)qψ(t, q), q ∈ I, (1.1)

ψ(0, q) = ψ0(q), (1.2)

ψ(t,−1/2) = ψ(t, 1/2) = 0. (1.3)

This is a control system, denoted (Σ), where

• the state is ψ, with
∫
I |ψ(t, q)|2dq = 1 for every t,

• the control is the electric field t 7→ u(t) ∈ R.

Definition 1 Let T1 and T2 be two real numbers satisfying T1 6 T2, u : [T1, T2]→ R be a continuous
function and ψ0 ∈ H2 ∩ H1

0 (I,C) be such that ‖ψ0‖L2 = 1. A function ψ : [T1, T2] × I → C is a
solution of the system (Σ) if

1



• ψ belongs to C0([T1, T2], (H2 ∩H1
0 )(I,C)) ∩ C1([T1, T2], L2(I,C)),

• the equality (1.1) is true in L2(I,C) for every t ∈ [T1, T2],

• the equality (1.2) is true in L2(I,C).

Then, we say that (ψ, u) is a trajectory of the control system (Σ).

Note that the equation (1.1) guarantees the conservation of the L2-norm of ψ, since u is real
valued. Indeed, using the notation

< f, g >=
∫
I
f(q)g(q)dq,

and the equation (1.1), we have

d

dt
||ψ(t)||2L2 =<

∂ψ

∂t
, ψ > + < ψ,

∂ψ

∂t
>= 0.

Our main result states that this control system is locally controllable around the ground state for
u ≡ 0, which is the function

ψ1(t, q) := ϕ1(q)e−iλ1t.

Here, λ1 := π2/2 is the smallest eigenvalue of the operator A defined on D(A) := (H2 ∩H1
0 )(I,C),

by Aϕ := −(1/2)ϕ′′. The function ϕ1(q) :=
√

2 cos(πq) is the associated eigenvector. This property
was stated for the first time by P. Rouchon in [18].

Let us introduce the unitary sphere of L2(I,C)

S := {ϕ ∈ L2(I,C); ‖ϕ‖L2 = 1}

and the closed subspace of the Sobolev space H7(I,C) defined by

H7
(0)(I,C) := {ϕ ∈ H7(I,C);ϕ(2n)(1/2) = ϕ(2n)(−1/2) = 0, for n = 0, 1, 2, 3}.

Theorem 1 Let φ0, φ1 ∈ R. There exist T > 0 and η > 0 such that, for every ψ0, ψ1 in S∩H7
(0)(I,C)

satisfying
‖ψ0 − ϕ1e

iφ0‖H7 < η, ‖ψ1 − ϕ1e
iφ1‖H7 < η,

there exists a trajectory (ψ, u) of the control system (Σ) on [0, T ] such that ψ(0) = ψ0, ψ(T ) = ψ1

and u ∈ H1
0 ((0, T ),R).

The first remark concerns the regularity assumption on the initial and final states. Following
arguments from J. M. Ball, J. E. Marsden and M. Slemrod in [1], it has been pointed out by G.
Turinici in [9, chap.4] that the control system (Σ) is not controllable in H2∩H1

0 (I,C). More precisely,
whatever the initial data is, the set of reachable sets has a dense complement in the L2-sphere S.
Thus, in order to have controllability, it is necessary to put stronger regularity assumptions on the
initial and final states.

The proof given in this article gives the controllability of (Σ) in H7. The exponent 7 is purely
technical and related to the application of the Nash-Moser theorem. With the same strategy and
strengthened estimates in the Nash-Moser theorem, it should be possible to get the controllability in
spaces Hs with s < 7 (for example for any s > 6). We conjecture that the local controllability of the
non linear system (Σ) holds in H3 ∩H1

0 with control in L2 because it is the case for the linearized
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system considered in section 3.1.

The second remark concerns the time of control. In this article, we prove the local controllability
in time larger than 4/π and rather long, because we use quasi-static transformations in section 4.
However, we don’t think a so long time is necessary. The existence of a minimal time for the control
is an open problem.

Usually, the controllability of systems involving the Schrödinger equation does not require a pos-
itive minimal time of control because this equation has an infinite propagation speed. Nevertheless,
the existence of a positive minimal time for the control of (Σ) is not excluded.

In order to understand why, let us consider, as in [6], the following toy model

(T )


ẋ1 = x2,
ẋ2 = −x1 + u,
ẋ3 = x4,
ẋ4 = −x3 + 2x1x2.

The linearized system around (x1 ≡ 0, x2 ≡ 0, x3 ≡ 0, x4 ≡ 0, u ≡ 0) is not controllable. For
γ 6= 0, the linearized system around (x1 ≡ γ, x2 ≡ 0, x3 ≡ 0, x4 ≡ 0, u ≡ γ) is controllable in time
arbitrarily small. Nevertheless, the nonlinear system (T ) is not small time controllable. Indeed, if
(x, u) : [0, T ]→ R4 × R is a trajectory of the control system (T ) such that x(0) = 0, then

x3(T ) =
∫ T

0
x2

1(t) cos(T − t)dt,

x4(T ) = x2
1(T )−

∫ T

0
x2

1(t) sin(T − t)dt.

In particular, if x1(T ) = 0 and T 6 π then x4(T ) 6 0 thus (T ) is not controllable in time T 6 π.
Moreover, it is proved in [6] that (T ) is locally controllable in time T around zero if and only if
T > π.

The system (Σ) is similar to (T ). Indeed, the linearized system around the ground state ψ1, for
u ≡ 0 is not controllable. The linearized system around the ground state ψ1,γ , for u ≡ γ, studied in
section 3.1, is controllable in time arbitrarily small.

Thus, we conjecture there exists a positive minimal time for the control of (Σ). The method
introduced by J.-M. Coron and E. Crepeau in [7] could be used in order to know what is the minimal
time for controllability.

The author thanks J.-M. Coron for having attracted her attention to this controllability problem
and for fruitful discussions and advice on this work. The author also thanks A. Haraux for useful
information about the regularity of the solutions and L. Rosier for interesting remarks. This work was
partially supported through a European Community Marie Curie Fellowship and in the framework
of the Control Training Site.

For other results about the controllability of Schrödinger equations, we refer to the survey [20].

2 Sketch of the proof

A classical approach to get local controllability consists in proving the controllability of the linearized
system around the point studied and concluding using an inverse mapping theorem. This method
does not work here: Pierre Rouchon proved in [18] that around any state of definite energy, the
linear tangent approximate system is not controllable, but is “steady-state” controllable, with the
state (ψ, S,D) where Ṡ = u, Ḋ = s.
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The proof of Theorem 1 relies on the return method, a method introduced in [2] to solve a stabi-
lization problem, together with quasi-static transformations as in [5]. The return method has already
been used for controllability problems by J.-M. Coron in [5], [3], [4], by A. V. Fursikov and O. Yu.
Imanuvilov in [10], by O. Glass in [11], [12], by Th. Horsin in [15] and by E. Sontag in [19]. We find
a trajectory (ψ̃, ũ) of the control system (Σ) such that the linearized control system around (ψ̃, ũ) is
controllable in time T . Using an implicit function theorem, we get the local controllability in time
T of the nonlinear dynamics around (ψ̃(0), ψ̃(T )): there exist a neighbourhood V0 of ψ̃(0) and a
neighbourhood VT of ψ̃(T ) such that the system (Σ) can be moved in time T from any state in V0

to any state in VT .

Then for two states ψ0, ψ1 closed enough to ϕ1e
iφ0 , ϕ1e

iφ1 , we prove the system (Σ) can be moved

- from ψ0 to a point ψ2 ∈ V0, using quasi-static transformations,

- from one point ψ3 ∈ VT to ψ1, using again quasi-static transformations,

- from ψ2 to ψ3 using the local controllability around (ψ̃(0), ψ̃(T )).

Let us give an example of such a family of trajectories (ψ̃, ũ). For this, we need few notations.

For a given real constant γ, we write Aγ : D(Aγ)→ L2(I,C) the operator defined by

D(Aγ) := H2 ∩H1
0 (I,C), Aγϕ := −1

2ϕ
′′ − γqϕ.

The space L2(I,C) admits a complete orthonormal system (ϕk,γ)k∈N∗ of eigenfunctions for Aγ :

−1
2
d2ϕk,γ
dq2

− γqϕk,γ = λk,γϕk,γ ,

where (λk,γ)k∈N∗ is an increasing sequence of positive real numbers. Then the function ψ1,γ(t, q) :=
ϕ1,γ(q)e−iλ1,γt is a solution of the system (Σ) with control u ≡ γ. It is the ground state for u ≡ γ.

Using the notation {
ψ(t, q) = ψ1,γ(t, q) + Ψ(t, q),
u(t) = γ + w(t),

the linearized system around (ψ1,γ , γ) is
i∂Ψ
∂t = −1

2
∂2Ψ
∂q2
− γqΨ− w(t)qψ1,γ ,

Ψ(0) = Ψ0,
Ψ(t,−1/2) = Ψ(t, 1/2) = 0.

where the state is Ψ and the control is w : [0, T ]→ R. Note that the first equation on Ψ guarantees

d

dt

(
<(
∫
I
ψ1,γ(t, q)Ψ(t, q)dq)

)
= 0,

where <(z) denotes the real part of the complex number z. Therefore, when Ψ0 belongs to the
tangent space to S at ϕ1,γ ,

<
(∫

I
ϕ1,γ(q)Ψ0(q)dq

)
= 0,

then Ψ(t) belongs to the tangent space to S at ψ1,γ(t) for every time t,

<
(∫

I
ψ1,γ(t, q)Ψ(t, q)dq

)
= 0.
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We will see, in section 3.1, using moment theory, that when γ is small enough but different from
zero, this linear control system is controllable in any time T > 0. However, the classical implicit
function theorem is not sufficient to conclude the local controllability in time T of the nonlinear
system around (ψ1,γ(0), ψ1,γ(T )). Indeed, the map Φγ which associates to any couple of initial
condition and control (ψ0, v) the couple of initial and final conditions (ψ0, ψT ) for the system (Σ)
with u = γ + v,

Φγ : [S ∩H1
0 (I,C)]× L2((0, T ),R) → [S ∩H1

0 (I,C)]× [S ∩H1
0 (I,C)]

(ψ0, v) 7→ (ψ0, ψT )

is well defined and of class C1. Its differential application dΦγ(ϕ1,γ , 0) at the point (ϕ1,γ , 0) maps
the space

E := [TS(ϕ1,γ) ∩H1
0 (I,C)]× L2((0, T ),R)

into the space
F := [TS(ψ1,γ(0)) ∩H1

0 (I,C)]× [TS(ψ1,γ(T )) ∩H1
0 (I,C)],

where TS(ξ) is the tangent space to the L2-sphere S at the point ξ. It admits a right inverse, written
dΦγ(ϕ1,γ , 0)−1, but this right inverse does not map F into E. We only know that dΦγ(ϕ1,γ , 0)−1

maps
[TS(ψ1,γ(0)) ∩H3

(0)(I,C)]× [TS(ψ1,γ(T )) ∩H3
(0)(I,C)]

into
[TS(ϕ1,γ) ∩H3

(0)(I,C)]× L2((0, T ),R),

where H3
(0)(I,C) is a closed subspace of H3(I,C). We deal with this loss of regularity using a Nash-

Moser implicit function theorem given by Hörmander in [16]. We get the following theorem, proved
in section 3.

Theorem 2 Let T = 4/π. There exists a constant γ1 > 0 such that, for every γ ∈ (0, γ1], there
exists a constant η > 0 such that, for every (ψ0, ψT ) ∈ S ∩H7

(γ)(I,C) satisfying

‖ψ0 − ψ1,γ(0)‖H7 6 η, ‖ψT − ψ1,γ(T )‖H7 6 η,

there exists a trajectory (ψ, u) of the control system (Σ) satisfying ψ(0) = ψ0, ψ(T ) = ψT and
(u− γ) ∈ H1

0 ((0, T ),R).

In this theorem, H7
(γ)(I,C) denotes the closed subspace of H7(I,C) containing ϕ1,γ defined by

H7
(γ)(I,C) := {ϕ ∈ H7(I,C);Alγϕ(−1/2) = Alγϕ(1/2) = 0 for l = 0, 1, 2, 3}.

The use of the Nash-Moser theorem is motivated because we work on Sobolev spaces. However,
we don’t think the use of the Nash-Moser theorem is necessary : there exists probably spaces on
which the classical inverse mapping theorem can be applied but we do not know them for the moment.

In the last part of the proof, we construct explicitly, for γ > 0 small enough, trajectories (ψ, u) :
[0, T 1]→ H7(I,C)× R such that

u(0) = 0, u(T 1) = γ,
ψ(0) = ϕ1e

iφ0 , ψ(T 1) ∈ H7
(γ)(I,C), ‖ψ(T 1)− ϕ1,γ‖H7 < η/2.

Then, for ψ0 ∈ H7
(0)(I,C) closed enough to ϕ1e

iφ0 , the same control moves the system from ψ0 to ψ2

which satisfies
ψ2 ∈ H7

(γ)(I,C) and ‖ψ2 − ϕ1,γ‖H7 < η,
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thanks to the continuity with respect to initial condition. We also construct trajectories (ψ, u) :
[T 1 + T, T 1 + T + T 2]→ H7(I,C)× R such that

u(T 1 + T ) = γ, u(T 1 + T + T 2) = 0,
ψ(T 1 + T ) ∈ H7

(γ)(I,C), ‖ψ(T 1 + T )− ϕ1,γe
−iλ1,γT ‖H7 < η/2,

ψ(T 1 + T + T 2) = ϕ1e
iφ1 .

Then, for ψ1 ∈ H7
(0)(I,C) closed enough to ϕ1e

iφ1 , the same control moves the system from ψ3 to
ψ1, where ψ3 satisfies

ψ3 ∈ H7
(γ)(I,C) and ‖ψ3 − ϕ1,γe

−iλ1,γT ‖H7 < η.

Our idea is that, starting from an initial point ϕ1e
iφ0 on the ground state for u ≡ 0, t 7→ ϕ1e

iλ1t, if
we change sufficiently slowly the value of the control u from 0 to γ, the state of the system will stay
very closed, at each time t1, to a point on the ground state for an electric field constant in u(t1),
t 7→ ϕ1,u(t1)e

iλ1,u(t1)t. Therefore, the final value of the state will be very closed to ϕ1,γ , up to a phase
factor. More precisely, we have the following theorems, proved in section 4.

Theorem 3 Let γ0 ∈ R. We consider the solution ψε of the following system iψ̇ε = −1
2ψ

′′
ε − γ0f(εt)qψε,

ψε(0) = ϕ1e
iφ0 ,

ψε(t,−1/2) = ψε(t, 1/2) = 0,

where f ∈ C∞([0, 1],R) satisfies f (k)(0) = 0 for every k ∈ N, f(1) = 1, 0 6 f 6 1 and φ0 ∈ [0, 2π).
Let (εn)n∈N∗ be defined by

1
εn

∫ 1

0
λ1,γ0f(t)dt = φ0 + 2nπ,

for every n ∈ N∗. There exists γ∗ > 0 such that, for every γ0 ∈ (−γ∗, γ∗), for every s ∈ N,
(ψεn(1/εn))n∈N converges to ϕ1,γ0 in Hs(I,C).

Theorem 4 Let γ0 ∈ R. We consider the solution ξε of the following system iξ̇ε = −1
2ξ
′′
ε − γ0f(1− εt)qξε,

ξε(1/ε) = ϕ1e
iφ1 ,

ξε(t,−1/2) = ξε(t, 1/2) = 0,

where φ1 ∈ (−2π, 0]. Let (εn)n∈N∗ be defined by

1
εn

∫ 1

0
λ1,γ0f(t)dt = −λ1,γ0T − φ1 + 2(n+ 1)π,

for every n ∈ N∗, where T := 4/π. There exists γ∗ > 0 such that, for every γ ∈ (−γ∗, γ), for every
s ∈ N, (ξεn(0))n∈N∗ converges to ϕ1,γ0e

−iλ1,γ0T in Hs(I,C).

The constant γ∗ is such that every proposition in Appendix A is true with γ ∈ (−γ∗, γ∗).

3 Local controllability of the nonlinear system around the ground
state for u ≡ γ

3.1 Controllability of the linearized system around (ψ1,γ, γ)

The linearized system around (ψ1,γ , γ) is the following one,
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i
∂Ψ
∂t

= −1
2
∂2Ψ
∂q2
− γqΨ− w(t)qψ1,γ , (3.1)

Ψ(0) = Ψ0, (3.2)

Ψ(t,−1/2) = Ψ(t, 1/2) = 0, (3.3)

where the state is Ψ(t) and the control is w(t). We know (see Appendix B, Proposition 45) that
for every couple (Ψ0, w) ∈ H1

0 (I,C) × L2((0, T ),R), there exists a unique generalized solution Ψ ∈
C0([0, T ],H1

0 (I,C)) of (3.1), (3.2), (3.3), in the sense that it satisfies the following equality in L2(I,C),
for every t ∈ [0, T ],

Ψ(t) = Tγ(t)Ψ0 +

t∫
0

Tγ(t− s)[iw(s)qψ1,γ(s)]ds. (3.4)

In this formula, (Tγ(t))t>0 is the group of isometries of L2(I,C) with infinitesimal generator −iAγ .
More explicitely, for ϕ ∈ L2(I,C) and t ∈ R,

Tγ(t)ϕ :=
+∞∑
k=1

< ϕ,ϕk,γ > e−iλk,γtϕk,γ .

We assume Ψ0 satisfies <(< Ψ0, ϕ1,γ >) = 0. Then, for every t ∈ [0, T ],

< Ψ(t), ψ1,γ(t) >=< Ψ0, ϕ1,γ > +i

t∫
0

w(s) < qϕ1,γ , ϕ1,γ > ds ∈ iR,

so this generalized solution satisfies Ψ(t) ∈ TS(ψ1,γ(t)) for every t ∈ [0, T ].

If T > 0 and ΨT ∈ TS(ψ1,γ(T )), the equality Ψ(T ) = ΨT is equivalent to

ibk,γ

∫ T

0
w(t)ei(λk,γ−λ1,γ)tdt =< ΨT , ϕk,γ > eiλk,γT− < Ψ0, ϕk,γ >, for every k ∈ N∗, (3.5)

where bk,γ :=< qϕ1,γ , ϕk,γ >. If bk,γ 6= 0 for every k ∈ N∗, this is a moment problem in L2((0, T ),R),∫ T

0
w(t)ei(λk,γ−λ1,γ)tdt = dk,γ , for every k ∈ N∗.

Thanks to standard results about trigonometric moment problems, we will prove this moment prob-
lem has a solution w ∈ L2((0, T ),R) as soon as the right hand side (dk,γ)k∈N∗ belongs to l2(N∗,C),
when γ is small enough, different from zero and T is positive.

The non controllability result when γ = 0, proved by Pierre Rouchon in [18] is related to the
behaviour of the coefficients bk,0 : bk,0 = 0 for every odd integer k. When γ = 0, we only control
half of the projections. The controllability when γ is small enough and different from zero is possible
because as soon as γ 6= 0, we have bk,γ 6= 0 for every k.

In this article, we use the same letter C to design various constants. The value of C can change
from one expression to another one.
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Proposition 1 There exists γ0 > 0 such that, for every γ ∈ (0, γ0] and for every k ∈ N∗, bk,γ 6= 0.
There exist γ1 > 0 and C > 0 such that, for every γ ∈ (0, γ1] and for every even integer k > 2,

|bk,γ −
(−1)

k
2
+18k

π2(k2 − 1)2
| < Cγ

k3
,

and for every odd integer k ≥ 3,

|bk,γ − γ
2(−1)

k−1
2 (k2 + 1)

π4k(k2 − 1)2
| < Cγ2

k3
.

Proof : We use results on ϕk,γ presented in appendix A. In particular, ϕk,γ is an analytic function
of γ:

ϕk,γ = ϕk + γϕ
(1)
k + γ2ϕ

(2)
k + ...

bk,γ =< qϕk, ϕ1 > +γ(< qϕ
(1)
k , ϕ1 > + < qϕk, ϕ

(1)
1 >) + ... (3.6)

When k is odd (resp. even) the first (resp. the second) term of the right hand side of (3.6) vanishes,
because of the parity of the functions involved.

Study of b1,γ.
We have b1,γ = 2γ < qϕ

(1)
1 , ϕ1 > +o(γ), when γ → 0. Using (A.5) and (A.2) we get

< qϕ
(1)
1 , ϕ1 >=

128
π6

+∞∑
j=1

(2j)2

(1 + 2j)5(2j − 1)5
,

which is a positive real number.
Study of bk,γ when k is even.
When k is a fixed even integer, we have

bk,γ =< qϕk, ϕ1 > +o(γ) =
8(−1)

k
2
+1k

π2(k2 − 1)2
+ o(γ).

Let us prove that there exists a positive constant C such that, for every even integer k,

| < qϕk,γ , ϕ1,γ > − < qϕk, ϕ1 > | 6
Cγ

k3
.

Using integrations by parts, we get

< qϕk,γ , ϕ1,γ > − < qϕk, ϕ1 >=
(

1
λk,γ
− 1

λk

)
< ϕk,γ , Aγ(qϕ1,γ) > + 1

λk
< ϕk,γ − ϕk, Aγ(qϕ1,γ) >

+ 1
λk
< ϕk, Aγ(qϕ1,γ)−A(qϕ1) > .

We deal with the two first terms of the right hand side of the above equality using (A.13) and (A.7).
In the third term, the scalar product is a Fourier coefficient of a C1 function fγ such that, for every
γ ∈ [−γ∗, γ∗], ‖fγ‖C1 6 Cγ.
Study of bk,γ when k is odd.
When k is a fixed odd integer, we have

bk,γ = γ(< qϕ
(1)
k , ϕ1 > + < qϕk, ϕ

(1)
1 >) + o(γ).

Using (A.5) and (A.2), we get

< qϕ
(1)
k , ϕ1 >=

128(−1)
k+1
2 k

π6

+∞∑
j=1

(2j)2

(1 + 2j)2(1− 2j)2(k + 2j)3(k − 2j)3
.
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In order to compute this sum, we decompose the fraction

F (X) =
X2

(k +X)3(k −X)3(1 +X)2(1−X)2

in the following way

F (X) = 15k4+10k2−1
16k3(k2−1)4

(
1

X+k −
1

X−k

)
+ 7k2+1

16k2(k2−1)3

(
1

(X+k)2
+ 1

(X−k)2

)
+ 1

8k(k2−1)2

(
1

(X+k)3
− 1

(X−k)3

)
− k2+5

4(k2−1)4

(
1

X+1 −
1

X−1

)
+ 1

4(k2−1)3

(
1

(X+1)2
+ 1

(X−1)2

)
.

We sum each term and we get

< qϕ
(1)
k , ϕ1 >=

2(−1)
k+1
2 (11k2 + 1)

π4k(k2 − 1)3
.

In the same way, we have

< qϕk, ϕ
(1)
1 >=

2(−1)
k−1
2 k(k2 + 11)

π4(k2 − 1)3
.

Therefore

< qϕ
(1)
k , ϕ1 > + < qϕk, ϕ

(1)
1 >=

2(−1)
k−1
2 (k2 + 1)

π4k(k2 − 1)2
.

Let us prove that there exists a constant C > 0 such that, for every odd integer k,

|bk,γ − γ(< qϕ
(1)
k , ϕ1 > + < qϕk, ϕ

(1)
1 >)| 6 Cγ2

k3
.

Thanks to parity arguments, this inequality can be written

|∆k,γ | 6
Cγ2

k3
where ∆k,γ :=< qϕk,γ , ϕ1,γ > − < qϕ̃k,γ , ϕ̃1,γ >,

with ϕ̃k,γ := ϕk + γϕ
(1)
k . Using (A.1) and (A.6) and integrations by parts, we get:

∆k,γ =
(

1
λk,γ
− 1

λk

)
< ϕk,γ , Aγ(qϕ1,γ) > + 1

λk
< ϕk,γ − ϕ̃k,γ , Aγ(qϕ1,γ) >

+ 1
λk
< ϕ̃k,γ , Aγ(q[ϕ1,γ − ϕ̃1,γ ]) > − γ2

λk
< ϕ

(1)
k , q2ϕ̃1,γ > .

We deal with the first term of the right hand side of this equality using (A.13), with the second one
using (A.8) and with the fourth one using (A.18). Using the notation fγ := Aγ(q[ϕ1,γ − ϕ̃1,γ ]), we
decompose the third term in the following way

1
λk

< ϕ̃k,γ , fγ >=
1
λk

< ϕk, fγ > +
γ

λk
< ϕ

(1)
k , fγ > .

The first term of the right hand side of this equality is a Fourier coefficient of a C1-function fγ
satisfying ‖fγ‖C1 6 γ2. We get a suitable bound on the second term of the right hand side of this
equality using (A.18) and ‖fγ‖L2 6 γ2.�

We introduce the space

H3
(0)(I,C) := {Ψ ∈ H3(I,C);Ψ(q) = Ψ′′(q) = 0 for q = −1/2, 1/2}.
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Theorem 5 There exists γ1 > 0 such that, for every γ ∈ (0, γ1], for every T > 0 and for every
Ψ0,ΨT ∈ H3

(0)(I,C) satisfying

<(< Ψ0, ψ1,γ(0) >) = <(< ΨT , ψ1,γ(T ) >) = 0, (3.7)

there exists w ∈ L2((0, T ),R) solution of the moment problem (3.5).

Proof : Thanks to (A.11), we have limγ→0 λj,γ = λj = (jπ)2/2, uniformly with respect to j ∈ N∗.
Thus, there exists γ1 > 0 such that, for every γ ∈ [0, γ1], for every j ∈ N∗, λj+1,γ − λj,γ > 0 and
limj→+∞(λj+1,γ − λj,γ) = +∞.

Let γ ∈ (0, γ1] and T > 0. We know from [14] that for every d = (dk)k∈N∗ ∈ l2(N∗,C), such
that d1 ∈ R, there exists exactly one w ∈ L2((0, T ),C) minimum L2-norm solution of the moment
problem:

T∫
0

w(t)ei(λk,γ−λ1,γ)tdt = dk,γ ,
∫ T
0 w(t)e−i(λk,γ−λ1,γ)tdt = dk,γ ,∀k ∈ N∗.

Thanks to the uniqueness, w is real valued.

Let Ψ0,ΨT ∈ H3
(0)(I,C), satisfying (3.7). Then the sequence

(dk)k∈N∗ :=
(

1
ibk,γ

(< ΨT , ϕk,γ > eiλk,γT− < Ψ0, ϕk,γ >)
)
k∈N∗

(3.8)

satisfies d1 ∈ R. Let us prove that (dk) ∈ l2(N∗,C), which ends the proof. It is sufficient to prove
that, if Ψ ∈ H3

(0)(I,C), then (
1
bk,γ

< Ψ, ϕk,γ >
)
k∈N∗

∈ l2(N∗,C). (3.9)

Let Ψ ∈ H3
(0)(I,C). Then, ck :=< Ψ, ϕk,γ > satisfies

ck =
1
λ2
k,γ

(
1
2
< (AγΨ)′, ϕ′k,γ > −γ < qAγΨ, ϕk,γ >

)
.

Thanks to (A.12), we get

k3|ck| 6
C

k

(
| < (AγΨ)′, ϕ′k > |+ ‖(AγΨ)′‖L2‖ϕ′k,γ − ϕ′k‖L2 + ‖qAγΨ‖L2(I)

)
.

Since ( 1
lπϕ

′
l)l∈N∗ is an orthonormal family of L2(I,C), the first term of the right hand side of this

inequality belongs to l2(N∗,C). The second term of the right hand side of this inequality also belongs
to l2(N∗,C) because of (A.9). We have proved (3.9). �

Remark: The assumption Ψ0,ΨT ∈ H2 ∩H1
0 (I,C), is not sufficient to get (3.8) in l2(N∗,C).

Let us introduce the map
Φγ : (ψ0, v) 7→ (ψ0, ψT )

where ψ is the generalized solution of (Σ) with u = γ+v and ψT = ψ(T ). The map Φγ is well defined
and of class C1

10



- from [S ∩ (H2 ∩H1
0 )(I,C)]× L2((0, T ),R) to [S ∩ (H2 ∩H1

0 )(I,C)]× [S ∩ (H2 ∩H1
0 )(I,C)] ,

- from [S ∩H3
(0)(I,C)]×H1

0 ((0, T ),R) to [S ∩H3
(0)(I,C)]× [S ∩H3

(0)(I,C)].

To get the local controllability of the non linear system (Σ) around ψ1,γ from the standard implicit
function theorem, we consider Ψ0,ΨT ∈ L2(I,C) satisfying (3.7), one needs to construct a control
bringing the system from Ψ0 to ΨT which belongs

- either to L2((0, T ),R) when Ψ0,ΨT ∈ (H2 ∩H1
0 )(I,C)

- or to H1
0 ((0, T ),R) when Ψ0,ΨT ∈ H3

(0)(I,C).

The previous remark explains why it does not seem to be possible.

3.2 The Nash-Moser implicit function theorem used

To get the local controllability of the nonlinear system around ψ1,γ , we use the Nash-Moser implicit
function theorem given by Hörmander in [16]. We need small changes in Hörmander’s assumptions.
Those changes do not influence much his proof. In this subsection, we first recall the context of the
Nash-Moser theorem stated by Hörmander in [16]. Then, we state a Nash-Moser theorem which is
a little bit different from Hörmander’s one and can be directly applied to our problem. We repeat
Hörmander’s proof in order to justify our changes in the assumptions. Finally, we give explicitly
a local diffeomorphism from the L2-sphere S to L2(I,C), which allows us to use the Nash-Moser
theorem on the manifold S, instead of a whole space.

We consider a decreasing family of Hilbert spaces (Ea)a∈{1,...,9} with continuous injections Eb →
Ea of norm 6 1 when b > a. Suppose we have given linear operators Sθ : E1 → E9 for θ > 1. We
assume there exists a constant K > 0 such that for every a ∈ {1, ..., 9}, for every θ > 1 and for every
u ∈ Ea we have

‖Sθu‖b 6 K‖u‖a,∀b ∈ {1, ..., a}, (3.10)

‖Sθu‖b 6 Kθb−a‖u‖a,∀b ∈ {a+ 1, ..., 9}, (3.11)

‖u− Sθu‖b 6 Kθb−a‖u‖a,∀b ∈ {1, ..., a− 1}, (3.12)

‖ d
dθ
Sθu‖b 6 Kθb−a−1‖u‖a,∀b ∈ {1, ..., 9}. (3.13)

Then, we have the convexity of the norms (see [16] for the proof): there exists a constant c > 1 such
that, for every λ ∈ [0, 1], for every a, b ∈ {1, ..., 9} such that a 6 b, λa + (1 − λ)b ∈ N and for every
u ∈ Eb,

‖u‖λa+(1−λ)b 6 c‖u‖λa‖u‖1−λb .

We fix a sequence 1 = θ0 < θ1 < ...→∞ of the form θj = (j+1)δ where δ > 0. We set ∆j := θj+1−θj
and we introduce

Rju :=
1

∆j
(Sθj+1

− Sθj
)u if j > 0 and R0u :=

1
∆0

Sθ1u.

Thanks to (3.12), we have

u =
∞∑
j=0

∆jRju,

with convergence in Eb when u ∈ Ea and a > b. Moreover, (3.13) gives, for u ∈ Ea and for every
b ∈ {1, ..., 9}:

‖Rju‖b 6 Ka,bθ
b−a−1
j ‖u‖a.
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where
Ka,b := Kmax{2δ(b−a−1), 1}, when b 6= a,

Ka,a := Kmax{ ln(θj+1/θj)
(θj+1/θj)− 1

; j ∈ N}.

This maximum is finite because, for every δ > 0,

lim
j→∞

(
ln((1 + 1/j)δ)
(1 + 1/j)δ − 1

)
= 1.

Let K ′ := max{Ka,b; a, b ∈ {1, ..., 9}}.

Let a1, a2 ∈ N and a ∈ R be such that 1 6 a1 < a < a2 6 9. We define the space

E′a := {
∞∑
j=0

∆juj ;uj ∈ Ea2 ,∃M > 0/∀j, ‖uj‖b 6 Mθb−a−1
j for b = a1, a2},

with the norm ‖u‖′a given by the infimum of M over all such decomposition of u. This space does
not depend on the choice of a1 and a2 (see [16] for the proof). The norm ‖.‖′a is stronger than the
norm ‖.‖b when b < a because

‖u‖b 6 c

 ∞∑
j=0

∆jθ
b−a−1
j

 ‖u‖′a (3.14)

and ‖.‖′a is weaker than ‖.‖a because
‖u‖′a 6 K ′‖u‖a.

There exists a constant K ′′ such that, for every a ∈ {1, ..., 9}, for every θ > 1, for every b < a and
for every u ∈ E′a we have

‖u− Sθu‖b 6 K ′′θb−a‖u‖′a. (3.15)

Indeed, let a ∈ [1, 9], b, a1, a2 ∈ {1, ..., 9} be such that b < a1 < a < a2. Let u ∈ E′a and a
decomposition

u =
∑

∆juj with ‖uj‖ai 6 Mθai−a−1
j for i = 1, 2.

We have
u− Sθu =

∑
∆j(uj − Sθuj),

‖uj − Sθuj‖b 6 KMθb−aiθai−a−1
j for i = 1, 2.

We sum for θj < θ with i = 2 and for θj > θ with i = 1 and we get (3.15) for

K ′′ := K

(
2δ(a+1−a1)

a− a1
+ max{1, 2

δ(a+1−a2)

a2 − a
}

)
.

Note that, when b and a are fixed, if we need (3.15), it is sufficient to know (3.12) for two values
a1 and a2 satisfying b < a1 < a < a2. We will use this remark in the construction of smoothing
operators for our problem.

We have another family (Fa)a∈{1,...,9} with the same properties as above, we use the same notations
for the smoothing operators. Moreover, we assume the injection Fb → Fa is compact when b > a.
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Theorem 6 Let α and β be fixed positive real numbers such that

4 < α < β < 7 and β − α > 2. (3.16)

Let V be a convex E
′
α-neighbourhood of 0 and Φ a map from V ∩E7 to Fβ which is twice differentiable

and satisfies
‖Φ′′(u; v, w)‖7 6 C

∑
(1 + ‖u‖m′

j
)‖v‖m′′

j
‖w‖m′′′

j
(3.17)

where the sum is finite, all the subscripts belong to {1, 3, 5, 7} and satisfy

max(m′
j − α, 0) + max(m′′

j , 2) +m′′′
j < 2α, ∀j. (3.18)

We assume that Φ : Ea → Fa is continuous for a = 1, 3. We also assume that Φ′(v), for v ∈ V ∩E9,
has a right inverse ψ(v) mapping F9 to E7, that (v, g) 7→ ψ(v)g is continuous from (V ∩E9)× F9 to
E7 and that there exists a constant C such that for every (v, g) ∈ (V ∩ E9)× F9,

‖ψ(v)g‖1 6 C‖g‖3, (3.19)

‖ψ(v)g‖3 6 C[‖g‖5 + ‖v‖5‖g‖3], (3.20)

‖ψ(v)g‖5 6 C[‖g‖7 + ‖v‖5‖g‖5 + (‖v‖7 + ‖v‖25)‖g‖3], (3.21)

‖ψ(v)g‖7 6 C[‖g‖9 + ‖v‖5‖g‖7 + (‖v‖7 + ‖v‖25)‖g‖5 + (‖v‖9 + ‖v‖7‖v‖5 + ‖v‖35)‖g‖3]. (3.22)

For every f ∈ F ′β with sufficiently small norm one can find a sequence uj ∈ V ∩ E7 which converges
in Eb for every b < α to u satisfying Φ(u) = Φ(0) + f .

Remark: The main difference with Hörmander’s statement concerns the bounds (3.19),(3.20),
(3.21) and (3.22).

Proof: Let g ∈ F ′β. There exists a decomposition

g =
∑

∆jgj with ‖gj‖b 6 K ′θb−β−1
j ‖g‖′β for every b ∈ {1, ..., 9}. (3.23)

We claim that if ‖g‖′β is small enough we can define a sequence uj ∈ E7 ∩ V with u0 = 0 by the
recursive formula

uj+1 := uj + ∆j u̇j , u̇j := ψ(vj)gj , vj := Sθj
uj . (3.24)

We also claim that there exist constants C1, C2, C3 such that for every j ∈ N,

‖u̇j‖a 6 C1‖g‖′βθa−α−1
j , a ∈ {1, 3, 5, 7}, (3.25)

‖vj‖a 6 C2‖g‖′βθa−αj , a ∈ {5, 7, 9}, (3.26)

‖uj − vj‖a 6 C3‖g‖′βθa−αj , a ∈ {1, 3, 5, 7}. (3.27)

More precisely, we prove by induction on k the following property

Pk : uj is well defined for j = 0, ..., k + 1,
(3.25) is satisfied for j = 0, ..., k,
(3.26), (3.27) are satisfied for j = 0, ..., k + 1.

Let k ∈ N∗. We suppose the property Pk−1 is true, and we prove Pk. We introduce a real number
ρ > 0 such that, for every u ∈ E′α, ‖u‖′α 6 ρ implies u ∈ V . We have

uk =
k−1∑
j=0

∆j u̇j .
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so (3.25) gives
‖u‖′α 6 C1‖g‖′β . (3.28)

We also have

vk =
k−1∑
j=0

∆jSθk
u̇j ,

so using (3.10) and (3.25) for j = 0, ...k − 1, we get

‖Sθk
u̇j‖a 6 KC1‖g‖′βθa−α−1

j for j = 0, ..., k − 1 and a = 1, 3, 5, 7,

thus
‖vk‖′α 6 KC1‖g‖′β .

Therefore, when ‖g‖′β 6 ρ/KC1, vk ∈ V and uk+1 is defined.
We prove (3.25) for j = k by application of (3.19), (3.20), (3.21) and (3.22). For the case a = 1,

using (3.19) and (3.23), we get
‖u̇k‖1 6 CK ′θ2−β

k ‖g‖′β,

which gives (3.25) with any constant C1 > CK ′ because β −α > 2. For the case a = 3, using (3.20),
(3.23) and (3.26) for j = k, we get

‖u̇k‖3 6 CK ′‖g‖′β(θ
4−β
k + C2‖g‖′βθ5−α

k θ2−β
k ).

This gives (3.25) with any constant C1 > 2CK ′ when ‖g‖′β 6 1/C2, because β − α > 2 and β > 5.
For a = 5, using (3.21), (3.23) and (3.26) for j = k , we get

‖u̇k‖5 6 CK ′‖g‖′β [θ
6−β
k + C2‖g‖′β(θ5−α

k θ4−β
k + θ7−α

k θ2−β
k ) + C2

2‖g‖′2β θ10−2α
k θ2−β

k ].

This gives (3.25) with any constant C1 > 4CK ′, when ‖g‖′β 6 1/C2, because β − α > 2, β > 5 and
β + α > 8. For the case a = 7, using (3.22), (3.23) and (3.26), we get

‖u̇k‖7 6 CK ′‖g‖′β[θ
8−β
k + C2‖g‖′β(θ

5−α
k θ6−β

k + θ7−α
k θ4−β

k + θ9−α
k θ2−β

k )+
(C2‖g‖′β)2(θ

10−2α
k θ4−β

k + θ7−α
k θ5−α

k θ2−β
k ) + (C2‖g‖′β)3θ

15−3α
k θ2−β

k ].

This gives (3.25) with any constant C1 > 7CK ′ when ‖g‖′β 6 1/C2, because β − α > 2, β > 5,
α+ β > 8 and 2α+ β > 11. Finally, we have proved (3.25) for j = k with any constant C1 > 7CK ′,
when ‖g‖′β 6 1/C2 and ‖g‖′β 6 ρ/C1K.

Now, we prove (3.26) for j = k + 1. Let a ∈ {5, 7}. Using (3.10) and (3.25), we have

‖vk+1‖a 6 KC1‖g‖′β
k∑
j=0

∆jθ
a−α−1
j .

We find an upper bound for the sum in the cases a = 5 and a = 7 and we get (3.26) with

C2 := KC1 max{ 1
7− α

,
2δ(α−4)

5− α
}. (3.29)

Now, we prove (3.27) for j = k+1. Thanks to the convexity of the norms, it is sufficient to prove
the inequality for a = 7 and for a = 1. Using (3.10) and (3.25) we get

‖uk+1 − vk+1‖7 6 (1 +K)C1‖g‖′β
k∑
j=0

∆jθ
6−α
j 6

1 +K

7− α
C1‖g‖′βθ7−α

k+1 .
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Using (3.15) with b = 1, a = α, we get

‖uk+1 − vk+1‖1 6 K ′′C1‖g‖′βθ1−α
k+1 .

Finally, we get (3.27) for j = k + 1 with

C3 := cmax{1 +K

7− α
C1,K

′′C1}. (3.30)

In conclusion, Pk is true for every k ∈ N with

C1 := 7CK ′, C2 defined by (3.29) , C3 defined by (3.30) and ‖g‖′β 6 min{ 1
C2
,

ρ

KC1
}.

The inequality (3.25) proves (uk) is a Cauchy sequence in Ea for a = 1, 3 so uk → u in Ea for
a = 1, 3. The continuity of Φ gives Φ(uk)→ Φ(u) in Fa, for a = 1, 3.

Now, let us consider the limit of (Φ(uk))k∈N. We have

Φ(uj+1)− Φ(uj) = Φ(uj + ∆j u̇j)− Φ(uj) = ∆j(e′j + e′′j + gj)

where
e′j :=

1
∆j

(
Φ(uj + ∆j u̇j)− Φ(uj)− Φ′(uj)∆j u̇j

)
,

e′′j :=
(
Φ′(uj)− Φ′(vj)

)
u̇j .

Let us study e′j . We have

e′j = ∆j

∫ 1

0
(1− t)Φ′′(uj + t∆j u̇j ; u̇j , u̇j)dt.

Using (3.17), we get

‖e′j‖7 6 C∆j

∑
l

(1 + ‖uj‖m′
l
+ ∆j‖u̇j‖m′

l
)‖u̇j‖m′′

l
‖u̇j‖m′′′

l
.

For a ∈ {1, 3}, using (3.14) and (3.28) we get, for every j ∈ N, ‖uj‖a 6 C̃‖g‖′β , with some constant
C̃. For a ∈ {5, 7}, with the same proof as for (3.26), we get, for every j ∈ N, ‖uj‖a 6 C̃‖g‖′βθ

a−α
j ,

with some constant C̃. Those bounds, together with (3.17) leads to

‖e′j‖7 6 C̃∆j

∑
l

(1 + ‖g‖′βθ
max(m′

l−α,0)
j + ∆j‖g‖′βθ

m′
l−α−1

j )‖g‖′2β θ
m′′

l +m′′′
l −2α−2

j ,

with a new constant C̃. Let ε > 0 be such that (3.46) is true with 2α − ε on the right-hand side.
Then, there exists a constant C4 > 0 such that, for every j ∈ N,

‖e′j‖7 6 C4‖g‖′2β θ−1−ε
j . (3.31)

Let us prove a similar bound on e′′j . We have

e′′j =
∫ 1

0
Φ′′(vj + t(uj − vj);uj − vj , u̇j)dt
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Let us recall that, for a ∈ {1, 3}, thanks to (3.14)

‖vj‖a 6 C̃‖vj‖′α 6 C̃KC1‖g‖′β.

Using this bound, together with (3.25), (3.26), (3.27), we get, with a new constant C̃,

‖e′′j ‖7 6 C
∑

k(1 + ‖vj‖m′
k

+ ‖uj − vj‖m′
k
)‖uj − vj‖m′′

k
‖u̇j‖m′′′

k

6 C̃
∑

k(1 + ‖g‖′βθ
max(m′

k−α,0)
j + ‖g‖′βθ

m′
k−α

j )‖g‖′2β θ
m′′

k+m′′
k−2α−1

j .

Thanks to (3.46), we get the existence of a constant C5 > 0 such that

‖e′′j ‖7 6 C5‖g‖′2β θ−1−ε
j . (3.32)

Using θj = (1 + j)δ with δ > 0, it is easy to get the convergence in F7 of
∑

∆j(e′j + e′′j ). Let us
denote T (g) this limit,

T (g) :=
+∞∑
j=0

∆j(e′j + e′′j ).

Thanks to (3.32) and (3.31), there exists a constant C6 > 0 such that

‖T (g)‖7 6 C6‖g‖′2β .

The uniqueness of the limit of Φ(uk) gives the following equality in Fa for a = 1, 3

Φ(u) = Φ(0) + T (g) + g.

Let us fix f ∈ F ′β. We search u such that Φ(u) = Φ(0) + f . It is sufficient to find g ∈ F ′β such
that g + T (g) = f . It is equivalent to prove the existence of a fixed point for the map

F : F ′β → F ′β
g 7→ f − T (g).

We conclude by applying the Leray-Schauder fix-point theorem. �

Remark: It can be useful to have the continuity of the right inverse of the map Φ. This can
be obtained by using the Banach fixed point theorem, instead of the Leray-Schauder fixed point
theorem, in the previous proof. In order to do this, we need more assumptions that in Theorem
6. We propose a proof of this other version of the Nash-Moser theorem and its application to the
controllability of (Σ) in Appendix C.

We will apply this theorem to Φγ : (ψ0, v) 7→ (ψ0, ψT ) defined in subsection 3.1. in a neighbour-
hood of (ϕ1,γ , 0). Our spaces are

Eγ1 := [H1
0 (I,C) ∩ S]× L2((0, T ),R), F γ1 := [H1

0 (I,C) ∩ S]× [H1
0 (I,C) ∩ S],

Eγ3 := [H3
(γ)(I,C) ∩ S]×H1

0 ((0, T ),R), F γ3 := [H3
(γ)(I,C) ∩ S]× [H3

(γ)(I,C) ∩ S],
Eγ5 := [H5

(γ)(I,C) ∩ S]×H2
0 ((0, T ),R), F γ5 := [H5

(γ)(I,C) ∩ S]× [H5
(γ)(I,C) ∩ S],

Eγ7 := [H7
(γ)(I,C) ∩ S]×H3

0 ((0, T ),R), F γ7 := [H7
(γ)(I,C) ∩ S]× [H7

(γ)(I,C) ∩ S],
Eγ9 := [H9

(γ)(I,C) ∩ S]×H4
0 ((0, T ),R), F γ9 := [H9

(γ)(I,C) ∩ S]× [H9
(γ)(I,C) ∩ S],

where
S := {Ψ ∈ L2(I,C); ‖Ψ‖L2 = 1},
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Hs
(γ)(I,C) := {Ψ ∈ Hs(I,C);AlγΨ(−1

2
) = AlγΨ(

1
2
) = 0 for l = 0, ..., (s− 1)/2}.

Our E′α-neighbourhood V of (ϕ1,γ , 0) is a Eγ3 -bowl.

We work on the manifold S instead of a whole space. It does not matter because we can move
the problem to an hyperplane of L2(I,C) by studying

Φ̃γ := qγoΦγorγ where rγ(x, u) := (p−1
γ (x), u),

qγ(ψ0, ψT ) := (pγ(ψ0), pγ(ψT ))

and pγ is a suitable local diffeomorphism from a neighbourhood of the trajectory ψ1,γ in the sphere
S into an hyperplane of L2(I,C), which does not change too much the Hs-norm. For example, we
can use the following one.

Proposition 2 Let Uγ := {ψ ∈ L2(I,C);∃t ∈ [0, 2π], ‖ψ − ϕ1,γe
it‖L2 < 1/12}, Hγ := {ψ ∈

L2(I,C);<(< ψ,ϕ2,γ >) = 0} and pγ : L2(I,C)→ Hγ be defined by

pγ(ψ) := ψ −<(< ψ,ϕ2,γ >)ϕ2,γ + <(< ψ,ϕ2,γ >) < ψ,ϕ1,γ > ϕ1,γ .

Then pγ is a C1 diffeomorphism from Uγ to an open subset of Hγ. Moreover, the norm of dpγ(ψ)
as a linear operator from (TψγS, ‖.‖Hs) to (Hγ , ‖.‖Hs) is uniformly bounded on Uγ for every integer
s ∈ [1, 7].

Proof: Let us introduce the orthogonal projection

Pγ : L2(I,C)→ (Rϕ2,γ ⊕ Cϕ1,γ)⊥.

We first prove that pγ is injective. Let ψ, ψ̃ ∈ S be such that pγ(ψ) = pγ(ψ̃). Then, Pγ(ψ) = Pγ(ψ̃)
and

(1 + <(< ψ,ϕ2,γ >)) < ψ,ϕ1,γ >=
(
1 + <(< ψ̃, ϕ2,γ >)

)
< ψ̃, ϕ1,γ > . (3.33)

We have
1 = ‖ψ‖2L2 = ‖Pγ(ψ)‖2L2 + <(< ψ,ϕ2,γ >)2 + | < ψ,ϕ1,γ > |2,

1 = ‖ψ̃‖2L2 = ‖Pγ(ψ̃)‖2L2 + <(< ψ̃, ϕ2,γ >)2 + | < ψ̃, ϕ1,γ > |2,

so
<(< ψ,ϕ2,γ >)2 + | < ψ,ϕ1,γ > |2 = <(< ψ̃, ϕ2,γ >)2 + | < ψ̃, ϕ1,γ > |2.

Using (3.33), we get

| < ψ,ϕ1,γ > |2
(
(1 + <(< ψ̃, ϕ2,γ >))2 − (1 + <(< ψ,ϕ2,γ >))2

)
=
(
<(< ψ̃, ϕ2,γ >)2 −<(< ψ,ϕ2,γ >)2

)
(1 + <(< ψ̃, ϕ2,γ >))2.

We assume ψ 6= ψ̃. Then <(< ψ,ϕ2,γ >) 6= <(< ψ̃, ϕ2,γ >) so <(< ψ̃, ϕ2,γ >) is a solution in
[−1/12, 1/12] of the equation f(y) = 0 where

f(y) := (1 + y)2(b+ y)− a2(2 + y + b),

a := | < ψ,ϕ1,γ > |, b := <(< ψ,ϕ2,γ >).

Using a ∈ [11/12, 1] and b ∈ [−1/12, 1/12] it is easy to prove that f(y) 6 [132 − 113]/(6 ∗ 122) < 0
for every y ∈ [−1/12, 1/12]. This is a contradiction. Therefore ψ = ψ̃ and pγ is injective.
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Now, we prove that, for every ψ ∈ Uγ , dpγ(ψ) is an isomorphism from TψS to Hγ . We recall the
orthogonality is related to the scalar product <(< ψ, ψ̃ >). Let ψ ∈ Uγ and ξ ∈ Hγ . For h ∈ L2(I,C)
the statement dpγ(ψ)h = ξ and h ∈ TψS is equivalent to Pγ(h) = Pγ(ξ) and AX = b where

A :=

 1 + <(< ψ,ϕ2,γ >) 0 <(< ψ,ϕ1,γ >)
0 1 + <(< ψ,ϕ2,γ >) =(< ψ,ϕ1,γ >)

<(< ψ,ϕ1,γ >) =(< ψ,ϕ1,γ >) <(< ψ,ϕ2,γ >)

 ,

X :=

 <(< h,ϕ1,γ >)
=(< h,ϕ1,γ >)
<(< h,ϕ2,γ >)

 ,

b :=

 <(< ξ, ϕ1,γ >)
=(< ξ, ϕ1,γ >)

−<(< P (ξ), P (ψ) >)

 .

Using
| < ψ,ϕ1,γ > | = | < ψ − ϕ1,γe

it, ϕ1,γ > +eit| > 1− 1/12,

| < ψ,ϕ2,γ > | = | < ψ − ϕ1,γe
it, ϕ2,γ > | < 1/12,

we get |det(A)| > 1/2. We conclude thanks to the inverse mapping theorem.
It is clear that ‖dpγ(ψ)‖Hs→Hs 6 4. Since ‖Pγ(ξ)‖Hs 6 ‖ξ‖Hs and ‖A‖ = ‖det(A)−1Com(A)t‖,

then ‖A−1‖ is uniformly bounded with respect to ψ ∈ Uγ and ‖dpγ(ψ)−1‖Hs→Hs also. �

3.3 Smoothing operators

In this subsection, we construct smoothing operators on the spaces Eγa and F γb defined in the previous
subsection. In the proof of the Nash-Moser theorem, we use on the spaces F γb smoothing operators

Sθ : F γ1 → F γ9 ,

with the properties (3.10), (3.11), (3.12) and (3.13) and on the spaces Eγa smoothing operators

Sθ : Eγ1 → Eγ7

with the properties (3.10) and (3.15) for b = 1 and a = α. Therefore, it is sufficient to check the
properties (3.10) and (3.12) with b = 1 and a = 3, 5 on the smoothing operators on the spaces Eγa .
The construction proposed for the smoothing operators on the controls v could also be used for the
wave function ψ. We propose in the next paragraph a simpler one.

3.3.1 Smoothing operators on the spaces F γb

We don’t need smoothing operators preserving the L2-sphere, because we can move our problem on
the hyperplane of L2(I,C) defined by

Hγ = {ψ ∈ L2(I,C);<(< ψ,ϕ2,γ >) = 0}.

In this paragraph, we construct smoothing operators preserving Hγ .

Let s ∈ C∞(R,R) be such that

s = 1 on [0, 1], 0 6 s 6 1, s = 0 on [2,∞).

Let γ ∈ (0, γ∗]. For θ ∈ [1,+∞) and ϕ ∈ L2(I,C), we define

Sθϕ :=
∞∑
k=1

s(
k

θ
) < ϕ,ϕk,γ > ϕk,γ .
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Proposition 3 There exists a constant K such that, for every a ∈ {1, ..., 9}, for every ϕ ∈ Ha
(γ)(I,C)

and for every θ > 1, we have

‖Sθϕ‖Hb 6 K‖ϕ‖Ha , b ∈ {1, ..., a}, (3.34)

‖Sθϕ‖Hb 6 Kθb−a‖ϕ‖Ha , b ∈ {a+ 1, ..., 9}, (3.35)

‖ϕ− Sθϕ‖Hb 6 Kθb−a‖ϕ‖Ha , b ∈ {1, ..., a− 1}, (3.36)

‖ d
dθ
Sθϕ‖Hb 6 Kθb−a−1‖ϕ‖Ha , b ∈ {1, ..., 9}. (3.37)

In order to prove this proposition, we need the following lemma which will be proved later.

Lemma 1 There exist γ∗ > 0, Q1 > 0 and Q2 > 0 such that, for every γ ∈ (0, γ∗], for every
s ∈ {1, 3, 5, 7, 9} and for every ϕ ∈ Hs

(γ)(I,C), we have

Q1‖ϕ‖Hs 6

( ∞∑
k=1

|ks < ϕ,ϕk,γ > |2
)1/2

6 Q2‖ϕ‖Hs . (3.38)

Proof of Proposition 3: Let a ∈ {1, ..., 9}, ϕ ∈ Ha
(γ)(I,C) and θ > 1. Using 0 6 s 6 1 and

(3.38), we get

‖Sθϕ‖Ha 6
1
Q1

( ∞∑
k=1

|kas(k
θ
) < ϕ,ϕk,γ > |2

)1/2

6
Q2

Q1
‖ϕ‖a.

Let b ∈ {a+ 1, ..., 9}. Using s = 0 on [2,+∞), 0 6 s 6 1 and (3.38) we get

‖Sθϕ‖Hb 6
1
Q1

(2θ)b−a

 ∑
16k<2θ

|ka < ϕ,ϕk,γ > |2
1/2

6
Q2

Q1
(2θ)b−a‖ϕ‖Ha .

Let b ∈ {1, ..., a− 1}. Using s = 1 on [0, 1] and (3.38) we get

‖ϕ− Sθϕ‖Hb 6
1
Q1

θb−a

∑
k>θ

|ka < ϕ,ϕk,γ > |2
1/2

6
Q2

Q1
θb−a‖ϕ‖Ha .

Let b ∈ {1, ..., 9}. We have

d

dθ
Sθϕ = −

∞∑
k=1

k

θ2
ṡ(
k

θ
) < ϕ,ϕk,γ > ϕk,γ .

Using ṡ = 0 on [0, 1] and [2,∞), we get

‖ d
dθ
Sθϕ‖Hb 6

Q2

Q1
‖ṡ‖∞max{1, 2b−a+1}θb−a−1‖ϕ‖Ha .�

Proof of Lemma 1: There exist positive constants γ0, P, C−, C+ such that for every s ∈
{1, 3, 5, 7, 9}, for every γ ∈ [0, γ0] and for every ϕ ∈ Hs

(γ)(I,C),

‖ϕ(s)‖L2 6 ‖ϕ‖Hs 6 P‖ϕ(s)‖L2 ,
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C−‖ϕ‖Hs 6 ‖(A
s−1
2

γ ϕ)′‖L2 6 C+‖ϕ‖Hs ,

‖A
s−1
2

γ ϕ‖L2 6 C+‖ϕ‖Hs .

Let s ∈ {1, 3, 5, 7, 9} and σ ∈ {0, 1, 2, 3, 4} be such that s = 2σ + 1. We first study the case γ = 0.
Let ϕ ∈ Hs

(0)(I,C). Using integrations by parts, we get, for every k ∈ N∗,

< ϕ,ϕk >=
(−1)σ

(kπ)s
< ϕ(s),

1
kπ
ϕ′k > .

The family ((1/kπ)ϕ′k)k∈N∗ is an orthonormal basis of L2(I,C), so

‖ϕ(s)‖L2 = πs‖ks < ϕ,ϕk > ‖l2 .

Finally, we get (3.38) for γ = 0 with any constants Q1 and Q2 satisfying

0 < Q1 6
1
Pπ9

, Q2 >
1
π
.

Now we study the case γ 6= 0. Let ϕ ∈ Hs
(γ)(I,C). Using integrations by parts, we get

< ϕ,ϕk,γ >=
kπ

2λkλσk,γ
< (Aσγϕ)′,

1
kπ
ϕ′k > +

1
λσk,γ

< Aσγϕ,ϕk,γ − ϕ̃k,γ > +
γ

λσk,γ
< Aσγϕ,

dϕk,γ
dγ

]0 > .

Using (A.12), (A.8), and Lemma 2 (proved in the section 3.6.2), we get (3.38) for γ ∈ [0, γ1], where
γ1 := min{γ0, γ

∗} with any constants Q1, Q2 satisfying

0 < Q1 6
2σ

πs

(
C−
C∗σ

− γ2C
∗C+π2

Cσ∗
√

6
− γ πC+C

Cσ∗

)
,

Q2 >
2σ

Cσ∗ π
s
C+
(

1 + γ2C
∗π2

√
6

+ γπC

)
.

We can assume C∗ 6 1 6 C∗. There exists γ2 ∈ (0, γ1] such that

C−
2C∗4

> γ2
2

C∗C+π2

C4
∗
√

6
+ γ2πC+.

In conclusion, for every γ ∈ [0, γ2], for every s ∈ {1, 3, 5, 7, 9} and for every ϕ ∈ Hs
(γ)(I,C), we have

(3.38) with

Q1 = min{ 1
Pπ

,
C−

2π9C∗4
},

Q2 = max{ 1
π
,

24

C4
∗π
C+
(

1 + γ2
2

C∗π2

√
6

+ γ2πC

)
}.�

In conclusion, for (ψ0, ψ1) ∈ F γ1 and θ > 1, we define

Sθ(ψ0, ψ1) := (Sθψ0, Sθψ1)

and this operator satisfies (3.10), (3.11), (3.12), (3.13).
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3.3.2 Smoothing operators on the spaces Eγa

In this section, we construct smoothing operators for the controls

Sθ : L2((0, T ),R) → H3
0 ((0, T ),R)

v 7→ Sθv

for which there exists a constant K such that, for every θ > 1, for every c ∈ {0, 1, 2, 3} and for every
v ∈ Hc((0, T ),R)

‖Sθv‖Hc 6 K‖v‖Hc , (3.39)

for every v ∈ H1
0 ((0, T ),R),

‖v − Sθv‖L2 6 Kθ−2‖v‖H1 (3.40)

and for every v ∈ H2
0 ((0, T ),R)

‖v − Sθv‖L2 6 Kθ−4‖v‖H2 . (3.41)

Then, the operator defined for (ψ0, v) ∈ Eγ1 = H1
0 (I,C)× L2((0, T ),R), by

Sθ(ψ0, v) := (Sθψ0, Sθv),

satisfies (3.10) and (3.12) with b = 1 and a ∈ {3, 5}.

We can assume T = 1. We will use convolution products on R in order to construct the smoothing
operators, as in [13]. The next proposition justifies that instead of dealing with functions v : [0, 1]→
R, we can deal with functions f : R+ → R, with Supp(f) ⊂ [0, 1] and which belong to Hc(R+,R)
when v ∈ Hc((0, 1),R) for some c ∈ {0, 1, 2, 3}. Then, considering f : R+ → R, we construct an
extension f̃ : R → R of f , with the same regularity. Those two first steps are the same as in [13].
Finally, we use a convolution product of f̃ with a smooth function ρθ to get a regular function and
we truncate with a smooth function vanishing on 0 and 1 in order to get the boundary conditions.
For this last step, our arguments are a little bit different from [13].

Proposition 4 Let h1, h2 ∈ C∞(R,R) be such that 0 6 h1, h2 6 1, h1+h2 = 1 on [0, 1] , Supp(h1) ⊂
[−1/4, 3/4], Supp(h2) ⊂ [1/4, 5/4]. Let v ∈ L2((0, 1),R) and f : R → R be defined by f(x) = v(x)
for x ∈ [0, 1] and f(x) = 0 for x ∈ (−∞, 0) ∪ (1,+∞). We define the functions

f1 : R+ → R
t 7→ (fh1)(t),

f2 : R+ → R
t 7→ (fh2)(1− t).

If v ∈ Hs((0, 1),R) for some s ∈ {0, 1, 2, 3} then fi ∈ Hs(R+,R) for i = 1, 2. Moreover, there
exists a constant c1 such that for every s ∈ {0, 1, 2, 3}, for every v ∈ Hs((0, 1),R), ‖fi‖Hs(R+,R) 6
c1‖v‖Hs((0,1),R).

Proposition 5 Let f ∈ L2(R+,R) with Supp(f) ⊂ [0, 1]. Let f̃ : R→ R be defined by

f̃(x) :=
{
f(x) if x > 0,
5f(−x)− 5f(−2x) + f(−4x) if x < 0.

Then, Supp(f̃) ⊂ [−1, 1]. If f ∈ Hs(R+,R) for some s ∈ {0, 1, 2, 3} then f̃ ∈ Hs(R,R). There
exists a constant c2 such that for every s ∈ {0, 1, 2, 3} and for every f ∈ Hs(R+,R), ‖f̃‖Hs(R,R) 6
c2‖f‖Hs(R+,R).
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Proof: The choice of the coefficients in f̃ gives f̃ (s)(0) = f (s)(0+) for any s ∈ {0, 1, 2} for which
it has a sense. �

Let ρ ∈ C∞(R,R) be such that

Supp(ρ) ⊂ [−1, 1] and
∫

R
ρ(x)dx = 1.

For θ > 1, we define ρθ(x) := θρ(θx). For f̃ ∈ L2(R,R), the function ρθ ∗ f̃ : R→ R is defined by

ρθ ∗ f̃(t) :=
∫

R
f̃(t+ τ)ρθ(τ)dτ.

Proposition 6 There exists a constant K′ such that, for every f̃ ∈ H1(R,R) with Supp(f̃) ⊂ [−1, 1],

‖f̃ − ρθ ∗ f̃‖L2((0,1),R) 6 K′ 1
θ
‖f̃‖H1(R,R), (3.42)

for every s ∈ {1, 2, 3}, for every f̃ ∈ Hs(R,R) with f (k)(0) = f (k)(1) = 0 for k = 0, ..., s − 1 and
Supp(f̃) ⊂ [−1, 1],

‖ρθ ∗ f̃‖L2((0,1/θ),R) 6 K′ 1
θs
‖f̃‖Hs(R,R), (3.43)

‖ρθ ∗ f̃‖L2((1−1/θ,1),R) 6 K′ 1
θs
‖f̃‖Hs(R,R), (3.44)

Proof: Let f̃ ∈ H1(R,R) be such that Supp(f̃) ⊂ [−1, 1]. For t ∈ R, we have

(ρθ ∗ f̃ − f̃)(t) =
∫

R

∫ 1

0
τ f̃ ′(t+ λτ)dλρθ(τ)dτ.

Using a function h ∈ L2(R,R) and Fubini’s theorem in∫
R
(ρθ ∗ f̃ − f̃)(t)h(t)dt

we get

‖ρθ ∗ f̃ − f̃‖L2(R,R) 6
1
θ
‖f̃‖H1(R,R)

(∫
R
|yρ(y)|dy

)
.

We first prove (3.43) for s = 1. Let f̃ ∈ H1(R,R) with Supp(f̃) ⊂ [−1, 1], f̃(0) = f̃(1) = 0. Let
r : R → R be such that ṙ = ρ and r(−1) = 0. Using Supp(ρ) ⊂ [−1, 1] and an integration by parts,
we get, for every t ∈ R

(ρθ ∗ f̃)(t) = f̃(t+
1
θ
)−

∫ 1/θ

−1/θ
f̃ ′(t+ τ)r(θτ)dτ.

Thanks to the condition f̃(0) = 0, we get∫ 1/θ

0
|f̃(t+

1
θ
)|2dt =

∫ 1/θ

0
|
∫ t+1/θ

0
f̃ ′(s)ds|2dt 6

3
2θ2
‖f̃ ′‖2L2 .

Using h ∈ L2((0, 1/θ),R) and Fubini’s theorem in∫ 1/θ

0
h(t)

∫ 1/θ

−1/θ
f̃ ′(t+ τ)r(θτ)dτdt
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we get

‖
∫ 1/θ

−1/θ
f̃ ′(t+ τ)r(θτ)dτ‖L2((0,1/θ),R) 6

1
θ

(∫ 1

−1
|r(x)|dx

)
‖f̃ ′‖L2 .

In conclusion, we have (3.43) for s = 1 with any constant K′ such that

K′ >
√

3√
2

+
∫ 1

−1
|r(x)|dx.

For the proof of (3.44) in the case s = 1, we use∫ 1

1−1/θ
|f̃(t+

1
θ
)|2dt =

∫ 1

1−1/θ
|
∫ t+1/θ

1
f̃ ′(s)ds|2dt,

and the same arguments.
Now, we prove (3.43) in the case s = 2. Let f̃ ∈ H2(R,R) with Supp(f̃) ⊂ [−1, 1], f (k)(0) =

f (k)(1) = 0 for k = 0, 1. Let R : R → R be such that Ṙ = r and R(−1) = 0. Using integrations by
parts, we get

(ρθ ∗ f̃)(t) = f̃(t+
1
θ
)− R(1)

θ
f̃ ′(t+

1
θ
) +

1
θ

∫ 1/θ

−1/θ
f̃ ′′(t+ τ)R(θτ)dτ.

Thanks to f̃(0) = f̃ ′(0) = 0, we get∫ 1/θ

0
|f̃(t+

1
θ
)|2dt 6

5
4θ4
‖f̃ ′′‖2L2 ,

∫ 1/θ

0
|f̃ ′(t+

1
θ
)|2dt 6

3
2θ2
‖f̃ ′′‖2L2 .

We conclude as in the proof of (3.43) for s = 1 that (3.43) for s = 2 is true with any constant K′
such that

K′ >
√

5
2

+
√

3√
2
|R(1)|+

∫ 1

−1
|R(x)|dx.

The proof of (3.44) in the case s = 2 is similar to the proof of (3.43) in the case s = 2 using
f̃(1) = f̃ ′(1) = 0 instead of f̃(0) = f̃ ′(0) = 0.

For the proof of (3.43) in the case s = 3, we use another integration by parts in (ρθ ∗ f̃)(t).�

For every θ > 1, we consider a function gθ ∈ C∞(R,R) such that

Supp(gθ) ⊂ [0, 1], g
(k)
θ (0) = g

(k)
θ (1) = 0 for k = 0, 1, 2,

gθ = 1 on [1/θ, 1− 1/θ], ‖g(k)
θ ‖∞ 6 Cθk for k = 0, 1, 2, 3,

where C is a constant which does not depend on θ. We define, for f̃ ∈ L2(R,R),

Rθf̃ := gθ(ρθ ∗ f̃).

Proposition 7 There exists a constant K such that, for every f̃ ∈ H1(R,R) with Supp(f̃) ⊂ [−1, 1],
we have

‖f̃ −Rθf̃‖L2((0,1),R) 6 K1
θ
‖f̃‖H1(R,R),

for every s ∈ {0, 1, 2, 3}, for every f̃ ∈ Hs(R,R) with Supp(f̃) ⊂ [−1, 1] and f (k)(0) = f (k)(1) = 0
for k = 0, ..., s− 1, we have

‖Rθf̃‖Hs((0,1),R) 6 K‖f̃‖Hs(R,R).
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Proof: Let f̃ ∈ H1(R,R) with Supp(f̃) ⊂ [−1, 1]. We have

‖f̃ −Rθf̃‖L2((0,1),R) 6 ‖(1− gθ)(ρθ ∗ f̃)‖L2((0,1),R) + ‖ρθ ∗ f̃ − f̃‖L2((0,1),R)

6 ‖ρθ ∗ f̃‖L2((0,1/θ),R) + ‖ρθ ∗ f̃‖L2((1−1/θ,1),R) + ‖ρθ ∗ f̃ − f̃‖L2((0,1),R).

Using the previous proposition, we get the first inequality.
Let s ∈ {0, 1, 2, 3} and f̃ ∈ Hs(R,R) be such that Supp(f̃) ⊂ [−1, 1] and f (k)(0) = f (k)(1) = 0

for k = 0, ..., s − 1. Let σ ∈ {0, ..., s}. Using the Leibniz’s formula, and the previous proposition on
the derivatives of f̃ , we get

‖(Rθf̃)(σ)‖L2((0,1),R) 6

(
2σ+1CK′ +

∫ 1

0
|ρ(x)|dx

)
‖f̃‖Hs(R,R).

Therefore

‖Rθf̃‖Hs((0,1),R) 6

(
2CK′

(
4s+1 − 1

3

)1/2

+
√
s

∫ 1

0
|ρ(x)|dx

)
‖f̃‖Hs(R,R).�

Finally, for v ∈ L2((0, 1),R), we define

(Sθv)(t) := (Rθ4 f̃1)(t) + (Rθ4 f̃2)(1− t).

Now, it is easy to get the inequalities (3.39), (3.40) and (3.41).

3.4 The map Φγ is twice differentiable and satisfies (3.17)

Using the results in appendix B, it is easy to prove the following proposition

Proposition 8 Let γ > 0 and T > 0 be such that Tγ <
√

2/
√

17. We define

Bγ,T := {v ∈ L2((0, T ),R);Tγ + ‖v‖L1((0,T ),R) <

√
2√
17
}.

For every s ∈ {1, 3, 5, 7}, Φγ is a continuous map from

[Hs
(γ)(I,C) ∩ S]× [H(s−1)/2

0 ((0, T ),R) ∩Bγ,T ]

into
[Hs

(γ)(I,C) ∩ S]× [Hs
(γ)(I,C) ∩ S].

Proposition 9 Let γ > 0 and T > 0 be such that Tγ <
√

2/
√

17. The map

Φγ : [H7
(γ)(I,C) ∩ S]× [H3

0 ((0, T ),R) ∩Bγ,T ]→ F γ7

is differentiable and for every

(ψ0, v) ∈ [H7
(γ)(I,C) ∩ S]× [H3

0 ((0, T ),R) ∩Bγ,T ],

for every
(φ0, ν) ∈ [Tψ0S ∩H7

(γ)(I,C)]×H3
0 ((0, T ),R),

we have
Φ′γ(ψ0, v).(φ0, ν) = (φ0, φT ),
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where φ is the solution of  iφ̇ = −1
2φ

′′ − u(t)qφ− ν(t)qψ,
φ(0) = φ0,
φ(t,−1

2) = φ(t, 1
2) = 0,

with u(t) = γ + v(t) and ψ is the solution of iψ̇ = −1
2ψ

′′ − u(t)qψ,
ψ(0) = ψ0,
ψ(t,−1

2) = ψ(t, 1
2) = 0.

Proof: Let us introduce the solution ξ of iξ̇ = −1
2ξ
′′ − (u+ ν)(t)qξ,

ξ(0) = ψ0 + φ0,
ξ(t,−1

2) = ξ(t, 1
2) = 0.

Then
Φγ(ψ0 + φ0, v + ν)− Φγ(ψ0, v)− (φ0, φT ) = (0,∆(T )),

where ∆ := ξ − ψ − φ solves 
i∆̇ = −1

2∆′′ − u(t)q∆− ν(t)q(ξ − ψ),
∆(0) = 0,
∆(t,−1

2) = ∆(t, 1
2) = 0.

Let f := νqη where η := ξ − ψ. Using Proposition 51 in Appendix B, we get

‖∆(T )‖H7 6 CAu(f),

with

Au(f) := ‖f‖C0([0,T ],H5) + ‖ḟ‖C0([0,T ],H3) + ‖f̈‖L1((0,T ),H2) + ‖∂
3f
∂t3
‖L1((0,T ),H1)+

‖u‖W 2,1‖f‖W 1,1((0,T ),H1) + ‖u‖W 3,1‖f‖L1((0,T ),H1).
(3.45)

There exists a constant C such that

‖f‖C0([0,T ],H5) 6 C‖ν‖H1‖η‖H5 ,

‖ḟ‖C0([0,T ],H3) 6 C[‖ν‖H2‖η‖H3 + ‖ν‖H1‖η̇‖H3 ],
‖f̈‖L1((0,T ),H2) 6 C[‖ν‖H2‖η‖H2 + ‖ν‖H1‖η̇‖H2 + ‖ν‖L2‖η̈‖H2 ],
‖∂

3f
∂t3
‖L1((0,T ),H1) 6 C[‖ν‖H3‖η‖H1 + ‖ν‖H2‖η̇‖H1 + ‖ν‖H1‖η̈‖H1 + ‖ν‖L2‖∂

3η
∂t3
‖H1 ],

where ‖∂
kη
∂tk
‖Hs := ‖∂

kη
∂tk
‖C0([0,T ],Hs). The function η satisfies the equations

iη̇ = −1
2η
′′ − (u+ ν)(t)qη − ν(t)qψ,

η(0) = φ0,
η(t,−1

2) = η(t, 1
2) = 0.

We work with ν small in H3
0 ((0, T ),R), so we can assume ‖u+ν‖L1 <

√
2/
√

17 and apply the bounds
given in appendix B on η. Thanks to Proposition 45 we get

‖η‖H1 6 q1(η) := C(‖φ0‖H1 + ‖ν‖L2‖ψ0‖H1).

Thanks to Proposition 47 in appendix B, the norms ‖η̇‖H1 and ‖η‖H3 can be dominated by the same
quantity

q3(η) := C[‖φ0‖H3 + ‖ν‖H1‖ψ0‖H3 ].

25



Thanks to Proposition 49 in appendix B, the norms ‖η̈‖H1 , ‖η̇‖H3 , ‖η‖H5 can be dominated by the
same quantity

q5(η) := C[‖φ0‖H5 + ‖ν‖H2‖ψ0‖H5 + ‖u+ ν‖H2(‖φ0‖H1 + ‖ν‖L2‖ψ0‖H1)].

Thanks to Propositions 49 and 51 in appendix B, the norms ‖∂3η/∂t3‖H1 and ‖η̈‖H2 can be dominated
by the same quantity

q7(η) := C[‖φ0‖H7 + ‖ν‖H3‖ψ0‖H7 + ‖u+ ν‖H3(‖φ0‖H3 + ‖ν‖H1‖ψ0‖H3)].

We have
Au(f) 6 C[‖ν‖L2q7(η) + ‖ν‖H1q5(η) + ‖ν‖H2q3(η) + ‖ν‖H3q1(η)]

6 4C‖ν‖H3q7(η)
6 C‖ν‖H3(‖φ0‖H7 + ‖ν‖H3)(1 + ‖ψ0‖H7 + ‖u‖H3).

We have proved that, for every (φ0, ν) ∈ Eγ7 small enough

‖Φγ(ψ0 + φ0, v + ν)− Φγ(ψ0, v)− (φ0, φT )‖F γ
7

6 C‖(φ0, ν)‖2Eγ
7
.�

Theorem 7 Let T > 0 and γ > 0 be such that Tγ <
√

2/
√

17. The map

Φγ : [H7
(γ)(I,C) ∩ S]× [H3

0 ((0, T ),R) ∩Bγ,T ]→ F γ7

is twice differentiable and for every

(ψ0, v) ∈ [H7
(γ)(I,C) ∩ S]× [H3

0 ((0, T ),R) ∩Bγ,T ],

for every
(φ0, ν), (ξ0, µ) ∈ [Tψ0S ∩H7

(γ)(I,C)]×H3
0 ((0, T ),R),

we have
Φ′′γ(ψ0, v).((φ0, ν), (ξ0, µ)) = (0, h(T )),

where h is the solution of  iḣ = −1
2h

′′ − u(t)qh− ν(t)qξ − µ(t)qφ,
h(0) = 0,
h(t,−1

2) = h(t, 1
2) = 0,

where u(t) = γ + v(t), ξ, φ and ψ are the solutions of iξ̇ = −1
2ξ
′′ − u(t)qξ − µ(t)qψ,

ξ(0) = ξ0,
ξ(t,−1

2) = ξ(t, 1
2) = 0, iφ̇ = −1

2φ
′′ − u(t)qφ− ν(t)qψ,

φ(0) = φ0,
φ(t,−1

2) = φ(t, 1
2) = 0, iψ̇ = −1

2ψ
′′ − u(t)qψ,

ψ(0) = ψ0,
ψ(t,−1

2) = ψ(t, 1
2) = 0.
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Proof: We prove the existence of a constant C > 0 such that, when ‖(φ0, ν)‖Eγ
7
< 1,

‖[dΦγ(ψ0 + φ0, v + ν)− dΦγ(ψ0, v)].(ξ0, µ)− (0, h(T ))‖F γ
7

6 C‖(φ0, ν)‖2E7
‖(ξ0, µ)‖Eγ

7
.

Let us introduce the solutions k and ϕ of the following systems ik̇ = −1
2k

′′ − (u+ ν)(t)qk − µqϕ,
k(0) = ξ0,
k(t,−1

2) = k(t, 1
2) = 0,

iϕ̇ = −1
2ϕ

′′ − (u+ ν)(t)qϕ,
ϕ(0) = ψ0 + φ0,
ϕ(t,−1

2) = ϕ(t, 1
2) = 0,

so that
dΦγ(ψ0 + φ0, v + ν).(ξ0, µ) = (ξ0, k(T )).

We have
[dΦγ(ψ0 + φ0, v + ν)− dΦγ(ψ0, v)].(ξ0, µ)− (0, h(T )) = (0,Λ(T )),

where Λ := k − ξ − h solves
iΛ̇ = −1

2Λ′′ − (u+ ν)(t)qΛ− ν(t)qh− µ(t)q(ϕ− ψ − φ),
Λ(0) = 0,
Λ(t,−1

2) = Λ(t, 1
2) = 0.

Let f := ν(t)qh + µ(t)q(ϕ − ψ − φ). Thanks to Proposition 51, in appendix B, we know that
‖Λ‖H7 6 CA(u+ν)(f) where A is defined in the previous proof by the expression (3.45). In the same
way as in the previous proof, there exists a constant C1 such that

Au+ν(f) 6 C1[‖ν‖H3q7(h) + ‖µ‖H3q7(ψ + φ− ϕ)],

where q7(.) denotes the upper bound on the H7-norm given in Proposition 51 in the general case. In
particular, we have

q7(h) 6 C[‖ν‖H3q7(ξ) + ‖µ‖H3q7(φ)],

with
q7(ξ) 6 C[‖ξ0‖H7 + ‖µ‖H3‖ψ0‖H7 ],

q7(φ) 6 C[‖φ0‖H7 + ‖ν‖H3‖ψ0‖H7 ].

So there exists a constant C2 depending only on (ψ0, u) such that

q7(h) 6 C2(‖φ0‖H7 + ‖ν‖H3)(‖ξ0‖H7 + ‖µ‖H3).

We have 
i ∂∂t(ψ + φ− ϕ) = −1

2(ψ + φ− ϕ)′′ − u(t)q(ψ + φ− ϕ)− ν(t)q(ψ − ϕ),
(ψ + φ− ϕ)(0) = 0,
(ψ + φ− ϕ)(t,−1

2) = (ψ + φ− ϕ)(t, 1
2) = 0,

so
q7(ψ + φ− ϕ) 6 C‖ν‖H3q7(ψ − ϕ).

We have 
i ∂∂t(ψ − ϕ) = −1

2(ψ − ϕ)′′ − (u+ ν)q(ψ − ϕ) + νqψ,
(ψ − ϕ)(0) = φ0,
(ψ − ϕ)(t,−1

2 = (ψ − ϕ)(t, 1
2) = 0,
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so
q7(ψ − ϕ) 6 C[‖φ0‖H7 + ‖ν‖H3‖ψ0‖H7 ].

Finally, there exists a constant C3 depending only on (ψ0, u) such that

q7(ψ + φ− ϕ) 6 C3(‖φ0‖H7 + ‖ν‖H3)2.

We conclude

‖Λ(T )‖H7 6 CC1(C2 + C3)(‖φ0‖H7 + ‖ν‖H3)2(‖ξ0‖H7 + ‖µ‖H3).�

Proposition 10 Let γ > 0 and T > 0 be such that Tγ <
√

2/
√

17. For every bounded subset B of
Eγ3 , there exists a constant C such that for every

(ψ0, v) ∈ [H7
(γ)(I,C) ∩ S]× [H3

0 ((0, T ),R) ∩Bγ,T ] with (ψ0, v) ∈ B,

for every
(φ0, ν), (ξ0, µ) ∈ [Tψ0S ∩H7

(γ)(I,C)]×H3
0 ((0, T ),R),

we have

‖Φ′′γ((ψ0, v); (φ0, ν), (ξ0, µ))‖H7×H7 6 C
∑

(1 + ‖(ψ0, v)‖m′
j
)‖(φ0, ν)‖m′′

j
‖(ξ0, µ)‖m′′′

j

where the sum is finite, all the subscripts belong to {1, 3, 5, 7} and satisfy for every j

max(m′
j − α, 0) +max(m′′

j , 1) +m′′′
j < 2α. (3.46)

Proof: Let f1 := νqξ and f2 := µqφ. Using Proposition 51, we get

‖h‖H7 6 Au(f1) +Au(f2),

where Au(f) is defined by (3.45). In the same way as in the proof of the differentiability of Φγ , we
have

A(f1) 6 ‖ν‖L2 [q7(ξ) + ‖u‖H2‖ξ̇‖H1 + ‖u‖H3‖ξ‖H1 ] + ‖ν‖H1 [q5(ξ) + ‖u‖H2‖ξ‖H1 ]+
‖ν‖H2q3(ξ) + ‖ν‖H3q1(ξ).

where qi(ξ) is the upper bound of the H i-norm of ξ given in Propositions 45, 47,49, 51. We have

q1(ξ) 6 C[‖ξ0‖H1 + ‖µ‖L2‖ψ0‖H1 ],

q3(ξ) 6 C[‖ξ0‖H3 + ‖µ‖H1‖ψ0‖H1 + ‖µ‖L2‖ψ0‖H3 ],

q5(ξ) 6 C[‖ξ0‖H5 + ‖µ‖H2‖ψ0‖H1 + ‖µ‖H1‖ψ0‖H3 + ‖µ‖L2‖ψ0‖H5+
‖u‖H2(‖ξ0‖H1 + ‖µ‖L2‖ψ0‖H1)],

q7(ξ) 6 C[‖ξ0‖H7 + ‖µ‖H3‖ψ0‖H1 + ‖µ‖H2‖ψ0‖H3 + ‖µ‖H1‖ψ0‖H5 + ‖µ‖L2‖ψ0‖H7+
‖u‖H3(‖ξ0‖H1 + ‖µ‖L2‖ψ0‖H1) + ‖u‖H2(‖ξ0‖H3 + ‖µ‖H1‖ψ0‖H1 + ‖µ‖L2‖ψ0‖H3)].

We get a bound on A(f2) just by exchanging (φ0, ν) and (ξ0, µ). Finally, we get the following values

m′
j 1 1 1 1 3 3 3 5 5 7

m′′
j 1 7 3 5 1 5 3 1 3 1

m′′′
j 7 1 5 3 5 1 3 3 1 1

We check (3.46) by studying each column of this table. �
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3.5 Controllability of the linearized system around (ψ1,γ(t), γ) and bounds (3.19),
(3.20), (3.21), (3.22) in this case

Let γ > 0 and T > 0 be such that Tγ <
√

2/
√

17. Let (Ψ0,ΨT ) ∈ F γ7 be such that

< (< Ψ0, ψ1,γ(0) >) = < (< ΨT , ψ1,γ(T ) >) = 0. (3.47)

We are looking for w ∈ H3
0 ((0, T ),R) such that

T∫
0

w(t)ei(λk,γ−λ1,γ)tdt = − i

bk,γ
(< Ψ0, ϕk,γ > − < ΨT , ϕk,γ > eiλk,γT ) , ∀k ∈ N∗, (3.48)

‖w‖L2 6 C‖(Ψ0,ΨT )‖H3×H3 , ‖w‖H1
0

6 C‖(Ψ0,ΨT )‖H5×H5 ,

‖w‖H2
0

6 C‖(Ψ0,ΨT )‖H7×H7 , ‖w‖H3
0

6 C‖(Ψ0,ΨT )‖H9×H9 .

with a constant C which does not depend on Ψ0, ΨT , w. Our strategy is the following one. We give
an explicit solution for the moment problem Z(w) = d taken with γ = 0 and T = 4/π which satisfies
these estimates. Then we prove the linear maps Z and Zγ are closed enough to get a right inverse
for Zγ which satisfies the same estimates.

There is no contradiction between the existence of a solution of the moment problem Z(w) = d
and the non controllability of the linearized system around ψ1,0: there is no controllability because
some coefficients bk,0 vanish.

We introduce, for s ∈ R+, the space hs(N∗,C) and its subspace hsr(N∗,C) defined by

hs(N∗,C) := {d = (dk)k∈N∗ ; ‖d‖hs :=

(
+∞∑
k=1

|ksdk|2
)1/2

< +∞},

hsr(N∗,C) := {d ∈ hs(N∗,C); d1 ∈ R}.

We use the notation l2(N∗,C) and l2r(N∗,C) instead of h0(N∗,C) and h0
r(N∗,C).

Proposition 11 Let T = 4/π and γ ∈ [0, γ∗]. The linear map

Zγ : w 7→
(∫ T

0
w(t)e−i(λk,γ−λ1,γ)tdt

)
k∈N∗

is continuous from L2((0, T ),R) to l2r(N∗,C), from H1
0 ((0, T ),R) to h2

r(N∗,C), from H2
0 ((0, T ),R) to

h4
r(N∗,C), from H3

0 ((0, T ),R) to h6
r(N∗,C).

Proof: Let w ∈ L2((0, T ),R). We have

< w, ei(λk,γ−λ1,γ)t > = < w, ei(λk−λ1)t > + < w(eiλ1,γt − eiλ1t), eiλkt >
+ < weiλ1,γt, eiλk,γt − eiλkt > .

Since ( 1
T e

i 1
2
nπ2t)n∈Z is an orthonormal family of L2((0, T ),C), the two first terms of the right hand

side of this equality belong to l2(N∗,C) and

‖ < w, ei(λk−λ1)t > ‖l2 6 T‖w‖L2 ,

‖ < w(eiλ1t − eiλ1,γt), eiλkt > ‖l2 6 T‖w(eiλ1t − eiλ1,γt)‖L2 .

Using (A.11), we get
‖ < w(eiλ1t − eiλ1,γt), eiλkt > ‖l2 6 C∗T 2γ2‖w‖L2 ,
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‖ < weiλ1,γt, eiλk,γt − eiλkt > ‖l2 6 ‖w‖L2C∗γ2T

√
π2

6
.

For w ∈ H1
0 ((0, T ),R), we have

Zγ(w)k =
−i

λk,γ − λ1,γ
Zγ(ẇ)k−1.

Thanks to (A.12) and the previous result, we conclude the existence of a constant C such that, for
every w ∈ H1

0 ((0, T ),C), Zγ(w) ∈ h2(N∗,C) and ‖Zγ(w)‖h2 6 C‖ẇ‖L2 .
For w ∈ H2

0 ((0, T ),R), we have

Zγ(w)k−1 =
−1

(λk,γ − λ1,γ)2
Zγ(ẅ)k−1

and we conclude thanks to (A.12) and the previous result.
For w ∈ H3

0 ((0, T ),R), we have

Zγ(w)k−1 =
i

(λk,γ − λ1,γ)3
Zγ(

d3w

dt3
)k−1

and we conclude thanks to (A.12) and the previous result.�

Proposition 12 Let T = 4/π. There exists a continuous linear map

Z−1 : h6
r(N∗,C)→ H3

0 ((0, T ),R)

such that for every d ∈ h6
r(N∗,C), Z ◦ Z−1(d) = d. Moreover, there exists a constant C0 such that

for every d ∈ h6
r(N∗,C) the function w := Z−1(d) satisfies

‖w‖L2 6 C0‖d‖l2 , ‖w‖H1
0

6 C0‖d‖h2 , ‖w‖H2
0

6 C0‖d‖h4 , ‖w‖H3
0

6 C0‖d‖h6 . (3.49)

Proof: We introduce the notations, for k ∈ N

ωk := λk+1 − λ1, ω−k := −ωk.

Since λj = (jπ)2/2, ∀j ∈ N∗ then, ωk+1 − ωk > 3π2/2, ∀k ∈ Z.
Let d ∈ h6

r(N∗,C). We define d̃ ∈ h6(Z,C) by

d̃k := dk+1, d̃−k := dk+1 for every k ∈ N.

Since d̃ ∈ h6(Z,C) and d̃0 ∈ R the following expression

w(t) =

(
1
T

∑
k∈Z

d̃ke
iωkt

)
(1− ei

1
2
π2t)2(1− e−i

1
2
π2t)2

defines w ∈ H3
0 ((0, T ),R). The family (eiωjt/T )j∈Z is orthonormal in L2((0, T ),C). For every k ∈ Z,

ei(ωk+ 1
2
π2)t (resp: ei(ωk− 1

2
π2)t, resp: ei(ωk+π2)t, resp: ei(ωk−π2)t ) is orthogonal to Span{eiωjt; j ∈ Z}.

Therefore w solves Z(w) = d and satisfies (3.49). �

Proposition 13 Let T = 4/π. There exists a constant C1 > 0 such that for every γ ∈ [−γ∗, γ∗] and
for every w ∈ H3

0 ((0, T ),R),
‖(Zγ − Z)(w)‖F 6 C1γ

2‖w‖E , (3.50)

for every (E,F ) ∈ {(L2, l2), (H1
0 , h

2), (H2
0 , h

4), (H3
0 , h

6)}.
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Proof: For (E,F ) = (L2((0, T ),R), l2(N∗,C)), we have

(Zγ − Z)(w)k =< weiλ1,γt, eiλk,γt − eiλkt > + < w(eiλ1,γt − eiλ1t), eiλkt > .

The second term of the right hand side of this equality is a Fourier coefficient of the L2-function
t→ w(t)(eiλ1,γt − eiλ1t), it belongs to l2(N∗,C) and thanks to (A.11), we get

‖ < w(eiλ1,γt − eiλ1t), eiλkt > ‖l2(N∗,C) 6 T 2C∗γ2‖w‖L2((0,T ),C).

Using (A.11), we get

‖ < weiλ1,γt, eiλk,γt − eiλkt > ‖l2 6 C∗γ2T

√
π2

6
‖w‖L2 .

For (E,F ) = (H1
0 ((0, T ),R), h2(N∗,C)), we have

(Zγ − Z)(w)k = −i
(

1
λk,γ−λ1,γ

− 1
λk−λ1

)
< ẇ, ei(λk,γ−λ1,γ)t >

− i
λk−λ1

(Zγ − Z)(ẇ)k.

We conclude applying the previous result on ẇ, and using the inequality

| 1
λk,γ − λ1,γ

− 1
λk − λ1

| 6 Cγ2

k4
,

which is a consequence of (A.11).
For (E,F ) = (H2

0 ((0, T ),R), h4(N∗,C)), we have

(Zγ − Z)(w)k = −
(

1
(λk,γ−λ1,γ)2

− 1
(λk−λ1)2

)
< ẅ, ei(λk,γ−λ1,γ)t >

− 1
(λk−λ1)2

(Zγ − Z)(ẅ)k.

We conclude applying the first result on ẅ and the inequality

| 1
(λk,γ − λ1,γ)2

− 1
(λk − λ1)2

| 6 Cγ2

k6
,

which is a consequence of (A.11).
For (E,F ) = (H3

0 ((0, T ),R), h6(N∗,C)), we have

(Zγ − Z)(w)k = i
(

1
(λk,γ−λ1,γ)3

+ i
(λk−λ1)3

)
< d3w

dt3
, ei(λk,γ−λ1,γ)t >

− 1
(λk−λ1)3

(Zγ − Z)(d
3w
dt3

)k.

We conclude applying the first result on d3w/dt3 and the inequality

| 1
(λk,γ − λ1,γ)3

− 1
(λk − λ1)3

| 6 Cγ2

k8
,

which is a consequence of (A.11).�

Proposition 14 Let T = 4/π. There exists γ1 > 0 such that, for every γ ∈ [0, γ1], there exists a
continuous linear map

Z−1
γ : h6

r(N∗,C)→ H3
0 ((0, T ),R)

such that for every d ∈ h6
r(N∗,C), Zγ ◦ Z−1

γ (d) = d. Moreover, there exists a constant C2 such that
for every γ ∈ [0, γ1] and for every d ∈ h6

r(N,C), the function w := Z−1
γ (d) satisfies

‖w‖E 6 C2‖d‖F , for (E,F ) = (L2, l2), (H1
0 , h

2), (H2
0 , h

4), (H3
0 , h

6). (3.51)
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Proof: Let d ∈ h6
r(N∗,C). Let (wn)n∈N be the sequence in H3

0 ((0, T ),C) defined by induction by{
w0 = Z−1(d),
wn+1 = Z−1((Z − Zγ)(wn)),∀n ∈ N.

Then, we have

‖wn‖E 6 C0(C0C1γ
2)n‖d‖F with (E,F ) = (L2, l2), (H1

0 , h
2), (H2

0 , h
4), (H3

0 , h
6).

When C0C1γ
2 6 1/2,

∑
wn converges normally in H3

0 ((0, T ),R) and w =
∑∞

n=0wn satisfies Zγ(w) =
d and (3.51) with C2 := 2C0.�

Theorem 8 Let T = 4/π and γ0 ∈ (0, γ1). There exists a constant C and a continuous linear map

Π(ϕ1,γ ,γ) : [TS(ψ1,γ(0))× TS(ψ1,γ(T ))] ∩ F γ9 → Eγ7
(Ψ0,ΨT ) 7→ (Ψ0, w)

such that, for every (Ψ0,ΨT ) ∈ F γ9 satisfying

<(< Ψ0, ψ1,γ(0) >) = <(< ΨT , ψ1,γ(T ) >) = 0, (3.52)

we have
Φ′γ(ϕ1,γ , 0).Π(ϕ1,γ ,γ)(Ψ0,ΨT ) = (Ψ0,ΨT ),

‖w‖L2 6 C‖(Ψ0,ΨT )‖F γ
3
, ‖w‖H1

0
6 C‖(Ψ0,ΨT )‖F γ

5
,

‖w‖H2
0

6 C‖(Ψ0,ΨT )‖F γ
7
, ‖w‖H3

0
6 C‖(Ψ0,ΨT )‖F γ

9
.

Proof: We apply the previous proposition. The right hand side of the moment problem

T∫
0

w(t)ei(λk,γ−λ1,γ)tdt =
1

ibk,γ
(< Ψ0, ϕk,γ > − < ΨT , ϕk,γ > eiλk,γT ), ∀k > 1,

belongs to h6(N∗,C) because (Ψ0,ΨT ) ∈ F γ9 and |bk,γ | > cγ/k3 (see Proposition 1 in section 3.1).
The condition (3.52) implies that the first term of the right hand side of the moment problem belongs
to R.�

3.6 Controllability of the linearized system around (ψ(t), u(t)) and bounds (3.19),
(3.20), (3.21), (3.22)

3.6.1 Strategy

We use the same idea as in the previous subsection: we associate a linear map M(ψ0,u) to the
controllability of the linearized system around (ψ(t), u(t)),and we show this linear map is closed
enough to M(ϕ1,γ ,γ) to be surjective. More precisely, we use the following proposition.

Proposition 15 Let T = 4/π, M and Mγ be bounded linear operators from L2((0, T ),R) to h3(N∗,C),
from H1

0 ((0, T ),R) to h5(N∗,C), from H2
0 ((0, T ),R) to h7(N∗,C) and from H3

0 ((0, T ),R) to h9(N∗,C).
We assume there exist a continuous linear operator M−1

γ : h9(N∗,C)→ H3
0 ((0, T ),R) and a positive

constant C0 such that for every d ∈ h9(N∗,C), Mγ ◦M−1
γ (d) = d and ‖M−1

γ (d)‖E 6 C0‖d‖F for
every (E,F ) ∈ {(L2, h3), (H1

0 , h
5), (H2

0 , h
7), (H3

0 , h
9)}. We also assume there exist positive constants

C1, ∆3, ∆5, ∆7, ∆9 with C0C1∆3 6 1/2, satisfying, for every w ∈ H3
0 ((0, T ),R)

‖(M −Mγ)(w)‖h3 6 C1∆3‖w‖L2 ,
‖(M −Mγ)(w)‖h5 6 C1[∆3‖w‖H1

0
+ ∆5‖w‖L2 ],

‖(M −Mγ)(w)‖h7 6 C1[∆3‖w‖H2
0

+ ∆5‖w‖H1
0

+ ∆7‖w‖L2 ],
‖(M −Mγ)(w)‖h9 6 C1[∆3‖w‖H3

0
+ ∆5‖w‖H2

0
+ ∆7‖w‖H1

0
+ ∆9‖w‖L2 ].
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Then, there exists a continuous linear operator M−1 : h9(N∗,C)→ H3
0 ((0, T ),R) such that for every

d ∈ h9(N∗,C), M ◦M−1(d) = d and the function w := M−1(d) satisfies

‖w‖L2 6 2C0‖d‖h3 ,
‖w‖H1

0
6 2C0[‖d‖h5 + 2C2∆5‖d‖h3 ],

‖w‖H2
0

6 2C0[‖d‖h7 + 2C2∆5‖d‖h5 + (2C2∆7 + 8C2
2∆2

5)‖d‖h3 ],
‖w‖H3

0
6 2C0[‖d‖h9 + 2C2∆5‖d‖h7 + (2C2∆7 + 8C2

2∆2
5)‖d‖h5+

(2C2∆9 + 16C2
2∆7∆5 + 48C3

2∆3
5)‖d‖h3 ].

where C2 := C0C1.

Proof: Let d ∈ h9(N∗,C). We construct by induction a sequence (wn)n∈N in H3
0 ((0, T ),R) by

w0 := M−1
γ (d),

wn+1 := M−1
γ ((Mγ −M)(wn)),∀n ∈ N.

Then, we have, for every n ∈ N

‖wn‖L2 6 C0C
n
2 ∆n

3‖d‖h3 ,

‖wn‖H1
0

6 C0C
n
2 [∆n

3‖d‖h5 + n∆n−1
3 ∆5‖d‖h3 ],

‖wn‖H2
0

6 C0C
n
2 [∆n

3‖d‖h7 + n∆5∆n−1
3 ‖d‖h5 + (n∆7∆n−1

3 + n(n− 1)∆2
5∆

n−2
3 )‖d‖h3 ],

‖wn‖H3
0

6 C0C
n
2 [∆n

3‖d‖h9 + n∆n−1
3 ∆5‖d‖h7 + (n∆n−1

3 ∆7 + n(n− 1)∆n−2
3 ∆2

5)‖d‖h5

+(n∆n−1
3 ∆9 + 2n(n− 1)∆n−2

3 ∆7∆5 + n(n− 1)(n− 2)∆n−3
3 ∆3

5)‖d‖h3 ].

When C2∆3 6 1/2,
∑
wn is normally convergent in H3

0 ((0, T ),R), and w :=
∑∞

n=0wn gives the
solution. �

Let v ∈ C∞([0, T ],R) be such that v(k)(0) = v(k)(T ) = 0 for every k ∈ N∗. Let u = γ + v,
ψ0 ∈ S ∩H9

(γ)(I,C) and ψ ∈ C0([0, T ], S ∩H9(I,C)) be the solution of ψ̇ = i
2ψ

′′ + iu(t)qψ,
ψ(0) = ψ0,
ψ(t,−1

2) = ψ(t, 1
2) = 0.

Let Ψ0 ∈ H7
(γ)(I,C) be such that <(< Ψ0, ψ0 >) = 0. The linearized control system around

(ψ(t), u(t)) is 
Ψ̇ = i

2Ψ′′ + iu(t)qΨ + iw(t)qψ,
Ψ(0) = Ψ0,
Ψ(t,−1

2) = Ψ(t, 1
2) = 0,

where the state is Ψ and the control is w. To get the controllability of the linearized system around
(ψ1,γ , γ) we decomposed the solution on the basis (ϕk,γ)k∈N∗ . The natural idea in the general case con-
sists in decomposing Ψ(t) on the basis (ϕk,u(t)), for every t: Ψ(t) =

∑∞
k=1 xk(t)ϕk,u(t). Unfortunately,

in this decomposition, the condition <(< Ψ(t), ψ(t) >) = 0 does not give any information, in partic-
ular x0(0), x0(T ) do not belong to iR. To take the conditions <(< Ψ0, ψ0 >) = <(< ΨT , ψT >) = 0
into account, we decompose Ψ(t) on (ξk(t))k∈N∗ defined by:

ξ1(t) = ψ(t),
ξk(t) = ϕk,u(t)− < ϕk,u(t), ψ(t) > ψ(t), for k > 2.

Remark: This family is independent when ψ0 ∈ L2(I,C), v ∈ H1
0 ((0, T ),R) and (ψ0, v) is closed

enough to (ϕ1,γ , 0) in L2(I,C)×H1
0 ((0, T ),R).
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In order to justify this point, it is sufficient to prove that these assumptions imply :

∀t ∈ [0, T ], x1(t) :=< ψ(t), ϕ1,u(t) >6= 0.

We have
ẋ1(t) = −iλ1,u(t)x1(t) + u̇(t) < ψ(t),

dϕ1,γ

dγ
]u(t) >,

x1(t) =
(
< ψ0, ϕ1,γ > +

∫ t

0
u̇(τ) < ψ(τ),

dϕ1,γ

dγ
]u(τ) > ei

∫ τ
0 λ1,u(s)dsdτ

)
e−i

∫ t
0 λ1,u(s)ds.

Thus

|x1(t)ei
∫ t
0 λ1,u(s)ds − 1| = | < ψ0 − ϕ1,γ , ϕ1,γ > +

∫ t
0 u̇(τ) < ψ(τ), dϕ1,γ

dγ ]u(τ) > ei
∫ τ
0 λ1,u(s)dsdτ |

6 ‖ψ0 − ϕ1,γ‖L2 + ‖u̇‖L2

√
TC∗,

and |x1(t)| > 1/2, for every t ∈ [0, T ], when (ψ0, u) is closed enough to (ϕ1,γ , 0) in L2(I,C) ×
H1((0, T ),R).

If we have a decomposition Ψ(t) =
∑∞

k=1 yk(t)ξk(t) then y1(t) =< Ψ(t), ψ(t) >∈ iR. We find such

a decomposition starting from the equality Ψ(t) =
∞∑
k=1

< Ψ(t), ϕk,u(t) > ϕk,u(t) and the coefficients

are:
y1(t) =< Ψ(t), ψ(t) >,

yk(t) =< Ψ(t), ϕk,u(t) > −
<Ψ(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>
< ψ(t), ϕk,u(t) > .

The function γ ∈ (γ∗, γ∗) 7→ ϕk,γ is analytic for every k ∈ N∗ (see appendix A) so yk ∈ C1([0, T ],C)
for every k ∈ N∗ and these functions satisfy the following ordinary differential equations

ẏ1(t) = iw(t) < qψ(t), ψ(t) >,
ẏk(t) = −iλk,u(t)yk(t) + iw(t) < qψ(t), ϕk,u(t) > +u̇(t) < Ψ(t), dϕk,γ

dγ ]u(t) >

−u̇(t)<Ψ(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>
< ψ(t), dϕk,γ

dγ ]u(t) > − d
dt

(
<Ψ(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>

)
< ψ(t), ϕk,u(t) >,

where dϕk,γ

dγ ]u(t) denotes the derivative of the map γ ∈ (−γ∗, γ∗) 7→ ϕk,γ ∈ L2((0, T ),C) considered
at the point γ = u(t). We decompose Ψ = Ψ1 + Ψ2 where Ψ1 does not depend on w and Ψ2 depends
on w linearly: 

Ψ̇1 = i
2Ψ′′

1 + iu(t)qΨ1,
Ψ1(0) = Ψ0,
Ψ1(t,−1

2) = Ψ1(t, 1
2) = 0,

Ψ̇2 = i
2Ψ′′

2 + iu(t)qΨ2 + iw(t)qψ,
Ψ2(0) = 0,
Ψ2(t,−1

2) = Ψ2(t, 1
2) = 0.

If v(0) = v(T ) = 0, the equality Ψ(T ) = ΨT is equivalent to

M(ψ0,u)(w) = d(Ψ0,ΨT ),

where M(ψ0,u)(w) is the sequence defined by

M(ψ0,u)(w)1 :=
∫ T
0 w(t) < qψ(t), ψ(t) > dt,

M(ψ0,u)(w)k :=
∫ T
0 [w(t) < qψ(t), ϕk,u(t) > −iu̇(t) < Ψ2(t),

dϕk,γ

dγ ]u(t) >

+iu̇(t)<Ψ2(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>
< ψ(t), dϕk,γ

dγ ]u(t) >

+i ddt
(
<Ψ2(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>

)
< ψ(t), ϕk,u(t) >]ei

∫ t
0 λk,u(s)dsdt, k > 2
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and d(Ψ0,ΨT ) is the sequence defined by

d(Ψ0,ΨT )1 := −i(< ΨT , ψT > − < Ψ0, ψ0 >),
d(Ψ0,ΨT )k := −i

(
< ΨT , ϕk,γ > −<ΨT ,ϕ1,γ>

<ψT ,ϕ1,γ>
< ψT , ϕk,γ >

)
ei

∫ T
0 λk,u(s)ds

+i
(
< Ψ0, ϕk,γ > −<Ψ0,ϕ1,γ>

<ψ0,ϕ1,γ>
< ψ0, ϕk,γ >

)
∫ T
0 [iu̇(t) < Ψ1(t),

dϕk,γ

dγ ]u(t) > −iu̇(t)
<Ψ1(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>
< ψ(t), dϕk,γ

dγ ]u(t) >

−i ddt
(
<Ψ1(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>

)
< ψ(t), ϕk,u(t) >]ei

∫ t
0 λk,u(s)dsdt, k > 2.

3.6.2 Preliminaries

Every term appearing in the problem M(ψ0,u)(w) = d(Ψ0,ΨT ) are of the general form:

S0 :=
(∫ T

0 w(t) < f(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

)
k∈N∗

,

S1 :=
(∫ T

0 w(t) < f(t), dϕk,γ

dγ ]u(t) > ei
∫ t
0 λk,u(s)dsdt

)
k∈N∗

.

This is why we dedicate this subsection to the research of bounds for the h3, h5, h7 and h9-norms of
such terms. For technical reasons, we also find bounds on

S2 :=
(∫ T

0
w(t) < f(t),

d2ϕk,γ
dγ2

]u(t) > ei
∫ t
0 λk,u(s)dsdt

)
k∈N∗

.

Lemma 2 There exists a constant C > 0 such that, for every γ ∈ [−γ∗, γ∗] and for every f ∈
L2(I,C),

∞∑
k=1

| < f, k
dϕk,γ
dγ

]γ1 > |2 6 C‖f‖2L2 .

Proof: We first prove the inequality when γ = 0. We use the explicit formula (A.4) or (A.5)

k
dϕk,γ
dγ

]0 =
∞∑
j=0

aj,kϕj

where aj,k = 0 when j and k have the same parity and

aj,k =
16(−1)

k+j+1
2 k2j

π4(j + k)3(j − k)3
.

when j and k have different parity. We check there exists a constant C such that

∀k ∈ N∗,
∞∑
j=1

|aj,k| 6 C and ∀j ∈ N∗,
∞∑
k=1

|aj,k| 6 C.

Therefore, for every (xj)j∈N∗ ∈ l2(N∗,C),

∞∑
k=1

|
∞∑
j=1

ak,jxj |2 6 C2
∞∑
j=1

|xj |2.

Let γ ∈ [−γ∗, γ∗] and f ∈ L2(I,C). For every k ∈ N∗, we have

| < f, k
dϕk,γ
dγ

]γ > | 6 | < f, k
dϕk,γ
dγ

]0 > |+ ‖f‖L2k‖
dϕk,γ
dγ

]0 −
dϕk,γ
dγ

]γ‖L2 .

We conclude thanks to the previous result and the inequality (A.17). �
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Lemma 3 There exists a constant C > 0 such that, for every γ ∈ [−γ∗, γ∗] and for every f ∈
H1(I,C),

(k < f, ϕk,γ >)k∈N∗ =
(√

2(−1)k+1+[k/2]

π (f(1/2)− (−1)kf(−1/2))
)
k∈N∗

+ terms with an l2-norm bounded by C‖f‖H1 .

Proof: We have

< f, ϕk,γ >=< f, ϕk,γ − ϕ̃k,γ > +γ < f,
dϕk,γ
dγ

]0 > + < f, ϕk > .

The first term of the right hand side of this equality belongs to h1(N∗,C) thanks to (A.8) and

‖ < f, ϕk,γ − ϕ̃k,γ > ‖h1 6 ‖f‖L2C∗γ2

√
π2

6
.

The second one belongs to h1(N∗,C) and its h1-norm can be bounded by Cγ‖f‖L2 thanks to Lemma
2. Using the explicit expression of ϕk given in Appendix B and an integration by parts, we get

< f, ϕk >=
(−1)k+1+[k/2]

√
2

kπ

(
f(1/2)− (−1)kf(−1/2)

)
+

(−1)k

kπ
< f ′,

1
kπ
ϕ′k > .

The family ((1/kπ)ϕ′k) is orthonormal in L2(I,C) so the second term of the right hand side of this
equality belongs to h1(N∗,C) and its h1-norm is bounded by C‖f ′‖L2 .�

Lemma 4 There exists a constant C > 0 such that, for every γ ∈ [−γ∗, γ∗] and for every f ∈
H3 ∩H1

0 (I,C),(
k3 < f, ϕk,γ >

)
k∈N∗ =

(
2
√

2(−1)k+1+[k/2]

π3 (Aγf(1/2)− (−1)kAγf(−1/2))
)
k∈N∗

+ terms with an l2norm bounded by C‖f‖H3 .

Proof: We have

k3 < f, ϕk,γ >= k3

(
1
λk,γ

− 1
λk

)
< Aγf, ϕk,γ > +

2k
π2

< Aγf, ϕk,γ > .

The first term of the right hand side of this equality belongs to l2(N∗,C) thanks to (A.13) and its
l2-norm is bounded by C‖Aγf‖L2 . We conclude applying the previous lemma to the second term. �

Lemma 5 There exists a constant C > 0 such that, for every γ ∈ [−γ∗, γ∗] and for every f ∈
H2 ∩H1

0 (I,C),
∞∑
k=1

|k3 < f,
dϕk,γ
dγ

]γ > |2 6 C‖f‖2H2 .

Proof: Using the equation (A.14) and integrations by parts we get

< f,
dϕk,γ

dγ ]γ > = 1
λk,γ

< Aγf,
dϕk,γ

dγ ]γ > − 1
λ2

k,γ
< Aγ(qf), ϕk,γ > −

λ′k,γ

λk,γ
< f, ϕk,γ > .

We use Lemma 2 and (A.12) in the first term of the right hand side of this equality. We use the
Cauchy-Schwarz inequality and (A.12) in the second one. We conclude thanks to (A.15) and (A.12)
in the third term of the right hand side. �
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Lemma 6 There exists a constant C such that, for every γ ∈ [−γ∗, γ∗] and for every f ∈ H2 ∩
H1

0 (I,C),
∞∑
k=1

|k3 < f,
d2ϕk,γ
dγ2

]γ > |2 6 C‖f‖2H2 .

Proof: Using the equation (A.20) and integrations by parts we get

< f,
d2ϕk,γ

dγ2 ]γ > = 1
λk,γ

< Aγf,
d2ϕk,γ

dγ2 ]γ > −
2λ′k,γ

λk,γ
< f,

dϕk,γ

dγ ]γ >

− 2
λk,γ

< qf,
dϕk,γ

dγ ]γ > −
λ′′k,γ

λk,γ
< f, ϕk,γ > .

We use (A.21) and (A.12) in the first term of the right hand side of this equality. We use (A.19),
(A.18) and (A.12) in the second one. We apply Lemma 2 on the third term, together with (A.12).
We conclude using (A.22), (A.12) and the orthonormality of the family (ϕk,γ)k∈N∗ in the last term.�

Lemma 7 There exists a constant C > 0 such that, for every γ ∈ [−γ∗, γ∗] and for every f ∈
H2 ∩H1

0 (I,C),
∞∑
k=1

|k3 < f,
d3ϕk,γ
dγ3

]γ > |2 6 C‖f‖2H2 .

Proof: Using the equation (A.24) and integrations by parts we get

< f,
d3ϕk,γ

dγ3 ]γ > = 1
λk,γ

< Aγf,
d3ϕk,γ

dγ3 ]γ > −
3λ′k,γ

λk,γ
< f,

d2ϕk,γ

dγ2 ]γ > − 3
λk,γ

< qf,
d2ϕk,γ

dγ2 ]γ >

−3λ′′k,γ

λk,γ
< f,

dϕk,γ

dγ ]γ > −
λ′′′k,γ

λ2
k,γ

< Aγf, ϕk,γ > .

We deal with each term, one by one, using the Cauchy-Schwarz inequality and the bounds (A.25),
(A.21), (A.18), (A.19), (A.22), (A.26) and (A.12). �

Lemma 8 Let T = 4/π and u ∈ L∞((0, T ),R) be such that ‖u‖L∞ 6 γ∗. There exists a constant
C > 0 such that, for every f ∈ L2((0, T ),C),(∫ T

0
f(t)ei

∫ t
0 λk,u(s)dsdt

)
k∈N∗

belongs to l2(N∗,C) and its l2-norm is bounded by C‖f‖L2.

Proof: We have∫ T

0
f(t)ei

∫ t
0 λk,u(s)dsdt =

∫ T

0
f(t)eiλktdt+

∫ T

0
f(t)(ei

∫ t
0 λk,u(s)ds − eiλkt)dt.

The first term of the right hand side of this equality belongs to l2(N∗,C) because it is a Fourier
coefficient of an L2-function. In the second one, we use

|ei
∫ t
0 λk,u(s)ds − eiλkt| 6

∫ t

0
|λk,u(s) − λk|ds 6

C∗‖u‖2L2

k
,

which is a consequence of (A.11). �

Proposition 16 There exists a constant C > 0 such that, for every u ∈ L∞((0, T ),R) satisfying
‖u‖∞ 6 γ∗, for every f ∈ C0([0, T ],H3 ∩H1

0 (I,C)) and for every w ∈ L2((0, T ),R), S0 belongs to
h3(N∗,C) and

‖S0‖h3 6 C‖w‖L2‖f‖C0([0,T ],H3).
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Proof: Thanks to Lemma 4 and the Cauchy-Schwarz inequality, we have

k3S0
k =

∫ T
0 w(t)2

√
2(−1)k+1+[k/2]

π3 (Aγf(t, 1/2)− (−1)kAγf(t,−1/2))ei
∫ t
0 λk,u(s)dsdt

+ terms with an l2-norm bounded by C‖f‖C0([0,T ],H3)‖w‖L2 .

Therefore

‖k3S0
k‖l2 6 ‖

∫ T
0 w(t)2

√
2

π3 (Aγf(t, 1/2)−Aγf(t,−1/2))ei
∫ t
0 λk,u(s)dsdt‖l2

+‖
∫ T
0 w(t)2

√
2

π3 (Aγf(t, 1/2) +Aγf(t,−1/2))ei
∫ t
0 λk,u(s)dsdt‖l2

+ terms with an l2-norm bounded by C‖w‖L2‖f‖C0([0,T ],H3).

We conclude applying Lemma 8 on the two first terms of the right hand side of this inequality. �

Proposition 17 There exists a constant C > 0 such that, for every u ∈ L∞((0, T ),R) satisfying
‖u‖∞ 6 γ∗, for every f ∈ C0([0, T ],H2 ∩H1

0 (I,C)) and for every w ∈ L2((0, T ),R), S1 belongs to
h3(N∗,C) and

‖S1‖h3 6 C‖w‖L2‖f‖C0([0,T ],H2).

Proof: We use the Cauchy-Schwarz inequality in L2((0, T ),C) and Lemma 5. �

Proposition 18 There exists a constant C > 0 such that, for every u ∈ L∞((0, T ),R) satisfying
‖u‖∞ 6 γ∗, for every f ∈ C0([0, T ],H2 ∩H1

0 (I,C)) and for every w ∈ L2((0, T ),C), S2 belongs to
h3(N∗,C) and

‖S2‖h3 6 C‖w‖L2‖f‖C0([0,T ],H2).

Proof: We use the Cauchy-Schwarz inequality in L2((0, T ),C) and Lemma 6. �

Proposition 19 There exists a constant C > 0 such that, for every u ∈ H1((0, T ),R) satisfying
‖u‖H1 6 γ∗ and ‖u‖L∞ 6 γ∗, for every f ∈ C1([0, T ],H3∩H1

0 (I,C)) and for every w ∈ H1
0 ((0, T ),C),

S0 belongs to h5(N∗,C) and

‖S0‖h5 6 C[‖w‖L2‖f‖C1([0,T ],H3) + ‖w‖H1‖f‖C0([0,T ],H3)],(
S0
k

)
k>2

=
(
i
λk

∫ T
0 [ẇ(t) < f(t), ϕk,u(t) > +w(t) < ḟ(t), ϕk,u(t) >]ei

∫ t
0 λk,u(s)dsdt

)
k>2

+ terms with an h5-norm bounded by:
C[‖w‖H1‖u‖H1‖f‖C0([0,T ],L2) + ‖w‖L2‖u‖H1(‖f‖C0([0,T ],H2) + ‖f‖C1([0,T ],L2))].

Proof: We have

S0
k = −

∫ T
0

1
iλk,u(t)

ẇ(t) < f(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

+
∫ T
0

1
iλ2

k,u(t)

w(t)u̇(t)λ′k,u(t) < f(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

−
∫ T
0

1
iλk,u(t)

w(t) < ḟ(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

−
∫ T
0

1
iλk,u(t)

w(t)u̇(t) < f(t), dϕk,γ

dγ ]u(t) > ei
∫ t
0 λk,u(s)dsdt.

We call this decomposition S0
k = Ak + Bk + Ck +Dk. Using

1
λk,u

= (
1
λk,u

− 1
λk

) +
1
λk
,

we get the decompositions A = A(1) +A(2), C = C(1) + C(2). We apply Proposition 16 for A(2) and
C(2), we get

‖A(2)‖h5 6 C‖w‖H1‖f‖C0([0,T ],H3),

‖C(2)‖h5 6 C‖w‖L2‖f‖C1([0,T ],H3).
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Thanks to (A.13), we get similarly

‖A(1)‖h5 6 C‖w‖H1‖u‖H1‖f‖C0([0,T ],L2),

‖C(1)‖h5 6 C‖w‖L2‖u‖H1‖f‖C1([0,T ],L2).

Using (A.12), the Cauchy-Schwarz inequality and Lemma 5, we get

|Dk| 6 ‖w‖L2

(∫ T
0 |u̇(t)

2
C∗(kπ)2

< f(t), dϕk,γ

dγ ]u(t) > |2dt
)1/2

,

‖D‖h5 6 C‖w‖L2‖u̇‖L2‖f‖C0([0,T ],H2).

Using (A.19) and the orthonormality of the family (ϕk,γ)k∈N∗ in L2(I,C), we get

‖B‖h5 6 C‖w‖L2‖u̇‖L2‖f‖C0([0,T ],L2).�

Proposition 20 There exists a constant C > 0 such that, for every u ∈ H1((0, T ),R) satisfying
‖u‖H1 6 γ∗ and ‖u‖L∞ 6 γ∗, for every f ∈ C1([0, T ],H2∩H1

0 (I,C)) and for every w ∈ H1
0 ((0, T ),C),

S1 belongs to h5 and

‖S1‖h5 6 C[‖w‖L2‖f‖C1([0,T ],H2) + ‖w‖H1‖f‖C0([0,T ],H2)].

Proof: We have

S1
k = −

∫ T
0

1
iλk,u(t)

ẇ(t) < f(t), dϕk,γ

dγ ]u(t) > ei
∫ t
0 λk,u(s)dsdt

+
∫ T
0

1
iλ2

k,u(t)

w(t)u̇(t)λ′k,u(t) < f(t), dϕk,γ

dγ ]u(t) > ei
∫ t
0 λk,u(s)dsdt

−
∫ T
0

1
iλk,u(t)

w(t) < ḟ(t), dϕk,γ

dγ ]u(t) > ei
∫ t
0 λk,u(s)dsdt

−
∫ T
0

1
iλk,u(t)

w(t)u̇(t) < f(t), d
2ϕk,γ

dγ2 ]u(t) > ei
∫ t
0 λk,u(s)dsdt.

We call this decomposition S1
k = Ek + Fk + Gk + Hk. Thanks to (A.12) and the Cauchy-Schwarz

inequality, we have

|Ek| 6 ‖w‖H1
C
k2

(∫ T
0 | < f(t), dϕk,γ

dγ ]u(t) > |2
)1/2

,

|Gk| 6 ‖w‖L2
C
k2

(∫ T
0 | < ḟ(t), dϕk,γ

dγ ]u(t) > |2
)1/2

,

|Hk| 6 ‖w‖L2
C
k2

(∫ T
0 |u̇(t) < f(t), d

2ϕk,γ

dγ2 ]u(t) > |2dt
)1/2

.

Using Lemma 5 for E , G and Lemma 6 for H, we get

‖E‖h5 6 C‖w‖H1‖f‖C0([0,T ],H2),

‖G‖h5 6 C‖w‖L2‖f‖C1([0,T ],H2),

‖H‖h5 6 C‖w‖L2‖u‖H1‖f‖C0([0,T ],H2).

Thanks to (A.12), (A.19) and (A.18), we have

|Fk| 6
C

k6
‖w‖L2‖u‖H1‖f‖C0([0,T ],L2),

‖F‖h5 6 C‖w‖L2‖u‖H1‖f‖C0([0,T ],L2).�

Proposition 21 There exists a constant C > 0 such that, for every u ∈ H1((0, T ),R) satisfying
‖u‖H1 6 γ∗ and ‖u‖H1 6 γ∗, for every f ∈ C1([0, T ],H2∩H1

0 (I,C)) and for every w ∈ H1
0 ((0, T ),C),

S2 belongs to h5(N∗,C) and

‖S2‖h5 6 C[‖w‖L2‖f‖C1([0,T ],H2) + ‖w‖H1‖f‖C0([0,T ],H2)].
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Proof: The proof is the same as the one of the previous proposition, using Lemma 6, 7 instead of
Lemma 5, 6 and (A.21) instead of (A.18). �

Proposition 22 There exists a constant C > 0 such that, for every u ∈ H2((0, T ),R) satisfying
‖u‖H1 6 γ∗ and ‖u‖L∞ 6 γ∗. for every f ∈ C2([0, T ],H3∩H1

0 (I,C)) and for every w ∈ H2
0 ((0, T ),R),

S0 belongs to h7(N∗,C) and

‖S0‖h7 6 C[‖w‖L2‖f‖C2([0,T ],H3) + ‖w‖H1(‖f‖C1([0,T ],H3) + ‖u‖H2‖f‖C0([0,T ],H2))
+‖w‖H2‖f‖C0([0,T ],H3)],

(S0)k>2 = ( −1
λ2

k

∫ T
0 [ẅ(t) < f(t), ϕk,u(t) > +2ẇ(t) < ḟ(t), ϕk,u(t) >

+w(t) < f̈(t), ϕk,u(t) >]ei
∫ t
0 λk,u(s)dsdt )k>2

+ terms with an h7-norm bounded by
C[‖w‖L2‖u‖H1‖f‖C2([0,T ],L2)+
‖w‖H1 [‖u‖H1‖f‖C1([0,T ],H2) + ‖u‖H2‖f‖C0([0,T ],H2)]+
‖w‖H2‖u‖H1‖f‖C0([0,T ],L2)].

Proof: We use the same decomposition as in the proof of Proposition 19. Using

1
λk,u

= (
1
λk,u

− 1
λk

) +
1
λk
,

we get the decompositions A = A(1) + A(2), C = C(1) + C(2), D = D(1) + D(2). Using (A.13) and
(A.12), we get

|A(1)
k | 6

C

k7

∫ T

0
|u(t)2ẇ(t) < Au(t)f(t), ϕk,u(t) > |dt.

Thanks to the Cauchy-Schwarz inequality and ‖u‖L∞ 6 γ∗, we get

|A(1)
k | 6

C

k7
‖u‖H1‖ẇ‖L2

(∫ T

0
| < Au(t)f(t), ϕk,u(t) > |2dt

)1/2

.

We conclude using the orthonormality of the family (ϕk,u)k∈N∗ . We study C(1) with the same argu-
ments. Finally, we get

‖A(1)‖h7 6 C‖ẇ‖L2‖u‖H1‖f‖C0([0,T ],H2),

‖C(1)‖h7 6 C‖w‖L2‖u‖H1‖f‖C1([0,T ],H2).

Using (A.13) and the Cauchy-Schwarz inequality, we get

|D(1)
k | 6

C

k5
‖u‖H1‖w‖L2

(∫ T

0
| < f(t),

dϕk,γ
dγ

]u(t) > |2dt
)1/2

.

We conclude thanks to Lemma 5 that

‖D(1)‖h7 6 C‖w‖L2‖u‖H1‖f‖C0([0,T ],H2).

We use Proposition 19 for A(2), B(2) and Proposition 20 for D(2) and we get

‖A(2)‖h7 6 C[‖w‖H1‖f‖C1([0,T ],H3) + ‖w‖H2‖f‖C0([0,T ],H3)],
‖C(2)‖h7 6 C[‖w‖L2‖f‖C2([0,T ],H3) + ‖w‖H1‖f‖C1([0,T ],H3)],
‖D(2)‖h7 6 C[‖w‖H1(‖u‖H1‖f‖C1([0,T ],H2) + ‖u‖H2‖f‖C0([0,T ],H2))].

Using (A.12), (A.19) and the Cauchy-Schwarz inequality, we get

|Bk| 6
C

k7
‖w‖L2

(∫ T

0
|u̇(t)|2| < Au(t)f(t), ϕk,u(t) > |2dt

)1/2

.
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We conclude thanks to the orthonormality of (ϕk,u)k∈N∗ that

‖B‖h7 6 C‖w‖L2‖u̇‖L2‖f‖C0([0,T ],H2).

In order to get the second result of this proposition, we apply the second part of Proposition 19 on
A(2) and C(2). �

Proposition 23 There exists a constant C > 0 such that, for every u ∈ H2((0, T ),R) satisfying
‖u‖H1 6 γ∗ and ‖u‖L∞ 6 γ∗, for every f ∈ C2([0, T ],H2∩H1

0 (I,C)) and for every w ∈ H2
0 ((0, T ),R),

S1 belongs to h7(N∗,C) and

‖S1‖h7 6 C[‖w‖L2‖f‖C2([0,T ],H2)

+‖w‖H1(‖u‖H2‖f‖C0([0,T ],H2) + ‖f‖C1([0,T ],H2))
+‖w‖H2‖f‖C0([0,T ],H2)].

Proof: We use the same decomposition as in the proof of Proposition 20. Using

1
λk,u

= (
1
λk,u

− 1
λk

) +
1
λk
,

we get the decompositions E = E(1) + E(2), G = G(1) + G(2), H = H(1) +H(2). Thanks to (A.11), we
get

|E(1)
k | 6

∫ T

0

C

k5
|u(t)2ẇ(t) < f(t),

dϕk,γ
dγ

]u(t) > |dt.

Using the Cauchy-Schwarz inequality and ‖u‖L∞ 6 γ∗ we get

|E(1)
k | 6

C

k5
‖u‖H1‖ẇ‖L2

(∫ T

0
| < f(t),

dϕk,γ
dγ

]u(t) > |2dt
)1/2

.

We conclude thanks to Lemma 5. We study G(1) with the same arguments. Finally, we get

‖E(1)‖h7 6 C‖w‖H1‖u‖H1‖f‖C0([0,T ],H2),

‖G(1)‖h7 6 C‖w‖L2‖u‖H1‖f‖C1([0,T ],H2).

Thanks to (A.11) and the Cauchy-Schwarz inequality, we get

|H(1)
k | 6

C

k5
‖w‖L2

(∫ T

0
|u̇(t) < f(t),

d2ϕk,γ
dγ2

]u(t) > |2dt
)1/2

.

We conclude thanks to Lemma 6 that

‖H(1)‖h7 6 C‖w‖L2‖u‖H1‖f‖C0([0,T ],H2).

Applying Proposition 20 for E(2), G(2) and Proposition 21 for H(2), we get

‖E(2)‖h7 6 C[‖w‖H1‖f‖C1([0,T ],H2) + ‖w‖H2‖f‖C0([0,T ],H2)],
‖G(2)‖h7 6 C[‖w‖L2‖f‖C2([0,T ],H2) + ‖w‖H1‖f‖C1([0,T ],H2)],
‖H(2)‖h7 6 C‖w‖H1 [‖u‖H1‖f‖C1([0,T ],H2) + ‖u‖H2‖f‖C0([0,T ],H2)].

Thanks to (A.12), (A.19) and the Cauchy-Schwarz inequality, we get

|Fk| 6
C

k5
‖u‖H1

(∫ T

0
|w(t) < f(t),

dϕk,γ
dγ

]u(t) > |2dt
)1/2

.

Using Lemma 5, we conclude that

‖F‖h7 6 C‖w‖L2‖u‖H1‖f‖C0([0,T ],H2).�
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Proposition 24 There exists a constant C > 0 such that, for every u ∈ H3((0, T ),R) satisfying
‖u‖H1 6 γ∗ and ‖u‖L∞ 6 γ∗, for every f ∈ C3([0, T ],H3∩H1

0 (I,C)) and for every w ∈ H3
0 ((0, T ),C),

S0 belongs to h9(N∗,C) and

‖S0‖h9 6 C{‖w‖L2‖f‖C3([0,T ],H3)+
‖w‖H1 [‖f‖C2([0,T ],H3) + ‖u‖H2‖f‖C1([0,T ],H2) + ‖u‖H3‖f‖C0([0,T ],H2)]+
‖w‖H2 [‖f‖C1([0,T ],H3) + ‖u‖H2‖f‖C0([0,T ],H2)] + ‖w‖H3‖f‖C0([0,T ],H3)},

(S0)k>2 = ( −1
λ2

k

∫ T
0 [d

3w
dt3

(t) < f(t), ϕk,u(t) > +3ẅ(t) < ḟ(t), ϕk,u(t) >

+3ẇ(t) < f̈(t), ϕk,u(t) > +w(t) < ∂3f
∂t3

(t), ϕk,u(t) >]ei
∫ t
0 λk,u(s)dsdt )k>2

+ terms with an h9-norm bounded by
C{‖w‖L2‖u‖H1‖f‖C3([0,T ],L2)+
‖w‖H1 [‖u‖H1‖f‖C2([0,T ],H2) + ‖u‖H2‖f‖C1([0,T ],H2) + ‖u‖H3‖f‖C0([0,T ],H2)]+
‖w‖H2 [‖u‖H1‖f‖C1([0,T ],H2) + ‖u‖H2‖f‖C0([0,T ],H2)] + ‖w‖H3‖u‖H1‖f‖C0([0,T ],L2)}.

Proof: We use the decomposition S0 = A + B + C + D introduced in the proof of Proposition
19. We have

Ak = −
∫ T
0

1
λ2

k,u(t)

ẅ(t) < f(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

+
∫ T
0

2
λ3

k,u(t)

ẇ(t)u̇(t)λ′k,u(t) < f(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

−
∫ T
0

1
λ2

k,u(t)

ẇ(t) < ḟ(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

−
∫ T
0

1
λ2

k,u(t)

ẇ(t)u̇(t) < f(t), dϕk,γ

dγ ]u(t) > ei
∫ t
0 λk,u(s)dsdt.

We call this decomposition A = Aa +Ab +Ac +Ad. Using

1
λ2
k,u

= (
1
λ2
k,u

− 1
λ2
k

) +
1
λ2
k

,

we get the decompositions: Aa = Aa,1 +Aa,2, Ac = Ac,1 +Ac,2, Ad = Ad,1 +Ad,2. We use

| 1
λ2
k,u

− 1
λ2
k

| 6 Cu2

k7
,

which is a consequence of (A.11) and (A.12), and the same kind of arguments as in the previous
proof. We get

‖Aa,1‖h9 6 C‖w‖H2‖u‖H1‖f‖C0([0,T ],H2),

‖Ac,1‖h9 6 C‖w‖H1‖u‖H1‖f‖C1([0,T ],H2),

‖Ad,1‖h9 6 C‖w‖H1‖u‖H1‖f‖C0([0,T ],H2).

We apply Proposition 19 for Aa,2, Cc,2 and Proposition 20 for Ad,2, we get

‖Aa,2‖h9 6 C[‖w‖H2‖f‖C1([0,T ],H3) + ‖w‖H3‖f‖C0([0,T ],H3)],
‖Ac,2‖h9 6 C[‖w‖H1‖f‖C2([0,T ],H3) + ‖w‖H2‖f‖C1([0,T ],H3)],
‖Ad,2‖h9 6 C‖w‖H2 [‖u‖H1‖f‖C1([0,T ],H2) + ‖u‖H2‖f‖C0([0,T ],H2)].

We have
‖Ab‖h9 6 C‖w‖H1‖u‖H1‖f‖C0([0,T ],H2),

therefore

‖A‖h9 6 C{‖w‖H3‖f‖C0([0,T ],H3) + ‖w‖H2 [‖f‖C1([0,T ],H3) + ‖u‖H2‖f‖C0([0,T ],H2)]+
‖w‖H1‖f‖C2([0,T ],H3)}.
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In the same way, we get

‖C‖h9 6 C{‖w‖H2‖f‖C1([0,T ],H3) + ‖w‖H1 [‖f‖C2([0,T ],H3) + ‖u‖H2‖f‖C1([0,T ],H2)]+
‖w‖L2‖f‖C3([0,T ],H3)},

‖D‖h9 6 C{‖w‖H2‖u‖H2‖f‖C0([0,T ],H2)+
‖w‖H1 [‖u‖H1‖f‖C2([0,T ],H2) + ‖u‖H2‖f‖C1([0,T ],H2) + ‖u‖H3‖f‖C0([0,T ],H2)]},

‖B‖h9 6 C{‖w‖H1‖u‖H2‖f‖C0([0,T ],H2) + ‖w‖L2‖u‖H1‖f‖C1([0,T ],H2)}.

For the second part of the proposition, we apply the second part of Proposition 19 to A(a,2), A(c,2),
C(a,2) and C(c,2). �

Proposition 25 There exists a constant C > 0 such that, for every u ∈ H3((0, T ),R) satisfying
‖u‖H1 6 γ∗ and ‖u‖L∞ 6 γ∗, for every f ∈ C3([0, T ],H2∩H1

0 (I,C)) and for every w ∈ H3
0 ((0, T ),C),

S1 belongs to h9(N∗,C) and

‖S1‖h9 6 C{‖w‖L2‖f‖C3([0,T ],H2) + ‖w‖H1 [‖f‖C2([0,T ],H2) + ‖u‖H2‖f‖C1([0,T ],H2)]+
‖w‖H2 [‖f‖C1([0,T ],H2) + ‖u‖H2‖f‖C0([0,T ],H2)] + ‖w‖H3‖f‖C0([0,T ],H2)}.

Proof: The strategy is the same as in the proof of the previous proposition.

3.6.3 Study of (M(ψ0,u) −M(ϕ1,γ ,γ))(w)

In this subsection, we get the bounds assumed in Proposition 15. Let γ ∈ (0, γ∗) and T = 4/π. For
every (ψ0, v) ∈ Eγ3 , we introduce the quantities

∆3 := γ + δ3 where δ3 := ‖(ψ0, v)− (ϕ1,γ , 0)‖E0
3
.

For every (ψ0, v) ∈ Eγ9 , we introduce the quantities

∆5 := γ + δ5, ∆7 := γ + δ7 + δ25 , ∆9 := γ + δ9 + δ7δ5 + δ35 ,

where δi := ‖(ψ0, u) − (ϕ1,γ , γ)‖E0
i
, for i = 5, 7, 9. We should write ∆i(ψ0, v) and δi(ψ0, v) because

these quantities depend on (ψ0, v). In order to simplify the notations, we will write ∆i and δi. There
is no confusion possible. Let V be the Eγ3 -neighbourhood of (ϕ1,γ , 0) defined by

V := {(ψ0, v) ∈ Eγ3 ;∆3 6 1/4, ‖u‖H1 6 γ∗, ‖u‖L∞ 6 γ∗, ‖u‖L1 <
√

2/
√

17 where u := γ + v}.

In this subsection, we prove there exists a constant C1 such that, for every (ψ0, v) ∈ Eγ9 ∩V, for every
w ∈ H3

0 ((0, T ),R), we have

‖(M(ψ0,u) −M(ϕ1,γ ,γ))(w)‖h3 6 C1∆3‖w‖L2 ,

‖(M(ψ0,u) −M(ϕ1,γ ,γ))(w)‖h5 6 C1[∆3‖w‖H1
0

+ ∆5‖w‖L2 ],
‖(M(ψ0,u) −M(ϕ1,γ ,γ))(w)‖h7 6 C1[∆3‖w‖H2

0
+ ∆5‖w‖H1

0
+ ∆7‖w‖L2 ],

‖(M(ψ0,u) −M(ϕ1,γ ,γ))(w)‖h9 6 C1[∆3‖w‖H3
0

+ ∆5‖w‖H2
0

+ ∆7‖w‖H1
0

+ ∆9‖w‖L2 ].

(3.53)

In the next propositions, we deal with each term in M(ψ0,u) one by one.

Proposition 26 There exists a constant C > 0 such that, for every (ψ0, v) ∈ Eγ9 ∩ V, for every
w ∈ L2((0, T ),C),

|(M(ψ0,u) −M(ϕ1,γ ,γ))(w)1| 6 C∆3‖w‖L2 .
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Proof: We have

(M(ψ0,u) −M(ϕ1,γ ,γ))(w)1 =
∫ T

0
iw(t)(< qΛ(t), ψ(t) > + < qψ1,γ ,Λ(t) >)dt,

|(M(ψ0,u) −M(ϕ1,γ ,γ))(w)1| 6 2
√
T‖Λ‖C0([0,T ],L2)‖w‖L2((0,T ),R),

where Λ := ψ − ψ1,γ . The function Λ solves
iΛ̇ = −1

2Λ′′ − u(t)qΛ− (u− γ)qψ1,γ ,
Λ(0) = ψ0 − ϕ1,γ ,
Λ(t,−1

2) = Λ(t, 1
2) = 0,

so, using Proposition 45 in Appendix B,

‖Λ‖C0([0,T ],L2) 6 C[‖ψ0 − ϕ1,γ‖L2 + ‖u− γ‖L2 ] 6 C∆3.�

Proposition 27 There exists a constant C > 0 such that, for every (ψ0, v) ∈ Eγ9 ∩ V, for every
w ∈ H3

0 ((0, T ),R), the sequence X(w) = (Xk(w))k>2 defined by

Xk(w) :=

T∫
0

w(t)[< qψ(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)ds− < qψ1,γ(t), ϕk,γ > eiλk,γt]dt,

belongs to h9 and satisfies

‖X(w)‖h3 6 C∆3‖w‖L2 ,
‖X(w)‖h5 6 C[∆3‖w‖H1

0
+ ∆5‖w‖L2 ],

‖X(w)‖h7 6 C[∆3‖w‖H2
0

+ ∆5‖w‖H1
0

+ ∆7‖w‖L2 ],
‖X(w)‖h9 6 C[∆3‖w‖H3

0
+ ∆5‖w‖H2

0
+ ∆7‖w‖H1

0
+ ∆9‖w‖L2 ].

Proof: First, we prove

T∫
0

w(t) < qψ(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt = 1

λk

∫ T
0 w(t) < Au(t)(qψ(t)), ϕk > eiλktdt

+ terms with an h3-norm bounded by C∆3‖w‖L2 .
(3.54)

For this, we use the following decomposition∫ T
0 w(t) < qψ(t), ϕk,u(t) > ei

∫ t
0 λk,u(s)dsdt =

∫ T
0

w(t)
λk,u(t)

< Au(t)(qψ(t)), ϕk,u(t) > (ei
∫ t
0 λk,u(s)ds − eiλkt)dt+∫ T

0
w(t)
λk,u(t)

< Au(t)(qψ(t)), ϕk,u(t) − ϕ̃k,u(t) > eiλktdt+∫ T
0

w(t)
λk,u(t)

u(t) < Au(t)(qψ(t)), dϕk,γ

dγ ]0 > eiλktdt+∫ T
0 w(t)( 1

λk,u(t)
− 1

λk
) < Au(t)(qψ(t)), ϕk > eiλktdt+

1
λk

∫ T
0 w(t) < Au(t)(qψ(t)), ϕk > eiλktdt

(3.55)
and we prove that the h3-norms of the four first terms of the right hand side of (3.55) are bounded
by C∆3‖w‖L2 . In the first term of the right hand side of (3.55), we use (A.12),

|ei
∫ t
0 λk,u(s)ds − eiλkt| 6

∫ t

0
|λk,u(s) − λk|ds 6

C‖u‖2L2

k
,
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which is a consequence of (A.11) and the Cauchy-Schwarz inequality in L2((0, T ),C). We get

|
∫ T
0

w(t)
λk,u(t)

< Au(t)(qψ(t)), ϕk,u(t) > (ei
∫ t
0 λk,u(s)ds − eiλkt)dt|

6 C
k3 ‖u‖2L2‖w‖L2

(∫ T
0 | < Au(t)(qψ(t)), ϕk,u(t) > |2dt

)1/2
.

Thanks to the orthonormality of the family (ϕk,u)k∈N∗ , we get the following bound on the h3-norm
of the first term of the right hand side of (3.55)

C‖w‖L2‖u‖2L2‖Au(t)(qψ(t))‖C0([0,T ],L2(I,C))

6 C‖w‖L2(γ2 + ‖u− γ‖2L2)‖ψ‖C0([0,T ],H2(I,C))

6 C‖w‖L2∆3(‖ϕ1,γ‖H2 + δ3)
6 C∆3‖w‖L2((0,T ),R).

Now, we deal with the second term of the right hand side of (3.55). Using (A.12) and (A.8) we get

|
∫ T
0

w(t)
λk,u(t)

< Au(t)(qψ(t)), ϕk,u(t) − ϕ̃k,u(t) > eiλktdt|
6 C

k4 ‖u‖2L∞‖w‖L2‖Au(t)(qψ(t))‖C0([0,T ],L2).

This inequality gives the following bound on the h3-norm of the second term of the right hand side
of (3.55):

C‖u‖2H1‖w‖L2‖ψ‖C0([0,T ],H2) 6 C∆2
3‖w‖L2(‖ϕ1,γ‖L2 + δ3) 6 C∆3‖w‖L2 .

For the third term of the right hand side of (3.55), we use (A.12) and Cauchy-Schwarz inequality to
get

|
∫ T
0

w(t)
λk,u(t)

u(t) < Au(t)(qψ(t)), dϕk,γ

dγ ]0 > eiλktdt|

6 C
k2 ‖u‖L2

(∫ T
0 |w(t) < Au(t)(qψ(t)), dϕk,γ

dγ ]0 > |2dt
)1/2

Thanks to Lemma 2, we conclude the following bound on the h3-norm of the third term of the right
hand side of (3.55):

C‖u‖L2‖w‖L2‖ψ0‖H2 6 C∆3‖w‖L2 .

For the fourth term of the right hand side of (3.55), we use (A.13) and we get

|
∫ T
0 w(t)( 1

λk,u(t)
− 1

λk
) < Au(t)(qψ(t)), ϕk > eiλktdt|

6 C
k5 ‖u‖2L∞‖w‖L2‖ψ0‖H2 .

This leads to the following bound on the h3-norm of the fourth term of the right hand side of (3.55):

C‖u‖H1‖w‖L2‖ψ0‖H2 6 Cδ3‖w‖L2 .

This ends the proof of (3.54).

We have
T∫
0

w(t)[< qψ(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)ds− < qψ1,γ(t), ϕk,γ > eiλk,γt]dt =

1
λk

∫ T
0 w(t) < Au(t)(qψ(t))−Aγ(qψ1,γ(t)), ϕk > eiλktdt

+ terms with an h3-norm bounded by C∆3‖w‖L2 .

We define f(t) := Au(t)(qψ(t))−Aγ(qψ1,γ(t)). We have

1
λk

∫ T
0 w(t) < f(t), ϕk > eiλktdt = −2(−1)[

k+1
2 ]

(kπ)3

∫ T
0 w(t)[f(t, 1/2)− (−1)kf(t,−1/2)]eiλktdt

+ 2
(kπ)3

∫ T
0 w(t) < f(t)′, 1

kπϕk > eiλktdt.
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Thanks to Lemma 8 and the ortho-normality of the family ((1/kπ)ϕ′k)k∈N∗ , this term is also domi-
nated in h3 by:

‖w‖L2‖f‖C0([0,T ],H1) 6 ‖w‖L2∆3.

This ends the proof of ‖X(w)‖h3 6 C∆3‖w‖L2([0,T ],R).

Now, we study X(w) in h5. Using Proposition 19 and similar arguments, we get∫ T
0 w(t) < qψ(t), ϕk,u(t) > ei

∫ t
0 λk,u(s)dsdt = −

∫ T
0

1
iλk

(
ẇ(t) < qψ(t), ϕk > +w(t) < qψ̇(t), ϕk >

)
eiλktdt

+ terms with an h5-norm bounded by
C[∆3‖w‖H1 + ∆5‖w‖L2 ].

We conclude with the same strategy as in h3.

For the study of X(w) in h7, we use the following consequence of Proposition 22∫ T
0 w(t) < qψ(t), ϕk,u(t) > ei

∫ t
0 λk,u(s)dsdt = −

∫ T
0

1
λ2

k
[ẅ(t) < qψ(t), ϕk > +2ẇ(t) < qψ̇(t), ϕk >

+w(t) < qψ̈(t), ϕk >]eiλktdt
+ terms with an h7-norm bounded by
C[∆3‖w‖H2 + ∆5‖w‖H1 + ∆7‖w‖L2 ].

For the study in h9, we use the following consequence of Proposition 24∫ T
0 w(t) < qψ(t), ϕk,u(t) > ei

∫ t
0 λk,u(s)dsdt = i

∫ T
0

1
λ3

k
[d

3w
dt3

(t) < qψ(t), ϕk > +3ẅ(t) < qψ̇(t), ϕk >

+3ẇ(t) < qψ̈(t), ϕk > +w(t) < q ∂
3ψ
∂t3

(t), ϕk >]eiλktdt
+ terms with an h9-norm bounded by
C[∆3‖w‖H3 + ∆5‖w‖H2 + ∆7‖w‖H1 + ∆9‖w‖L2 ].�

Proposition 28 There exists a constant C such that, for every (ψ0, v) ∈ Eγ9 ∩ V, for every w ∈
H3

0 ((0, T ),R), the sequence X(w) = (Xk(w))k>2 defined by

Xk(w) :=

T∫
0

u̇(t) < Ψ2(t),
dϕk,γ
dγ

]u(t) > ei
∫ t
0 λk,u(s)dsdt

belongs to h9 and satisfies

‖X(w)‖h3 6 C∆3‖w‖L2 ,
‖X(w)‖h5 6 C[∆3‖w‖H1

0
+ ∆5‖w‖L2 ],

‖X(w)‖h7 6 C[∆3‖w‖H2
0

+ ∆5‖w‖H1
0

+ ∆7‖w‖L2 ],
‖X(w)‖h9 6 C[∆3‖w‖H3

0
+ ∆5‖w‖H2

0
+ ∆7‖w‖H1

0
+ ∆9‖w‖L2 ].

Proof: We apply Propositions 17, 20, 23, 25 together with the following bounds:

‖Ψ2‖C0([0,T ],H2) 6 C‖w‖L2‖ψ0‖H2

‖Ψ2‖C1([0,T ],H2) 6 C[‖w‖H1‖ψ0‖H2 + ‖w‖L2‖ψ0‖H4 ]
‖Ψ2‖C2([0,T ],H2) 6 C[‖w‖H2‖ψ0‖H2 + ‖w‖H1‖ψ0‖H4 + ‖w‖L2‖ψ0‖H6 ]
‖Ψ2‖C3([0,T ],H2) 6 C[‖w‖H3‖ψ0‖H2 + ‖w‖H2‖ψ0‖H4 + ‖w‖H1‖ψ0‖H6 + ‖w‖L2‖ψ0‖H8 ]

which are consequences of the Propositions (45), (47), (49). We have the following bound on the
h3-norm of X(w)

C‖u‖H1‖w‖L2‖ψ0‖H2 6 C∆3‖w‖L2(1 + δ3) 6 C∆3‖w‖L2 .
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We have the following bound on the h5-norm of X(w)

C‖u‖H1 [‖w‖H1‖ψ0‖H2 + ‖w‖L2‖ψ0‖H4 ] + C‖u‖H2‖w‖L2‖ψ0‖H2

6 C∆3[‖w‖H1(1 + δ2) + ‖w‖L2(1 + δ5)] + C∆5‖w‖L2(1 + δ3).

We have the following bound on the h7-norm of X(w)

C[‖u‖H1‖Ψ2‖C2([0,T ],H2) + ‖u‖H2‖Ψ2‖C1([0,T ],H2) + (‖u‖H3 + ‖u‖2H2)‖Ψ2‖C0([0,T ],H2)]
6 C{∆3[‖w‖H2(1 + δ2) + ‖w‖H1(1 + δ4) + ‖w‖L2(1 + δ6)]

+∆5[‖w‖H1(1 + δ2) + ‖w‖L2(1 + δ4)] + [∆7 + ∆2
5]‖w‖L2(1 + δ2)}.

We have the following bound on the h9-norm of X(w)

C{‖u‖H1‖Ψ2‖C3([0,T ],H2) + ‖u‖H2 [‖Ψ2‖C2([0,T ],H2) + ‖u‖H2‖Ψ2‖C1([0,T ],H2)]+
‖u‖H3 [‖Ψ2‖C1([0,T ],H2) + ‖u‖H2‖Ψ2‖C0([0,T ],H2)] + ‖u‖H4‖Ψ‖C0([0,T ],H2)}

6 C{∆3[‖w‖H3(1 + δ2) + ‖w‖H2(1 + δ4) + ‖w‖H1(1 + δ6) + ‖w‖L2(1 + δ8)]+
∆5[‖w‖H2(1 + δ2) + ‖w‖H1(1 + δ4) + ‖w‖L2(1 + δ6)] + ∆2

5[‖w‖H1(1 + δ2) + ‖w‖L2(1 + δ4))]+
∆7[‖w‖H1(1 + δ2) + ‖w‖L2(1 + δ4) + ∆5‖w‖L2(1 + δ2)] + ∆9‖w‖L2(1 + δ2)}.�

Proposition 29 There exists a constant C > 0 such that, for every (ψ0, v) ∈ Eγ9 ∩ V, for every
w ∈ H3

0 ((0, T ),R), the sequence X(w) = (Xk(w))k>2 defined by

Xk(w) :=
∫ T

0
u̇(t)

< Ψ2(t), ϕ1,u(t) >

< ψ(t), ϕ1,u(t) >
< ψ(t),

dϕk,γ
dγ

]u(t) > ei
∫ t
0 λk,u(s)dsdt

belongs to h9 and satisfies

‖X(w)‖h3 6 C∆3‖w‖L2 ,
‖X(w)‖h5 6 C[∆3‖w‖H1

0
+ ∆5‖w‖L2 ],

‖X(w)‖h7 6 C[∆3‖w‖H2
0

+ ∆5‖w‖H1
0

+ ∆7‖w‖L2 ],
‖X(w)‖h9 6 C[∆3‖w‖H3

0
+ ∆5‖w‖H2

0
+ ∆7‖w‖H1

0
+ ∆9‖w‖L2 ].

Proof: We apply again Propositions 17, 20, 23 and 25 with

w ← w̃ := u̇(t)
< Ψ2(t), ϕ1,u(t) >

< ψ(t), ϕ1,u(t) >
and f ← ψ.

Since ∆3 6 1/4 then | < ψ(t), ϕ1,u(t) > | > 1/2 for every t. Indeed,

< ψ(t), ϕ1,u(t) > = < ψ(t)− ψ1,γ(t), ϕ1,u(t) >

+ < (ϕ1,γ − ϕ1,u(t))e−iλ1,γt, ϕ1,u(t) > +e−iλ1,γt

| < ψ(t), ϕ1,u(t) > | > 1− ‖ψ − ψ1,γ‖C0([0,T ],L2) − |γ| − |u(t)| > 1− 2∆3.

Therefore, we have, thanks to Proposition 45,

‖w̃‖L2 6 2‖u‖H1‖Ψ2‖C0([0,T ],L2) 6 C‖u‖H1‖w‖L2‖ψ0‖L2 6 C∆3‖w‖L2(1 + δ2).

We compute ˙̃w, ¨̃w, d3w̃
dt3

and we get in the same way

‖ ˙̃w‖L2 6 C[∆5‖w‖L2 + ∆3‖w‖H1 ],
‖ ¨̃w‖L2 6 C[∆7‖w‖L2 + ∆5‖w‖H1 + ∆3‖w‖H2 ],
‖d3w̃
dt3
‖L2 6 C[∆9‖w‖L2 + ∆7‖w‖H1 + ∆5‖w‖H2 + ∆3‖w‖H3 ].�
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Proposition 30 There exists a constant C > 0 such that, for every (ψ0, v) ∈ Eγ9 ∩ V, for every
w ∈ H3

0 ((0, T ),R), the sequence X(w) = (Xk(w))k>2 defined by

Xk(w) :=
∫ T

0

d

dt

(
< Ψ2(t), ϕ1,u(t) >

< ψ(t), ϕ1,u(t) >

)
< ψ(t), ϕk,u(t) > ei

∫ t
0 λk,u(s)dsdt

belongs to h9 and satisfies

‖X(w)‖h3 6 C∆3‖w‖L2 ,
‖X(w)‖h5 6 C[∆3‖w‖H1

0
+ ∆5‖w‖L2 ],

‖X(w)‖h7 6 C[∆3‖w‖H2
0

+ ∆5‖w‖H1
0

+ ∆7‖w‖L2 ],
‖X(w)‖h9 6 C[∆3‖w‖H3

0
+ ∆5‖w‖H2

0
+ ∆7‖w‖H1

0
+ ∆9‖w‖L2 ].

Proof: Let w̃ = d
dt

(
<Ψ2(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>

)
. We have

w̃ =
< Ψ̇2, ϕ1,u > +u̇ < Ψ2,

dϕ1,γ

dγ ]u >

< ψ,ϕ1,u >
− < Ψ2, ϕ1,u >

< ψ̇, ϕ1,u > +u̇ < ψ,
dϕ1,γ

dγ ]u >

< ψ,ϕ1,u >2

‖w̃‖L2 6 2‖Ψ̇2‖L2([0,T ],L2) + 4‖Ψ2‖C0([0,T ],L2)[‖u̇‖L2 + ‖ψ0‖H2 + ‖u̇‖L2‖ψ0‖L2 ],

so there exists a constant C such that ‖w̃‖L2 6 C(1 + δ3)‖w‖L2 . In the same way,

‖w̃‖H1 6 C[(1 + δ3)‖w‖H1 + (1 + δ5)‖w‖L2 ],
‖w̃‖H2 6 C[(1 + δ3)‖w‖H2 + (1 + δ5)‖w‖H1 + (1 + δ7)‖w‖L2 ],
‖w̃‖H3 6 C[(1 + δ3)‖w‖H3 + (1 + δ5)‖w‖H2 + (1 + δ7)‖w‖H1 + (1 + δ9)‖w‖L2 ].

In order to have a small factor in front of ‖w‖ we use the following decomposition, for k > 2:

< ψ(t), ϕk,u(t) >=< (ψ − ψ1,γ)(t), ϕk,u(t) > + < ψ1,γ(t), ϕk,u(t) >

which split the sequence X(w) into two sequences

X(w) = (Jk)k>2 + (Kk)k>2.

We study (Jk)k>2 thanks to Propositions 16, 19, 22 and 24. The function Λ := ψ − ψ1,γ satisfies
Λ̇ = i

2Λ′′ + iuqΛ + i(u− γ)qψ1,γ ,
Λ0 = ψ0 − ϕ1,γ

Λ(t,−1
2) = Λ(t, 1

2) = 0.

Therefore, using Propositions 45, 47, 49 and 51, we get

‖Λ‖Ck([0,T ],Hs) 6 Cδs+2k.

For the study of (Kk)k>2, we have

< ϕ1,γ , ϕk,u > = λ1,γ

λk,u
< ϕ1,γ , ϕk,u > −u−γ

λk,u
< qϕ1,γ , ϕk,u >

=
λ2
1,γ

λ2
k,u

< ϕ1,γ , ϕk,u − ϕk,γ > − (u−γ)λ1,γ

λ2
k,u

< qϕ1,γ , ϕk,u > −u−γ
λ2

k,u
< Au(qϕ1,γ), ϕk,u >,

therefore
| < ϕ1,γ , ϕk,u > | 6 C

∆3

k4
. (3.56)
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This inequality gives ‖K‖h3 6 C‖w‖L2∆3. For the bound on the h5-norm of (Kk)k>2, we use an
integration by parts

Kk = −
∫ T
0

1
iλk,u(t)

˙̃w(t) < ψ1,γ(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

+
∫ T
0

1
iλ2

k,u(t)

w̃(t)u̇(t)λ′k,u(t) < ψ1,γ(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

−
∫ T
0

1
iλk,u(t)

w̃(t)(−iλk,γ) < ψ1,γ(t), ϕk,u(t) > ei
∫ t
0 λk,u(s)dsdt

−
∫ T
0

1
iλk,u(t)

w̃(t)u̇(t) < ψ1,γ(t),
dϕk,γ

dγ ]u(t) > ei
∫ t
0 λk,u(s)dsdt.

We give a bound of the h5-norm of the first, the second and the third term thanks to (3.56). For the
fourth term, we use Lemma (5).We get

‖K‖h5 6 C[∆3‖w‖H1 + ∆5‖w‖L2 ].

For the study of (Kk)k∈N∗ in h7, we work as in the proof of the h7-bound for L0. Considering the
previous integration by parts, the second term of the right hand side can be directly bounded in h7

by ∆3‖w‖L2 , in the first, third and fourth terms of the right hand side, we decompose

1
λk,u

=
(

1
λk,u

− 1
λk

)
+

1
λk
.

For the parts containing (1/λk,u − 1/λk), we use (A.13) and (3.56). For the parts containing (1/λk),
we apply the previous result.
For the study of X(w) in h9, we use an other integration by parts with respect to t. �

3.6.4 Study of the right-hand side d(Ψ0,ΨT )

We recall γ ∈ (0, γ∗) and T = 4/π. We use the same notations as in the previous subsection. This
subsection is dedicated to the proof of the following proposition.

Proposition 31 There exists a constant C such that, for every (ψ0, v) ∈ Eγ9∩V, for every (Ψ0,ΨT ) ∈
F γ9 satisfying

< (< Ψ0, ψ0 >) = < (< ΨT , ψT >) = 0,

the sequence d(Ψ0,ΨT ) belongs to h9
r(N∗,C), and satisfies

‖d(Ψ0,ΨT )‖h3 6 C‖(Ψ0,ΨT )‖F γ
3
,

‖d(Ψ0,ΨT )‖h5 6 C[‖(Ψ0,ΨT )‖F γ
5

+ ∆5‖(Ψ0,ΨT )‖F γ
3
],

‖d(Ψ0,ΨT )‖h7 6 C[‖(Ψ0,ΨT )‖F γ
7

+ ∆5‖(Ψ0,ΨT )‖F γ
5

+ ∆7‖(Ψ0,ΨT )‖F γ
3
],

‖d(Ψ0,ΨT )‖h9 6 C[‖(Ψ0,ΨT )‖F γ
9

+ ∆5‖(Ψ0,ΨT )‖F γ
7

+ ∆7‖(Ψ0,ΨT )‖F γ
5

+ ∆9‖(Ψ0,ΨT )‖F γ
3
].

In the next propositions, we prove these bounds on each term in d(Ψ0,ΨT ).

Proposition 32 There exists a constant C such that, for every (ψ0, v) ∈ Eγ9∩V, for every (Ψ0,ΨT ) ∈
F γ9 (I,C) satisfying

<(< Ψ0, ψ0 >) = <(< ΨT , ψT >) = 0,

the sequence Y = (Yk)k>2 defined by

Yk :=< Ψ0, ϕk,γ > −
< Ψ0, ϕ1,γ >

< ψ0, ϕ1,γ >
< ψ0, ϕk,γ >

( resp. Yk :=< ΨT , ϕk,γ > −
< ΨT , ϕ1,γ >

< ψT , ϕ1,γ >
< ψT , ϕk,γ >)
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belongs to h9 and satisfies

‖Y ‖h3 6 C‖(Ψ0,ΨT )‖F γ
3
,

‖Y ‖h5 6 C[‖(Ψ0,ΨT )‖F γ
5

+ ∆5‖(Ψ0,ΨT )‖F γ
3
],

‖Y ‖h7 6 C[‖(Ψ0,ΨT )‖F γ
7

+ ∆5‖(Ψ0,ΨT )‖F γ
5

+ ∆7‖(Ψ0,ΨT )‖F γ
3
],

‖Y ‖h9 6 C[‖(Ψ0,ΨT )‖F γ
9

+ ∆5‖(Ψ0,ΨT )‖F γ
7

+ ∆7‖(Ψ0,ΨT )‖F γ
5

+ ∆9‖(Ψ0,ΨT )‖F γ
3
].

Proof: First, we study the sequence (< Ψ0, ϕk,γ >)k>2 in h3, h5, h7 and h9. The function Ψ0

satisfies the boundary conditions we need to write

< Ψ0, ϕk,γ >=
1
λak,γ

< AaγΨ0, ϕk,γ > for a = 1, 2, 3, 4.

The function AaγΨ0 belongs to H1
0 (I,C) for a = 1, 2, 3, 4 so Lemma 3 gives

‖ < AaγΨ0, ϕk,γ > ‖h1 6 C‖Ψ0‖H2a+1 .

In conclusion, we have

‖ < Ψ0, ϕk,γ > ‖hs 6 C‖Ψ0‖Hs for s = 3, 5, 7, 9.

Now, we study the sequence (
< Ψ0, ϕ1,γ >

< ψ0, ϕ1,γ >
< ψ0, ϕk,γ >

)
k>2

in h3, h5, h7 and h9. We have, for every k > 2,

< ψ0, ϕk,γ >=< ψ0 − ϕ1,γ , ϕk,γ > .

The function (ψ0 − ϕ1,γ) satisfies the boundary conditions we need to write

< ψ0 − ϕ1,γ , ϕk,γ >=
1
λak,γ

< Aaγ(ψ0 − ϕk,γ), ϕk,γ > for a = 1, 2, 3, 4.

The function Aaγ(ψ0 − ϕ1,γ) belongs to H1
0 (I,C) for a = 1, 2, 3, 4 so Lemma 3 gives

‖ < ψ0, ϕk,γ > ‖hs 6 C‖ψ0 − ϕ1,γ‖Hs 6 Cδs for s = 3, 5, 7, 9.

We have
| < ψ0, ϕ1,γ > | > 1− | < ψ0 − ϕ1,γ , ϕ1,γ > | > 3/4 because ∆3 6 1/4.

Therefore
‖< Ψ0, ϕ1,γ >

< ψ0, ϕ1,γ >
< ψ0, ϕ1,γ > ‖hs 6 C∆s‖Ψ0‖L2 for s = 3, 5, 7, 9.�

Proposition 33 There exists a constant C such that, for every (ψ0, v) ∈ Eγ9∩V, for every (Ψ0,ΨT ) ∈
F γ9 satisfying

<(< Ψ0, ψ0) = <(< ΨT , ψT >) = 0,

the sequence Y = (Yk)k>2 defined by

Yk :=

T∫
0

u̇(t) < Ψ1(t),
dϕk,γ
dγ

]u(t) > ei
∫ t
0 λk,u(s)dsdt

belongs to h9(N∗,C) and satisfies

‖Y ‖h3 6 C‖(Ψ0,ΨT )‖F γ
3
,

‖Y ‖h5 6 C[‖(Ψ0,ΨT )‖F γ
5

+ ∆5‖(Ψ0,ΨT )‖F γ
3
],

‖Y ‖h7 6 C[‖(Ψ0,ΨT )‖F γ
7

+ ∆5‖(Ψ0,ΨT )‖F γ
5

+ ∆7‖(Ψ0,ΨT )‖F γ
3
],

‖Y ‖h9 6 C[‖(Ψ0,ΨT )‖F γ
9

+ ∆5‖(Ψ0,ΨT )‖F γ
7

+ ∆7‖(Ψ0,ΨT )‖F γ
5

+ ∆9‖(Ψ0,ΨT )‖F γ
3
].
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Proof: We apply Propositions 17, 20, 23, 25, using the following consequence of Propositions 45,
47, 49, 51:

‖Ψ1‖Ck([0,T ],Hs) 6 ‖Ψ0‖Hs+2k .�

Proposition 34 There exists a constant C such that, for every (ψ0, v) ∈ Eγ9∩V, for every (Ψ0,ΨT ) ∈
F γ9 satisfying

<(< Ψ0, ψ0) = <(< ΨT , ψT >) = 0,

the sequence Y = (Yk)k>2 defined by

Yk :=

T∫
0

u̇(t)
< Ψ1(t), ϕ1,u(t) >

< ψ(t), ϕ1,u(t) >
< ψ(t),

dϕk,γ
dγ

]u(t) > ei
∫ t
0 λk,u(s)dsdt

belongs to h9 and satisfies

‖Y ‖h3 6 C‖(Ψ0,ΨT )‖F γ
3
,

‖Y ‖h5 6 C[‖(Ψ0,ΨT )‖F γ
5

+ ∆5‖(Ψ0,ΨT )‖F γ
3
],

‖Y ‖h7 6 C[‖(Ψ0,ΨT )‖F γ
7

+ ∆5‖(Ψ0,ΨT )‖F γ
5

+ ∆7‖(Ψ0,ΨT )‖F γ
3
],

‖Y ‖h9 6 C[‖(Ψ0,ΨT )‖F γ
9

+ ∆5‖(Ψ0,ΨT )‖F γ
7

+ ∆7‖(Ψ0,ΨT )‖F γ
5

+ ∆9‖(Ψ0,ΨT )‖F γ
3
].

Proof: Let

w̃(t) := u̇(t)
< Ψ1(t), ϕ1,u(t) >

< ψ(t), ϕ1,u(t) >
.

Computing the derivatives and using

‖Ψ1‖Ck([0,T ],Hs) 6 ‖Ψ0‖Hs+2k ,

we get
‖w̃‖L2 6 C∆3‖Ψ0‖L2 ,
‖w̃‖H1 6 C[∆3‖Ψ0‖H2 + ∆5‖Ψ0‖L2 ],
‖w̃‖H2 6 C[∆3‖Ψ0‖H4 + ∆5‖Ψ0‖H2 + ∆7‖Ψ0‖L2 ],
‖w̃‖H3 6 C[∆3‖Ψ0‖H6 + ∆5‖Ψ0‖H4 + ∆7‖Ψ0‖H2 + ∆9‖Ψ0‖L2 ].

Now, we just apply Propositions 17, 20, 23 and 25. �

Proposition 35 There exists a constant C such that, for every (ψ0, v) ∈ Eγ9∩V, for every (Ψ0,ΨT ) ∈
F γ9 satisfying

<(< Ψ0, ψ0) = <(< ΨT , ψT >) = 0,

the sequence Y = (Yk)k>2 defined by

Yk :=

T∫
0

d

dt

(
< Ψ1(t), ϕ1,u(t) >

< ψ(t), ϕ1,u(t) >

)
< ψ(t), ϕk,u(t) > ei

∫ t
0 λk,u(s)dsdt

belongs to h9 and satisfies

‖Y ‖h3 6 C‖(Ψ0,ΨT )‖F γ
3
,

‖Y ‖h5 6 C[‖(Ψ0,ΨT )‖F γ
5

+ ∆5‖(Ψ0,ΨT )‖F γ
3
],

‖Y ‖h7 6 C[‖(Ψ0,ΨT )‖F γ
7

+ ∆5‖(Ψ0,ΨT )‖F γ
5

+ ∆7‖(Ψ0,ΨT )‖F γ
3
],

‖Y ‖h9 6 C[‖(Ψ0,ΨT )‖F γ
9

+ ∆5‖(Ψ0,ΨT )‖F γ
7

+ ∆7‖(Ψ0,ΨT )‖F γ
5

+ ∆9‖(Ψ0,ΨT )‖F γ
3
].
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Proof: Let

w̃ :=
d

dt

(
< Ψ1(t), ϕ1,u(t) >

< ψ(t), ϕ1,u(t) >

)
.

We have

‖w̃‖L2 6 ‖Ψ̇1‖L2([0,T ],L2) + ‖Ψ1‖C0([0,T ],L2)[‖u̇‖L2 + ‖ψ0‖H2 + |u̇‖L2‖ψ0‖L2 ],

‖Ψ̇1‖L2([0,T ],L2) 6 ‖Ψ1‖C0([0,T ],H2) + ‖u‖H1‖Ψ1‖C0([0,T ],L2)

6 ‖Ψ0‖H2 + C∆3‖Ψ0‖L2 ,

so ‖w̃‖L2 6 C‖Ψ0‖H2 . In the same way, we get

‖w̃‖H1 6 C[‖Ψ0‖H4 + ∆5‖Ψ0‖L2 ],
‖w̃‖H2 6 C[‖Ψ0‖H6 + ∆5‖Ψ0‖H2 + ∆7‖Ψ0‖L2 ],
‖w̃‖H3 6 C[‖Ψ0‖H8 + ∆5‖Ψ0‖H4 + ∆7‖Ψ0‖H2 + ∆9‖Ψ0‖L2 ].

Now, we apply Propositions 16, 19, 22 and 24. �

3.6.5 Controllability of the linearized system around (ψ(t), u(t)) and bounds (3.19),
(3.20), (3.21), (3.22)

Theorem 9 Let T = 4/π, γ ∈ (0, γ∗), (ψ0, v) ∈ Eγ9 and ψ the associated solution of (Σ) with
u = γ + v. We assume ‖u‖H1((0,T ),R) 6 γ∗, ‖u‖L∞((0,T ),R) 6 γ∗ and ‖u‖L2((0,T ),R) <

√
2/
√

17. If
∆3 := γ + ‖(ψ0, v) − (ϕ1,γ , 0)‖E0

3
is small enough, then there exist a constant C and a continuous

linear map
Π(ψ0,v) : [TS(ψ0)× TS(ψT )] ∩ F γ9 → Eγ7

(Ψ0,ΨT ) 7→ (Ψ0, w)

such that for every (Ψ0,ΨT ) ∈ F γ9 satisfying

<(< Ψ0, ψ0 >) = <(< ΨT , ψT >) = 0,

we have
Φ′γ(ψ0, v).Π(ψ0,v)(Ψ0,ΨT ) = (Ψ0,ΨT ),

‖w‖L2 6 C‖(Ψ0,ΨT )‖F γ
3
,

‖w‖H1 6 C[‖(Ψ0,ΨT )‖F γ
5

+ ∆3‖(Ψ0,ΨT )‖F γ
3
],

‖w‖H2 6 C[‖(Ψ0,ΨT )‖F γ
7

+ ∆3‖(Ψ0,ΨT )‖F γ
5

+ ∆5‖(Ψ0,ΨT )‖F γ
3
],

‖w‖H3 6 C[‖(Ψ0,ΨT )‖F γ
9

+ ∆3‖(Ψ0,ΨT )‖F γ
7

+ ∆5‖(Ψ0,ΨT )‖F γ
5

+ ∆7‖(Ψ0,ΨT )‖F γ
3
].

(3.57)

Proof: Notice that, for every k ∈ N∗, we have

M(ϕ1,γ ,γ)(w)k = bk,γZγ(w)k

where the coefficients bk,γ =< qϕk,γ , ϕ1,γ > are studied in Proposition 1, and Zγ : L2((0, T ),R) →
l2(N∗,C) is defined in Proposition 11. Thanks to the behaviour of the coefficients bk,γ and the
Proposition 14, the map M(ϕ1,γ ,γ) admits a right inverse

M−1
(ϕ1,γ ,γ)

: h9
r(N∗,C) → H3

0 ((0, T ),R)
d 7→ w

and there exists a constant C0 such that, for every d ∈ h9
r(N∗,C), the function w := M(ϕ1,γ ,γ)(d)

satisfies
‖w‖L2 6 C0‖d‖h3 , ‖w‖H1 6 C0‖d‖h5 , ‖w‖H2 6 C0‖d‖h7 , ‖w‖H3 6 C0‖d‖h9 .
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Let C1 be the constant used in (3.53). We assume

∆3 6
1

2C0C1
.

Then, thanks to Proposition 15, M(ψ0,u) admits a right inverse

M−1
(ψ0,u)

: h9
r(N∗,C)→ H3

0 ((0, T ),R),

such that, for every d ∈ h9
r(N∗,C), the function w := M−1

(ψ0,u)
(d) satisfies

‖w‖L2 6 2C0‖d‖h3 ,
‖w‖H1

0
6 2C0[‖d‖h5 + 2C2∆5‖d‖h3 ],

‖w‖H2
0

6 2C0[‖d‖h7 + 2C2∆5‖d‖h5 + (2C2∆7 + 8C2
2∆2

5)‖d‖h3 ],
‖w‖H3

0
6 2C0[‖d‖h9 + 2C2∆5‖d‖h7 + (2C2∆7 + 8C2

2∆2
5)‖d‖h5+

(2C2∆9 + 16C2
2∆7∆5 + 48C3

2∆3
5)‖d‖h3 ].

where C2 := C0C1. For (Ψ0,ΨT ) ∈ F γ9 satisfying

<(< Ψ0, ψ0 >) = <(< ΨT , ψT >) = 0,

we define
Π(ψ0,u)(Ψ0,ΨT ) := M−1

(ψ0,u)
(d(Ψ0,ΨT )).

We check the bounds (3.57) thanks to the previous bound on M−1
(ψ0,u)

(d) and the bounds on d(Ψ0,ΨT )
given in Proposition 31. �

3.6.6 The local controllability result around ψ1,γ

The application of the Nash-Moser theorem leads to the following result.

Theorem 10 Let T := 4/π. There exists γ0 such that, for every γ ∈ (0, γ0), there exists δ > 0 such
that, for every ψ0, ψf ∈ S ∩H7

(γ)(I,C), satisfying

‖ψ0 − ψ1,γ(0)‖H7 < δ, ‖ψf − ψ1,γ(T )‖H7 < δ,

there exists v ∈ H1
0 ((0, T ),R) such that the solution of (Σ) with control u := γ+v such that ψ(0) = ψ0

satisfies ψ(T ) = ψf .

4 Quasi-static transformations

In this section, we fix γ0 ∈ (0, γ∗]. For ε > 0 and φ0 ∈ [0, 2π), we consider iψ̇ε = −1
2ψ

′′
ε − γ0f(εt)qψε, 0 6 t 6 1/ε, q ∈ I,

ψε(0) = ϕ1e
iφ0 ,

ψε(t,−1/2) = ψε(t, 1/2) = 0,

where f ∈ C∞([0, 1],R) satisfies f (k)(0) = 0, for every k ∈ N, f(1) = 1 and 0 6 f 6 1. The aim of
this section is the proof of the following theorem.

Theorem 11 Let (εn)n∈N∗ be defined by

1
εn

∫ 1

0
λ1,γ0f(t)dt = φ0 + 2nπ.

For every s ∈ N, (ψεn(1/εn))n∈N converges to ϕ1,γ0 in Hs(I,C).
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For this, we prove the convergence in L2(I,C), we find a bound Ms for this sequence in Hs:
‖ψεn(1/εn)‖Hs 6 Ms for every n ∈ N∗ and for every s ∈ N. We conclude using the convexity of the
Hs-norms:

‖ψεn(1/εn)− ϕ1,γ0‖Hs 6 C‖ψεn(1/εn)− ϕ1,γ0‖θL2M
1−θ
s+1

where θ = 1/(s+ 1). With the same arguments we get the following theorem:

Theorem 12 Let T = 4/π. For ε > 0 and φ1 ∈ (−2π, 0], we consider iξ̇ε = −1
2ξ
′′
ε − γ0f(1− εt)qξε,

ξε(1/ε) = ϕ1e
iφ1 ,

ξε(t,−1/2) = ξε(t, 1/2) = 0.

Let (εn)n∈N∗ be defined by

1
εn

∫ 1

0
λ1,γ0f(t)dt = −λ1,γ0T + 2(n+ 1)π − φ1.

For every s ∈ N, (ξεn(0))n∈N∗ converges to ϕ1,γ0e
−iλ1,γ0T in Hs(I,C).

In order to prove Theorem 11, we define

Λε(t, q) := ψε(t, q)ei
∫ t
0 λ1,γ0f(εs)ds−iφ0 − ϕ1,γ0f(εt)(q).

Then, we have 
Λ̇ε = i

2Λ′′ε + iγ0f(εt)qΛε + iλ1,γ0f(εt)Λε − εg(εt),
Λε(0) = 0,
Λε(t,−1/2) = Λε(t, 1

2) = 0,

where
g(s) := γ0ḟ(s)

dϕ1,γ

dγ
]γ0f(s).

In the next propositions, we prove the Hs bound on (Λεn)n∈N∗ .

Proposition 36 For every k ∈ N, there exists a constant Ck such that, for every ε ∈ (0, 1] and for
every t ∈ [0, 1/ε],

‖ ∂
k

∂tk
Λε(t)‖L2(I) 6 Ck.

Remark: When ε > 0 is fixed, the function

∆(t, q) := Λε(t, q)e−i
∫ t
0 λ1,γ0f(εs)ds

satisfies the following equations i∆̇ = −1
2∆′′ − γ0f(εt)q∆− εg(εt)e−i

∫ t
0 λ1,γ0f(εs)ds,

∆(0) = 0,
∆(t,−1/2) = ∆(t, 1/2) = 0,

which have the general form studied in the appendix B. Thanks to Propositions 45, 47, 49, 51,
it is easy to prove that ∆ belongs to C3([0, T ], L2(I,C)) and for k = 1, 2, 3, ∂k∆/∂tk solves the
equation we get by deriving k times with respect to t the equation on ∆. In fact, the functions
∆(0) = 0 and t 7→ εg(εt) exp(−i

∫ t
0 λ1,γ0f(εs)ds) satisfy the conditions we need to derive ∆ more than

3 times: ∆ ∈ C∞([0, T ], L2(I,C)) and for every k ∈ N, the function ∂k∆/∂tk solves the equation we
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get by deriving k times with respect to t the equation on ∆. Of course, we have the same result for Λ.

Proof: We prove it by induction. Let us first introduce the notation Λk,ε := ∂k

∂tk
Λε. To simplify,

we write Λ instead of Λε and Λk instead of Λk,ε.
For k = 0, we use

d

dt
‖Λ‖2L2 =< Λ̇,Λ > + < Λ, Λ̇ > .

Thanks to the equation and one integration by parts we get:

< Λ̇,Λ > = − i
2 < Λ′,Λ′ > +iγ0f(εt) < qΛ,Λ > +iλ1,γ0f(εt) < Λ,Λ > −ε < g(εt),Λ > .

Summing the complex conjugate number, and integrating from 0 to t we get

‖Λ(t)‖2L2 6
∫ t

0
ε‖g(ετ)‖L2(1 + ‖Λ(τ)‖2L2)dτ.

Using Gronwall ’s lemma, we conclude:

‖Λ(t)‖2L2 6

(∫ 1

0
‖g(s)‖L2ds

)
e
∫ 1
0 ‖g(s)‖L2ds.

Let k ∈ N∗. We assume there exist constants Cj , j = 0, ..., k − 1 such that

‖Λj(t)‖L2 6 Cj ,

for j = 0, ..., k − 1, for every ε ∈ (0, 1] and for every t ∈ [0, 1/ε]. Since f (j)(0) = 0 for j = 0, ..., k − 1
then Λj(0) = 0 for j = 1, ..., k and we have

Λ̇k = i
2Λ′′k + iγ0f(εt)Λk + iλ1,γ0f(εt)Λk + iγ0

k∑
j=1

(
k
j

)
εjf (j)(εt)qΛk−j

+i
k∑
j=1

(
k
j

)
εj d

j

dτj [λ1,γ0f(τ)]τ=εtΛk−j − εk+1g(k)(εt),

Λk(0) = 0,
Λk(t,−1/2) = Λk(t, 1/2) = 0.

In the same way as in the case k = 0, we get

‖Λk(t)‖2L2 6 γ0

∫ t
0

k∑
j=1

(
k
j

)
εj |f j(εs)|Ck−j

(
1 + ‖Λk(s)‖2L2

)
ds

∫ t
0

j=k∑
j=1

(
k
j

)
εj | dj

dτj [λ1,γ0f(τ)]τ=εt|Ck−j
(
1 + ‖Λk(s)‖2L2

)
ds

+
∫ t
0 ε

k+1‖g(k)(εs)‖L2

(
1 + ‖Λk(s)‖2L2

)
ds.

Gronwall’s lemma gives
‖Λk,ε(t)‖2L2 6 Ak,εexp(Ak,ε),

where

Ak,ε :=
∫ 1

0

 k∑
j=1

(
k

j

)
εj−1Ck−j

(
γ0|f (j)(t)|+ | d

j

dtj
[λ1,γ0f(t)]|

)
+ εk‖g(k)(t)‖L2

 dt.�
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Proposition 37 For every s ∈ N∗ and for every k ∈ N, there exists a constant D(s)
k such that, for

every ε ∈ (0, 1],

‖ ∂
k

∂tk
Λε‖C0([0,1/ε],H2s) 6 C

(s)
k .

Corollary 1 For every s ∈ N, there exists a constant Ds such that, for every ε ∈ (0, 1], ‖Λε(1/ε)‖Hs 6
Ds.

Proof of Proposition 37: We prove by induction on s ∈ N∗ the following property

Ps :
(
∀k ∈ N,∃D(s)

k > 0/∀ε ∈ (0, 1], ‖ ∂
k

∂tk
Λε‖C0([0,1/ε],H2s) 6 D

(s)
k

)
.

Let k ∈ N. For ε ∈ (0, 1], we have

Λk+1,ε =
i

2
Λ′′k,ε + i

k∑
j=0

(
k

j

)(
γ0ε

jf (j)(εt)q +
dj

dtj
[λ1,γ0f(εt)]

)
Λk−j,ε − εk+1g(k)(εt). (4.1)

Therefore, there exists a constant D̃(1)
k such that, for every ε ∈ (0, 1],

‖Λ′′k,ε‖C0([0,1/ε],L2) 6 D̃
(1)
k .

Since Λk,ε(t, 1/2) = Λk,ε(t,−1/2) = 0, there exists a constant C > 0, which does not depend on k

and ε, such that ‖Λk,ε(t)‖H2 6 C‖Λ′′k,ε(t)‖L2 and we can take D(1)
k = CD̃

(1)
k . We have proved P1.

Let s ∈ N∗. Assume Ps−1 is true. Let k ∈ N. Using the equation (4.1) and Ps−1 we get the existence

of a constant D̃(s)
k such that for every ε ∈]0, 1],

‖Λ′′k,ε‖C0([0,1/ε],H2(s−1)) 6 D̃
(s)
k .

We can take D(s)
k = D

(1)
k + D̃

(s)
k . �

Now, we prove the convergence in L2(I,C), more precisely, we prove the following theorem.

Theorem 13 There exist constants ε0 > 0 and C > 0 such that, for every ε ∈ (0, ε0] ‖Λε(1/ε)‖L2 6
Cγ0ε

1/4.

For ε > 0, we write

Λε(t) =
∞∑
k=1

xk,ε(t)ϕk,γ0f(εt)

where xk,ε(t) :=< Λε(t), ϕk,γ0f(εt) > belongs to C1([0, 1/ε],C).

Lemma 9 There exists a constant C such that, for every N ∈ N∗, for every ε ∈ (0, 1] and for every
t ∈ [0, 1/ε],

∞∑
k=N+1

|xk,ε(t)|2 6
C

N4
.
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Proof: Since Λε(−1/2, t) = Λε(1/2, t) = 0, we have

xk,ε(t) =
1

λk,γ0f(εt)
< Aγ0f(εt)Λε(t), ϕk,γ0f(εt) > .

Thanks to (A.12) and the orthonormality of the family (ϕk,γ0f(εt))k∈N∗ , we get

∞∑
k=N+1

|xk,ε(t)|2 6
c1
N4

∞∑
k=N+1

| < Aγ0f(εt)Λε(t), ϕk,γ0f(εt) > |2 6
c2
N4
‖Λε(t)‖2H2 .�

The coefficient xk,ε satisfies, for every k > 1, the equations
ẋk,ε(t) = i(λ1,γ0f(εt) − λk,γ0f(εt))xk,ε(t)− γ0εḟ(εt) < dϕ1,γ

dγ ]γ0f(εt), ϕk,γ0f(εt) >

+γ0εḟ(εt)
∞∑
j=1

xj,ε(t) < ϕj,γ0f(εt),
dϕk,γ

dγ ]γ0f(εt) >,

xk,ε(0) = 0.

For ε > 0, let Nε := [ε−
1
8 ] and X̃ε := (x̃2,ε, ..., x̃Nε,ε) be the solution of

˙̃xk,ε(t) = i(λ1,γ0f(εt) − λk,γ0f(εt))x̃k,ε(t)− γ0εḟ(εt) < dϕ1,γ

dγ ]γ0f(εt), ϕk,γ0f(εt) >

+γ0εḟ(εt)

(
x1,ε(t) < ϕ1,γ0f(εt),

dϕk,γ

dγ ]γ0f(εt) > +
Nε∑
j=2

x̃j,ε(t) < ϕj,γ0f(εt),
dϕk,γ

dγ ]γ0f(εt) >

)
,

x̃k,ε(0) = 0.

for k = 2, ..., Nε.

Proposition 38 There exists a constant C > 0 and ε0 ∈ (0, 1] such that, for every ε ∈ (0, ε0] and
for every t ∈ [0, 1/ε], we have

‖X̃ε(t)‖2 6 Cγ0

√
ε.

Here ‖.‖2 is the hermitian norm on Cn for every integer n.
Proof: We have {

˙̃
Xε(t) = Cε(t)X̃ε(t)− γ0εḟ(εt)(1 + x1,ε(t))aε(εt),
X̃ε(0) = 0,

where
Cε(t) := Dε(εt) + γ0εḟ(εt)Aε(εt),

Dε(s) := diag(i(λ1,γ0f(s) − λk,γ0f(s)); k = 2, ..., Nε),

Aε(s) := (< ϕj,γ0f(s),
dϕk,γ
dγ

]γ0f(s) >)26k6Nε,26j6Nε ,

aε(s) := (<
dϕ1,γ

dγ
]γ0f(s), ϕk,γ0f(s) >)26k6Nε .

We introduce the resolvent Rε(t, s) associated to Cε(t):

∂Rε
∂t (t, s) = Cε(t)Rε(t, s), Rε(t, s)Rε(s, t) = IdRNε−1 .

Deriving the second equality with respect to s and using the first one we get

∂Rε
∂s

(t, s) = −Rε(t, s)Cε(s). (4.2)
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We have

X̃ε(t) =
∫ t

0
Rε(t, s)

(
−γ0εḟ(εs)(1 + x1,ε(s))a(εs)

)
ds.

Using (4.2) and an integration by parts we get

X̃ε(t) = Cε(t)−1γ0εḟ(εt)(1 + x1,ε(t))aε(εt)
+
∫ t
0 Rε(t, s)Cε(s)

−1Ċε(s)Cε(s)−1
(
γ0εḟ(εs)(1 + x1,ε(s))aε(εs)

)
ds

−
∫ t
0 Rε(t, s)Cε(s)

−1γ0ε
2(1 + x1,ε(s))

(
f̈(εs)aε(εs) + ḟ(εs)ȧε(εs)

)
ds

−
∫ t
0 Rε(t, s)Cε(s)

−1
(
γ0εḟ(εs)ẋ1,ε(s)aε(εs)

)
ds.

To be able to write this equality, we have to check that Cε(s) is invertible for every s ∈ [0, 1/ε].

Lemma 10 There exists ε0 ∈ (0, 1] such that for every ε ∈ (0, ε0] and for every s ∈ [0, 1/ε], Cε(s) is
invertible.

To be able to exploit the previous expression of X̃ε(t) we need bounds on the different quantities
inside. When A is an N ×N matrix, we write

‖A‖2 = sup{‖Ax‖2;x ∈ CN , ‖x‖2 6 1},

‖A‖∞ = sup{‖Ax‖∞;x ∈ CN , ‖x‖∞ 6 1}.

Lemma 11 There exists a constant C > 0 such that, for every ε ∈ (0, 1] and for every (t, s) ∈
[0, 1/ε]× [0, 1/ε],

‖Rε(t, s)‖2 = 1,

‖Cε(s)−1‖2 6 Cε−1/4 , ‖Ċε(s)‖2 6 Cγ0ε,

|ẋ1,ε(s)| 6 Cγ0ε , |x1,ε(s)| 6 Cγ0,

‖aε(s)‖2 6 C and ‖ȧε(s)‖2 6 Cγ0.

Now it is easy to get, for every ε ∈ (0, ε0], X̃(t) 6 Cγ0
√
ε.�

Proof of Lemma 10:
Invertibility of Dε(s) for s ∈ [0, 1]:
We can assume the positive real number γ0 is small enough so that inf{λ2,γ − λ1,γ ; γ ∈ [0, γ0]} > 1
Indeed, thanks to (A.11), we have

lim
γ→0

(λ2,γ − λ1,γ) = λ2 − λ1 = 3/2π2 > 1.

Then, for every s ∈ [0, 1], Dε(s) is invertible and ‖Dε(s)−1‖2 = 1/(λ2,γ0f(s) − λ1,γ0f(s)) .

Bound on ‖Aε(s)‖2 for s ∈ [0, 1]:
For s ∈ [0, 1], we have

‖Aε(s)‖2 6
√
Nε‖Aε(s)‖∞ 6

√
Nε sup{

Nε∑
j=2

| < ϕj,γ0f(s),
dϕk,γ
dγ

]γ0f(s) > |; 2 6 k 6 Nε}.

For k ∈ N∗, we have

Nε∑
j=2
| < ϕj,γ0f(s),

dϕk,γ

dγ ]γ0f(s) > | 6
√
Nε

(
Nε∑
j=2
| < ϕj,γ0f(s),

dϕk,γ

dγ ]γ0f(s) > |2
)1/2

6
√
Nε‖

dϕk,γ

dγ ]γ0f(s)‖L2 .
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Thanks to (A.18), there exists a constant C > 0, which does not depend on ε, such that, for every
s ∈ [0, 1],

‖Aε(s)‖2 6 CNε 6 Cε−1/8.

Invertibility of Cε(s) for s ∈ [0, 1]:

Let ε0 ∈ (0, 1] be such that Cγ0‖ḟ‖∞ε7/80 < 1. Then for every ε ∈ (0, ε0] and for every s ∈ [0, 1],

‖γ0εḟ(s)Aε(s)‖2 < 1 <
1

‖Dε(s)−1‖2
,

so Cε(s) is invertible.�

Proof of Lemma 11

Bound on ‖Rε(t, s)‖2:

Since Cε(t)∗ = −Cε(t) then ‖Rε(t, s)‖2 = 1, for every (t, s) ∈ [0, 1/ε]× [0, 1/ε].

Bound on Cε(s)−1:

We have ‖Cε(s)−1‖2 = ‖Cε(s)‖2 because Cε(s)∗ = −Cε(s). Moreover, using (A.12), we get

‖Cε(s)‖2 6 (λNε,γ0f(s) − λ1,γ0f(s)) + Cγ0ε
7/8 6 Cε−1/4.

Bound on Ċε(s):

We have
Ċε(s) = εḊε(εs) + γ0ε

2f̈(εs)Aε(εs) + γ0ε
2ḟ(εs)Ȧε(εs),

where
Ḋ(τ) = diag(iγ0ḟ(τ)(λ′1,γ0f(τ) − λ

′
k,γ0f(τ)); k = 2, ..., Nε}.

Thanks to (A.19) we get
‖Ḋε(τ)‖2 6 Cγ0.

Using (A.18), the ortho-normality of the family (ϕj,γ0f(εt))j∈N∗ and (A.21), we get

‖Ȧε(τ)‖2 6
√
Nε sup{

Nε∑
j=2
| < dϕj,γ

dγ ]γ0f(τ),
dϕk,γ

dγ ]γ0f(τ) > + < ϕj,γ0f(τ),
d2ϕk,γ

dγ2 ]γ0f(τ) > |; 2 6 k 6 Nε}

6
√
Nε sup{

Nε∑
j=2

C
jk +

√
Nε‖

d2ϕk,γ

dγ2 ]γ0f(τ)‖L2 ; 2 6 k 6 Nε}

6 C(Nε +
√
Nε ln(Nε)).

Therefore,
‖Ċε(s)‖2 6 Cγ0ε.
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Bound on x1,ε(s) and ẋ1,ε(s):

From the equation {
ẋ1,ε(t) = γ0εḟ(εt) < Λε(t),

dϕ1,γ

dγ ]γ0f(εt) >,

x1,ε(0) = 0,

we get, for every s ∈ [0, 1/ε],

|ẋ1,ε(s)| 6 Cγ0ε and |x1,ε(s)| 6 Cγ0.

Bound on aε(s) and ȧε(s) :

Thanks to (A.18), we have

‖aε(s)‖2 =

(
Nε∑
k=2

| < dϕ1,γ

dγ
]γ0f(s), ϕk,γ0f(s) > |2

)1/2

6 ‖dϕ1,γ

dγ
]γ0f(s)‖L2 6 C.

Using (A.18) and (A.21), we get

‖ȧε(s)‖2 6 γ0ḟ(s)

((
Nε∑
k=2

| < d2ϕ1,γ

dγ2 ]γ0f(s), ϕk,γ0f(s) > |2
)1/2

+
(
Nε∑
k=2

| < dϕ1,γ

dγ ]γ0f(s),
dϕk,γ

dγ ]γ0f(s) > |2
)1/2

)
6 Cγ0.�

For ε ∈ (0, 1], we define Xε(t) := (x2,ε(t), ..., xNε,ε(t)).

Proposition 39 There exists a constant C > 0 such that, for every ε ∈ (0, ε0] and for every t ∈
[0, 1/ε], ‖Xε(t)‖2 6 Cγ0ε

1/4.

Proof: Let us write Yε(t) := (Xε − X̃ε)(t). Then{
Ẏε(t) = Cε(t)Yε(t) + γ0εḟ(εt)bε(t),
Yε(0) = 0,

where

bε(t) := (
∞∑

j=Nε+1

xj,ε(t) < ϕj,γ0f(εt),
dϕk,γ
dγ

]γ0f(εt) >)26k6Nε .

Hence

Yε(t) =
∫ t

0
Rε(t, s)

(
γ0εḟ(εs)bε(s)

)
ds.

Let s ∈ [0, 1/ε]. Using the orthonormality of the family (ϕj,γ0f(εt))j∈N∗ and (A.18), we get

‖bε(s)‖22 =
Nε∑
k=2

|
∞∑

j=Nε+1

xj,ε(t) < ϕj,γ0f(εt),
dϕk,γ

dγ ]γ0f(εt) > |2

6
Nε∑
k=2

(
∞∑

j=Nε+1

|xj,ε(t)|2
)(

∞∑
j=Nε+1

| < ϕj,γ0f(εt),
dϕk,γ

dγ ]γ0f(εt) > |2
)

6 C
N4

ε

Nε∑
k=2

C
k2 .
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Therefore
‖Yε(t)‖2 6 Cγ0ε

1/4.

The inequality ‖Xε(t)‖2 6 ‖X̃ε(t)‖2 + ‖Yε(t)‖2 gives the conclusion. �

Proof of theorem 13: We have

‖Λε(1/ε)‖2 =

(
|x1,ε(1/ε)|2 +

Nε∑
j=2
|xj,ε(1/ε)|2 +

∞∑
j=Nε+1

|xj,ε(1/ε)|2
)

6
(
|x1,ε(1/ε)|2 + ‖Xε(1/ε)‖22 + C

N4
ε

)1/2
.

The function x1,ε(t) is solution of ẋ1,ε(t) = γ0εḟ(εt)
∞∑
j=2

xj,ε(t) < ϕj,γ0f(εt),
dϕ1,γ

dγ ]γ0f(εt) >,

x1,ε(0) = 0,

so

|x1,ε(1/ε)| 6
∫ 1/ε

0
γ0εḟ(εs)

 ∞∑
j=2

|xj,ε(1/ε)|2
1/2

‖dϕ1,γ

dγ
]γ0f(εt)‖L2ds,

which gives the conclusion. �

Remark : The quasi-static deformation works because the trajectory (ψ1,γ , γ) is stable. If this
trajectory had not been stable, we could have tried to stabilize it first with a suitable feedback as in
[8].

A Study of ϕk,γ and λk,γ.

In this appendix, we state some results on the eigenvalues and the eigenfunctions of the operators
Aγ : D(Aγ)→ L2(I,C) defined by

D(Aγ) = H2 ∩H1
0 (I,C), Aγϕ = −1

2ϕ
′′ − γqϕ.

The operator Aγ has an increasing sequence of eigenvalues (λk,γ)k∈N∗ . We call ϕk,γ the associated
eigenfunctions:

Aγϕk,γ = λk,γϕk,γ , k > 1. (A.1)

We know from [17, Chapter 7, Example 2.14] that ϕk,γ and λk,γ are analytic functions of γ:

ϕk,γ = ϕk + γϕ
(1)
k + γ2ϕ

(2)
k + ...

λk,γ = λk + γλ
(1)
k + γ2λ

(2)
k + ...

When γ = 0, we have

λk =
1
2
(kπ)2, ϕk =

{ √
2 sin(kπq), when k is even,√
2 cos(kπq), when k is odd.

The following formula is very useful is this article

< qϕ2n+1, ϕ2m >= − 8(−1)m+n(2m)(2n+ 1)
π2(2n+ 1 + 2m)2(2n+ 1− 2m)2

(A.2)

where < . > denotes the usual scalar product in L2(I,C). With calculations of order 1 with respect
to γ, we find the following explicit expressions.
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Proposition 40 For every integer k > 1, λ(1)
k = 0 and

−1
2
d2

dq2
ϕ

(1)
k − γqϕk = λkϕ

(1)
k . (A.3)

If k is an even integer, then

ϕ
(1)
k =

16(−1)
k
2 k

π4

+∞∑
j=0

(−1)j(2j + 1)
(k + 2j + 1)3(k − 2j − 1)3

ϕ2j+1. (A.4)

If k is an odd integer, then

ϕ
(1)
k =

16(−1)
k−1
2 k

π4

+∞∑
j=1

(−1)j(2j)
(k + 2j)3(k − 2j)3

ϕ2j . (A.5)

We introduce, for every integer k > 1, the functions

ϕ̃k,γ := ϕk + γϕ
(1)
k .

The equations (A.1) and (A.3) give

Aγϕ̃k,γ + γ2qϕ
(1)
k = λkϕ̃k,γ . (A.6)

We recall in the next proposition bounds given in [17, Chapter 7 Example 2.14, Chapter 2 Problem
3.7].

Proposition 41 There exist positive constants γ∗, C∗ and C∗ such that, for every γ 6= 0 satisfying
|γ| < γ∗ and for every k ∈ N∗,

‖ϕk,γ − ϕk‖L2(I) 6
C∗γ

k
, (A.7)

‖ϕk,γ − ϕ̃k,γ‖L2(I) 6
C∗γ2

k2
, (A.8)

‖ d
dx

(ϕk,γ − ϕk)‖L2(I) 6 C∗γ, (A.9)

‖ d
2

dx2
(ϕk,γ − ϕk)‖L2(I) 6 C∗γ(1 + k), (A.10)

|λk,γ − λk| 6
C∗γ2

k
, (A.11)

C∗λk 6 λk,γ 6 C∗λk, (A.12)

| 1
λk,γ

− 1
λk
| 6 C∗γ2

k5
. (A.13)

The vectors ϕk,γ and the complex numbers λk,γ are analytic functions of the parameter γ, so we
can consider their derivatives with respect to γ. We introduce the notations

dkϕk,γ
dγk

]γ0

for the kth derivative of the function γ 7→ ϕk,γ evaluated at the point γ = γ0 and

λ′k,γ0 , λ
′′
k,γ0 , λ

′′′
k,γ0

for the first, second and third derivative of the function γ 7→ λk,γ evaluated at the point γ = γ0.
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Proposition 42 We have

Aγ0
dϕk,γ
dγ

]γ0 = (q + λ′k,γ0)ϕk,γ0 + λk,γ0
dϕk,γ
dγ

]γ0 , (A.14)

λ′k,γ0 = − < qϕk,γ0 , ϕk,γ0 >, (A.15)

dϕk,γ
dγ

]γ0 =
∞∑

j=1,j 6=k

< qϕk,γ0 , ϕj,γ0 >

λj,γ0 − λk,γ0
ϕj,γ0 . (A.16)

In particular,
dϕk,γ
dγ

]0 = ϕ
(1)
k =

16k
π4

∑
P (j) 6=P (k)

(−1)
k+j+1

2 j

(j + k)3(j − k)3
ϕj

where the sum is taken over all integers j such that j and k have different parity. There exists a
constant C∗ > 0 such that for every γ0 ∈ [−γ∗, γ∗],

‖
dϕk,γ
dγ

]γ0 −
dϕk,γ
dγ

]0‖L2 6
C∗γ0

k2
, (A.17)

‖
dϕk,γ
dγ

]γ0‖L2 6
C∗

k
, (A.18)

|λ′k,γ0 | 6
C∗γ0

k
. (A.19)

Proof: To get the equation (A.14), we derive the equation on ϕk,γ with respect to γ. Considering
the scalar product of the equation (A.14) with ϕk,γ0 we get (A.15). We compute the decomposition
(A.16) using the equation (A.14). In the case γ0 = 0 the formulas (A.4) and (A.5) give the result.
We first prove the bound (A.18) for γ0 = 0. In this case, we have

‖
dϕk,γ
dγ

]0‖2L2 =
(

16k
π4

)2 ∑
P (j) 6=P (k)

j2

(j + k)6(j − k)6
.

In order to compute this sum, we decompose the fraction

Fk(X) =
X2

(X + k)6(X − k)6

in the following way

Fk(X) = − 7
512k9

(
1

X+k −
1

X−k

)
− 7

512k8

(
1

(X+k)2
+ 1

(X−k)2

)
− 1

128k7

(
1

(X+k)3
− 1

(X−k)3

)
+ 1

256k6

(
1

(X+k)4
+ 1

(X−k)4

)
+ 1

64k5

(
1

(X+k)5
− 1

(X−k)5

)
+ 1

64k4

(
1

(X+k)6
+ 1

(X−k)6

)
and we sum each term. We find∑
P (j) 6=P (k)

Fk(j) = − 7
512k9

1
k −

7
512k9 (2S2 − 1

k2 )− 1
128k7

1
k3 + 1

256k6 (2S4 − 1
k4 ) + 1

64k5
1
k5 + 1

64k4 (2S6 − 1
k6 )

where Sa =
∑∞

n=0
1

(2n+1)a for a = 2, 4, 6.
Thanks to the expression (A.16), we have

dϕk,γ

dγ ]γ0 −
dϕk,γ

dγ ]0 =
∞∑

j=1,j 6=k

(
1

λj,γ0
−λk,γ0

− 1
λj−λk

)
< qϕk,γ0 , ϕj,γ0 > ϕj,γ0

+
∞∑

j=1,j 6=k

1
λj−λk

(< qϕk,γ0 , ϕj,γ0 > − < qϕk, ϕj >)ϕj,γ0

+
∞∑

j=1,j 6=k

<qϕk,ϕj>
λj−λk

(ϕj,γ0 − ϕj),
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‖dϕk,γ

dγ ]γ0 −
dϕk,γ

dγ ]0‖L2 6

(
∞∑

j=1,j 6=k

(
1

λj,γ0
−λk,γ0

− 1
λj−λk

)2
)1/2

+

(
∞∑

j=1,j 6=k

(
<qϕk,γ0

,ϕj,γ0
>−<qϕk,ϕj>

λj−λk

)2
)1/2

+
∞∑

j=1,j 6=k
|<qϕk,ϕj>

λj−λk
|‖ϕj,γ0 − ϕj‖L2 .

For the study of the first term of the right hand side, we have

| 1
λj,γ0 − λk,γ0

− 1
λj − λk

| 6
(
Cγ0

j
+
Cγ0

k

)
1

(j2 − k2)2
,

∞∑
j=1,j 6=k

(
1

λj,γ0
−λk,γ0

− 1
λj−λk

)2
6 γ0

∞∑
j=1,j 6=k

1
j2(j+k)4(j−k)4 + γ0

k2

∞∑
j=1,j 6=k

1
(j+k)4(j−k)4 .

We compute explicitly the two sums and we get ∞∑
j=1,j 6=k

(
1

λj,γ0 − λk,γ0
− 1
λj − λk

)2
1/2

6
Cγ0

k3
.

For the study of the second term of the right hand side, using ϕl,γ0 = (ϕl,γ0 − ϕl) + ϕl and (A.7) we
get

| < qϕk,γ0 , ϕj,γ0 > − < qϕk, ϕj > | 6
C∗γ0

k
+
C∗γ0

j
,

∞∑
j=1,j 6=k

(
<qϕk,γ0

,ϕj,γ0
>−<qϕk,ϕj>

λj−λk

)2
6

(
C∗γ0
k

)2 ∞∑
j=1,j 6=k

1
(j+k)2(j−k)2 + (C∗γ0)2

∞∑
j=1,j 6=k

1
j2(j+k)2(j−k)2 .

We compute explicitly the two sums and we get ∞∑
j=1,j 6=k

(
< qϕk,γ0 , ϕj,γ0 > − < qϕk, ϕj >

λj − λk

)2
1/2

6
Cγ0

k2
.

The third term of the right hand side is bounded by

∞∑
j=1,j 6=k

Ckj

(k + j)2(k − j)2
1

|j2 − k2|
C∗γ0

j
6 CC∗γ0k

∞∑
j=1,j 6=k

1
(k + j)3|k − j|3

.

We compute explicitly the last sum and we get

∞∑
j=1,j 6=k

|< qϕk, ϕj >

λj − λk
|‖ϕj,γ0 − ϕj‖L2 6

C ′γ0

k2
.�

Proposition 43 We have

Aγ0
d2ϕk,γ
dγ2

]γ0 = λk,γ0
d2ϕk,γ
dγ2

]γ0 + 2(q + λ′k,γ0)
dϕk,γ
dγ

]γ0 + λ′′k,γ0ϕk,γ0 . (A.20)

There exists a constant C∗ > 0 such that for every γ ∈ [−γ∗, γ∗],

‖
d2ϕk,γ
dγ2

]γ0‖L2 6
C∗

k2
, (A.21)

|λ′′k,γ0 | 6
C∗

k
. (A.22)
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Proof: The explicit expression

λ′′k,γ0 = −2 < q
dϕk,γ
dγ

]γ0 , ϕk,γ0 > (A.23)

together with (A.18) give the bound (A.22). Using the equation (A.20), we compute the coefficients
zj in the decomposition:

d2ϕk,γ
dγ2

]γ0 =
∞∑
j=1

zjϕj,γ0 ,

zk = −‖
dϕk,γ
dγ

]γ0‖2L2 ,

zj = 2λ′k,γ0
< qϕk,γ0 , ϕj,γ0 >

(λj,γ0 − λk,γ0)2
+ 2

< q
dϕk,γ

dγ ]γ0 , ϕj,γ0 >

λj,γ0 − λk,γ0
, for j 6= k.

Thanks to these expressions and (A.19), (A.18 ), (A.11) we get

‖
d2ϕk,γ
dγ2

]γ0‖2L2 6
C

k2

∞∑
j=1,j 6=k

1
(j + k)2(j − k)2

+
C∗

k4

and we conclude computing the infinite sum. �

Proposition 44 We have

Aγ0
d3ϕk,γ
dγ3

]γ0 = λk,γ0
d3ϕk,γ
dγ3

]γ0 + 3(q + λ′k,γ0)
d2ϕk,γ
dγ2

]γ0 + 3λ′′k,γ0
dϕk,γ
dγ

]γ0 + λ′′′k,γ0ϕk,γ0 . (A.24)

There exists a constant C∗ > 0 such that for every γ ∈ [−γ∗, γ∗],

‖
d3ϕk,γ
dγ3

]γ0‖L2 6
C∗

k3
, (A.25)

|λ′′′k,γ0 | 6
C∗

k2
. (A.26)

Proof: Considering the scalar product of (A.24) with ϕk,γ0 we get the explicit expression

λ′′′k,γ0 = −3(q + λ′k,γ0) <
d2ϕk,γ
dγ2

]γ0 , ϕk,γ0 > −3λ′′k,γ0 <
dϕk,γ
dγ

]γ0 , ϕk,γ0 > . (A.27)

Then using (A.19), (A.21), (A.22), (A.18), we get the bound (A.26). Using the equation (A.24), we
can compute the coefficients wj in the decomposition:

d3ϕk,γ
dγ3

]γ0 =
∞∑
j=1

wjϕj,γ0 ,

wk = −3 <
d2ϕk,γ
dγ2

]γ0 ,
dϕk,γ
dγ

]γ0 >,

wj =
3

λj,γ0 − λk,γ0

(
λ′k,γ0 <

d2ϕk,γ
dγ2

]γ0 , ϕj,γ0 > + < q
d2ϕk,γ
dγ2

]γ0 , ϕj,γ0 >
)
, j 6= k.

Therefore

‖
d3ϕk,γ
dγ3

]γ0‖2L2 =
∞∑
j=1

|wj |2 6

(
C

k6
+
C

k4

) ∞∑
j=1

1
(j + k)2(j − k)2

+
(C∗)4

k6

and we compute the infinite sum. �
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B Existence and bounds for the solutions

This appendix is dedicated to existence and regularity results for the solutions of the following system:
i∂ψ∂t = −1

2
∂2ψ
∂q2
− u(t)qψ + f(t), q ∈ I, t ∈ [0, T ],

ψ(0) = ψ0,
ψ(t,−1/2) = ψ(t, 1/2) = 0.

(B.1)

We also give some bounds on the solution in spaces C0([0, T ],Hs(I,C)) for s = 0, ..., 7, useful in the
application of Nash-Moser theorem.

Let us recall Aγ is the operator Aγ : D(Aγ)→ L2(I,C) defined by

D(Aγ) = H2 ∩H1
0 (I,C), Aγϕ = −1

2
ϕ′′ − γqϕ,

and (Tγ(t))t∈R is the group of isometries of L2(I,C) with infinitesimal generator −iAγ , more precisely,
for ϕ ∈ L2(I,C) and for every t ∈ R,

Tγ(t)ϕ =
+∞∑
k=1

< ϕ,ϕk,γ > e−iλk,γtϕk,γ .

Proposition 45 Let T > 0, γ ∈ R and u ∈ L1((0, T ),R) be such that ‖u − γ‖L1 <
√

2/
√

17. Let
E ∈ {L2(I,C),H1

0 (I,C),H2 ∩ H1
0 (I,C)}, ψ0 ∈ E and f ∈ L1((0, T ), E). There exists a unique

solution ψ in C0([0, T ], E) of

ψ(t) = Tγ(t)ψ0 +
∫ t

0
Tγ(t− s)[i(u(s)− γ)qψ(s) + f(s)]ds, (B.2)

in L2(I,C), for every t ∈ [0, T ]. Moreover,

‖ψ‖C0([0,T ],E) 6 e(‖ψ0‖E + ‖f‖L1((0,T ),E)).

Proof: For the existence, we use Banach fix point theorem on

Ω : C0([0, T ], E) → C0([0, T ], E)

ψ → Tγ(t)ψ0 +
t∫
0

Tγ(t− s)[i(u(s)− γ)qψ(s) + f(s)]ds

Let ψ1, ψ2 ∈ C0([0, T ], E). Since Tγ(τ) is an isometry of E, for every τ ∈ R, we have:

‖Ω(ψ1)(t)− Ω(ψ2)(t)‖E 6
∫ t

0
|u(s)− γ|

√
17√
2
‖(ψ1 − ψ2)(s)‖Eds

so ‖Ω(ψ1)− Ω(ψ2)‖C0([0,T ],E) 6 ‖u− γ‖L1

√
17√
2
‖ψ1 − ψ2‖C0([0,T ],E).

For the bound, we apply Gronwall ’s lemma to the inequality:

‖ψ(t)‖E 6 ‖ψ0‖E + ‖f‖L1([0,T ],E) +
∫ t

0
|u(s)− γ|

√
17√
2
‖ψ(s)‖Eds.�

Remark: An existence result can be proved for every u ∈ L1((0, T ),R), considering a partition of
[0, T ]:

[0, T ] =
i=N⊔
i=1

[Ti−1, Ti]

such that ‖u− γ‖L1((Ti−1,Ti),R) <
√

2√
17

for i = 1..N .
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Proposition 46 Let T > 0, γ ∈ R and u ∈ L1((0, T ),R) be such that ‖u−γ‖L1 <
√

2/
√

17. Let ψ0 ∈
H2 ∩ H1

0 (I,C) and f ∈ L1((0, T ),H2 ∩ H1
0 (I,C)). If u ∈ C0([0, T ],R) and f ∈ C0([0, T ], L2(I,C))

then the function ψ defined by (B.2) belongs to C1([0, T ], L2(I,C)). It is the unique solution in
C0([0, T ],H2 ∩H1

0 (I,C)) ∩ C1([0, T ], L2(I,C)) of
∂ψ
∂t = i

2
∂2ψ
∂q2

+ iu(t)qψ + f(t), q ∈ I, t ∈ [0, T ],
ψ(0) = ψ0,
ψ(t,−1/2) = ψ(t, 1/2) = 0.

(B.3)

Proof: Clearly, ψ satisfies the equations (B.3). Let us prove the uniqueness of the solution of
(B.3). Let ψ1, ψ2 ∈ C0([0, T ],H2 ∩H1

0 (I,C))∩C1([0, T ], L2(I,C)) be solutions of this system. Then
Λ := ψ1 − ψ2 solves 

i∂Λ
∂t = −1

2
∂2Λ
∂q2
− u(t)qΛ, q ∈ I, t ∈ [0, T ]

Λ(0) = 0
Λ(t,−1/2) = Λ(t, 1/2) = 0.

The first equation of this system gives

d

dt
‖Λ(t)‖2L2 =< Λ̇(t),Λ(t) > + < Λ(t), Λ̇(t) >= 0,

so Λ ≡ 0.�

Corollary 2 Let T > 0, γ ∈ R and u ∈ L1((0, T ),R) be such that ‖u − γ‖L1((0,T ),R) <
√

2/
√

17.
Let ψ0 ∈ H2 ∩H1

0 (I,C) and f ∈ L1((0, T ),H2 ∩H1
0 (I,C)) ∩ C0([0, T ], L2(I,C)). The solution ψ in

C0([0, T ],H2 ∩H1
0 (I,C)) of

ψ(t) = Tγ(t)ψ0 +
∫ t

0
Tγ(t− s)[i(u(s)− γ)qψ(s) + f(s)]ds

in L2(I,C) for every t ∈ [0, T ] also solves

ψ(t) = Tγ1(t)ψ0 +
∫ t

0
Tγ1(t− s)[i(u(s)− γ1)qψ(s) + f(s)]ds

in L2(I,C), for every t ∈ [0, T ], for every γ1 ∈ R such that ‖u− γ1‖L1((0,T ),R) <
√

2√
17
.

Proof: We introduce the notations

BL1(γ,
√

2√
17

) := {u ∈ L1((0, T ),R); ‖u‖L1 <

√
2√
17
},

D(Ωγ) := BL1(γ,
√

2√
17

)×H1
0 (I,C)× L1((0, T ),H1

0 (I,C)),

Ωγ : D(Ωγ) → C0([0, T ],H2 ∩H1
0 (I,C))

(u, ψ0, f) 7→ ψ solution of (B.2) .

The previous result shows Ωγ = Ωγ1 on

D(Ωγ) ∩D(Ωγ1 ∩ {C0([0, T ],R)× (H2 ∩H1
0 )(I,C)× [C0([0, T ], L2(I,C)) ∩ L1((0, T ),H2(I,C))]},

which is dense in D(Ωγ)∩D(Ωγ1 . We just need to prove that Ωγ and Ωγ1 are continuous to conclude.
Gronwall’s lemma gives, when Ωγ(u1, ψ1,0, f1) = ψ1 and Ωγ(u2, ψ2,0, f2) = ψ2,

‖ψ1 − ψ2‖C0([0,T ],H1
0 ) 6 C[‖ψ1,0 − ψ2,0‖H1

0
+ ‖u1 − u2‖L1([0,T ],R)‖ψ2‖C0([0,T ],H1

0 )+
‖f1 − f2‖L1([0,T ],H1

0 )].

So Ωγ is continuous and Ωγ = Ωγ1 on D(Ωγ) ∩D(Ωγ1).�
This corollary allows us to give the following definition.
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Definition 2 Let ψ0 ∈ H1
0 (I,C), u ∈ L1((0, T ),R), f ∈ L1((0, T ),H1

0 (I)) with ‖u‖L1 <
√

2/
√

17.
The generalized solution of (B.1) is the unique function ψ ∈ C0([0, T ],H1

0 (I,C)) solution of

ψ(t) = T (t)ψ0 +
∫ t

0
T (t− s)[iu(s)qψ(s) + f(s)]ds

in L2(I,C) for every t ∈ [0, T ]. Then, for every γ such that ‖u− γ‖L1 6
√

2/
√

17, we have

ψ(t) = Tγ(t)ψ0 +
∫ t

0
Tγ(t− s)[i(u(s)− γ)qψ(s) + f(s)]ds,

in L2(I,C) for every t ∈ [0, T ].

Proposition 47 Let u ∈ W 1,1((0, T ),R) be such that ‖u‖L1 <
√

2/
√

17, f ∈ L1((0, T ),H2 ∩
H1

0 (I,C)) ∩W 1,1((0, T ), L2(I,C)) and ψ be the solution of (B.1). Let γ := u(0). Then the func-
tion ϕ := ∂ψ

∂t is the solution in C0([0, T ], L2(I,C)) of
ϕ(t) = T (t)ϕ0 +

t∫
0

T (t− s)(iu(s)(qϕ)(s) + g(s))ds,

ϕ0 = −iAu(0)ψ0 + f(0),
g(s) = iu̇(s)(qψ)(s) + ḟ(s).

• If ψ0 ∈ H3
(γ)(I,C) and f ∈W 1,1((0, T ),H1

0 (I,C)) then, ϕ ∈ C0([0, T ],H1
0 (I,C)), ψ ∈ C0([0, T ],H3(I,C)),

Au(t)ψ(t) ∈ C0([0, T ],H1
0 (I,C)) and we have the following upper bounds when ‖u‖H1 6 1:

‖ϕ‖C0([0,T ],H1) 6 C(‖ψ0‖H3 + ‖f‖W 1,1((0,T ),H1)),

‖ψ‖C0([0,T ),H3) 6 C(‖ψ0‖H3 + ‖f‖W 1,1((0,T ),H1) + ‖f‖L1((0,T ),H2)),

• If ψ0 ∈ H4
(γ)(I,C) and f ∈ W 1,1([0, T ],H2 ∩ H1

0 (I,C)) then, ϕ ∈ C0([0, T ],H2 ∩ H1
0 (I,C)),

ψ ∈ C0([0, T ],H4(I,C)), Au(t)ψ(t) ∈ C0([0, T ],H2∩H1
0 (I,C)) and we have the following bounds

when ‖u‖W 1,1 6 1:
‖ϕ‖C0([0,T ],H2) 6 C(‖ψ0‖H4 + ‖f‖W 1,1((0,T ),H2)),

‖ψ‖C0([0,T ),H4) 6 C(‖ψ0‖H4 + ‖f‖W 1,1((0,T ),H2)).

Proof: Deriving the relation on ψ we get the relation on ϕ. For the sequel, we apply the previous
results on ϕ. Gronwall’s lemma gives constants C = C(u) which are uniformly bounded with respect
to u in a bounded subset of W 1,1((0, T ),R), we chose the constant 1 arbitrarily. �

Proposition 48 Under the same assumptions as in the previous proposition, if u ∈ C1([0, T ],R) and
f ∈ C1([0, T ], L2(I,C)), then ϕ ∈ C1([0, T ], L2(I,C)). It is the unique solution in C0([0, T ],H2 ∩
H1

0 (I,C)) ∩ C1([0, T ], L2(I,C)) of
∂ϕ
∂t = i

2
∂2ϕ
∂q2

+ iu(t)qϕ+ g(t), q ∈ I, t ∈ [0, T ],
ϕ(0) = ϕ0,
ϕ(t,−1/2) = ϕ(t, 1/2) = 0.

Proposition 49 Let u ∈ W 2,1((0, T ),R) be such that ‖u‖L1 <
√

2/
√

17, u̇(0) = u̇(T ) = 0. Let
f ∈W 1,1((0, T ),H2 ∩H1

0 (I,C))∩W 2,1((0, T ), L2(I,C)), ψ be the solution of (B.1) and ϕ := ∂ψ
∂t . Let

γ := u(0). Then the function ξ := ∂ϕ
∂t is the solution in C0([0, T ], L2(I,C)) of

ξ(t) = T (t)ϕ0 +
t∫
0

T (t− s)[iu(s)(qξ)(s) + h(s)]ds,

ξ0 = −iAu(0)ϕ0 + g(0),
h(s) = 2iu̇(s)(qϕ)(s) + iü(s)(qψ)(s) + f̈(s).
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• If ψ0 ∈ H5(I,C), f ∈ W 2,1((0, T ),H1
0 (I,C)) and Aγψ0 ∈ H2 ∩ H1

0 (I,C), A2
γψ0 + Aγf(0) ∈

H1
0 (I,C), then, ξ ∈ C0([0, T ],H1

0 (I,C)) and ϕ ∈ C0([0, T ],H3(I,C)). If f ∈ C0([0, T ],H3(I,C))
then ψ ∈ C0([0, T ],H5(I,C)), Au(t)ψ(t) ∈ C0([0, T ],H2 ∩ H1

0 (I,C)), A2
u(t)ψ(t) + Au(t)f(t) ∈

C0([0, T ],H1
0 (I,C)) and we have the following bounds:

‖ξ‖C0([0,T ],H1) 6 C{‖ψ0‖H5 + ‖f(0)‖H3 + ‖f‖W 2,1((0,T ),H1)+
‖u‖W 2,1(‖ψ0‖H1 + ‖f‖L1((0,T ),H1))}

‖ϕ‖C0([0,T ),H3) 6 C{‖ψ0‖H5 + ‖f(0)‖H3 + ‖f‖W 1,1((0,T ),H2) + ‖f‖W 2,1((0,T ),H1)+
‖u‖W 2,1(‖ψ0‖H1 + ‖f‖L1((0,T ),H1))}

‖ψ‖C0([0,T ],H5) 6 C{‖ψ0‖H5 + ‖f‖C0([0,T ],H3) + ‖f‖W 1,1((0,T ),H2) + ‖f‖W 2,1((0,T ),H1)+
‖u‖W 2,1(‖ψ0‖H1 + ‖f‖L1((0,T ),H1))}.

• If ψ0 ∈ H6(I,C), f ∈ W 2,1((0, T ),H2 ∩ H1
0 (I,C)) and Aγψ0 ∈ H2 ∩ H1

0 (I,C), A2
γψ0 +

Aγf(0) ∈ H2 ∩ H1
0 (I,C), then, ξ ∈ C0([0, T ],H2 ∩ H1

0 (I,C)) and ϕ ∈ C0([0, T ],H4(I,C)).
If f ∈ C0([0, T ],H4(I,C)) then ψ ∈ C0([0, T ],H6(I,C)), Au(t)ψ(t) ∈ C0([0, T ],H2 ∩H1

0 (I,C)),
A2
u(t)ψ(t) +Au(t)f(t) ∈ C0([0, T ],H2 ∩H1

0 (I,C)) and we have the following bounds:

‖ξ‖C0([0,T ],H2) 6 C{‖ψ0‖H6 + ‖f(0)‖H4 + ‖f‖W 2,1((0,T ),H2)+
‖u‖W 2,1(‖ψ0‖H2 + ‖f‖L1((0,T ),H2))}

‖ϕ‖C0([0,T ],H4) 6 C{‖ψ0‖H6 + ‖f(0)‖H4 + ‖f‖W 2,1((0,T ),H2)+
‖u‖W 2,1(‖ψ0‖H2 + ‖f‖L1((0,T ),H2))}

‖ψ‖C0([0,T ],H6) 6 C{‖ψ0‖H6 + ‖f‖C0([0,T ],H4) + ‖f‖W 2,1((0,T ),H2)+
‖u‖W 2,1(‖ψ0‖H2 + ‖f‖L1((0,T ),H2))}.

Proposition 50 Under the same assumptions as in the previous proposition, if u ∈ C2([0, T ],R)
and f ∈ C2([0, T ], L2(I,C)), then ξ ∈ C1([0, T ], L2(I,C)). It is the unique solution in C0([0, T ],H2∩
H1

0 (I,C)) ∩ C1([0, T ], L2(I,C)) of
∂ξ
∂t = i

2
∂2ξ
∂q2

+ iu(t)qξ + h(t),
ξ(0) = ξ0,
ξ(t,−1/2) = ξ(t, 1/2) = 0.

Proposition 51 Let u ∈ W 3,1((0, T ),R) be such that ‖u‖L1 <
√

2/
√

17, u̇(0) = u̇(T ) = ü(0) =
ü(T ) = 0. Let f ∈ W 2,1((0, T ),H2 ∩H1

0 (I,C)) ∩W 3,1((0, T ), L2(I,C)), ψ be the solution of (B.1),
ϕ = ∂ψ

∂t and ξ = ∂ϕ
∂t . Let γ := u(0). Then the function ζ := ∂ξ

∂t is the solution in C0([0, T ], L2(I,C))
of 

ζ(t) = T (t)ζ0 +
t∫
0

T (t− s)[iu(s)(qζ)(s) + k(s)]ds,

ζ0 = −iAu(0)ξ0 + h(0),
k(s) = 3iu̇(s)(qξ)(s) + 3iü(s)(qϕ)(s) + id

3u
dt3

(s)(qψ)(s) + ∂f
∂t3

(s).

If ψ0 ∈ H7(I,C), f ∈ W 3,1((0, T ),H1
0 (I,C)) and Aγψ0 ∈ H2 ∩ H1

0 (I,C), A2
γψ0 + Aγf(0) ∈

H2 ∩ H1
0 (I,C), iA3

γψ0 − A2
γf(0) − iAγ ḟ(0) ∈ H1

0 (I,C) then, ζ ∈ C0([0, T ],H1
0 (I,C)) and ξ ∈

C0([0, T ],H3(I,C)). If f ∈ C1([0, T ],H3(I,C)) then ϕ ∈ C0([0, T ],H5(I,C)). If f ∈ C0([0, T ],H5(I,C))
then ψ ∈ C0([0, T ],H7(I,C)), Au(t)ψ(t) ∈ C0([0, T ],H2∩H1

0 (I,C)), A2
u(t)ψ(t)+Au(t)f(t) ∈ C0([0, T ],H2∩

H1
0 (I,C)), A3

u(t)ψ(t) + A2
u(t)f(t) + u̇(t)Au(t)(qψ(t)) + iAu(t)ḟ(t) ∈ C0([0, T ],H2 ∩ H1

0 (I,C)) and we
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have the following bounds

‖ζ‖C0([0,T ],H1
0 ) 6 C[‖ψ0‖H7 + ‖f(0)‖H5 + ‖ḟ(0)‖H3 + ‖f‖W 3,1((0,T ),H1)+

‖u‖W 2,1{‖ψ0‖H3 + ‖f‖W 1,1((0,T ),H1)}+
‖u‖W 3,1{‖ψ0‖H1 + ‖f‖L1((0,T ),H1)}],

‖ξ‖C0([0,T ],H3) 6 C[‖ψ0‖H7 + ‖f(0)‖H5 + ‖ḟ(0)‖H3+
‖f‖W 3,1((0,T ),H1) + ‖f‖W 2,1((0,T ),H2)+
‖u‖W 2,1{‖ψ0‖H3 + ‖f‖W 1,1((0,T ),H1)}+
‖u‖W 3,1{‖ψ0‖H1 + ‖f‖L1((0,T ),H1)}],

‖ϕ‖C0([0,T ),H5) 6 C[‖ψ0‖H7 + ‖f(0)‖H5 + ‖f‖C1([0,T ],H3)+
‖f‖W 3,1((0,T ),H1) + ‖f‖W 2,1((0,T ),H2)+
‖u‖W 2,1{‖ψ0‖H3 + ‖f‖W 1,1((0,T ),H1)}+
‖u‖W 3,1{‖ψ0‖H1 + ‖f‖L1((0,T ),H1)}],

‖ψ‖C0([0,T ],H7) 6 C[‖ψ0‖H7 + ‖f‖C0([0,T ],H5) + ‖f‖C1([0,T ],H3)+
‖f‖W 3,1((0,T ),H1) + ‖f‖W 2,1((0,T ),H2)+
‖u‖W 2,1{‖ψ0‖H3 + ‖f‖W 1,1((0,T ),H1)}+
‖u‖W 3,1{‖ψ0‖H1 + ‖f‖L1((0,T ),H1)}].

The proofs of the propositions 48, 49, 50, 51 are straightforward, we omit them.

C An other version of the Nash-Moser theorem and its application

C.1 An other version of the Nash-Moser Theorem

Proposition 52 Let us consider the same assumptions as in Theorem 6. We assume moreover that,
for every u, ũ ∈ V ∩ E7,

‖Φ′′(u; v, w)− Φ′′(ũ; v, w)‖7 6 C
∑

(1 + ‖u− ũ‖n′j )‖v‖n′′j ‖w‖n′′′j
, (C.1)

where the sum is finite, all the subscripts belong to {1, 3, 5, 7} and satisfy (3.46) with mj ← nj. We
also assume that, for every v, ṽ ∈ V ∩ E9,

‖(ψ(v)− ψ(ṽ))g‖1 6 C‖v − ṽ‖3‖g‖3, (C.2)

‖(ψ(v)− ψ(ṽ))g‖3 6 C[‖v − ṽ‖3‖g‖5 + ‖v − ṽ‖5‖g‖3], (C.3)

‖(ψ(v)− ψ(ṽ))g‖5 6 C[‖v − ṽ‖3‖g‖7 + ‖v − ṽ‖5‖g‖5 + (‖v − ṽ‖7 + ‖v − ṽ‖25)‖g‖3], (C.4)

‖(ψ(v)− ψ(ṽ))g‖7 6 C[‖v − ṽ‖3‖g‖9 + ‖v − ṽ‖5‖g‖7+
(‖v − ṽ‖7 + ‖v − ṽ‖25)‖g‖5+
(‖v − ṽ‖9 + ‖v − ṽ‖7‖v − ṽ‖5 + ‖v − ṽ‖35)‖g‖3].

(C.5)

Then, there exist ε > 0 and a continuous map

Π : V ′β → E3

f 7→ u

where
V ′β := {f ∈ F ′β; ‖f‖′β < ε},

such that, for every f ∈ V ′β,
Φ(Π(f)) = Φ(0) + f.
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Proof: The map Π is the composition of the following maps

F ′β → F ′β → E3

f 7→ g 7→ u,
(C.6)

where f = g + T (g) and u is the limit of the sequence built in the proof of Theorem 6.
First, we prove the continuity of the map

F ′β → F ′β
f 7→ g.

It is sufficient to prove that T : F ′β → F ′β is a contraction. Indeed, the inequality

‖T (g)− T (g̃)‖′β 6 δ‖g − g̃‖′β ,

with δ ∈ (0, 1) gives

‖g − g̃‖′β 6
1

1− δ
‖f − f̃‖′β.

Let g, g̃ ∈ F ′β. Let (uj), (u̇j) and (vj) the sequences built in the proof of Theorem 6, associated
to g. Let (ũj), ( ˙̃uj) and (ṽj) the sequences associated to g̃.

Then, there exists C1, C2, C3 > 0 such that, for every j ∈ N,

‖u̇j − ˙̃uj‖a 6 C1‖g − g̃‖′βθa−α−1
j , a ∈ {1, 3, 5, 7}, (C.7)

‖vj − ṽj‖a 6 C2‖g − g̃‖′βθa−αj , a ∈ {5, 7}, (C.8)

‖(uj − vj)− (ũj − ṽj)‖a 6 C3‖g − g̃‖′βθa−αj , a ∈ {1, 3, 5, 7}. (C.9)

The proof is exactly the same as the one of (3.25), (3.26), (3.27).

Remark: At this step, we have the continuity of the second map in (C.6)

F ′β → E3

g 7→ u.

Indeed, (C.7) gives

‖u− ũ‖3 6 C1

 ∞∑
j=0

∆jθ
2−α
j

 ‖g − g̃‖′β .

We have

T (g)− T (g̃) =
∞∑
j=0

∆j [(e′j − ẽ′j) + (e′′j − ẽ′′j )].

Let us prove that there exists C4, C5 > 0 such that, for every j ∈ N∗,

‖e′j − ẽ′j‖7 6 C4 max{‖g‖′β, ‖g̃‖′β}‖g − g̃‖7, (C.10)

‖e′′j − ẽ′′j ‖7 6 C5 max{‖g‖′β, ‖g̃‖′β}‖g − g̃‖7, (C.11)

These bounds give
‖T (g)− T (g̃)‖′β 6 C6 max{‖g‖′β, ‖g̃‖′β}‖g − g̃‖7,

which proves that T is a contraction of a small neighbourhood of 0 in F ′β .
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We have

e′j − ẽ′j = ∆j

∫ 1
0 (1− t)[Φ′′(uj + t∆j u̇j ; u̇j , u̇j)− Φ′′(ũj + t∆j

˙̃uj ; u̇j , u̇j)]dt+
∆j

∫ 1
0 (1− t)Φ′′(ũj + t∆j

˙̃uj ; ˙̃uj − u̇j , u̇j)]dt+
∆j

∫ 1
0 (1− t)Φ′′(ũj + t∆j

˙̃uj ; ˙̃uj , u̇j − ˙̃uj)]dt.

Using (C.1) for the first line, (3.17) for the second and the third lines of the right-hand side, and
proceeding as in the previous proof, we get (C.10). The inequality (C.11) can be proved in the same
way. �

C.2 Application of Theorem 52

The aim of this subsection is to apply Theorem 52 to the map

Φγ : (ψ0, v) 7→ (ψ0, ψT ),

in order to get the following controllability result.

Theorem 14 There exists γ0 > 0 such that, for every γ ∈ (0, γ0), there exist δ > 0, C > 0 and a
continuous map

Γγ : Vγ(0) × Vγ(T ) → H1
0 ((0, T ),R)

(ψ0 , ψf ) 7→ v

where
Vγ(0) := {ψ0 ∈ S ∩H7

(γ)(I,C); ‖ψ0 − ψ1,γ(0)‖H7(I,C) < δ},

Vγ(T ) := {ψf ∈ S ∩H7
(γ)(I,C); ‖ψf − ψ1,γ(T )‖H7(I,C) < δ},

such that, for every ψ0 ∈ Vγ(0), ψf ∈ Vγ(T ), the unique solution of (Σ) with control u := γ +
Γγ(ψ0, ψf ) such that ψ(0) = ψ0 satisfies ψ(T ) = ψf and

‖Γγ(ψ0, ψf )‖H1
0 ((0,T ),R) 6 C[‖ψ0 − ψ1,γ(0)‖H7(I,C) + ‖ψf − ψ1,γ(T )‖H7(I,C)].

The bound (C.1) can be proved exactly in the same way as the bound (3.17) in Proposition 10.

Let us recall that we built dΦγ(ψ0, v)−1.(Ψ0,Ψf ) in the following way

dΦγ(ψ0, v)−1.(Ψ0,Ψf ) = M−1
(ψ0,u)

(d(ψ0,u)(Ψ0,Ψf )).

We will use the following decomposition

[dΦγ(ψ0, u)−1 − dΦγ(ψ̃0, ũ)−1].(Ψ0,Ψf ) = M−1
(ψ0,u)

[d(ψ0,u)(Ψ0,Ψf )− d(ψ̃0,ũ)
(Ψ0,Ψf )]

+[M−1
(ψ0,u)

−M−1

(ψ̃0,ũ)
](d

(ψ̃0,ũ)
(Ψ0,Ψf )).

(C.12)

In order to prove the bounds (C.2), (C.3), (C.4), (C.5), we use the following corollary of Proposition
15.

Proposition 53 Let us consider the same assumptions as in Proposition 15. We assume we have
another map M̃ and constants ∆̃3, ∆̃5, ∆̃7, ∆̃9 with the same properties as the map M and the con-
stants ∆3,∆5,∆7,∆9. We also assume that there exists some constants C, η3, η5, η7, η9 such that

‖(M̃ −M)(w)‖h3 6 C3η3‖w‖L2 ,

‖(M̃ −M)(w)‖h5 6 C3[η3‖w‖H1
0

+ η5‖w‖L2 ],
‖(M̃ −M)(w)‖h7 6 C3[η3‖w‖H2

0
+ η5‖w‖H1

0
+ η7‖w‖L2 ],

‖(M̃ −M)(w)‖h9 6 C3[η3‖w‖H3
0

+ η5‖w‖H2
0

+ η7‖w‖H1
0

+ η9‖w‖L2 ].

(C.13)
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Then, there exists C4 > 0 such that, when η3 is small enough, the right inverses M−1 and M̃−1 built
in Proposition 15 satisfy

‖(M̃−1 −M−1)(d)‖L2 6 C4η3‖d‖h3 ,

‖(M̃−1 −M−1)(d)‖H1
0

6 C4[η3‖d‖h5 + η5‖d‖h3 ],
‖(M̃−1 −M−1)(d)‖H2

0
6 C4[η3‖d‖h7 + η5‖d‖h5 + η7‖d‖h3 ],

‖(M̃−1 −M−1)(d)‖H3
0

6 C4[η3‖d‖h9 + η5‖d‖h7 + η7‖d‖h5 + η9‖d‖h3 ].

Proof: In the proof of Proposition 15, the functions w := M−1(d) and M̃−1(d) are the sum of
the following series:

w =
∞∑
k=0

wk with w0 := M−1
γ (d) and wk := M−1

γ [(Mγ −M)(wk−1)],

w̃ =
∞∑
k=0

w̃k with w̃0 := M−1
γ (d) and w̃k := M−1

γ [Mγ − M̃)(w̃k−1)].

Let k ∈ N∗. We have

‖wk − w̃k‖L2 = ‖M−1
γ [(Mγ −M)(wk−1 − w̃k−1)− (M − M̃)(w̃k−1)]‖L2

6 C0[C1∆3‖wk−1 − w̃k−1‖L2 + C3η3‖w̃k−1‖L2 ]
6 C0[C1∆3‖wk−1 − w̃k−1‖L2 + C3C0η3(C2∆̃3)k−1‖d‖h3 ]

By induction, we get, for every k ∈ N

‖wk − w̃k‖L2 6 k(C2 max{∆3, ∆̃3})k−1C5η3‖d‖h3 where C5 := C3C0.

Since C2∆3, C2∆̃3 < 1/2, we have

‖w − w̃‖L2 6 4C5η3‖d‖h3 .

The other bounds can be obtained in the same way. �

First, we apply this proposition with the map Mγ (resp. M resp. M̃) replaced by M(ϕ1,γ) (resp.
M(ψ0,u) resp. M

(ψ̃0,ũ)
) defined in section 3.6.1 and the constants

∆k := ‖(ψ0, u)− (ϕ1,γ , γ)‖E0
k
, ∆̃k := ‖(ψ̃0, ũ)− (ϕ1,γ , γ)‖E0

k
,

ηk := ‖(ψ0, u)− (ψ̃0, ũ)‖E0
k
,

for k = 3, 5, 7, 9, in order to get a bound on the second term of (C.12). Let us check the first bound
of (C.13); the other ones can be obtained in the same way.

Let us recall that

M(ψ0,u)(w)1 =
∫ T

0
w(t) < qψ(t), ψ(t) > dt,

M(ψ0,u)(w)k =
∫ T
0 [w(t) < qψ(t), ϕk,u(t) > −iu̇(t) < Ψ2(t),

dϕk,γ

dγ ]u(t) >

+iu̇(t)<Ψ2(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>
< ψ(t), dϕk,γ

dγ ]u(t) >

+i ddt
(
<Ψ2(t),ϕ1,u(t)>

<ψ(t),ϕ1,u(t)>

)
< ψ(t), ϕk,u(t) >]ei

∫ t
0 λk,u(s)dsdt, k > 2

The computations are similar to the ones in section 3.6.
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Proposition 54 Let T := 4/π. There exist constants δ, C3 > 0 such that, for every (ψ̃0, ṽ), (ψ0, v) ∈
Eγ9 satisfying ∆3, ∆̃3 < δ, we have, for every w ∈ L2((0, T ),R),

|(M(ψ0,u) −M(ψ̃0,ũ)
)(w)1| 6 C3η3‖w‖L2 .

Proof: We have

(M − M̃)(w)1 =
∫ T

0
(w(t) < qψ(t), (ψ − ψ̃)(t) > + < qψ̃(t), (ψ − ψ̃)(t) > dt

|(M − M̃)(w)1| 6
√
T‖w‖L2‖ψ − ψ̃‖C0([0,T ],L2) 6 C‖w‖L2η3.�

Proposition 55 Let T := 4/π. There exist constants δ, C3 > 0 such that, for every (ψ̃0, ṽ), (ψ0, v) ∈
Eγ9 satisfying ∆3, ∆̃3 < δ, for every w ∈ L2((0, T ),R), the sequence (Xk(w))k>2 defined by

Xk(w) :=
∫ T

0
w(t)[< qψ(t), ϕk,u(t) > ei

∫ t
0 λk,u(s)ds− < qψ̃(t), ϕk,ũ(t) > ei

∫ t
0 λk,ũ(s)ds]dt

satisfies
‖X‖h3 6 C3η3‖w‖L2 .

Proof: We study one by one the terms of the following decomposition

Xk(w) =
∫ T
0 w(t){[< q(ψ − ψ̃)(t), ϕk,u(t) > + < qψ̃(t), ϕk,u(t) − ϕk,ũ(t) >]ei

∫ t
0 λk,u(s)ds

+ < qψ̃(t), ϕk,ũ(t) > [ei
∫ t
0 λk,u(s)ds − ei

∫ t
0 λk,ũ(s)ds]}dt

(C.14)

We apply Proposition 16 to the first term of the right hand side of (C.14). On the second term of
the right hand side of (C.14), we use an integration by parts (with respect to q) and Proposition 42.
In the third term of the right hand side of (C.14), we use an integration by parts (with respect to q)
and the following consequence of Proposition 42

|λk,u − λk,ũ| 6
C∗

k
|u− ũ|.�

The strategy is exactly the same with each term in M(ψ0,u)(w), we omit the end of the proof.

In a similar way, we prove bounds on

d(ψ0,u)(Ψ0,Ψf )− d(ψ̃0,ũ)
(Ψ0,Ψf )

in order to get a suitable bound on the first term in (C.12)
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