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Local controllability of a 1-D Schrodinger equation

Karine BEAUCHARD
Université Paris-Sud, Laboratoire ANEDP,
Département de Mathématique, UMR, 8628, Bat. 425, 91405 Orsay, France

E-mail address: Karine.Beauchard@math.u-psud.fr

Abstract: We consider a non relativistic charged particle in a 1-D box of potential. This quan-
tum system is subject to a control, which is a uniform electric field. It is represented by a complex
probability amplitude solution of a Schrédinger equation. We prove the local controllability of this
nonlinear system around the ground state. Our proof uses the return method, a Nash-Moser implicit
function theorem and moment theory.

Résumé: On consideére une particule non relativiste dans un puits de potentiel en dimension un
d’espace. Ce systeme quantique est soumis a un champ électrique uniforme, qui constitue un controle.
Il est représenté par une densité de probabilité complexe solution d’une équation de Schrodinger. On
démontre la controlabilité locale de ce systéeme non linéaire au voisinage de ’état fondamental. La
preuve utilise la méthode du retour, un théoreme de Nash-Moser et la théorie des moments.

Keywords: controllability, Schréodinger equation, Nash-Moser theorem, moment theory.

1 Introduction

We consider a non relativistic single charged particle in a one dimension space, with a potential V', in
a uniform electric field ¢ — w(t). Assuming the mass of the particle is 1 and the constant % is equal to
1, it is represented by a probability complex amplitude ¢ € R +— (¢, q) solution of the Schrodinger
equation

Oy 10%

Yar T 2 0q
We study this quantum system in the case of a box potential: V(q) =0 for g € I := (—1/2,1/2) and
V(q) = +o0 for q outside I. Therefore our system is

2
S 00) = =3 55 (00) — ulav ). g€ 1 (1)

This is a control system, denoted (X), where
e the state is ¥, with [} [¢(¢,¢)|*dg = 1 for every t,

e the control is the electric field ¢ — u(t) € R.

Definition 1 Let Ty and Ty be two real numbers satisfying Ty < To, u : [Th, T3] — R be a continuous
function and o € H?> N HY(I,C) be such that ||1ol|r2 = 1. A function ¢ : [T1,Te] x I — C is a
solution of the system (X) if



e ¢ belongs to C°([Ty, Tz), (H? N H)(I,C)) N CY([Ty, Tz), L*(1,C)),
e the equality (1.1) is true in L?(1,C) for every t € [Ty, Ts],
e the equality (1.2) is true in L*(I,C).

Then, we say that (1, u) is a trajectory of the control system (X).

Note that the equation (1.1) guarantees the conservation of the L?-norm of 1, since u is real
valued. Indeed, using the notation

< fg>= /If(CJ)g(q)dq,

and the equation (1.1), we have

A2, =< ¥ W _

Our main result states that this control system is locally controllable around the ground state for
u = 0, which is the function

P1(t, q) = pi1(g)e M,

Here, A := 72/2 is the smallest eigenvalue of the operator A defined on D(A) := (H? N H})(I,C),
by Ap := —(1/2)¢". The function ¢1(q) := v/2cos(rq) is the associated eigenvector. This property
was stated for the first time by P. Rouchon in [18].

Let us introduce the unitary sphere of L?(I,C)
S:={p € L*(I,C); ¢l > = 1}
and the closed subspace of the Sobolev space H(I,C) defined by
H(70) (I’ C) = {90 € H7(Iv (C)a 90(271)(1/2) = 90(211)(71/2) =0, for n = 07 1a 2, 3}

Theorem 1 Let ¢g, p1 € R. There exist T > 0 andn > 0 such that, for every i, 11 in SOHFO)(I, C)
satisfying
[0 — pre'® |l gm <, b1 — 1"tz <,

there exists a trajectory (¢, u) of the control system (X) on [0,T] such that ¥(0) = 1o, Y(T) = ¢
and v € H}((0,T),R).

The first remark concerns the regularity assumption on the initial and final states. Following
arguments from J. M. Ball, J. E. Marsden and M. Slemrod in [1], it has been pointed out by G.
Turinici in [9, chap.4] that the control system (X) is not controllable in H>NH{ (I, C). More precisely,
whatever the initial data is, the set of reachable sets has a dense complement in the L?-sphere S.
Thus, in order to have controllability, it is necessary to put stronger regularity assumptions on the
initial and final states.

The proof given in this article gives the controllability of (¥) in H'. The exponent 7 is purely
technical and related to the application of the Nash-Moser theorem. With the same strategy and
strengthened estimates in the Nash-Moser theorem, it should be possible to get the controllability in
spaces H® with s < 7 (for example for any s > 6). We conjecture that the local controllability of the
non linear system (¥) holds in H? N H} with control in L? because it is the case for the linearized



system considered in section 3.1.

The second remark concerns the time of control. In this article, we prove the local controllability
in time larger than 4/7 and rather long, because we use quasi-static transformations in section 4.
However, we don’t think a so long time is necessary. The existence of a minimal time for the control
is an open problem.

Usually, the controllability of systems involving the Schrodinger equation does not require a pos-
itive minimal time of control because this equation has an infinite propagation speed. Nevertheless,
the existence of a positive minimal time for the control of (¥) is not excluded.

In order to understand why, let us consider, as in [6], the following toy model

Ty = w2,
To = —x1 + u,
(1) 227
3 = T4,
T4 = —x3 + 2x120.
The linearized system around (z; = 0,29 = 0,23 = 0,24 = 0,u = 0) is not controllable. For

~v # 0, the linearized system around (z1 = 7,292 = 0,23 = 0,24 = 0,u = ) is controllable in time
arbitrarily small. Nevertheless, the nonlinear system (7°) is not small time controllable. Indeed, if
(z,u) : [0,T] — R* x R is a trajectory of the control system (7') such that z(0) = 0, then

T
24(T) = /O 22(t) cos(T — t)dt,

T
2a(T) = 22(T) — /0 22(8) sin(T — t)dt.

In particular, if z;(T) = 0 and T' < 7 then x4(7") < 0 thus (7)) is not controllable in time 7" < .
Moreover, it is proved in [6] that (7") is locally controllable in time 7' around zero if and only if
T>m.

The system (X) is similar to (7). Indeed, the linearized system around the ground state vy, for
u = 0 is not controllable. The linearized system around the ground state 1 ,, for u =+, studied in
section 3.1, is controllable in time arbitrarily small.

Thus, we conjecture there exists a positive minimal time for the control of (¥). The method
introduced by J.-M. Coron and E. Crepeau in [7] could be used in order to know what is the minimal
time for controllability.

The author thanks J.-M. Coron for having attracted her attention to this controllability problem
and for fruitful discussions and advice on this work. The author also thanks A. Haraux for useful
information about the regularity of the solutions and L. Rosier for interesting remarks. This work was
partially supported through a European Community Marie Curie Fellowship and in the framework
of the Control Training Site.

For other results about the controllability of Schrédinger equations, we refer to the survey [20].

2 Sketch of the proof

A classical approach to get local controllability consists in proving the controllability of the linearized
system around the point studied and concluding using an inverse mapping theorem. This method
does not work here: Pierre Rouchon proved in [18] that around any state of definite energy, the
linear tangent approximate system is not controllable, but is “steady-state” controllable, with the
state (1,9, D) where § =u, D = s.



The proof of Theorem 1 relies on the return method, a method introduced in [2] to solve a stabi-
lization problem, together with quasi-static transformations as in [5]. The return method has already
been used for controllability problems by J.-M. Coron in [5], [3], [4], by A. V. Fursikov and O. Yu.
Imanuvilov in [10], by O. Glass in [11], [12], by Th. Horsin in [15] and by E. Sontag in [19]. We find
a trajectory (zZ, u) of the control system (X) such that the linearized control system around (QZ, u) is
controllable in time 7. Using an implicit function theorem, we get the local controllability in time
T of the nonlinear dynamics around (¢(0),%(T)): there exist a neighbourhood Vj of ¢(0) and a
neighbourhood Vi of 9(T') such that the system () can be moved in time T from any state in V;
to any state in V.

Then for two states v, 11 closed enough to @1, p1e/®!, we prove the system (X) can be moved
- from 1y to a point ¥y € Vp, using quasi-static transformations,
- from one point ¥3 € V to 1, using again quasi-static transformations,

- from 1y to 13 using the local controllability around ((0), (T)).

Let us give an example of such a family of trajectories (zz, w). For this, we need few notations.

For a given real constant v, we write A, : D(A,) — L?*(I,C) the operator defined by
D(Ay) == H* N H(I,C), Ayp:=—5¢" —yayp.
The space L?(I,C) admits a complete orthonormal system (¢ )ken+ of eigenfunctions for A,:

1 d2(,0k’7

2 dg?

= YqPky = My Pk

where ()‘kﬂ) keN+ 1s an increasing sequence of positive real numbers. Then the function ¢y (¢, q) :=
<p177(q)e_2)‘1’7t is a solution of the system (X) with control u = . It is the ground state for u = .

Using the notation
{ 1/}(ta Q) = Tzz)l,’y(ta (:7) + ‘lj(tv Q)’
u(t) =+ w(t),

the linearized system around (¢ ,7) is

. 2
i% = —35% — gV — w(t)gr
\I’(O) = \IJ()a

U(t,—1/2) = W(t,1/2) = 0.

where the state is U and the control is w : [0,7] — R. Note that the first equation on ¥ guarantees

d
& (%[ vt o¥aian) ~o
I
where R(z) denotes the real part of the complex number z. Therefore, when ¥y belongs to the

tangent space to S at ¢,
R ([ o1 (@Elaa) =0

then W(t) belongs to the tangent space to S at 1 ,(t) for every time ¢,

R < /I nn (b ) q)dq) 0.
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We will see, in section 3.1, using moment theory, that when ~ is small enough but different from
zero, this linear control system is controllable in any time T° > 0. However, the classical implicit
function theorem is not sufficient to conclude the local controllability in time 7" of the nonlinear
system around (¢1,4(0),%1,(7")). Indeed, the map ®, which associates to any couple of initial
condition and control (¢, v) the couple of initial and final conditions (g, ¢r) for the system (X)
with u =~ + v,

®.,: [SNHII,C) x L2((0,T),R) — [SNHLI,C)] x[SNHLI,C)
(Yo, v) — (%o, Y1)

is well defined and of class C1. Its differential application d®.(¢1.+,0) at the point (p1,,0) maps
the space
E := [Ts(¢1,4) N Hy(I,C)] x L*((0,T),R)

into the space

F = [Ts(14(0)) N Hy(1,C)] x [T5(41,(T)) N Hy (1, C)],

where Tig(€) is the tangent space to the L?-sphere S at the point £. It admits a right inverse, written
d®.,(¢1,,0)7L, but this right inverse does not map F into E. We only know that d®(p1.,0)""
maps

[Ts(11,,(0)) N Hiy (I, C)] x [Ts(31,(T)) N Hgy (1, C)]
into

[Ts(p1,4) N Hyy (I,C)] x L*((0,T),R),

where H (30)(1 ,C) is a closed subspace of H3(I,C). We deal with this loss of regularity using a Nash-

Moser implicit function theorem given by Hérmander in [16]. We get the following theorem, proved
in section 3.

Theorem 2 Let T' = 4/7. There exists a constant y1 > 0 such that, for every v € (0,7], there

exists a constant n > 0 such that, for every (vg, 1) € SN HZW)(I,(C) satisfying

[0 = 17 (O) |7 <n, (|7 = P1y(T)llg7 <,

there exists a trajectory (¥, u) of the control system (X) satisfying 1(0) = o, ¥(T) = Y and
(U’ - ’7) S H&((OaT)vR)

In this theorem, H (77) (I,C) denotes the closed subspace of H'(I,C) containing 1 defined by
H{\(I,C) := {p € H'(I,C); ALp(-1/2) = ALp(1/2) = 0 for I = 0,1,2,3}.

The use of the Nash-Moser theorem is motivated because we work on Sobolev spaces. However,
we don’t think the use of the Nash-Moser theorem is necessary : there exists probably spaces on
which the classical inverse mapping theorem can be applied but we do not know them for the moment.

In the last part of the proof, we construct explicitly, for v > 0 small enough, trajectories (¢, u) :
[0,7'] — H"(I,C) x R such that

u(0)=0,  w(T') =7,
»(0) = pre'®, (Th) € H],(1,C), [[U(T") = o14llar <n/2.

(v

Then, for ¢¥g € H (70) (I, C) closed enough to ¢1e°, the same control moves the system from v to o
which satisfies

Yo € H@)(L C) and (|92 — p14]lm7 <,
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thanks to the continuity with respect to initial condition. We also construct trajectories (i, u) :
[T' 4+ T,T' 4+ T +T? — H"(I,C) x R such that

w(Tr+T) =7, w(T*+ T +T?) =0,
Y(T'+T) € HY (I,C),  [(T" +T) = p1pe 7| 7 < /2,
YT+ T+ T?) = pre®r,

Then, for ¢ € H (70) (I,C) closed enough to (1€, the same control moves the system from 13 to
11, where 13 satisfies ‘
Uy € HL)(1,€) and s = o10e [y <.

Our idea is that, starting from an initial point ¢1€'® on the ground state for v = 0, t — @11, if
we change sufficiently slowly the value of the control u from 0 to «, the state of the system will stay
very closed, at each time ¢1, to a point on the ground state for an electric field constant in wu(t),
t— wl,u(tl)ei)‘l,um)t. Therefore, the final value of the state will be very closed to ¢1 ., up to a phase
factor. More precisely, we have the following theorems, proved in section 4.

Theorem 3 Let vy € R. We consider the solution . of the following system

M/}e = _%1#2/'_ ’Yof(ﬂf)fﬂ/}a
¢€(0) - 9016“;507
Ye(t,—1/2) = (¢, 1/2) =0,

where f € C°([0,1],R) satisfies f*)(0) = 0 for every k €N, f(1) =1, 0 < f < 1 and ¢y € [0,27).
Let (€n)nen+ be defined by

1 1
6/0 Al,fygf(t)dt = ¢ + 2nm,

for every n € N*. There exists v* > 0 such that, for every vo € (—v*,~*), for every s € N,
(te,, (1/€n))nen converges to @1, in H*(I,C).

Theorem 4 Let vy € R. We consider the solution & of the following system

iSe = =38 — 0/ (1 — et)gée,
Ee(1/€) = pre'™,
ﬁe(t, _1/2> - §€(t, 1/2> =0,

where ¢1 € (—2m,0]. Let (€n)nen+ be defined by

1 1
— / /\1’70f(t)dt = —)\1770T — o1+ 2(n + 1)7‘(’,
0

€n

for every n € N*, where T := 4/m. There exists v* > 0 such that, for every v € (—v*,~), for every
s €N, (&,(0))nen+ converges to o1 ,,e” 0T in H3(I,C).

The constant v* is such that every proposition in Appendix A is true with v € (—v*, 7).

3 Local controllability of the nonlinear system around the ground
state for u =~

3.1 Controllability of the linearized system around (i .,7)

The linearized system around (11 ,7) is the following one,



ov 100

ZE = —iTQQ —vqV — w(t)qlﬁlm (3.1)
U(0) = Wy, (3.2)
U(t,—1/2) =¥(t,1/2) =0, (3.3)

where the state is W(¢) and the control is w(t). We know (see Appendix B, Proposition 45) that
for every couple (¥, w) € Hi(I,C) x L*((0,T),R), there exists a unique generalized solution ¥ €
CY([0,T], H(I,C)) of (3.1), (3.2), (3.3), in the sense that it satisfies the following equality in L*(I, C),
for every t € [0, 7],

V() = 7,000 + [ (¢ = 9inls)avr (s)ds (3.4
0

In this formula, (T5(t)):>o0 is the group of isometries of L?(I,C) with infinitesimal generator —iA.,.
More explicitely, for ¢ € L?(I,C) and t € R,

+o0

Ty(t)p =D <o, pry > € Ml
k=1

We assume g satisfies (< Wo, 1, >) = 0. Then, for every t € [0,T],

t
<U(L), Y14(t) >=< Vo, p1,4 > +i/w(8) < qp1y:p1y > ds € 1R,
0

so this generalized solution satisfies W(t) € Ts(11,,(t)) for every t € [0, 7.

If T'>0and Y7 € Ts(¢14(T)), the equality W(T') = Ur is equivalent to
T . .
ibkﬁ/ w(t)ez(k’m_’\lﬁ)tdt =< Vr, p > AT < @, Yk~ >, for every k € N¥, (3.5)
0
where by, , =< qp1,, Pk~ >. If by, # 0 for every k € N*, this is a moment problem in L?((0,7),R),

T
/ w(t)e' MMt gy — dy . for every k € N*.
0

Thanks to standard results about trigonometric moment problems, we will prove this moment prob-
lem has a solution w € L?((0,T),R) as soon as the right hand side (d - )ren+ belongs to 1*(N*,C),
when ~ is small enough, different from zero and T is positive.

The non controllability result when v = 0, proved by Pierre Rouchon in [18] is related to the
behaviour of the coefficients by : by = 0 for every odd integer k. When v = 0, we only control
half of the projections. The controllability when ~ is small enough and different from zero is possible
because as soon as v # 0, we have by, , # 0 for every k.

In this article, we use the same letter C' to design various constants. The value of C' can change
from one expression to another one.



Proposition 1 There exists o > 0 such that, for every ~ € (0,70] and for every k € N*, by, ,, # 0.
There exist y1 > 0 and C > 0 such that, for every v € (0,71] and for every even integer k > 2,

(—1)2+18k,  Cny
bry — 575 3! < 73
; m2(k2 —1)2 k3
and for every odd integer k > 3,
k—1
b _72(—1)T(k2+1)| CH?
’“” Tk (k2 — 1)2 K

Proof: We use results on ¢, , presented in appendix A. In particular, ¢y, , is an analytic function
of ~:
1 2
Ory = ok + 08 + 7200 +

by =< @k, o1 > +7(< qw;ﬁl),w >+ < gor ot >) + .. (3.6)

When £ is odd (resp. even) the first (resp. the second) term of the right hand side of (3.6) vanishes,
because of the parity of the functions involved.

Study of by .
We have by, = 27 < qgogl), ©1 > +o(v), when v — 0. Using (A.5) and (A.2) we get

+oo 92

(1) 128 (29)
< 5 >= — B B 9
avy 5P 6 ]Ez:l (1 + 2])5(2] _ 1)5

which is a positive real number.
Study of b, , when k is even.
When k is a fixed even integer, we have

k
8(—1)2 1k
bky =< gk, p1 > +o(y) = 7T§(k:2)—1)2 + o(7).

Let us prove that there exists a positive constant C' such that, for every even integer k,

Cvy
| < @k~ P17 > — < qor, 01 > | < R

Using integrations by parts, we get

< QP P1ry > — < qPk, 1 >= (vlw - rlk> < Py Ay (q015) > = < Py — Prs Ay (g14) >

Tk < on Ay (ge1y) — Algar) > -

We deal with the two first terms of the right hand side of the above equality using (A.13) and (A.7).
In the third term, the scalar product is a Fourier coefficient of a C'' function f such that, for every
v e =77 e < C.

Study of b, , when k is odd.

When k is a fixed odd integer, we have

by = (< QS01(<;1)7901 >+ < qs0k790§1) >) +0(7)-

Using (A.5) and (A.2), we get

k+1

+o0 -\ 2
) C128(-1) = k (25)
<4py e >= 76 ; (14 25)2(1 = 25)*(k + 27)3(k — 2)*
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In order to compute this sum, we decompose the fraction

X2
(k+X)3(k—X)3(14+ X)%(1 — X)?

F(X) =

in the following way

_ 15k 410k%2-1 1 1 k241 1 1 1 1 1
F(X) = Somge_ns (X+k - X—k:) + R —e <(X+k)2 + (X—k)Q) + e ((X+k)3 - (X—k)3>
k245

1 1 1 1 1
TaRIT-DEA\X+T T X1 + 4(k2-1)3 \ (X+1)2 + (X-1)2

We sum each term and we get

kt1
2(—1)"2z (11k2+1
<Q¢l(gl)v‘P1 >= ( i (k g — 1) )

In the same way, we have
k—1
(1) 2(—1)"2 k(k? +11)

<O = T e
Therefore -
1 -1)2 (K*+1
<ao® o1 > + < gpp, ol = A 4/1(14;2(— o ),
Let us prove that there exists a constant C' > 0 such that, for every odd integer k,
1 1 Cy?
by = (< g 01 > + < gpn, 01 >)| < ER

Thanks to parity arguments, this inequality can be written
072 .
JAVRIRES where Agy =< qPky, P1y > — < @Bk, Priy >

with ¢, = @ + ’ygo,(:). Using (A.1) and (A.6) and integrations by parts, we get:

Bry = (Akl,v Ak> < Phpys Ay(ap1y) > +$ < Pry — Phiys Ay(apry) >
+i < Sak,% A'y(Q[QOl,V - ()51,7]) < cp]g ), q 90177

We deal with the first term of the right hand side of this equality using (A.13), with the second one
using (A.8) and with the fourth one using (A.18). Using the notation f, := A,(q[p1,, — $1,4]), We
decompose the third term in the following way

1 - 1 0 1
<‘Pk,~/af'y> <90k:af7>+ <<P()f'y>
Ak )\ Ak

The first term of the right hand side of this equality is a Fourier coefficient of a C'-function f,
satisfying || fy[|c1 < 7?. We get a suitable bound on the second term of the right hand side of this
equality using (A.18) and || f ;2 <720

We introduce the space

H(?’O)(I,C) = {U € H3(I,C); ¥(q) = ¥'(q) =0 for ¢ = —1/2,1/2}.



Theorem 5 There exists v1 > 0 such that, for every v € (0,71], for every T > 0 and for every
Uy, Up € H(Bo) (I,C) satisfying

R(< Wo,1,4(0) >) = R(< W, (T) >) =0, (3.7)
there exists w € L*((0,T),R) solution of the moment problem (3.5).

Proof: Thanks to (A.11), we have lim,_o\j, = A; = (jm)?/2, uniformly with respect to j € N*.
Thus, there exists 41 > 0 such that, for every v € [0,71], for every j € N*, X\j 1, — Aj, > 0 and
Mmoo (A1 — Ajny) = Fo00.

Let v € (0,71] and T > 0. We know from [14] that for every d = (dj)ren+ € I2(N*,C), such
that d; € R, there exists exactly one w € L?((0,7),C) minimum L?-norm solution of the moment
problem:

T R
Jw(t)ePCea=2)tge = dy o [T w(t)e " Ok Mt dt = dy Yk € N*,
0

Thanks to the uniqueness, w is real valued.

Let Wy, Ur € H(?’O) (I,C), satisfying (3.7). Then the sequence

1 .
(dk)kEN* = (b(< \I/T,(,Okﬂ > GZAk’WT— < \:[1078016,7 >)) (38)
W0k keN*

satisfies d; € R. Let us prove that (dy) € I2(N*,C), which ends the proof. It is sufficient to prove

that, if ¥ € H(?’O) (I,C), then

1
( <,k >> e I2(N*,C). (3.9)
bk keN*

Let ¥ € H?O)(I,C). Then, ¢ :=< ¥, ¢}, > satisfies

1

Ck = 55—
Aoy

1
(2 < (A ) @)y > =7 < qA T, 0p >> :

Thanks to (A.12), we get

c
Bler] <+ (1 < (Ay9), 0 > [+ 1Ay ) [l 224, = Phllze + 145 Pl z2r)) -

Since (7¢])ien- is an orthonormal family of L?(I,C), the first term of the right hand side of this
inequality belongs to I2(N*, C). The second term of the right hand side of this inequality also belongs
to [?(N*, C) because of (A.9). We have proved (3.9). O

Remark: The assumption Vo, Up € H2N H(I,C), is not sufficient to get (3.8) in [2(N*,C).

Let us introduce the map

(I)'V : <¢0,U) = (¢07¢T)

where 1) is the generalized solution of (X) with u = y+v and ¢7 = ¢(T"). The map . is well defined
and of class C!
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- from [S N (H2 N HL)(I,C)] x L2((0,T),R) to [S N (H2 N HL)(I,C)] x [S N (H2 N HE)(I,C)] ,

- from [S N H3, (I,C)] x HL((0,T),R) to [SNH3,(I,C)] x [S N HS (I,C)].

(0) (0) (0)

To get the local controllability of the non linear system (X) around %; , from the standard implicit
function theorem, we consider Wo, U € L2(I,C) satisfying (3.7), one needs to construct a control
bringing the system from Wy to W7 which belongs

- either to L2((0,T),R) when Wo, Uy € (H2N H})(I,C)

- or to HE((0,T),R) when ¥y, Up € H?O)(I,(C).

The previous remark explains why it does not seem to be possible.

3.2 The Nash-Moser implicit function theorem used

To get the local controllability of the nonlinear system around 1 ,, we use the Nash-Moser implicit
function theorem given by Hormander in [16]. We need small changes in Hérmander’s assumptions.
Those changes do not influence much his proof. In this subsection, we first recall the context of the
Nash-Moser theorem stated by Hérmander in [16]. Then, we state a Nash-Moser theorem which is
a little bit different from Hoérmander’s one and can be directly applied to our problem. We repeat
Hormander’s proof in order to justify our changes in the assumptions. Finally, we give explicitly
a local diffeomorphism from the L2-sphere S to L?(I,C), which allows us to use the Nash-Moser
theorem on the manifold S, instead of a whole space.

We consider a decreasing family of Hilbert spaces (Ea)ae1,... 9y With continuous injections F, —
E, of norm < 1 when b > a. Suppose we have given linear operators Sp : F1 — Eg for § > 1. We
assume there exists a constant K > 0 such that for every a € {1,...,9}, for every § > 1 and for every
u € B, we have

[Soulls < Kllulla, V0 € {1, ..., a}, (3.10)
|Spully < K6°~%|ullq, Vb € {a+1,...,9}, (3.11)
lu — Soulls < KO %|ullq, Vb € {1,...,a — 1}, (3.12)
d
|5 Soulls < K6~ Yu|,, Vb € {1,...,9}. (3.13)

Then, we have the convexity of the norms (see [16] for the proof): there exists a constant ¢ > 1 such
that, for every A\ € [0, 1], for every a,b € {1,...,9} such that a < b, Aa+ (1 — A\)b € N and for every
u € By,
A 1-X
1wl xa+a—=xp < cllullgllull, ™

We fix a sequence 1 = fy < 6 < ... — oo of the form 6; = (j+1)° where § > 0. We set A := 0,110,
and we introduce

1
RJU = 7(5@

e 1
A, o~ Sp,)u if j > 0 and Rou := A—OS’glu.

Thanks to (3.12), we have

u = i AjRju,
j=0

with convergence in Ej, when u € E, and a > b. Moreover, (3.13) gives, for u € E, and for every
be{l,..,9}:
1Rjully < Kap87 " lulo-

11



where
Kap = Kmax{Z‘s(b_“_l), 1}, when b # a,
In(6;11/6;)
(041/65) — 1
This maximum is finite because, for every § > 0,

o (1))
i (fim1) =

K, o = K max{ ;7 € N}

Jj—o0
Let K’ := max{K,p;a,b € {1,...,9}}.

Let a1,as € N and a € R be such that 1 < a1 < a < as < 9. We define the space

oo
E, = {Z Ajujsu; € Eqy, AM > 0/V5, |lujllp < M@?_“_l for b = a1, as},
=0

with the norm ||u||}, given by the infimum of M over all such decomposition of u. This space does
not depend on the choice of a; and ay (see [16] for the proof). The norm ||.||’, is stronger than the
norm ||.|| when b < a because

o
lully < e | D 256777 ) Jlully (3.14)
§=0

and ||.||, is weaker than .||, because
lulls < E'[[ulla-

There exists a constant K" such that, for every a € {1,...,9}, for every 6§ > 1, for every b < a and
for every u € E!, we have
Ju — Soully < K"6"Jull: (3.15)

Indeed, let a € [1,9], b,a1,a2 € {1,...,9} be such that b < a1 < a < ay. Let u € E, and a
decomposition

U= ZAjuj with [|u|q, < M@;”*afl fori=1,2.

We have
u — Spu = ZAj(uj — Spu;),

l[uj — Soujlly < KM =65 for i = 1,2.
We sum for 0; < 6 with 7 = 2 and for 6; > 0 with i = 1 and we get (3.15) for

Y 9d(a+1-a1) 9d(a+1-az)
K'=K| ——— +max{l, —} | .
a — ay as —a

Note that, when b and a are fixed, if we need (3.15), it is sufficient to know (3.12) for two values
a1 and ag satisfying b < a1 < a < ae. We will use this remark in the construction of smoothing

operators for our problem.

We have another family (F5)qe1,....01 With the same properties as above, we use the same notations
for the smoothing operators. Moreover, we assume the injection Fj, — F, is compact when b > a.

12



Theorem 6 Let o and § be fized positive real numbers such that
d<a<pB<Tandfpf—az=2. (3.16)

Let V be a convex E(; -neighbourhood of 0 and ® a map from VN E7 to Fg which is twice differentiable
and satisfies

19" (us v, w) 7 < C Y (L Nt )0l 0] (3.17)

where the sum is finite, all the subscripts belong to {1,3,5,7} and satisfy

max(mj — o, 0) + max(mj,2) +m} < 2a, Vj. (3.18)

We assume that ® : E, — Fy is continuous for a = 1,3. We also assume that ®'(v), for v € VN Ey,
has a right inverse 1 (v) mapping Fy to Er, that (v, g) — ¥ (v)g is continuous from (V N Ey) x Fy to
E; and that there ezists a constant C' such that for every (v,g) € (V N Eg) x Fy,

[¥(v)gll < Cliglls, (3.19)

14 (v)glls < Clllglls + l[olsllglls]; (3.20)

I (v)glls < Clllgllz + lvlisliglls + (vl + Iol)lgls], (3.21)

I (v)gllz < Clllglls + lvllsllglz + (lvllz + 1) lglls + (lvlle + vllzllvlls + [0l lglls).  (3.22)

For every f € Fé with sufficiently small norm one can find a sequence u; € V N E7 which converges
in Ey for every b < « to u satisfying ®(u) = ®(0) + f.

Remark: The main difference with Héormander’s statement concerns the bounds (3.19),(3.20),
(3.21) and (3.22).

Proof: Let g € F é There exists a decomposition

9= As0; with [lg;lls < K62 lgls for every b € {1,...,9}. (3.23)

We claim that if ||g||; is small enough we can define a sequence u; € E7 NV with ug = 0 by the
recursive formula

Ujt1 = Uj + Aj?lj,’llj = w(vj)gj,vj = nguj. (3.24)
We also claim that there exist constants C7, Cs, C3 such that for every j € N,
lijlle < Cillgllz6; " a € {1,3,5,7}, (3.25)
[villa < Callgll305 " a € {5,7,9}, (3.26)
||uj _UjHCL < C3||g||/ﬁ9;'lia’a € {1737577} (327)

More precisely, we prove by induction on k the following property

P o uj is well defined for j =0,...,k + 1,
(3.25) is satisfied for j =0, ..., k,
(3.26), (3.27) are satisfied for j =0, ...,k + 1.

Let k € N*. We suppose the property Pi_1 is true, and we prove Pr. We introduce a real number
p > 0 such that, for every u € E),, ||u]|,, < p implies u € V. We have

k-1
Uk = Z A]’ﬂj.
J=0
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o (3.25) gives
lulla < Cullglls- (3.28)

We also have
k—1

Vi = Z AngkiLj,
J=0

so using (3.10) and (3.25) for j =0, ...k — 1, we get
156, tjlla < KCillgll505 " for j =0,...,k—1and a=1,3,5,7,

thus
ol < KChllglls-

Therefore, when ||g[|); < p/KC1, v, € V and uy is defined.
We prove (3.25) for j = k by application of (3.19), (3.20), (3.21) and (3.22). For the case a =1,
using (3.19) and (3.23), we get
el < CK'6; gl
which gives (3.25) with any constant C; > CK' because 3 — « > 2. For the case a = 3, using (3.20),
(3.23) and (3.26) for j = k, we get

. A— _ _
liklls < CK'|lgll5(0, " + Callglls05 07 ).

This gives (3.25) with any constant C7 > 2CK’ when ||g[|;; < 1/C3, because § —a > 2 and 8 > 5
For a = 5, using (3.21), (3.23) and (3.26) for j = k , we get

liells < CKIgll[08 " + Collglls (0361~ + 61-627) + C2llg 3010202 ~7).

This gives (3.25) with any constant C1 > 4CK’, when ||g|3 < 1/C2, because 8 —a > 2, 8 > 5 and
B+ «a > 8. For the case a = 7, using (3.22), (3.23) and (3.26), we get

. 8— —anb— —and— —apn2—
lianllz < CK'|lgll5[6 f’+cfugug<92 0, ﬁjez 0, + 0,70} f’)—;
(Callgll)* (0020, + 00761 7) + (Callg )P0, 0; 7).

This gives (3.25) with any constant C1 > 7CK’ when ||g|[; < 1/C2, because § —a > 2, § > 5,
a+ [ > 8 and 2a+ > 11. Finally, we have proved (3.25) for j = k with any constant Cy > 7TCK’,
when [lglly < 1/C3 and |lgll; < p/CIK.

Now, we prove (3.26) for j =k + 1. Let a € {5,7}. Using (3.10) and (3.25), we have

k

lors1lle < KCullgll Y 850577
j=0

We find an upper bound for the sum in the cases a = 5 and a = 7 and we get (3.26) with

90(a—4)

1
02 = KCl max{m, m

(3.29)

Now, we prove (3.27) for j = k+ 1. Thanks to the convexity of the norms, it is sufficient to prove
the inequality for a = 7 and for @ = 1. Using (3.10) and (3.25) we get

k

a1 = vrsallz < L+ K)Cullglls Y A6 <
j=0

1+ K
7 —

7
o C1llgllsf7-
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Using (3.15) with b =1, a = «, we get
a1 = vk lls < K"Cillgllp6,75-

Finally, we get (3.27) for j = k 4+ 1 with

1+ K
7T—«

C3 := cmax{ C1,K"Cy}. (3.30)

In conclusion, Py is true for every k € N with

1
Cy := TCK', Cy defined by (3.29) , Cs defined by (3.30) and ||g|y < min{—-, —~}.
Cy KCy

The inequality (3.25) proves (uy) is a Cauchy sequence in E, for a = 1,3 so up — u in E, for
a = 1,3. The continuity of ® gives ®(uy) — ®(u) in Fy, for a = 1, 3.

Now, let us consider the limit of (®(ug))ren. We have
(I)(Uj+1) — (I)(’LL]) = (I)(UJ + Aj’dj) — (I)(UJ) = Aj(e;‘ + 6;-/ + gj)

where
, 1
€j

= (®(uj + Ajiy) — Duy) — ¥ (uj) Ajiy)
J

ef == (@' (uj) — ' (vy)) 1.

Let us study e’. We have
1
6;» = AJ/O (1 — t)@"(uj + tAjllj; ﬂj,’d]’)dt.
Using (3.17), we get

lel7 < CDG Y (A llegllmg + 11t )1 g 155 g
l

For a € {1,3}, using (3.14) and (3.28) we get, for every j € N, |lu;||, < C~'||g||’67 with some constant
C. For a € {5,7}, with the same proof as for (3.26), we get, for every j € N, [Juj, < C~’||g||/’80;“a,
with some constant C. Those bounds, together with (3.17) leads to

~ max(m)—a,0) m)—a—1 m) +m)" —2a—2
lejllz < CA; Y (1 +llglsey ™" + Ajllgls8;" ™" DlglFe; ™ ,
l

with a new constant C. Let ¢ > 0 be such that (3.46) is true with 2 — € on the right-hand side.
Then, there exists a constant Cy > 0 such that, for every j € N,

lejllz < CallgliFo; = (3.31)

Let us prove a similar bound on €. We have
1
62-/ = /0 ‘I>”(’Uj + t(Uj - Uj);Uj - Uj, ’llj)dt
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Let us recall that, for a € {1,3}, thanks to (3.14)
[vjlla < Cllvslle < CKCgll.
Using this bound, together with (3.25), (3.26), (3.27), we get, with a new constant C,

lefllz < O+ Nvjllmy, + lug = villmg s = vl [l
max(mj,—a,0) mj—a amg+mg—2a—1
. J .

< OX(+ llgllso; +llgll50; " gl
Thanks to (3.46), we get the existence of a constant C5 > 0 such that
lefllz < CsllgllFo; . (3.32)

Using 0; = (1 + j)? with § > 0, it is easy to get the convergence in F; of > Aj(€) +€f). Let us
denote T'(g) this limit,

+oo
T(g) := Z Aj(e +ef).
j=0
Thanks to (3.32) and (3.31), there exists a constant Cs > 0 such that

IT(9)lI7 < CollgllF-

The uniqueness of the limit of ®(uy) gives the following equality in F, for a = 1,3
®(u) = ®(0) +T(9) + 9.

Let us fix f € Fjj. We search u such that ®(u) = ®(0) + f. It is sufficient to find g € F} such
that g + T'(g) = f. It is equivalent to prove the existence of a fixed point for the map

. / !
F: Fj — F}
g = f-=T(g).

We conclude by applying the Leray-Schauder fix-point theorem. [J

Remark: It can be useful to have the continuity of the right inverse of the map ®. This can
be obtained by using the Banach fixed point theorem, instead of the Leray-Schauder fixed point
theorem, in the previous proof. In order to do this, we need more assumptions that in Theorem
6. We propose a proof of this other version of the Nash-Moser theorem and its application to the
controllability of (¥) in Appendix C.

We will apply this theorem to ® : (19,v) — (%0, 1) defined in subsection 3.1. in a neighbour-
hood of (¢1,,0). Our spaces are

E} :=[H}(I,C)NS] x L3((0,T),R), F/:=[H}I,C)NS]x [HII,C)NS],

B3 = [H},(I,C)n S| x Hy((0,T),R), Fy :=[H},(I,C)NS]x [HE (I,C)NS],
Eg = [H},(I,C) N S] x H3((0,T),R), FJ:= [H{,(1,C) N S| x [HE\(I,C) N 8],
B} = [H[,(I,C)n S| x H3((0,T),R), F7:=[H[,(I,C)NS]x [H,(I,C)NS],
Eg = [H,(I,C)N S| x Hy((0,T),R), Fy :=[H{,(I,C)NS]x [H,(I,C)NS],

where

S = {V e L*(I,C); || ¥l = 1},
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1 1
H(,(I,C) == {¥ € H*(I, (C);Aﬂ/\li(—i) = Ag\p(i) =0forl=0,..,(s—1)/2}.

Our E/,-neighbourhood V of (¢1,4,0) is a EJ-bowl.

We work on the manifold S instead of a whole space. It does not matter because we can move
the problem to an hyperplane of L?(I,C) by studying

D, = gyo0y0ry  where 7y (z,u) = (p;!(z),u),

qu(T/Jo, wT) = (p’y(q/)O),p’y(@/}T))

and p, is a suitable local diffeomorphism from a neighbourhood of the trajectory 11 5 in the sphere
S into an hyperplane of L?(I,C), which does not change too much the H*-norm. For example, we
can use the following one.

Proposition 2 Let U, := {¢p € L*(I,C);3t € [0,2n],||¢ — p14€"|12 < 1/12}, Hy == {¢ €
L*(1,C); R(< 4, 24 >) = 0} and py : L*(I,C) — H, be defined by

Py (V) == = R(< Y, 25 >)p2, + RSV, 02, >) <014 > P14

Then py is a C! diffeomorphism from Uy to an open subset of H~. Moreover, the norm of dp ()
as a linear operator from (Ty. S, ||.||ms) to (Hy, ||.||zs) is uniformly bounded on U., for every integer
s €[1,7].

Proof: Let us introduce the orthogonal projection
Py L*(I,C) — (Repay @ (C(Pl,’Y)L'

We first prove that p, is injective. Let 1), ¥ € S be such that py(Y) = pw(zﬂ). Then, Py (¢) = P,Y(qﬁ)
and

(L4 R(< ¥y >)) < o1y >= (14 R(< Dy >)) < iy > (3.33)
We have
1=[[9l72 = 1Py ()72 + RS ¥, 02 >+ | <, 014 > [,
1= |[l|72 = IPy(¥) 72 + R(< 4, 024 >)2 + | <th,01 > [,
SO

R(< 027 >+ <015 > P = RS 02y >+ < Prp1, > 2
Using (3.33), we get

<1 > 2 (L4 R(< dypay )2 = (14 R(< 6,02 >)?)

= <§R(< 1;2)7 802,7 >)2 - 3%(< dja 302,7 >)2) (1 + §R(< ,(Ev @2,7 >))2

We assume 1) # ¢. Then R(< Y, 024 >) # R(< @E,gozw >) so R(< 1/;,@2,7 >) is a solution in
[—1/12,1/12] of the equation f(y) = 0 where

f)=0+y*0b+y) —d®2+y+b),
a = ‘ < Q/J,gol;y > ‘,b = §R(< w,(pzﬂ >).

Using a € [11/12,1] and b € [~1/12,1/12] it is easy to prove that f(y) < [13% — 113]/(6 * 12%) < 0

for every y € [-1/12,1/12]. This is a contradiction. Therefore 1) = v and p,, is injective.
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Now, we prove that, for every ¢ € U,, dp,(¥) is an isomorphism from 75 to H,. We recall the
orthogonality is related to the scalar product R(< 1,1 >). Let ¢ € U, and £ € ‘H.,. For h € L*(I,C)
the statement dp(v))h = £ and h € Ty,S is equivalent to Py(h) = P,(§) and AX = b where

1+ §R(< sz)v P2,y >) 0 éR(< 17[}7 @1,y >)
A= 0 1+ R(< Y, 02, >) (<Y, 014>) |,
R(< P, 015 >) (<, o1y >) RS, 024 >)

§R(< h‘a P1,y >)
X = S(< h7 P11,y >) ’
§R(< ha P2, >)

3%(< g, P11,y >)
b:= S(< & o1y >)
—R(< P(§), P(¥) >)
Using
| <010 > | =| <t — 1y, 01,4 > +e| > 1-1/12,
| <24 > =1 <th—p1ye", 02y > | < 1/12,
we get |det(A)| > 1/2. We conclude thanks to the inverse mapping theorem.

It is clear that ||dpy ()| gs—ms < 4. Since ||Py(&)||rs < |l s and ||Al| = ||det(A4) ' Com(A)||,
then [|A~!|| is uniformly bounded with respect to ¢ € U, and ||dp~(¢)) || gr=— = also. O

3.3 Smoothing operators

In this subsection, we construct smoothing operators on the spaces F, and Fl? defined in the previous
subsection. In the proof of the Nash-Moser theorem, we use on the spaces FI;Y smoothing operators

Sp: FY — F,
with the properties (3.10), (3.11), (3.12) and (3.13) and on the spaces F, smoothing operators

Sp: E] — EJ
with the properties (3.10) and (3.15) for b = 1 and a = «a. Therefore, it is sufficient to check the
properties (3.10) and (3.12) with b = 1 and a = 3,5 on the smoothing operators on the spaces Ej.
The construction proposed for the smoothing operators on the controls v could also be used for the
wave function ¥. We propose in the next paragraph a simpler one.

3.3.1 Smoothing operators on the spaces Fg

We don’t need smoothing operators preserving the L?-sphere, because we can move our problem on
the hyperplane of L?(I,C) defined by

Hy = {t € L*(I,C);R(< b, 02, >) = 0}.

In this paragraph, we construct smoothing operators preserving H..

Let s € C*°(R,R) be such that
s=1on[0,1], 0<s<1l, s=0on][200).

Let v € (0,74]. For 6 € [1,+00) and ¢ € L%(I,C), we define

Sop =Y s(7) < 0,k > Phre
k=1

|
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Proposition 3 There ezists a constant K such that, for every a € {1,...,9}, for every ¢ € H(v) (I1,C)
and for every 0 > 1, we have

HSG(PHHZ’ < KH‘PHH“ab € {17 "'7a}7 (3-34)
1So¢ll o < K6°~| || e, b € {a+1,...,9}, (3.35)

I — Sopll e < KOl pllfrasb € {1, a1}, (3.36)
HdHSO‘PHH" < KO ||l g, b € {1,...,9}. (3.37)

In order to prove this proposition, we need the following lemma which will be proved later.

Lemma 1 There exist v > 0, Q1 > 0 and Q2 > 0 such that, for every v € (0,7.], for every
s €{1,3,5,7,9} and for every ¢ € H(w)( ,C), we have

1/2
Qullellas < (Z |k* <, ry > | ) < Qzllollas- (3.38)

k=1

Proof of Proposition 3: Let a € {1,...,9}, ¢ € H&)(I,(C) and # > 1. Using 0 < s < 1 and
(3.38), we get

1/2
a Q2
1Sl < <§ [k%s(5) < @, ry > |2> SO [lla-

Let be {a+1,...,9}. Using s =0on [2,400), 0 < s <1 and (3.38) we get

1/2
a QQ —a
1ol e < 67( 0) | D K <oy >] < 6(29)b el e
1<k<20 1
Let b€ {1,...,a—1}. Using s =1 on [0, 1] and (3.38) we get
1/2
| a 2 QQ b—a
lo = ol < 56" | D 1k < @ pny > | -0l -
Q1 = Q

Let b € {1,...,9}. We have

5090_ 292 ) < ©, Py > Phy-

Using $ = 0 on [0,1] and [2,00), we get

d QQ . —a —a—
I Soelln < 2l max({1, 20164 ] 0.0

Proof of Lemma 1: There exist positive constants -y, P, C—, C+ such that for every s €

{1,3,5,7,9}, for every v € [0,7] and for every ¢ € va)(l, C),

lelze < el < Ple® g2,
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s—1
C-llellas < N(Ay* @) [z < Cillellas,

s—1
1452 el < Cellol ae-

Let s € {1,3,5,7,9} and o € {0,1,2,3,4} be such that s = 20 + 1. We first study the case v = 0.
Let ¢ € H} (0 )( ,C). Using mtegratlons by parts, we get, for every k € N*,

<op>= o Ly
’ (km)s "k

The family 1/k7 QDI kEN* is an orthonormal basis of L2 l,(C , SO
k
H%D(S)HL2 - ”S”kS <, P > ||12'

Finally, we get (3.38) for v = 0 with any constants 1 and Q9 satisfying

1 1
0< Q1< =0.Qo> .
N <55 Q22

Now we study the case v # 0. Let ¢ € H, (57) (I,C). Using integrations by parts, we get

km 1 1 doy,
= < (49 > < A? >4—— < A%, L27

< @, P,y > ]0 > .

Using (A.12), (A.8), and Lemma 2 (proved in the section 3.6.2), we get (3.38) for v € [0,71], where
~1 := min{yp,y*} with any constants Q1, Q2 satisfying

C. ,0%Cin®  wCyC
< 2 _ _
0<@is 3 (C*U "o ee )

29 , C* 2
CU SC+< + v \/6 +’Y7TC>

We can assume C, < 1 < C*. There exists 2 € (0,71] such that

QQ/

C_ 5C Com?
20*4 = 04\[

+ yomCy.

In conclusion, for every v € [0,72], for every s € {1,3,5,7,9} and for every ¢ € H(S,y) (I,C), we have

(3.38) with
c_

27790*4}
*, 2

1 C*n
Q2 = max{ C4 C+ (1 +7§W +’727TC>}.|:|

Q= mln{ !

In conclusion, for (1g,11) € Fy' and 6 > 1, we define

Se(v0,v1) := (Sotbo, Sotr)
and this operator satisfies (3.10), (3.11), (3.12), (3.13).
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3.3.2 Smoothing operators on the spaces F

In this section, we construct smoothing operators for the controls

Sg: L*((0,T),R) — H((0,T),R)
v — Spv

for which there exists a constant IC such that, for every 6 > 1, for every ¢ € {0, 1,2,3} and for every
v e HY((0,T),R)

1Sov]l e < KlJv] g, (3.39)
for every v € H3((0,T),R),
lv = Sevl 2 < KO2||v] (3.40)
and for every v € HZ((0,T),R)
v — Spv|lz2 < KOH|v]| 2. (3.41)

Then, the operator defined for (v, v) € E] = H}(I,C) x L*((0,T),R), by

So(10,v) := (Sprbo, Sev),

satisfies (3.10) and (3.12) with b =1 and a € {3,5}.

We can assume 7" = 1. We will use convolution products on R in order to construct the smoothing
operators, as in [13]. The next proposition justifies that instead of dealing with functions v : [0,1] —
R, we can deal with functions f : Ry — R, with Supp(f) C [0, 1] and which belong to H¢(R;,R)
when v € H¢((0,1),R) for some ¢ € {0,1,2,3}. Then, considering f : R — R, we construct an
extension f : R — R of f, with the same regularity. Those two first steps are the same as in [13].
Finally, we use a convolution product of f with a smooth function pg to get a regular function and
we truncate with a smooth function vanishing on 0 and 1 in order to get the boundary conditions.
For this last step, our arguments are a little bit different from [13].

Proposition 4 Let hy, ha € C°(R,R) be such that 0 < hy,ha < 1, hi+he =1 on [0,1] , Supp(hi) C
[—1/4,3/4], Supp(ha) C [1/4,5/4]. Let v € L?((0,1),R) and f : R — R be defined by f(z) = v(z)
for x € [0,1] and f(z) =0 for z € (—00,0) U (1,400). We define the functions

fi: Ry — R
t = (fh)(®),

f22 R+ — R
t = (fha)(1—1).

If v € H*((0,1),R) for some s € {0,1,2,3} then f; € H*(R4,R) for i = 1,2. Moreover, there
exists a constant c1 such that for every s € {0,1,2,3}, for every v € H*((0,1),R), || fill gs®, r) <
CIHU”HS((O,l),R)-

Proposition 5 Let f € L*(R+,R) with Supp(f) C [0,1]. Let f : R — R be defined by

qoy. ) f@)ifz =0,
f(z):= { 5f(—x) —5f(—2x) + f(—4z) if z < 0.

Then, Supp(f) C [-1,1]. If f € H*(R;,R) for some s € {0,1,2,3} then f € H*(R,R). There
exists a constant ca such that for every s € {0,1,2,3} and for every f € H*(R{,R), || f|lgsmr) <
C2HfHHS(R+,R)~
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Proof: The choice of the coefficients in f gives f(*)(0) = f()(0%) for any s € {0, 1,2} for which
it has a sense. [J

Let p € C*°(R,R) be such that
Supp(p) C [-1,1] and /Rp(az)d:c =1.
For 6 > 1, we define pg(x) := 0p(fz). For f € L*(R,R), the function pg * f : R — R is defined by
oo+ (1) / F(t+)po(r
Proposition 6 There exists a constant K' such that, for every f € H'(R,R) with Supp(f) C [-1,1],

_ _ 1 -
If = po * fllz2(0,1),R) < ’Clé”f”Hl(R,R)v (3.42)

for every s € {1,2,3}, for every f e H*R,R) with f®(0) = f®(1) =0 for k =0,...,5s — 1 and
Supp(f) C [-1,1],

3 1 -
llpo * fllL2(0,1/0)7) < /C/@Hf“Hs (RR)> (3.43)
[ pg * fHL2 1-1/6,1),R) S 95 Hf”HS(RR (3.44)

Proof: Let f € H'(R,R) be such that Supp(f) C [~1,1]. For ¢t € R, we have

(po* f = Pt // 7' (t 4+ Ar)dpg(T)dT.

Using a function h € L?(R,R) and Fubini’s theorem in

/R (po % F — )(O)h(t)dt
we get
. 1 -
oo+ F ~ Pl < 51 Flin e ( / |yp<y>\dy) .

We first prove (3.43) for s = 1. Let f € H'(R,R) with Supp(f) C [~1,1], f(0) = f(1) = 0. Let
r: R — R be such that 7 = p and r(—1) = 0. Using Supp(p) C [—1, 1] and an integration by parts,
we get, for every t € R

~ - /6 _
(po x [)(t) = f(t+ %) - 't +7)r(0r)dr.

~1/6

Thanks to the condition f(0) = 0, we get

1/9 B 1 ) 1/9 t+1/9 5 ) 3 .
/ Flt+ Dypar = / | / F(s)dsf?dt < = || 7]12.
0 0 0 0 20

Using h € L?((0,1/6),R) and Fubini’s theorem in

1/6 16
/ h(t) 't +7)r(0r)drdt
0 ~1/8
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we get
1/60 1 1 _
[ F e rronilisoyos < | In@laz ) 171

In conclusion, we have (3.43) for s = 1 with any constant K’ such that

/ x)|dzx.
For the proof of (3.44) in the case s = 1, we use

1 ~ 1 1 t+1/6
[ i pra= [ [ Foastat
1-1/6 0 1-1/6 1

and the same arguments.

Now, we prove (3.43) in the case s = 2. Let f € H*(R,R) with Supp(f) c [-1,1], f®(0) =
f® (1) =0 for k=0,1. Let R: R — R be such that R = r and R(—1) = 0. Using integrations by
parts, we get

R(1) 5 v

(o O = F(t+5) - 57 ] 70+ 1) RO

9 —1/6
Thanks to f(0) = f/(0) = 0, we get

[ s prac< e
0 0 VTR

1/ 2 3 2
t dt < "II7-.
|1 < 1P
We conclude as in the proof of (3.43) for s = 1 that (3.43) for s = 2 is true with any constant K’

such that VY )
€ 2+ R+ [ RG@)ds,

2 -1

The proof of (3.44) in the case s = 2 is similar to the proof of (3.43) in the case s = 2 using

f( ) = f’( )—01nsteadoff( ) = f’(O)zO )
For the proof of (3.43) in the case s = 3, we use another integration by parts in (pg * f)(¢).0

g

For every 6 > 1, we consider a function gy € C*°(R,R) such that

Supp(ge)  [0,1], g(0) = g (1) = 0 for k =0,1,2,
go=1o0n[1/6,1—-1/6], g\ s < COF for k=0,1,2,3,

where C' is a constant which does not depend on 6. We define, for f € L*(R,R),
Rof == golpe * ).

Proposition 7 There exists a constant K such that, for every f € HY(R,R) with Supp(f) C [—1,1],
we have

_ _ 1 -
1f = Rofll2(0,1),r) < K@Hf”Hl(R,R),

for every s € {0,1,2,3}, for every f e H5(R,R) with Supp(f) C [—1,1] and f®(0) = f®(1) =0
fork=0,...,s — 1, we have . .
| Ro f |l e ((0,1),8) < Kl fl s (m,R)-

23



Proof: Let f € H'(R,R) with Supp(f) C [~1,1]. We have

IF = Rofllz2onz < 11T —90)(po* F)llL2(0,0), +||P9*f f||L2 (01)R)
< HP@*fHL? ((0,1/6),R

R)-

Using the previous proposition, we get the first inequality.

Let s € {0,1,2,3} and f € H*(R,R) be such that Supp(f) C [-1,1] and f®)(0) = f®)(1) =0
for k=0,...,s — 1. Let 0 € {0, ..., s}. Using the Leibniz’s formula, and the previous proposition on
the derivatives of f, we get

~ l ~
1(Ro )| 220, m) < (2”+1CIC’+ /0 \p(x)!dx) £ 1| 21 (. )-

Therefore

~ , 4s+1_1 1/2 1 B
IRaf - < (206 (F57) 45 [ lo@lde ) 17l ©

Finally, for v € L?((0,1),R), we define

(Sgv)() = (R f1)(t) + (Rga f2)(1 — 1)

Now, it is easy to get the inequalities (3.39), (3.40) and (3.41).

3.4 The map @, is twice differentiable and satisfies (3.17)

Using the results in appendix B, it is easy to prove the following proposition
Proposition 8 Let v > 0 and T > 0 be such that Ty < v/2//17. We define

V2
By = {v e L*((0,T),R); Ty + |[v]l L1 (o,r).0) < ﬁ}‘

For every s € {1,3,5,7}, ®., is a continuous map from
s—1)/2
[H)(1,€) 0 8] x [HE72((0,T7),R) N By ]

nto

[H(Sv)(l, C)Nn S x [H(SW)(I, C)ns).
Proposition 9 Let v > 0 and T > 0 be such that Ty < v/2/v/17. The map
o, : [H\(1,C) N 8] x [H3((0,T),R) N B,z] — FY
1s differentiable and for every

(o, v) € [H{,)(I,C) N S] x [H3((0,T),R) N By 1],

for every

(60, v) € [Ty, S NVH[(I,C)] x H3((0,T),R),

we have

@’ (1ho, v)-(b0, v) = (¢0, ¢7),
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where ¢ is the solution of
= —5¢" —u(t)gd — v(t)qp,
( ) = o,
with u(t) =y 4+ v(t) and ¢ is the solution of

i) = =3¢ —u(t)qy,
¥(0) = o,
w(tv _%) = ¢(t7 %) =0.

Proof: Let us introduce the solution £ of

i€ = =36 — (u+v)(t)g,
£(0 ):¢0+¢0,
&(t,—%) =&(t,3) =0.

Then
(Yo + ¢o,v +1v) — (Yo, v) — (¢0, ¢7) = (0,A(T)),

where A := £ — 1) — ¢ solves

iA = =3 A" —u(t)gA — v(t)q(€ — ),
A(0) =0,
A(t,—3) = A(t, 1) =0.
Let f := vgn where n := & — 4. Using Proposition 51 in Appendix B, we get
IA(T) || a7 < CAu(S),
with

. . 3
Au(f) = Wfllcoqom,zs) + I fllcoqo,ry, a3y + 1l o,r),m2) + ”%HLl((O,T),Hl)"" (3.45)
(o,0),m5Y) + lullwsa | £l o), m21)-

There exists a constant C' such that

Ifllcoqormsy < Cllvllmlnllas,
[fllcoqorymsy < Cliwllgzllnllgs + v la 1] ms],
Ifllerqory,mzy < Cllvligzlnllgz + vl gl gz + 1l 2] g2],
) i .
”aT?{HLl((O,T),Hl) < Clvlmslnllm + 1wl szl + 12w 1 g+ 2121 8t3 2],
where || dt,? e == |2 6tk 2llco(o,7],m5)- The function 7 satisfies the equations
in = —50" — (u+v)(t)an — v(t)av,
n(0) :1050, X
n(t,—3z) =n(t,5) =0.

We work with v small in H3((0,7),R), so we can assume |lu+v| 1 < v/2/4/17 and apply the bounds
given in appendix B on 7. Thanks to Proposition 45 we get

Il < qui(n) = Cllollmr + ¥llz2 %ol m)-

Thanks to Proposition 47 in appendix B, the norms ||7|| 51 and ||7|| g3 can be dominated by the same
quantity
q3(n) := Cllleollgs + |Vl %ol ga]-
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Thanks to Proposition 49 in appendix B, the norms ||7|| g1, ||9]| 53, ||n]|gs can be dominated by the
same quantity

q5(n) == Clllgollgs + IV m=2lvollgs + [lu+ vl =l boll g + [Vl 2l1¢0l )]

Thanks to Propositions 49 and 51 in appendix B, the norms ||331/0t3|| ;1 and ||7|| 2 can be dominated
by the same quantity

qr(n) == Clllgolla7 + [Ivll s volla7 + llu + vl s (ll¢ollgs + 1Vl allvollms)]-

We have
Au(f) < Clvlizar(m) + Ivllargs(n) + vl g3 () + vl gsqi(n)]
< AC||v|[g3ar(n)
< Clvllasldollar + v lms) (1 + ol ar + llull g3 )-

We have proved that, for every (¢o,v) € E] small enough
1@+ (tho + do, v+ v) = 4 (vo,v) = (¢0, 1) 7 < Cl(o, V)||%E;-D

Theorem 7 Let T >0 and v > 0 be such that Ty < /2/v/17. The map
o, : [HT\(1,C) N 8] x [H3((0,T),R) N B,z] — FY
1s twice differentiable and for every
(o, v) € [H{,(I,C) N S] x [H3((0,T),R) N By 1],

for every

(¢07V)7 (é-Onu) € [T’lbOSHH(?'y)(Iv C)] X Hg((O,T),R),

we have
@7 (Y0, v).((¢0, ), (&0, 1)) = (0, A(T)),

where h is the solution of
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Proof: We prove the existence of a constant C' > 0 such that, when ||(¢o, I/)HE; <1,

1d®- (0 + g0, v + 1) — dPy (10, v)].(€0, 1) — (0, H(T) | g2 < Cl(Go, ), Il (€0, 1)l 57

Let us introduce the solutions k& and ¢ of the following systems

ik = —3k" — (u+v)(t)gk — pqe,
k(0) = &o,
k(t, _%) = k(t, %) =0,

{ i = —5¢" — (u+v)(t)gp,
©(0) = 1o + 9o,
o(t,—%) = p(t,5) =0,
so that
d®~ (Yo + ¢o,v + v).(o, 1) = (&0, k(T)).
We have

[d®~ (Y0 + o, v + v) — d®y (1o, v)]-(&0, 1) — (0, A(T)) = (0, A(T)),
where A := k — & — h solves
{ ih = —3A" — (u+v)(t)gA — v(t)gh — p(t)g(y — ¢ — ¢),

A(0) =0,
A(t,—3) =A(t,3) =0.

Let f := v(t)gh + p(t)q(p — ¥ — ¢). Thanks to Proposition 51, in appendix B, we know that
Al g7 < CAguqr)(f) where A is defined in the previous proof by the expression (3.45). In the same
way as in the previous proof, there exists a constant C'; such that

Aupo(f) < Cilllvllzsgr(h) + el s gr (¥ + ¢ = o),

where g7(.) denotes the upper bound on the H”-norm given in Proposition 51 in the general case. In
particular, we have
qr(h) < Clllvllgaqr(§) + [l ull g3 gz (D)),

with
q7(§) < Cllléoll a7 + 1l 2 190l 7],
<

q7(¢) < Clllgollgr + V]l s ol 7]

So there exists a constant Cy depending only on (g, u) such that

q7(h) < Colllgollgm + 1Vl ) ol + NIl ms)-

We have
iGW+o—9)=—3+0¢—9) —ult)q+ ¢ — @) —v(t)gh — @),
(v +¢—¢)(0) =0,
W+o—9)t,—3)=W+o—9)(t3) =0,
a1(Y + ¢ — ) < Cllv|gsgr(¥ — o).
We have

(¢ = ¢)(0) = ¢o,

{ iZW =) =—3—0) — (u+v)e( — @) + vy,
(”¢ - @)(tﬂ _% = (¢ - (p)(t, %) =0,

27



SO
a1(¥ — @) < Clllgollur + 1]l malltoll g7l

Finally, there exists a constant C3 depending only on (1), u) such that

ar(¥+ 6 —9) < Ca(llbollam + V]l ms).

We conclude
IA(T)|| 7 < CC1L(Co + Cs)(lldollar + Wl =) (1ol + el ars) .0

Proposition 10 Let v > 0 and T > 0 be such that Ty < \/2/\/17. For every bounded subset B of
EJ, there exists a constant C' such that for every

(Y0, v) € [H{,(I,C) N S| x [Hg((0,T),R) N By 1] with (o, v) € B,

for every

(d0. 7). (€0, ) € [Ty N HT,\(1,C)] x H(0,T),R),

we have

195 ((0, v); (G0, ), (€0, )l < C Y (L4 1(W0s )t ) (05 ) o | (€0, 1)

where the sum is finite, all the subscripts belong to {1,3,5,7} and satisfy for every j

mazx(mj — o, 0) + maz(mj,1) + mj < 2a. (3.46)

Proof: Let fi := vq§ and f5 := ug¢. Using Proposition 51, we get
1hlla7 < Au(fi) + Au(f2),

where A,(f) is defined by (3.45). In the same way as in the proof of the differentiability of ®., we
have

A1) < lvllezlar(€) + lull =€l + Nl s 1€l ] + 1l las (€) + el a2 1€ ] ]+
11 5243(8) + Wl 3 a1.(€)-

where ¢;(€) is the upper bound of the H’-norm of ¢ given in Propositions 45, 47,49, 51. We have

01(8) < Cllléollmr + [l 2 1ol ],

3(€) < Clll€oll s + Il g [[¥oll e + [l 2]l ],

(&) < Clligoll s + llullm2llvoll e + el llvollgs + [l 22 ol s+
[l (N0l e + Nl 2llPoll )],

q7(&) < Clll€ollam + lpllmsllvboll g =+ [l 2|00l g 4 [l e 100l s + [l all 2 1o || 7+
[l g3 (o ll e + el 2ol ) + lwll z2 (ol s + Nl e ol zr + Nl 2 1o || ar3)]-

We get a bound on A(f2) just by exchanging (¢, v) and (&, ). Finally, we get the following values

m, [1|1/1/1(3|3|3|5|5
m/! 1 1]7]3]5[1]5[3]1
m;’ "I7T11]5]3]5[1(3]3]1

We check (3.46) by studying each column of this table. [J
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3.5 Controllability of the linearized system around (¢ ,(t),7) and bounds (3.19),
(3.20), (3.21), (3.22) in this case

Let v > 0 and 7' > 0 be such that Ty < v/2/V/17. Let (¥o, Ur) € F7 be such that
%(< \I’Q,lﬁl,’y(O) >) = §R(< \I’T,i/Jl;y(T) >) =0. (3.47)

We are looking for w € H3((0,T),R) such that

T

/ w(t)e!Pra=Atgy = —bL(< Vo, opry > — < Up, o, > eM0T) | Wk € N*, (3.48)
k,y

0

[wl[rz < Cl(Wo, Y1) 53xms,  Nwllaz < Cll(Yo, Y1)l gsxms,

[wllgz < CI(®o, Y1) |7, Nwlaz < Cll(Yo, Y1)l o mo-
with a constant C which does not depend on Vg, U, w. Our strategy is the following one. We give
an explicit solution for the moment problem Z(w) = d taken with v = 0 and 7' = 4/7 which satisfies
these estimates. Then we prove the linear maps Z and Z, are closed enough to get a right inverse
for Z, which satisfies the same estimates.

There is no contradiction between the existence of a solution of the moment problem Z(w) = d

and the non controllability of the linearized system around ) o: there is no controllability because
some coefficients by, o vanish.

We introduce, for s € R, the space h®*(N*,C) and its subspace h?(N*,C) defined by

400 1/2
h*(N*,C) == {d = (dp)ren=; [|d||ns == (Z !ksdk|2> < +oo},
k=1

hS(N*,C) := {d € h*(N*,C); d; € R}.
We use the notation 12(N*,C) and 12(N*, C) instead of h%(N*,C) and h%(N*, C).

Proposition 11 Let T =4/7 and vy € [0,7*]. The linear map

T
Zy:wi— (/ w(t)e_i(/\m_hﬁ)tdt>
0

is continuous from L*((0,T),R) to I2(N*,C), from H}((0,T),R) to h2(N*,C), from HZ((0,T),R) to
ht(N*,C), from H3((0,T),R) to h8(N*,C).

keN*

Proof: Let w € L%((0,T),R). We have

< w, ei()\k,’y_/\l,’y)t > = < w, ei()\k—/\l)t >4+ < w(ei)q,f\/t _ e’i}qt), ei/\kt >
1< wei)‘lﬁt, eiAk,'yt _ ei)\kt > .

Since (%eiémzt)nez is an orthonormal family of L2((0,T),C), the two first terms of the right hand
side of this equality belong to [?(N*,C) and

H < w’ei()\kf)\l)t

> iz < Tlwl|ze,
H < w(ei)\lt . ei)\l‘vt),ei)\kt > ||12 < THw(eMlt _ ei)\l,.yt)HLz.
Using (A.11), we get ' ‘ .
| < w(e?th — Moty e > |l < C T2 w2,

29



. . . 2
| < wetiat, eeat — it |y < | 202 T %

For w € H}((0,T),R), we have

7 (@)1

Z(w)y = ——m——
'Y( )]f )\k,'y_/\l,'y ol

Thanks to (A.12) and the previous result, we conclude the existence of a constant C' such that, for
every w € H}((0,T),C), Zy(w) € h*(N*,C) and || Zy(w)]52 < C||i| 12

For w € H3((0,T),R), we have
et
()‘k,v - )‘1,7)2

and we conclude thanks to (A.12) and the previous result.
For w € H3((0,T),R), we have

Zy(w)g-1 = Zy (W) k-1

) d3w

Z 1= Z _
’Y(w)k 1 (Ak,'y_Al,'y)S ’Y( dt3 )k‘ 1

and we conclude thanks to (A.12) and the previous result.[]
Proposition 12 Let T'= 4/m. There exists a continuous linear map
Z71: h)(NY,C) — Hg((0,T),R)

such that for every d € hS(N*,C), Z o Z='(d) = d. Moreover, there exists a constant Cy such that
for every d € h8(N*,C) the function w := Z~1(d) satisfies

w2 < Colldlliz, lwll gy < Colldl|p2, [wll gz < Colldllpa, [[wll gz < Colld|ps- (3.49)
Proof: We introduce the notations, for k € N
W 1= Ayl — A, W_p 1= —Wg.

Since Aj = (jm)?/2, Vj € N* then, wy1 — wg > 37%/2, Vk € Z.
Let d € hS(N*,C). We define d € h%(Z, C) by

dj, = d+1, d_j = dj41 for every k € N.
Since d € h9(Z,C) and dy € R the following expression
1 ~ . .
w(t) _ (T édkezwkt) (1 B 61%71—216)2(1 . e—z%ﬂ—Qt)Q

defines w € H3((0,T),R). The family (e™i'/T) ez is orthonormal in L%((0,T),C). For every k € Z,
eilwrt3m)t (resp: ei(“’k_%”2)t, resp: e!@k Tt pegp: eilwr =)t ) is orthogonal to Span{e™it;j € Z}.
Therefore w solves Z(w) = d and satisfies (3.49). O

Proposition 13 Let T = 4/w. There exists a constant Cy > 0 such that for every v € [—v*,~v*] and
for every w € H3((0,T),R),
1(Zy = Z)(w)||F < C17?|lwl|&, (3.50)

for every (E, F) € {(L%1%), (H}, h?), (HZ, hY), (H3, h°)}.
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Proof: For (E,F) = (L?((0,T),R),?(N*,C)), we have
(Z»y . Z)(w)k —< weMl’“ft,eMkﬂt . ei)\kt >4 < U}(eMl"Yt . ei)\lt),ei)\kt > .

The second term of the right hand side of this equality is a Fourier coefficient of the L?-function
t — w(t)(eP1at — et it belongs to I2(N*,C) and thanks to (A.11), we get

| < w(e?rt — M) e > g o) < T2C*Y?|wll r2g0.),0)-

. . . 2
| < wehiof, et — Mt > 1o < O T .

For (E, F) = (H}((0,T),R), h*(N*,C)), we have

Using (A.11), we get

(Z’y B Z)(w)k = i (‘)\kﬂ\/i)\l,w - )\ki)q) <w, eio\k’w_)\l”)t >
_ﬁ(zv — Z)(W)k-
We conclude applying the previous result on w, and using the inequality

| 1 1 ’<CV2
Moy — Ay A=A K

which is a consequence of (A.11).
For (E,F) = (H2((0,T),R), h*(N*,C)), we have

1 1
B ((Afﬁ—m,w)z Sk
—W(Zv = Z)(10).

We conclude applying the first result on @ and the inequality

1 1 C?

- < 9
SV VS R WS W EL

which is a consequence of (A.11).

For (E,F) = (H3((0,T),R), h®(N*,C)), we have

(Z'y — D = ((/\k —A1,4)3 t (Ak— /\1)3) < %’eio\kﬂ_klﬂ)t >
W(Z )( dt3 )

We conclude applying the first result on d3w/dt? and the inequality

1 1 C?

_ < ,
| (Mey —A1p)? (A —M1)? k8

which is a consequence of (A.11).00

Proposition 14 Let T = 4/n. There exists v1 > 0 such that, for every v € [0,71], there exists a
continuous linear map
RN, C) — HG((0,T),R)

such that for every d € h$(N*,C), Z, o Z;l(d) = d. Moreover, there exists a constant Cy such that
for every v € [0,71] and for every d € h%(N, C), the function w := Z;l(d) satisfies

”UJHE C2Hd||Fa fO?" (E F) (L27l2)7(H(%>h2)7(H027h4)7(H3?h6) (351)
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Proof: Let d € h%(N*,C). Let (wy)nen be the sequence in H3((0,T),C) defined by induction by

{ Wo = Z_l(d)a
wpy1 = Z (2 = Z,)(wy)),¥n € N.

Then, we have
[walle < Co(CoCry?)"|dl|p with (B, F) = (L?,1%), (Hy, h?), (Hg, h"), (Hg, h°).

When CoC1y? < 1/2, Y w, converges normally in H3((0,T),R) and w = >_°° ; wy, satisfies Z,(w) =
d and (351) with CQ = QCOD

Theorem 8 Let T =4/7 and vy € (0,71). There exists a constant C' and a continuous linear map

Mgy, [Ts(h1(0) x Ts(r4(T)NEF — B
(\IIOa \IJT) = (\I]07 UJ)

such that, for every (Uo, Ur) € Fy satisfying
R(< Vo, 91,,(0) >) = R(< U, 9h14(T) >) =0, (3.52)

we have
D! (01,,0) I, . 1) (Yo, U7) = (o, V),

wllze < Cl(Yo, Y1)y, Nwllgy < CllI(Ro, Ur) £y,
wl[gz < CN(Yo, Vo)l g5 Nwlg < Cll(Yo, V)l

Proof: We apply the previous proposition. The right hand side of the moment problem
T

. 1 .
/w(t)ez()"m_/\lﬂ)tdt = T(< Vo, oy > — < VU, @y > e”"mT), vk > 1,
i
5 kyy
belongs to hS(N*,C) because (¥o, ¥r) € Fy and |bg~| = ¢y/k® (see Proposition 1 in section 3.1).
The condition (3.52) implies that the first term of the right hand side of the moment problem belongs
to R.OJ

3.6 Controllability of the linearized system around (¢(¢),u(t)) and bounds (3.19),
(3.20), (3.21), (3.22)

3.6.1 Strategy

We use the same idea as in the previous subsection: we associate a linear map My, ) to the
controllability of the linearized system around (i(t),u(t)),and we show this linear map is closed
enough to My, _ ) to be surjective. More precisely, we use the following proposition.

Proposition 15 LetT = 4/7, M and M., be bounded linear operators from L*((0,T),R) to h3(N*,C),
from H}((0,T),R) to h*>(N*,C), from H3((0,T),R) to h"(N*,C) and from H3((0,T),R) to h?(N*, C).
We assume there exist a continuous linear operator M;l : h9(N*,C) — H3((0,T),R) and a positive
constant Co such that for every d € h®(N*,C), M, o M7'(d) = d and |M;'(d)|z < Colld||F for
every (E,F) € {(L? h3), (H}, k), (HZ,h7), (H3,h%)}. We also assume there exist positive constants
Ch, As, As, A7, Ag with CoC1A3 < 1/2, satisfying, for every w € H3((0,T),R)

(M = M) (w)|lps < CrAz]|lw]| 2,

(M = M) (w)lps < Cr[As]wl gy + Asllwl]ze],

(M = M) (w)lp7 < Cr[As|lw]| gz + Asllwl| gy + Arllwl] 2],

(M = M) (w)lpe < Cr[As|wll gz + Asllwll gz + Avllwll g + Aglfw]|2].

32



Then, there exists a continuous linear operator M~' : h%(N*,C) — H3((0,T),R) such that for every
d e h®(N*,C), M o M~(d) = d and the function w := M~'(d) satisfies

[wl[g> < 2Col|d]ps,

lwllgg < 2Co[lldllps + 2C2A5]|d]|ps],

lwllgz < 2Co[lldllpr +2C2Asldlls + (2C2A7 + 8C3AZ)||d] 4],
lwlligg < 2Co[lldllpe + 2C2A5]|d ][4 + (20207 + 8CFAZ) ||| s+

(QCQAQ + 16022A7A5 + 480§A§)Hd”h3]
where Cy := CyC.
Proof: Let d € h?(N*,C). We construct by induction a sequence (wy,)nen in H3((0,T),R) by

wo = M,y_l(d),

W1 = MTH(My — M)(wy)),Vn € N,

Then, we have, for every n € N

[wnllze < CoCyAg]|d|[ns,

lwnlley < CoCBIARIId]s +nAF™ As|dpsl],

lwallgz < CoC3[ARIldlnr +nAsAT™|d]lps + (nA7AF™! +n(n — 1)AZAT™)|[d]s],
lwallmg < CoC3[ARlldlne +nAFT Aslld]lr + (nAFT A7 + n(n — AFT>AZ)||d]ls

+(nAF T Ag + 2n(n — )AL 2A7A5 +n(n — 1)(n — 2)AF 3 A3)||d| ).

When CoA3 < 1/2, Y w, is normally convergent in H3((0,T),R), and w = Y °° jw, gives the
solution. [J

Let v € C([0,T],R) be such that v®*)(0) = v*)(T) = 0 for every k € N*. Let u = v + v,
Yo € SN H(97)(I, C) and ¥ € C°([0,T),S N HY(I,C)) be the solution of
= 59" + iu(t)qy,
¥(0) = o,
’(ﬁ(t, _%) = ¢(t’ %) =0.

Let ¥y € HZW)(I, C) be such that R(< ¥p,19 >) = 0. The linearized control system around
V1), u(t)) is o

U = 30" 4 du(t)q¥ + dw(t)qy,

¥(0) = Vo,

\I’(t’ _%) = \Ij(ta %) =0,
where the state is ¥ and the control is w. To get the controllability of the linearized system around
(¢1,,7) we decomposed the solution on the basis (¢ 4 )ren+. The natural idea in the general case con-
sists in decomposing () on the basis (¢ 1)), for every t: W(t) = > 72 | 24 (t)@ u(4)- Unfortunately,
in this decomposition, the condition R(< W(t),1(t) >) = 0 does not give any information, in partic-
ular z((0), zo(T") do not belong to iR. To take the conditions (< ¥y, >) = R(< Up, ¢ >) =0
into account, we decompose ¥(t) on (§(t))gen+ defined by:

gk(t) = Prut)— < Pku(t) ¢(t) > ¢(t)a for k > 2.

Remark: This family is independent when 1y € L*(I,C), v € H}((0,T),R) and (19, v) is closed
enough to (p1,4,0) in L2(I,C) x H}((0,T),R).
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In order to justify this point, it is sufficient to prove that these assumptions imply :

Vt € 0,T],21(t) =< (1), 1,00 > 0.
We have

d
1) = —iAuem () + 0(t) < (8), ﬁmm>

t o o
m®=<<%wm>+A i(r) < (7), ﬁﬂwvw%Mme>fW“wW-
Thus

’331@)6”5 M@ 1| =] <y — P11 > +fo ) < (), L () > el o Muerds gz |
< 1Yo — w142 + HU||L2\FC*

and lz1(t)| > 1/2, for every t € [0,T], when (to,u) is closed enough to (¢1,0) in L*(I,C) x
H'Y((0,T),R).

If we have a decomposition W(t) = > 77, yx(t)&k(t) then yi (t) =< (1), (t) >€ iR. We find such
a decomposition starting from the equality W(t) = > < W(t), opu@) > Pru) and the coefficients
k=1

are:

yi(t) =< W(t), ¥(t) >, v
<U(), 01 u(e)>
Ye(t) =< W (1), Pru() > *Wm <Y), Prur) >
The function v € (v*,7*) — g is analytic for every k € N* (see appendix A) so y, € C*([0,77],C)
for every k € N* and these functions satisfy the following ordinary differential equations
nt) = w(t) <qyt), () >, )
() = —iApuyk(t) +iw(t) < q(t), vrue) > +U( U(t), = uq) >

) <
oy <), 01 wie)> d < w)>
() SO < (1), B2 > — & (SHFEEEZ) < B0, P >

where dﬁ#}u(t) denotes the derivative of the map v € (—*,7*) — ¢y~ € L*((0,T),C) considered
at the point v = u(t). We decompose ¥ = ¥ + WUy where ¥; does not depend on w and ¥y depends
on w linearly:

\1’1 = %\Illll + iu(t)q\lfl,

U1(0) = Wy,

\Ijl(tv _%) = \Ijl(ta %) =0,

Uy = SUY +iu(t)qV¥s + iw(t)qy,
W5 (0) = 0,
Uo(t,—3) = Us(t, 3) = 0.

If v(0) = v(T") = 0, the equality ¥(T') = Uy is equivalent to
M(¢0,u) (w> = d(\I/()v \IIT)7

where My, ,y(w) is the sequence defined by

=)
~—

Mgy (W) = fo w(t) < qip(t), () > dt, )
Mpouy(w)p = fo [w(t) < W( )s Pru(ry > —iu(t) < Wa(t), =5y >
<Ws(t),p u(t)> dey,
(t) \1,2 (pll (i))> < w(t)a (Z];’y]u(t) > .
) u > ’L ' . S
- 2 ;ilu(it); ) <YE), ey >lelo M ddt k> 2
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and d(Vp, Ur) is the sequence defined by

d(Wo, V7)1 = —i(< Y7, 97 > — < Vo,1Pg >),
. \\ ;T
d(\I/(), qu)k = =< \I/T,QOk;y > —21//;:7:211::; < ¢T790k,’y >> elfo )\k,u(s)ds
4 <Wo,p14>
+i <‘I’07@ky>—%<woﬂﬂm
dgok, <1 (1)1 u(t) > d‘Pk
fo ) < Wi(t), = u) > W(ﬂm <Y(t);, =g luwy >

<W1(8),01,u(t)> ot
i (W) <P(t), Prue) e o M bdt k> 2.

3.6.2 Preliminaries

Every term appearing in the problem My, ,)(w) = d(¥o, ¥7) are of the general form:

= (f()Tw(t) < f(t)790k,u(t) > ei fot )\k’u(s)dsdt)k N+’
e *

_(rT dpr, 0o M) ds
= (fo w(t) < ft), =7 u) > € L dt)kEN* '

This is why we dedicate this subsection to the research of bounds for the h?, R, A" and h°-norms of
such terms. For technical reasons, we also find bounds on

T t
5% = ( /0 w(t) < £, 2 7 by > € *W‘“dt)

Lemma 2 There exists a constant C > 0 such that, for every v € [—v*,v*] and for every f €
L*(1,C),

keN*

SOk,
ZI < [,k ”]m > 2 < O|flIZ--

k=1

Proof: We first prove the inequality when v = 0. We use the explicit formula (A.4) or (A.5)

dSDk;,
’y Z a; kPj

where a;j; = 0 when j and k have the same parity and

k+]+1

_16(-1) k%5
TG RPG— R

when j and k have different parity. We check there exists a constant C' such that

VEk € N* Zya]ky C and Vj € N*, Z\ajk\
7j=1 k=1

Therefore, for every (z;);en+ € I*(N*,C),
Z\Z%m? Z\%\Q
k=1 j=1 J=1

Let v € [—v*,7*] and f € L?(I,C). For every k € N*, we have

dpr, dth doy,
— > 1< < fLik—o > |+ I fll 2k =)o — de]vHL?-

dy

We conclude thanks to the previous result and the inequality (A.17). O
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Lemma 3 There exists a constant C > 0 such that, for every v € [—v*,7*] and for every f €
HY(I,0),

_\k+1+[k/2]
(k < fopre >hene = (LR (0(12) = (FDRF(-1/2)
+ terms with an 1*-norm bounded by C|| | 1.

Proof: We have

@k’)/]

<f790k,'7>:<fﬂ0k,’y @k,7>+’)’<f7 >+<f790k>

The first term of the right hand side of this equality belongs to h!(N*, C) thanks to (A.8) and

2
~ . T
H<f790k,7—90k77>Hh1ngHmC 72\/2

The second one belongs to h!(N*,C) and its h'-norm can be bounded by C||f|| ;2 thanks to Lemma
2. Using the explicit expression of ¢y given in Appendix B and an integration by parts, we get

_1\k+1+[k/2] _1\k
CO 2 (g - i)+ 0 L s

<f7(pk >=

The family ((1/k7)¢},) is orthonormal in L*(I,C) so the second term of the right hand side of this
equality belongs to h*(N*,C) and its h'-norm is bounded by C||f’|| ;2.0

Lemma 4 There exists a constant C > 0 such that, for every v € [—v*,~*] and for every f €
H3N H(I,C),

k+1+[k/2
(8 < fopne >N = (P2EE2 (A 01/ — (D4, £(-1/2)
+ terms with an [*norm bounded by C||f|| zs-

keN*

Proof: We have

1 1 2%k
k< foop, >=K [ — — — < Ayfrony >+ < Ayfo oy >
Moy Ak

The first term of the right hand side of this equality belongs to [2(N*,C) thanks to (A.13) and its
[?>-norm is bounded by C||A, f||z2. We conclude applying the previous lemma to the second term. [J

Lemma 5 There exists a constant C > 0 such that, for every v € [—v*,7*] and for every f €
H?N H(I,C),

Z\k3<f “""”J > 2 <O f1I-

k=1

Proof: Using the equation (A.14) and integrations by parts we get

d d Al
</ som] — A f, ‘pk'y] $<A7(qf),apkﬁ>—/\:—’:<f,<pkﬂ>
Y ’

AM

We use Lemma 2 and (A.12) in the first term of the right hand side of this equality. We use the
Cauchy-Schwarz inequality and (A.12) in the second one. We conclude thanks to (A.15) and (A.12)
in the third term of the right hand side. [J
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Lemma 6 There exists a constant C such that, for every v € [—v*,7*] and for every f € H? N
H{(I,C),

13 & pry 2 2
DK < £, =5tk > P < Ol e
k=1

Proof: Using the equation (A.20) and integrations by parts we get

Aoy, 1 2y, 2, dp
<f7 d,yg’y]’y> = m<A’Yf7 d,yg’y]’7> k’y <f7 k'y],y>
’ //

2 dp, Ak
_m < va d»y’y]’y > _m < f)gpk,’y

We use (A.21) and (A.12) in the first term of the right hand side of this equality. We use (A.19),
(A.18) and (A.12) in the second one. We apply Lemma 2 on the third term, together with (A.12).
We conclude using (A.22), (A.12) and the orthonormality of the family (¢ )kren+ in the last term.0]

Lemma 7 There exists a constant C > 0 such that, for every v € [—v*,7*] and for every f €
H?NH(I,C),

sok,
ZW’ 7]v> ? < Cllf Iz

Proof: Using the equation (A.24) and integrations by parts we get

3/\’

d3<p7 d3¢ 2 d?e
</ d7§7]7> = %o <A M]w> <f, M] > = <qf, M]v>
3)\// d(pk,y ///

Akw <faW]v>_K <A7fa§0k,7

We deal with each term, one by one, using the Cauchy-Schwarz inequality and the bounds (A.25),
(A.21), (A.18), (A.19), (A.22), (A.26) and (A.12). O

Lemma 8 Let T = 4/7 and u € L*((0,T),R) be such that ||u||r < v*. There exists a constant
C > 0 such that, for every f € L?((0,T),C),

T ot
( / f(t)eto Akv“@)dsdt)
0 keN*

belongs to 12(N*,C) and its 12-norm is bounded by C|| f| 2.
Proof: We have

T .t T . T . ot .
/ Ft)etdo Mruds gy — / f(t)etdt + / F) (Mo Akurds Mty
0 0 0

The first term of the right hand side of this equality belongs to I?(N*,C) because it is a Fourier

coefficient of an L2-function. In the second one, we use
[ : ! C*|lul)3
t u
A od Axt L2
o8 Mncords _ giut| / Akate) = Anlds < ==L,
0

which is a consequence of (A.11). O

Proposition 16 There exists a constant C > 0 such that, for every u € L*®((0,T),R) satisfying
lulloo < ¥*, for every f € CO([0,T], H> N HL(I,C)) and for every w € L%((0,T),R), S° belongs to
h3(N*, C) and

15%ns < Cllwll 2l Fllcoo,ry,m)-
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Proof: Thanks to Lemma 4 and the Cauchy-Schwarz inequality, we have

)k+1+[k/2]

k30 = [T () D2CNTE (A F(1,1/2) — (—1)F A, F(t, —1/2))e o s gy
+ terms with an [>-norm bounded by Cll fllcogo,m,m3) llwll 2

Therefore

k3592 < t,1/2 t, —1/2))e o Mauiords

ISPl < Il Jy w Ws wf( /2) = Ay f(t, =1/2))et 0" 22
+||fo V292 (A f(,1/2) + Ay f(t, = 1/2))el oMbt
+ terms w1th an [*-norm bounded by Cllw|| 2| fllco (o1, 13-

We conclude applying Lemma 8 on the two first terms of the right hand side of this inequality. [

Proposition 17 There exists a constant C' > 0 such that, for every u € L*((0,T),R) satisfying
lulloo < v*, for every f € C°([0,T], H> N H}(I,C)) and for every w € L*((0,T),R), S belongs to
h3(N*,C) and

15 s < Cllwll 2l £ llcoory, 12 -

Proof: We use the Cauchy-Schwarz inequality in L?((0,T),C) and Lemma 5. (]

Proposition 18 There exists a constant C > 0 such that, for every u € L*>®((0,T),R) satisfying
lulloo < v*, for every f € C°([0,T], H> N H}(I,C)) and for every w € L*((0,T),C), S? belongs to
h3(N*, C) (md

15153 < Cllwl| g2l fllcogo.17,12)-

Proof: We use the Cauchy-Schwarz inequality in L?((0,T),C) and Lemma 6. O
Proposition 19 There exists a constant C > 0 such that, for every u € H'((0,T),R) satisfying

lull g1 < 7* and ||u||pe < v, for every f € Cl([O,T},H?’ﬂH&(I, C)) and for every w € H&((O,T),(C),
SY belongs to h®(N*,C) and

15°lns < Cllwllz2ll flerory mey + lwll e fllcoory ms)),

(52)1@2 = < fo (), Orue > tw(t) < f(@), Cru(t) >le iJo ’\kus>dsdt)

+ terms with an h5—n07°m bounded by:
Clllwllg l[ull gl Fllcoo,r, 2y + Nlwll pzllwll g (L llcoo,r,m2) + 11 llero,ry,22))]-
Proof: We have

k>2

T . iy .
Sg - T fo Z'>‘Ic,1u(t)w(t) < f(t) Pk,u(t) > elfo kou(s) 48 g
T . \ .
0 i)\ilu<t)w(t)u(t))\ < f( ) Pk,u(t) > el fo k,u(s) @S ¢
Y o Necu(oyd
- oT Ak, mw(t) < f( )s SDk;u(d) > elfo k, <,)tidt d
fO Z)\klu(t) w(t)u(t) < f(t), Zi”y]u(t) > ezfo k,u(s) sdt

We call this decomposition S? = Ay + By, + C;, + Dj.. Using

ERPE N N
Mew  Mew Ak A

)

we get the decompositions A = AN + AR ¢ =M 4+ ¢?). We apply Proposition 16 for A®?) and
C?, we get

JA@||,5 < Cllwl| g ]| £l coo,r1,7)

ICP 145 < Cllwll 2l fll o (o,77,12)-
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Thanks to (A.13), we get similarly

AW s < Cllwll g lull ol £ lleo o7, 22
ICW s < Cllwll 2l I fller oz, 22)-

Using (A.12), the Cauchy-Schwarz inequality and Lemma 5, we get

T, . d 1/2
Del < lolle (Jo lalt) oitge < F(8), 2520y > Pat)
IDllns < Cllwllz2 il 2| £l o.ry a2

Using (A.19) and the orthonormality of the family (¢ ~)gen+ in L*(I, C), we get
1Bllns < Cllwll g2 llall 22 [ fllcogo,ry,22) -0

Proposition 20 There exists a constant C > 0 such that, for every v € H'((0,T),R) satisfying
lull g1 < v* and ||u|| L= < *, for every f € C1([0,T], H*NH(I,C)) and for everyw € HE((0,T),C),
St belongs to h® and

15 1ps < Clllwll 2l £ lerqo,m,m2) + lwll e | Fll oo o, mr2))-

Proof: We have

Sp = foT i,\k,lu(t)w(t) < f(1), dff;‘”]u(t) > e Jo Meute)ds gy
+foT i,\ilu(t)w(t)a(t) ;c,u(t) < f(t), %]u(t) > et o Mucords gy
foT i)\k:l“(t)w(t) < f(), dﬁ#]u(t) > ¢t Jo Mru(s)ds gy
foT Mk,lu(t) w(t)u(t) < f(t), diii@”]u(t) > et Jo Meus)ds gy

We call this decomposition S,i = & + Fr + Gr + Hp. Thanks to (A.12) and the Cauchy-Schwarz
inequality, we have

d 1/2
€] < Dl (Jo 1< £, 252 > )

T . d 1/2
1G4l < luwllze & (Jy' 1< £, BTy > )

T, . d?
[l < Nl (Jy li) < £8), S8y > 12dt)

1/2

Using Lemma 5 for £, G and Lemma 6 for H, we get

[€]lps < Cllwll g ([ fllcogo,r),m22)
1G1Ins < Cllwll [l fllcro,r),m52)
[H|[ps < Cllw||gellull g fllcoo,ry,m2)-

Thanks to (A.12), (A.19) and (A.18), we have
C
| Tl < @HWHBHUHHlHfHCO([o,T],B),
[Fllps < Cllwll 2 lfull g2 [1.f llcoo,ry,2) -0
Proposition 21 There exists a constant C > 0 such that, for every u € H'((0,T),R) satisfying
lull g1 < v* and |Jul g1 < *, for every f € CH([0,T), H*NH(I,C)) and for every w € H((0,T),C),
S? belongs to h3(N*,C) and

152(lns < Cllwllzzl fler oy, m2) + lwlla | flloo oy, 2]
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Proof: The proof is the same as the one of the previous proposition, using Lemma 6, 7 instead of
Lemma 5, 6 and (A.21) instead of (A.18). O

Proposition 22 There exists a constant C > 0 such that, for every v € H?((0,T),R) satisfying
lull g1 < v* and ||lu|| e~ < v*. for every f € C2([0,T), H3NHZ (I, C)) and for everyw € HZ((0,T),R),
SO belongs to h"(N*,C) and

105 < Clllwll2lfllczom,msy + 1wl g (1 flerqo,ry,m3y + lull 21 f llcoo,ry,m2))
+Hw”H2HfHCO(0,T},H3)]7

(SO)kZQ - f() ) (pku > +2w( ) < f( ) Pk Ju(t)
t
( ) < f( ) Prau(py >]e o euodat ),
+ terms with an h7 -norm bounded by
Cllilwll 2 llullz [ flle2o,,2)+
wll gl g | Fller oy, 2y + llull g2l £ lloo o), m22)]+
[wll g2 l[ull g [[ fll oo, 22
Proof: We use the same decomposition as in the proof of Proposition 19. Using
RN SR S )
Mew Mk M. Ak

we get the decompositions A = AN + A®) ¢ =M 4@ D =DM + DO, Using (A.13) and
(A.12), we get

c (T .
AP < k7/ u(t)?i(t) < Au@) f (), Pr gy > |dt.

Thanks to the Cauchy-Schwarz inequality and ||u|[r~ < v*, we get

1/2

T
AL i lolzs ([ 1< Ao @) ona > P

We conclude using the orthonormality of the family (¢ )ken+. We study €1 with the same argu-
ments. Finally, we get

AW [ < Cllabl| 2 |l g1 11l oo o,27, 2

IO 7 < Cllwll g2 lfull 1 fll e o,y 12) -

Using (A.13) and the Cauchy-Schwarz inequality, we get

m . C dpi 2\
) < el e ([ 1< 70, 2221, > Par)

We conclude thanks to Lemma 5 that

IPVlpr < Cllwll gallullzr 1 f ooy, z2)-
We use Proposition 19 for A®), B2 and Proposition 20 for D?) and we get

IA@ | < Clllwll gl fllerqory,asy + 1wzl fllcoo,r, m3)):

1P| < Cllwllz2ll fllez o185 + lwllalLf et om0,

IDP|r < Clllwl g (lull 1L £l e o,0,2) + Null 22 1L f | oo,z 2))]-
Using (A.12), (A.19) and the Cauchy-Schwarz inequality, we get

1/2

C .
Bl < e ([ 1OP] < Aug SO pragy > Pat)
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We conclude thanks to the orthonormality of (¢ ., )ken+ that

1Bllar < Cllwliz2llallz2 | fllcoo,m,m2)-

In order to get the second result of this proposition, we apply the second part of Proposition 19 on
A® and c®. O

Proposition 23 There exists a constant C > 0 such that, for every uw € H?((0,T),R) satisfying
lull g1 < v* and ||lul| L < v*, for every f € C%([0,T), H*NH(I,C)) and for every w € HZ((0,T),R),
St belongs to h"(N*,C) and

15Mh < Clllwl 2]l fllo2qo.ry,m2)
Hwll g (el g2l fllcoo,ry,m2) + 1 1o, 2))
+Hwll g2 f | coo,m), 72)]-
Proof: We use the same decomposition as in the proof of Proposition 20. Using

IR S SO
Mew MmN Ak

we get the decompositions £ = £ +£@) G =gM 4+ G@ H =HD + HP . Thanks to (A.11), we
get

Qe . dyp
|5]§1>|</0 rACORIOR Ol MORLD

Using the Cauchy-Schwarz inequality and |ju||f < v* we get

c , T dey 12
71 < gl itie ([ 1< 7). %2520, > Pat)
0 g

We conclude thanks to Lemma 5. We study G with the same arguments. Finally, we get

IED w7 < Cllwlllull o | £l eogory, 2
IGD w7 < Cllwll g2 lull o | fller o, m2)-

Thanks to (A.11) and the Cauchy-Schwarz inequality, we get

C T ] dZSDk 1/2
1< lolls ([ 1) < 50,5 2500 > Pat)

We conclude thanks to Lemma 6 that
IHM e < Cllwll [l 1 f lcogo,y,m2)-
Applying Proposition 20 for £2), G& and Proposition 21 for H®), we get

1E@ e < Cllwll a1 f ller o, m2) + lwll ezl flcoqo.r,m2)]:
1GP|nr < Clllwllz2 | fllczosmy, a2y + lwl e L f o oy, )
IHO e < Cllwll g [lull g | fller oy, a2y + el m2 | Fllooo.m, m2)]-

Thanks to (A.12), (A.19) and the Cauchy-Schwarz inequality, we get

¢ g Ak 2 i
7 < el ([ w0 < 0. %2521, > Par)
Using Lemma 5, we conclude that

[Fllnr < Cllwl g2 lull el fllco o,z m2)-B
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Proposition 24 There exists a constant C > 0 such that, for every uw € H3((0,T),R) satisfying
lull g1 < v* and ||lul| L~ < v*, for every f € C3([0,T), H*NH(I,C)) and for every w € H3((0,T),C),
SO belongs to h¥(N*,C) and

150 < Cllwll 2l fllcs o), )+
wll g [1f 2o,y m3) + Nwllg2 1l fller qo,m,m2) + lullzsll fllooqo,m, m2))+
w2l fller ooy, m3y + llull 2| flleoo,ry,m2)) + lwll sl fllcogo,r),m2) )

(82 = fo DU(t) < F(t), Ppum) > +30(1) < (), Opu >
-wm> ﬂ)wm > +u(t) < ZE®), o >l et
+ terms with an h?-norm bounded by
C{llwll 2 l[ull g . fle3 o,7,02)+
lwll g [[lull g 1 fllo2o.ry,m2) + Nl z2 | fllerqom,m2) + lullgs I fllco o, H2)]+
lwll g2 [[lull g 1 f o2 o.ry,m2) + Nwllz2 )l Fllcogory,m2)] + wllms lul g

Proof: We use the decomposition S° = A + B + C + D introduced in the proof of Proposition
19. We have

T . -
A = —o 5 i(t)w(t) < F(), gy > o Murdsq
T \ .
o )‘ii(t>w(t)u(t) < f(@), Pk,u(t) = e’fo k,u(s) @S Jt
fOT 7w(t) < fe )v‘Pk au(t) > € o Mo ds gy
k,u(t) ‘
— J s (yal) < F(t), 25 > et aerdsr,
k,u(t)

We call this decomposition A = A* + A? 4+ A° + A?. Using
1 1 1 1
Y P A
we get the decompositions: A% = A% + A%2 A¢ = A5 4 492 AL = A% + A%2 We use

L i| Cu®
/\z,u )\z k7

which is a consequence of (A.11) and (A.12), and the same kind of arguments as in the previous

proof. We get
| < Cllwl g2 llull g | £ leo o, 72y
1A o < Cllwll g llull g L f | o7, 12y
JAD e < Cllwll g llull g || £l co o), m2)-

We apply Proposition 19 for A%2, C%? and Proposition 20 for .A%?, we get

1A% || < Clllwll g2l fll e o,y + 1wl ezl fll o go,r, 3],
||~A:2||h9 < Clllwll g | fllez o,y 3y + lwll gzl fller o, m22))
AL |lpe < Cllwllgzlllwll g L f ller o,y m2y + lull g2 L f lleo o,z m2))-

We have
1A [ < Cllwll g lull g Lf oo o7, r2)

therefore

[Allpe < C{llwllmsll flleoqom,msy + w2l fllor o, m2) + w21l fllcogo,r),m2) )+
1wl g Ml flle2 0,7, 23) -
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In the same way, we get

ICllne < Clllwllm=llfllcr o, msy + lwll m Il flle2 o, m3) + wllzzll fller o, m2))+
w2l flles o,y m3) 3
IDllpe < C{llwllg=llull g2 1 £l cogo,r),m2)+
lwll g [llull gl fll ez o, m2) + lwllzzl fller o, a2y + wllms L f lcogo,r, m2)] )
1Bl < C{llwll g llwllg2 | fllcogo,ry, a2y + Nwllcallwll g | fller o, a2y 3

For the second part of the proposition, we apply the second part of Proposition 19 to A@2) A(c2)
C(@2) and C(¢?). O

Proposition 25 There exists a constant C > 0 such that, for every u € H3((0,T),R) satisfying
lull g1 < v* and ||lul| L~ < v*, for every f € C3([0,T), H*NH(I,C)) and for every w € H3((0,T),C),
St belongs to h?(N*,C) and

1S he < Cllwlli2ll flleso,ry,m2) + 1wl e [ fllc2o,m,m2) + 1l g2l fllerqo,r,m2))+
lwll g2 ([l fller o, m2y + 1wl g2l fllcoqo,m,m2y] + Wl as |l fllcoqor),m2) }-

Proof: The strategy is the same as in the proof of the previous proposition.

3.6.3 Study of (M(d)o,u) — M(gﬁl,w,’y))<w)

In this subsection, we get the bounds assumed in Proposition 15. Let v € (0,+*) and 7' = 4/7. For
every (1o,v) € E5, we introduce the quantities

Asz := 7 + 03 where 63 := ||(¢po,v) — (3017770)”193-
For every (ig,v) € Eg, we introduce the quantities
As ::’y+55, A7 ::'y—|—57—|—5§, Ag ::'y+59+5755+5§’,

where 0; := ||(¢0,u) — (¥1,4,7)||go, for i = 5,7,9. We should write A;(¢o,v) and 6;(1o, v) because
these quantities depend on (g, v). In order to simplify the notations, we will write A; and ;. There
is no confusion possible. Let V be the EJ-neighbourhood of (41, 0) defined by

V= {(vo,v) € EJ; Az < 1/4, |[ull g <A, |Jullnee <% |l < V2/V1T where u := v + v}.

In this subsection, we prove there exists a constant Cy such that, for every (¢, v) € EJ NV, for every
w € H3((0,T),R), we have

( L) @)lps < CrAgl|w|| 12,

H(M(wo,u) Mg, ) (W)[ns < Cr[As]lwll gz + As|lw] 2], (3:53)
(Mgou) = Mgy, ) (@)In7 < CrlAs|wl gz + As[|w] g1 + A7ljw| 2], '
( ) (w)

(M yo,u) = Mgy, ) (W)l[pe < Cr[As||wl[ s + Asllwl| gz + Alwll gz + Aol|wl[ 2]
In the next propositions, we deal with each term in My, ,) one by one.

Proposition 26 There exists a constant C > 0 such that, for every (¢o,v) € EJ NV, for every
w € L*((0,7),C),
|(Mygo,u) = Mgy, ) (W)i| < CAgllwl| 2.
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Proof: We have
T
(Mo uy = Mgy ) (w)1 = /0 iw(t)(< gA(t), (1) > + < g1, A(t) >)dt,

[(Myou) = My, 1) (W] < 2VT||Al| cogo.m,22) 1wl 20,7 )
where A := 1 — 11 . The function A solves

iA = —3A" —u(t)gh — (u = 7)q1,q,
A(O) = wo — Pl
At,—3)=At,3) =0,
so, using Proposition 45 in Appendix B,
[Allcogo,m,z2) < Clllvo — w1022 + lu — 7| 2] £ CA3.0

Proposition 27 There exists a constant C > 0 such that, for every (vo,v) € EJ NV, for every
w € H3((0,T),R), the sequence X (w) = (Xg(w))r>2 defined by

T
Xi(w) := /w(t)[< q(t), Pru) > et Jo Aoy ds _ < q14(t), Py > ei’\’wt]dt,
0

belongs to h? and satisfies

1X
X
X
X

w)|[ps < CAzllwl[ 2,

w)llps < ClAs|lwll gy + As|lwl| 2],

w)|[pr < ClAs|lwl gz + As|lwl| gy + Arfwllzz],

w)|[pe < ClAs|lwll gz + Aslwl gz + Arllwll gy + Agllwllz2]-

o~~~ o~

Proof: First, we prove

T .t .
[w(t) < qbt), eru@ > oMot dt = L [Tw(t) < Ay (qo(t), g > eMtdt
0

+ terms with an h3-norm bounded by CAz||w|| 2.
(3.54)
For this, we use the following decomposition

fo ) < q(t), Phu(t) = el Iy Neu(s)d5 gp — f " ut)p < Au(t)(q¢(t)) Chou(t) > (e i JE N (e ds ¢+
Jo Ak “S’f) < Ay (@ (1)), Pru) — Pru(r) > € *dt+
f A u?t)u(t) u(t) (@ (1)), dww]o > et
Jo w(t)(%im —37) < Ay (q¥ (), o > e¥dt+
L f wt) < Ay (qh(t), o > eMtdt
(3.55)

and we prove that the h3-norms of the four first terms of the right hand side of (3.55) are bounded
by CAs|lwl|2. In the first term of the right hand side of (3.55), we use (A.12),

. ‘ t Cllull?
|€ng Au(s)ds _ ez)\kt| < / |)\k,u(8) — )\k|d8 < ||k||[/27
0



which is a consequence of (A.11) and the Cauchy-Schwarz inequality in L?((0,7T),C). We get

w il S %
o 2 < Ay (a(8)); @ruqy > (6110 Mrutrds — ety

1/2
< GlulZalwlze (Jo' | < Ay (@(t), opue > Pdt)

Thanks to the orthonormality of the family (¢, )ken+, we get the following bound on the h3-norm
of the first term of the right hand side of (3.55)

Cllwll gzllullF 21l Auwy (g Ol oo, L2(1.0))
Cllw|l 2 (v + llu = A7) 1l cogio,1),52(1,0))
Cllwll 2 As(l[e1,4 2 + d3)
CA3Hw||L2((O,T),R)-

IN NN

Now, we deal with the second term of the right hand side of (3.55). Using (A.12) and (A.8) we get

’f Akut O(@(1))s Pty = Phau() > € *dt|
HUHLoonHL2HA )(a ()HCO[O,T],LQ)-

This inequality gives the following bound on the h3-norm of the second term of the right hand side
of (3.55):

Cllullz llwllz2 9]l oo o.r1,m2) < CAZIwl g2 (l1llzz +85) < CAsllw] 2.

For the third term of the right hand side of (3.55), we use (A.12) and Cauchy-Schwarz inequality to
get

I 52 (t) < Ay (1)), 25210 > et
1/2
<WMM(%WU<%MWU%”W [2at )

Thanks to Lemma 2, we conclude the following bound on the h?-norm of the third term of the right
hand side of (3.55):

Cllull 2 lwll L2 llboll a2 < CAsljw] 2.
For the fourth term of the right hand side of (3.55), we use (A.13) and we get

|ﬁwm;w ) < Aun (au(t), pr > eMd

< i l[ullFoe 1w 2 %]l 2

This leads to the following bound on the h3-norm of the fourth term of the right hand side of (3.55):
Cllull g [Jw]l 2]l g2 < Coslwll 2.

This ends the proof of (3.54).

We have

< @b (t), Prou() > e o B < gy (1), gy > eMert]dt =

w(t
L [T w(t) < Ay (g0 (1) — Ay (qur 4 (1), pr > et

terms Wlth an h3-norm bounded by CAsz||w||yz2.

We define f(t) := A (q¥(t)) — Ay (g1 ~(t)). We have

+ y‘Hqu

iﬁ@@<ﬂmw>wwh=—kw L DIF(1/2) = (~1)F (2, ~1/2)]eMtd
k7r)3 fO f(t) ) klﬂs% > ei)\ktdt.
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Thanks to Lemma 8 and the ortho-normality of the family ((1/k7)¢) )ren+, this term is also domi-
nated in h3 by:

lwll 2Nl fllcogo,m, mry < w22 As.
This ends the proof of || X (w)l|zs < CAs||w| r2(0,17,7)-

Now, we study X (w) in h®. Using Proposition 19 and similar arguments, we get

. t . .
Jo w(t) < q(t), ppuq > €l M dar = — [T L (’u')(t) < qu(t), op > +w(t) < qio(t), x >) et dt

+ terms with an A°-norm bounded by
ClAs]lwl g + Asl|w]| 12].

We conclude with the same strategy as in h3.

For the study of X (w) in h”, we use the following consequence of Proposition 22

. et .
Jo w(t) < q(t), Qrauqy > € o M Bdt = — [ Gl (E) < q(t), or > +20(t) < gi(1), or >

+w(t) < qzﬁ(t), o >]eMktdt
+ terms with an A”-norm bounded by
ClAsllwl gz + Asl|wll g + Arlwl| 2]

For the study in kY, we use the following consequence of Proposition 24

Jo w() < (), @ruqe > o Mo bdr =i [ S (G () < q (), o > +30(t) < gi(t), o >

i . 3 .
+3u(t) < qu(t), pr > +w(t) < g5 (), o >letdt
+ terms with an h°-norm bounded by

ClAs||wl[gs + As|lwl[ 2 + Arllw]| g + Ag|[wl|2].0

Proposition 28 There exists a constant C such that, for every (ig,v) € Eg NV, for every w €
H3((0,T),R), the sequence X (w) = (Xg(w))r>2 defined by

T
d ot
Xy (w) = / i) < Walt), FE2] ) > ol o
0

belongs to h? and satisfies

w
w

X
X
1X
[

s < CAsllew] 2,
Ins < ClAsloll gy + Aslwllza],

i < ClAslwllgz + Asllwllgy + Arlwll 2],

lno < ClAs ol s + Asllwll gz + Agllwll gy + Aol 2.

w

A/_\/_\,_\
— — — —

w
Proof: We apply Propositions 17, 20, 23, 25 together with the following bounds:

1Wallcogo,m,m2) < Cllwllz2([voll 2

12llcrjo,71,m2) < Clllwll g [Yollg2 + llwllz21voll 4]

12l c2(0,77,m2) < Clllwl g2 lvollg2 + 1wl g [Yollgs + llwllp2 [0l el

12llcs(o,07,m2) < Clllwlgsllvollgz + llwllg2{1Yoll s + [lwll g1 l[voll ge + [[wll L2 [|Yoll 5]

which are consequences of the Propositions (45), (47), (49). We have the following bound on the
h3-norm of X (w)

Cllull g llwllz2 Yol 2 < CAszllwl[L2(1 + 03) < CAz|jwl| 2.
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We have the following bound on the h®-norm of X (w)

Clall s ol ol 2 + el 2 laboll ) + Clal el 2 ol
< CDslw]l (1 +82) + [wll 2 (L + 85)] + CAsllew] 2(1 + 83).

We have the following bound on the h7-norm of X (w)

Cllull | 2llo2 oy m2) + lull 2192l orqo,m,m2) + (lull s + Nl F2) 12lloo o7, m2)]
< C{As[[|wl[ g2 (1 + 62) + [[w][g1 (1 + 0a) + [lwll 2 (1 + )]
+As[[[wl g1 (L + 02) + lwll 2 (1 + 64)] + [A7 + AZ[w] 2 (1 + 62)}-

We have the following bound on the h%-norm of X (w)

Clllull g 1¥alles o), m2) + Nlull 2 (192l 2 jo,m,m2) + lull 21 Wallor (o), 72y ]+
lullgs[lWalloro,77,m52) + lull g2 [ ¥2llcogo,r,m2)) + lull gl ¥l cogo, 77,12 }

C{As[||wll s (1 + 02) + [[wll g2 (1 + d4) + [[wl]l g2 (1 + J6) + [Jwllp2(1 + ds)]+

Aslllwll g2 (1 + 02) + [Jwll g1 (14 62) + [Jw] 2 (1 + 06)] + AZ[[Jwll g1 (1 4 62) + [lwl]l £2(1 + 64))]+
Az[llwll g (1 + d2) + [[wl[2(1 + 04) + As|lw|| £2(1 + 62)] + Agllw||2(1 + 62)}.0

N

Proposition 29 There exists a constant C > 0 such that, for every (¢o,v) € EJ NV, for every
w € H3((0,T),R), the sequence X (w) = (Xg(w))r>2 defined by

T < Wa(t), @1,u) > dog [
Xi(w ::/ t “ < (t), =217, > el Jo M) ds gy
k(W) ; ()<¢()¢1ut)> ¥(1) d,y](t)

belongs to h? and satisfies

w
w

X
X
X
X

[ns < CAsllwl|2,

l[ps < ClAs|lwll gy + Aslwl| 2],

[n7 < ClAs|lwl| g2 + Asllwl gz + Azlwllz2],

l[ne < ClAs[lwl| gz + Asllwll gz + Arllwll gy + Agllwl| 2]

w

AAA/_\
— — — —

w

Proof: We apply again Propositions 17, 20, 23 and 25 with

< \112( ) <101u(
<P(t), pru@) >

and f — 1.

w — W = u(t)

Since Az < 1/4 then | < 9(t), 1,41 > | = 1/2 for every t. Indeed,

< P(t), P1,u0t) = <Y(t) = Yiy(0): Prue) > |
< (901,7 - (’Dlvu(t))e_v\lﬁa P1u(t) > He Mt
| < w(t)a Qpl,u(t) > | = 1- ||¢ - Q1)17’}’||C0([0,’]’]’Lz) — |fy| — |U(t)| >1-— 2A3

Therefore, we have, thanks to Proposition 45,
@l 22 < 2[[ull g | W2llcoo,m,r2) < Cllullml[wllzzllvol 2 < CAsllw|[r2(1 + b2).

& &% and we get in the same way

We compute 0, w, pr

]| 2 < ClAs||wl| 2 + Asflw] ],
W]l 2 < ClA7|wl 2 + Asllwll g1 + Asllw] 2],

Al
155 |12 < ClAsllwl 2 + Arllwl| g + Asllwll 2 + Asllwl|75].0
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Proposition 30 There exists a constant C > 0 such that, for every (¢o,v) € EJ NV, for every
w € H3((0,T),R), the sequence X (w) = (Xg(w))k>o defined by

Ta (< Wat), o100 > ot
X w) = / —_ < e ) < t 3 N > eZ fo /\k’u<s>d8dt
K(w) o dt \ <Y(t), o1u0) > V{0 Prate

belongs to h? and satisfies

1X
X
X
X

w)|ps < CAgllwl| 2,

w)lps < ClAz|wl gy + Asllwll 2],

w)lpr < ClAsz||wl gz + Asllwll gy + Azllwl| 2],

w)lpe < ClAs|lwllgg + Asllwllm + Arllwll gy + Agllw] 2]

o~~~ S~

Y ~ i <\Ij2(t)7501,u(t)>>
Proof: Let w = s (7<w(t)7501,u(t)> . We have
<\I/2,cp1u>+u<\112, “"“]u> <¢,gplu>+u<w,d“"”] >

w = — < Vg, 1,
< ’(/}, Sal,u ’ “ < 17[}7 Plu >2

10ll2 < 2012|2011,y + 412l coqo,ry 22y @l 22 + [Yoll 2 + llall 2 14l 2]

so there exists a constant C' such that ||@|| ;2 < C(1+ 03)||w|/z2. In the same way,

@] g < CI(1 + d3)[wll g + (1 4 d5)[[wl| 2],
@] g2 < C[(1 + 03)[wl g2 + (1 4 b5) [ wl[ g + (1 + 67)[[wl| 2],
@]l gs < Cl(1 + d3)[[wllgs + (1 4 d5)[[wl[ g2 + (1 + 7)[[w][gr + (1 + do)[|wl| £2]-

In order to have a small factor in front of ||w|| we use the following decomposition, for k > 2:

<Y), Py >=< (Y = 17) (1), Oruy > + < V140)s Pru) >

which split the sequence X (w) into two sequences

X(w) = (Jp)ez2 + (K)r>2

We study (Jj)r>2 thanks to Propositions 16, 19, 22 and 24. The function A := 1 — 1)y, satisfies
A =LA +iugh + i(u — 7)qi 4,
A0 = 7/10 — Ply
Alt,—3) =A(t, 3) =0.

Therefore, using Propositions 45, 47, 49 and 51, we get

[All e o, 9 < Clstok-

For the study of (Kj)g>2, we have

M _
SPLr P> = 3T < Pl P> — 5L < 4P1ys Pha >

)\ —\ _
= 2 <Py Phu Py > —(“A%# < GPLy Ph > =5 < Aul@piy), Phu >

therefore
Az

= (3.56)

| < 01,060 > <C
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This inequality gives ||K||ys < C||w|z2A3. For the bound on the h%-norm of (Kj)g>2, we use an
integration by parts

T .t
Kk: = fo 7)‘klu(t) (t) < ’[bl ( ) Sok;u(t) > elf() )\k,u(s)dsdt

T _1 t)u(t t i [y A u()48 It
+ o mz WX, o) < 14(0) Prue) > € :

T lu(t) ~ . 'ft)\ d

fo i)‘k,u(t)w(t)(_ZAkv'Y) < wlﬁ( )s P u(t) > > e'Jo M)t

r - d

—Jo iAk}u(t)w(t)u<t> < Y15(8), T ey > e Jo Mo ds gy

We give a bound of the h3-norm of the first, the second and the third term thanks to (3.56). For the
fourth term, we use Lemma (5).We get

K[ < ClAs|lwll g + Aslw]|2].

For the study of (Kj)ren+ in h”, we work as in the proof of the h’-bound for LY. Considering the
previous integration by parts, the second term of the right hand side can be directly bounded in A’
by As|lwlz2, in the first, third and fourth terms of the right hand side, we decompose

(1 1y 1
Mew  \Mew Ak A

For the parts containing (1/A; —1/A), we use (A.13) and (3.56). For the parts containing (1/Ay),
we apply the previous result.
For the study of X (w) in h?, we use an other integration by parts with respect to t. [J

3.6.4 Study of the right-hand side d(¥(, ¥r)
We recall v € (0,v*) and T = 4/7w. We use the same notations as in the previous subsection. This

subsection is dedicated to the proof of the following proposition.

Proposition 31 There exists a constant C' such that, for every (Yo, v) € EJNV, for every (Vy, Ur) €
Fy satisfying
R (< Wo,90 >) = R(< ¥p, 97 >) =0,

the sequence d(Vg, Ur) belongs to hY)(N*,C), and satisfies

[d(Wo, ¥r)lps < Cl[(Yo, Yl gy,

1d(Wo, 1) [lns < Cll[(Yo, ¥7)l[ 7 + As[[(Yo, 1) 7],

[d(Wo, ¥r)llnr < CllI (Yo, 1)l 7 + Asl| (Yo, ¥r)| 77 + A7l[(Lo, Y1)l 7],

1d(Wo, 1) [lne < C[l[(Wo, ¥1)ll 5y + A5l (Yo, ¥r) ||y + Azl[(Po, U)o + Aol|(Wo, Tr) | 7]-

In the next propositions, we prove these bounds on each term in d(W¥o, Ur).

Proposition 32 There exists a constant C' such that, for every (1o, v) € EgNV, for every (¥o, Ur) €
FJ(I,C) satisfying
§1Fe(< \Ij()awo >) = §R(< \I]TawT >) = 07

the sequence Y = (Yi,)r>2 defined by

< \Ij(]a Sol,y >

Y =< Vo, ppy > — < Yo, Pry >
) Y < w07§01,'y > ’ Y
< \IJTaQ)Ol'y >
resp. Y =< Vp,0py > —————"— <Y1, Pk~ >
( y Pky <'¢Ta§01,'y> y Pk,y )
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belongs to h? and satisfies

1Y [[ns < Cll(Yo, ¥1)| £y,

1Y [|ns < ClI(Wo, ¥r) |l o + A5l (Yo, Yr) 7],

1Y |7 < ClI(Yo, ¥r) | 7 + A5l (Lo, Vo)l + A7[|[(¥o, Ur) | 7],

1Y {|ne < ClI(Wo, ¥r) | 7y + A5l (Yo, V)l + A7l[(Wo, U1 7y + Doll(Yo, )|l 7]

Proof: First, we study the sequence (< Wo, ok, >)r>2 in h3, kS, h" and h°. The function ¥q
satisfies the boundary conditions we need to write

1
S < ASWo, g, > fora=1,2,3,4.
k,y

< Wo, pry >=
The function A5W¥q belongs to H(I,C) for a =1,2,3,4 so Lemma 3 gives
| < ATW0, 0ry > [In1 < C|[Wol|r2a.
In conclusion, we have

| < Yo, @k~ > |lns < C||¥ol|gs for s =3,5,7,9.

Now, we study the sequence
<< \I/0> Ply >
< 1/10, P11,y >

in A3, h®, 7 and h°. We have, for every k > 2

< ¢07 Pk,y >>
k>2

< Y0, Py >=< Y0 — Pl Phy >

The function (¢9 — ¢1,) satisfies the boundary conditions we need to write

< Yo — P17, Phy > < A% (Y0 = Prpy)s Pry > fora=1,2,3,4.

1
)\a
The function A%( — ¢1,) belongs to Hj(I,C) for a =1,2,3,4 so Lemma 3 gives

H < w(]a()ok,'y > Hhs X CHwO - (Pl,'yHHS < C(Ss for s = 3a 57 779

We have
| <vo,017 > 21— | <% — 1,01, > | = 3/4 because Az < 1/4.
Therefore o
< 05%017 >
—————— < Yo, P14y > |lns < CA||Wo|g2 for s =3,5,7,9.00
| < Vo, 01y > Yo, P1y > || sIWollL

Proposition 33 There exists a constant C' such that, for every (Yo, v) € EJNV, for every (Vy, Ur) €
Fy satisfying

R(< Wo,v0) = R(< ¥r,¢r >) =0,
the sequence Y = (Y} )k>2 defined by

T
d .
/U < \Ill Sok,’)/]u(t) > et f(: Ak,u(S)dsdt
dy
0

belongs to h?(N*,C) and satisfies

1Ylhs < Cll (Yo, ¥l

1Y[ns < Clll (Yo, ¥) || 7 + As[[(Po, ¥1)| 7],

1Y][h7 < ClIl(Yo, Y1) 7y + Asl|(Yo, Y1)l 7 + A7 (Yo, ¥1) | 7],

1Y ]lne < ClII(Yo, ¥r)l| 7y + Asl[(Po, Y1)y + A7([(Wo, )| 7y + Dol|(Wo, Ur) || 7]
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Proof: We apply Propositions 17, 20, 23, 25, using the following consequence of Propositions 45,
A7, 49, 51:
H\I’lnck([o,T],Hs) < || Wol| gssex.0

Proposition 34 There exists a constant C' such that, for every (Yo, v) € EJNV, for every (Vo, Ur) €
Fy satisfying
§R(< WOqu) = §R(< \I]T7¢T >) = 07

the sequence Y = (Yi,)r>2 defined by

T
< \1’1 )s PLu(t) > Ao,y i [ A
< p(t), L) > et Jo M ds g
0/ )s PLou(t) > Q dy o

belongs to h? and satisfies

1Ylhs < Cll (Yo, Y1)l

1Y [ns < Clll (Yo, Yr) || 7 + As[|(Po, ¥1)| 7],

1Y][n7 < ClIl(Yo, Y1)l 7y + Asl|(Yo, Y1) g7 + A7[[ (Yo, Y1)l 7],

1Y [ne < Clll (Yo, ¥r)l[ gy + As[[(Yo, )| 77 + A7 (Yo, V)| 7 + Dol[ (Lo, ¥1) | 7 ]-
Proof: Let

< W (1), 801u()

@) = 450 or e

Computing the derivatives and using

11l e o,y ey < %ol grsrar,

we get
@]z < CAs|[Yoll 2,
@]l g1 < ClAs|| Yol g2 + Asl[Woll 2],
0] g2 < ClAs|[Woll e + Asl|Woll g2 + Az[[Wol[ 2],
0] 73 < C[As|Woll s + Asl|Woll e + A7[[Woll 2 + Ao|[Wol[ 2]

Now, we just apply Propositions 17, 20, 23 and 25. [J
Proposition 35 There ezists a constant C' such that, for every (v, v) € EJNV, for every (Vo, Ur) €
Fy satisfying
3?(< \Ij0717b0) = §R(< \IjTawT >) = Oa
the sequence Y = (Y)r>2 defined by

T

d (< \Ijl(t)a(pl u(t) > i [t

Y, = | — ’ < (), > et Jo Meus)d5 gy
: O/dt ( < w(t)a(pl,u(t) > w( ) Phu(t) .

belongs to h? and satisfies

1Y [|ns < Cll(Yo, )| £y

1Y [|ps < ClI(Wo, ¥r)ll pp + A5l (Yo, Y7)| 7],

1Y]lhr < ClIl(Yo, ¥l + Asl|(Wo, Y1)l + A7 (Yo, ¥1) | 7],

1Y [|pe < ClI(Wo, ¥r)ll gy + A5l (R0, Y)l| py + A7l[(Wo, ¥r) || + Aol[(Wo, ¥r)|| 7]
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Proof: Let

L d << (1), <P1u(t)>>
<w()§01ut)>
We have

6] 2 < W1l r2qo.ry,r2) + 1¥ellcoqory.zoy il ze + 1ol e + lill 2l voll 2],

101 (2 qomry < I1%llcoqoryae + a1 91l cogo.m,p2)
< [ Wol[ g2 + CA3||[Wol| 12,

so || 2 < C||¥o| 2. In the same way, we get

[@llgr < CllI%ol s + Asl|Woll 2],
[@llg2 < Cll%ollgs + Asl[Yoll g2 + A7l Yol 2],
[@llgs < ClllWollms + Asl|Wollg+ + A7l Woll g2 + Aol Wol|£2].

Now, we apply Propositions 16, 19, 22 and 24. OJ

3.6.5 Controllability of the linearized system around (¢(¢),u(t)) and bounds (3.19),
(3.20), (3.21), (3.22)

Theorem 9 Let T = 4/m, v € (0,7%), (¢o,v) € Eg and 1 the associated solution of () with

u =~ +v. Weassume |[ull g1 omyr) <V ullreomnr <7 and |ull2omr < V2/VIT. If
Az =7y + [[(¢0,v) = (p1,4,0)l g is small enough, then there exist a constant C’ cmd a contmuous
linear map

Moyt [Ts(vo) x Ts(Wr)|NFy —  E7
(‘1]0) \IJT) — (\IJ()7 U))

such that for every (Uo, Ur) € Fy satisfying

R(< Vo, 10 >) = R(< Uy, pr >) =0,
we have

D (b0, v) Mgy 0y (Yo, ¥7) = (Yo, Ur),

[wllze < Cl[(¥o, ¥1)ll 5y

[wl[gr < C[[[(¥o, Ur)ll 7y + Asl|(Yo, Tr) | 7],

[wllzz < CllI[(Yo, 1) 7 + Asll (Yo, ¥r)l| 77 + As||(Lo, Y1)l £7],

lwllgs < C[l[(Yo, Y1)l 7y + Asl|(Wo, Or) || ry + A5 (Yo, ¥7) ||y + Azl[(Po, Ur)|| 7]

Proof: Notice that, for every k € N*, we have
Mg, ) (W)k = biy 2y (W)

where the coefficients by, =< qpk,,p1,, > are studied in Proposition 1, and Z, : L?((0,T),R) —
I>(N*,C) is defined in Proposition 11. Thanks to the behaviour of the coefficients by, and the
Proposition 14, the map M, _ ,) admits a right inverse

(3.57)

M(;ll’,y,»y): h19<N*7(C) - Hg((O,T),R)

d — w

and there exists a constant Cy such that, for every d € hY(N*,C), the function w := My, . ) (d)
satisfies

lwllz2 < Colldl|ps, wllgr < Colldllps, [[wll > < Colldlpr, lwllgs < Colld|ps-
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Let C be the constant used in (3.53). We assume

1
2C0Cy

Then, thanks to Proposition 15, My, ,) admits a right inverse

Az <

M@t,u) . B(N*,C) — H3((0,T),R),

such that, for every d € hY(N*, C), the function w := M(:/j) W) (d) satisfies

w2 < 2Co/d]ps,

lwllgr < 2Col[d]lps + 2C2A5d]|ps],

lwllgz < 2Co[lld|lnr + 2C2As]|dl|s + (2C2A7 + 8C3A3)||d| 4],
lwllgz < 2Co[lld]lpe + 2C2As]|d||pr + (2C2A7 + 8CFAZ) | d|l s+

(202A9 + 16022A7A5 + 480§A§)Hd‘|h3]
where Cy := CyC. For (¥, Ur) € Fy satisfying
§R(< WOawO >) = %(< \IITJwT >) = 07

we define
W(yo,u)(Wo, Ur) := M, (d(¥o, V7).

We check the bounds (3.57) thanks to the previous bound on M(;f) u)(d) and the bounds on d(¥g, ¥r)
given in Proposition 31. OJ 7

3.6.6 The local controllability result around 7 ,

The application of the Nash-Moser theorem leads to the following result.

Theorem 10 Let T := 4/mw. There exists vy such that, for every v € (0,70), there exists § > 0 such

that, for every 1o,y € SN H(Z) (I1,C), satisfying

10 = 14 (O)la7 <0, MYy = 1y (D)lar <6,
there exists v € HL((0,T),R) such that the solution of (¥) with control u := y+v such that 1(0) = g

satisfies (T') = 1y.
4 Quasi-static transformations

In this section, we fix vy € (0,7*]. For e > 0 and ¢¢ € [0, 27), we consider

ithe = =307 — o f(et)qpe, 0 < t < 1/e,q € I,
,(Z)G(O) = (plei(ﬁo’
Ye(t,—1/2) = )e(t,1/2) =0,

where f € C(]0,1],R) satisfies f(¥)(0) = 0, for every k € N, f(1) =1 and 0 < f < 1. The aim of
this section is the proof of the following theorem.

Theorem 11 Let (€,)nen+ be defined by

1 1
: A )\17,},0f(t)dt = ¢0 + 2n7T

For every s € N, (1, (1/€n))nen converges to i, in H*(I,C).
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For this, we prove the convergence in L?(I,C), we find a bound M, for this sequence in H*:
e, (1/€n) || s < My for every n € N* and for every s € N. We conclude using the convexity of the
H?-norms:

—0
e, (1/€n) = 100 lls < Clle, (1/€n) = 1472 M5
where § = 1/(s + 1). With the same arguments we get the following theorem:

Theorem 12 Let T'=4/m. For e >0 and ¢1 € (—2m,0], we consider

iée = _% él - ’YOf(l - Et)q‘gm
Ee(1/€) = pre™,
E(t,—1/2) = &.(t,1/2) = 0.

Let (€n)nen+ be defined by

1 1
- / Al,'yof(t)dt = —Al + 2(n + 1)7T — ¢1.
n Jo

For every s € N, (&,,(0))nen+ converges to 1 e~ 10T in HS(I,C).

In order to prove Theorem 11, we define

. t .
Ac(t,q) == pe(t, q)e’ o Moo ds=id0 o (q).

Then, we have . .
Ac = SAY +inof(et)ghe + iAo p(enyAe — €g(et),
A(0) =0,
Ac(t,=1/2) = Ac(t, 3) =0,

where

i do1y
9(s) =0f(s) & hof(s)-
In the next propositions, we prove the H®* bound on (A, )nen+-

Proposition 36 For every k € N, there exists a constant Cy such that, for every e € (0,1] and for
every t € [0,1/¢],
ak:
HﬁAe(t)HLQ(I) < G

Remark: When € > 0 is fixed, the function
Alt,q) = Ac(t, g)e= Jo Mot ds
satisfies the following equations

A — _LAN _ _ —ift>\1 ds
iA = —5A" — o f(et)gA — eg(et)e " Jo Mof(e)®,
A(0) =0,

A(t,—1/2) = A(t,1/2) =0,

which have the general form studied in the appendix B. Thanks to Propositions 45, 47, 49, 51,
it is easy to prove that A belongs to C3([0,T], L%(I,C)) and for k = 1,2,3, 9*A/It* solves the
equation we get by deriving k times with respect to ¢t the equation on A. In fact, the functions
A(0) =0 and t — eg(et) exp(—1i fg A1y f(es)@s) satisfy the conditions we need to derive A more than
3 times: A € C*([0,T], L*(I,C)) and for every k € N, the function 9*A/0t* solves the equation we
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get by deriving k times with respect to ¢ the equation on A. Of course, we have the same result for A.

Proof: We prove it by induction. Let us first introduce the notation Ay . := A To simplify,

8tk
we write A instead of A, and Ay instead of Ay .
For k = 0, we use
d . .
aHAHiQ —<AMA>+ <A A>.
Thanks to the equation and one integration by parts we get:
<AA> = —L <N N > +iyof(et) < gA A > FiM o fet) < A A > —e < g(et), A >

Summing the complex conjugate number, and integrating from 0 to ¢ we get

1122 </ elgler)r2 (1 + [A(T)|I72)dr
0

Using Gronwall ’s lemma, we conclude:
1 1
A1 < ([ lo(o)lads) et 1l
0

Let k£ € N*. We assume there exist constants C}, j =0, ...,k — 1 such that
145 ()2 < C,

for j =0,...,k — 1, for every € € (0,1] and for every ¢ € [0,1/¢]. Since f¥)(0) =0 for j =0,....,k — 1
then A;(0) =0 for j =1, ...,k and we have

=
|

k
= LAY +ivof(et) A +iNy Ao f(et)y Mk + 170 Z ( el £ (et)gA g

k o
+i > (M) N g g ()l r=ctArj — €L g P (et),

0) =0,
t,—1/2) = Ay(t, 1/2) = 0.

e
—~

In the same way as in the case k = 0, we get
k
A2 < 0y Z (%)l 17 (e9)|Cry (1 + [ Ar(s)]135) ds
=1

j=k
f Z ( )6 ‘dq—] (A1 Aof( T)}T et|Cr— —j (1 + [|Ax(s )”%2) ds
+ft 1 g®) (es) | 12 (1 + [|Ak(s)]12,) ds

Gronwall’s lemma gives
1Ak (D172 < Agcexp(Are),

where

1 k
k\ ._
A= [ Z(j.)é 1 (’yolf(”( I+ 1t ,wf(t)”) T llg® ()2 | de.o

J=1
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Proposition 37 For every s € N* and for every k € N, there exists a constant D,(:) such that, for
every € € (0,1],
ak
I Aellooqo,/e sy < ey,

Corollary 1 For every s € N, there exists a constant Dy such that, for every e € (0,1], ||Ac(1/€)] gs <
Ds.

Proof of Proposition 37: We prove by induction on s € N* the following property

k
. (s) o (s)
Py (Vk) eN, HDk > O/VE S (0, 1], H@AEHCO([(Ll/GLHZS) < Dk ) .
Let k € N. For € € (0, 1], we have

. k :
7 . k . d’
Akpre =5 hetiy (;) (’Yoﬁjf(])(et)q + dtj[/\wf(et)o Ap_je — g (e). (4.1)
=0

)

Therefore, there exists a constant Dlgl such that, for every € € (0, 1],

1
HAZ,GHCO([O,I/E],LQ) < D](g )

Since Ag(t,1/2) = Ay (t,—1/2) = 0, there exists a constant C' > 0, which does not depend on k

and e, such that [[Ag((t)|| g2 < C||AY (t)||2 and we can take D,(:) = CD,il). We have proved P;.
Let s € N*. Assume Ps_; is true. Let k € N. Using the equation (4.1) and Ps_; we get the existence

of a constant D,(f) such that for every € €]0, 1],

N

A% ellooo,1/e, 21y < Di(:)'

We can take D,(j) = Dl(cl) + D,(j). O

Now, we prove the convergence in L?(I,C), more precisely, we prove the following theorem.

Theorem 13 There exist constants eg > 0 and C > 0 such that, for every e € (0,€g] ||Ac(1/€)]| 2 <
07061/4 .

For € > 0, we write

Ac(t) =D wh (O rnoser
k=1

where 2 () :=< Ac(t), @k f(ct) > belongs to C1([0,1/€],C).

Lemma 9 There exists a constant C such that, for every N € N*, for every e € (0, 1] and for every
te0,1/€,

oo
C
Z |$k,e(t)’2 < ZS
k=N+1
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Proof: Since A(—1/2,t) = Ac(1/2,t) = 0, we have
1

o (t) = ———
& © Akﬁof(ft)

< A’Yof(Et)AE(t)790k,'yof(et) >

Thanks to (A.12) and the orthonormality of the family (¢, f(et) Jhen+, we get

oo o
c1 Cc2
D loke®F < i D0 1< A Aelt); Prapsen) > < AL [0
k=N+1 k=N+1

The coefficient xy, . satisfies, for every k > 1, the equations

. . ¢ d
ke () = 9Ny f(et) = Moo flet)) The () = 20€f (€8) < T ]ng f(et)s Phvo flet) >
. S5 d
0 (€t) 22 @e(t) < @jopien) “d hostet) >
i=
2p,(0) = 0.

For € > 0, let N, := [efé] and )NQ := (Z2,,...,ZN,,) be the solution of

The(t) = 1Moo f(et) — Moo f(et) ) Ene(t) — Y0€f (€t) < dfl%]yof(st)a ko f(et) >
+yoef (et) | 21,e(t) < P1q0p(et); df#]yof(et) > +§Z Tje(t) < Pjnof(et)s dﬁ#]yof(a) >> :
i'k,e(()) = 0.

for k=2,..., N..

Proposition 38 There exists a constant C' > 0 and ey € (0,1] such that, for every e € (0, €] and
for every t € [0,1/¢€], we have N
[Xe(®)]l2 < CroVe.

Here ||.||2 is the hermitian norm on C™ for every integer n.
Proof: We have

{ X.(t) = C.(t)Xo(t) — yoef(et) (1 + 21.0(t))ac(et),

Xe(o) =0,

where

Ce(t) := Dc(et) + voef (et) Ac(et),
De(s) = dia‘g(i(Al,’yof(S) - )‘k,’yof(s)); k= 27 ceey N6)7

dpr,
Ac(8) 7= (< @jrof(s): 7d,yv]'yof(8) >) o<k <N 2 <N,

dpr,
ac(s) == (< dv’y]vof(s)u@k,yof(s) >)o<k <N, -

We introduce the resolvent R(t,s) associated to C(t):

Otc(t,5) = Ce(t)Re(t, s), Re(t,s)Re(s,t) = Idpnc-1.
Deriving the second equality with respect to s and using the first one we get

OR.
0s

(t,s) = —Rc(t, s)Cc(s). (4.2)
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We have

X(t) = /075 R(t,s) (—706]‘;(68)(1 + xl,e(s))a(es)> ds.

Using (4.2) and an integration by parts we get

Xe(t) = Ce(f)_l’mﬁf(ﬁt)(lerls( £))ac(et)
+ Jy Re > ()1 C(5)Cels) ™ (oef(es)(1 + wr.e(s))ac(es) ) ds
= Jy Relt, 5)C(5) 03 (1 + w1.e(5)) (Fles)acles) + fles)ic(es) ) ds
— Ji Relt, )Cels) ™ (oef (es) o()acles) ) ds.

To be able to write this equality, we have to check that C¢(s) is invertible for every s € [0, 1/¢].

Lemma 10 There ezists €y € (0, 1] such that for every e € (0, €] and for every s € [0,1/¢], Cc(s) is
invertible.

To be able to exploit the previous expression of )Z'e(t) we need bounds on the different quantities
inside. When A is an N x N matrix, we write

1All2 = sup{|| Az|l2; z € CV, |lz]|2 < 1},
1A4]loo = sup{[|Az[|oo; = € CV, [|z]|o < 1}.
Lemma 11 There ezists a constant C > 0 such that, for every e € (0,1] and for every (t,s) €

[0,1/€] x [0,1/€],
[Re(t, s)]l2 =1,

ICe(s) [l < Ce™V* | Cels)]l2 < Coe,
[E1,e(s)] < Coe , [w1,e(5)] < Co,
lac(s)llz < C and [lac(s)ll2 < Cro.
Now it is easy to get, for every € € (0, o], X (t) < Cyov/e.l]
Proof of Lemma 10:

Invertibility of D.(s) for s € [0,1]:

We can assume the positive real number vy is small enough so that inf{As, — X1 457 € [0,70]} > 1
Indeed, thanks to (A.11), we have

lim Az = Ay) = Ao — A = 3/27% > 1.
74)
Then, for every s € [0,1], De(s) is invertible and |[De(s)™l2 = 1/(Aa0 £(s) — Moo f(s)) -

Bound on ||Ac(s)||2 for s € [0,1]:
For s € [0, 1], we have

doy,
”A H2 V ||A ”00 V Sup{Z| < Pirof(s) d kA ]’yof s) > | 2<k< NE}

For k € N*, we have

N

N,
2 | < ®jrofis): dw lyof(s) > |

1/2
N¢
VN gZ | < Pi0t(s) 2 hos(s) > | )
< VN o ro 2
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Thanks to (A.18), there exists a constant C' > 0, which does not depend on €, such that, for every
s € [0,1],
|Ac(s)]]2 < CN, < Ce™ V8,

Invertibility of Ce(s) for s € [0,1]:

Let ¢y € (0, 1] be such that CVOHfHooég/g < 1. Then for every € € (0, )] and for every s € [0, 1],

1

[v0ef(s)Ac(s)]l2 <1< EXORIS

so C¢(s) is invertible.J
Proof of Lemma 11
Bound on ||Re(t, s)||2:
Since Cc(t)* = —Ce(t) then ||Rc(t,s)||2 = 1, for every (t,s) € [0,1/¢] x [0,1/€].
Bound on Cc(s)™1:
We have ||Ce(s)7Y|2 = ||Ce(s)]|2 because Ce(s)* = —Ce(s). Moreover, using (A.12), we get

IC(8)]l2 < AN, 70 £(s) = Mofis) + Croe”/® < Ce™ /4,

Bound on Ce(s):

We have
Ce(s) = eD.(es) + yoe> f(es)Ac(es) + voe f(es) Ac(es),
where . .
D(r) = diag(iv0f () (X1 1 (r) = Meos(r)i b = 25 Ne}
Thanks to (A.19) we get '
[ De(7)]l2 < Co-

Using (A.18), the ortho-normality of the family (¢;.,())jen+ and (A.21), we get

N,
- < dyy d d2
[l < VNesup{ | < “57 hos) "6 s > + < @ions i hostr) > 2 <k < N}
‘7:
N,
€ d2
< VNesuP{sz% + VNEH%]%JC(T)HL?;Q <k < Net
]:
< O(Ne+ VN In(N,)).

Therefore,
[Ce(s)ll2 < Coe.
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Bound on x1(s) and &1,(s):

From the equation

T1,(t) = ’Yoﬁf(Et) < Ac(t )u d'y yosiety >
.%'116(0) = 0,

we get, for every s € [0,1/¢],

|1,e(5)] < Cyoe and |z1,¢(s)] < Co.

Bound on ac(s) and ae(s) :

Thanks to (A.18), we have

lac(s)l2 = <Z\

Using (A.18) and (A.21), we get

1/2 p
1,y
0 () Pl f(s) >\2> <l & o)z < C.

N 1/2 1/2
. ; < d? d dep
lae(s)ll2 < 0f(s) <<k22’ < dﬁé”y]'yof( )» Pkof(s) > | ) (Z | < SOlﬂ/]’yof(s)’ ]’Yof > ‘2) )

< Cy.O

For € € (0,1], we define X(t) := (z2,(t), ..., xn, e(t))-

Proposition 39 There exists a constant C > 0 such that, for every e € (0,€] and for every t €
[0, 1/€], [ Xe(t)ll2 < Cryoe'/*.

Proof: Let us write Y,(t) := (X, — X.)(t). Then

{ Ye(t) = Ce(t)Ye(t) + yoef (et)be(t),

Y.(0) =0,
where -
- d‘Pk,’y
be(t) := ( Z zje(t) < Piof(et) d ]’)/of(ét) >)2<k<N, -
Hence

Y.(t) = /0 "Ro(ts) (rocf(es)be(s) ) ds.

Let s € [0,1/¢]. Using the orthonormality of the family (¢; 1, f(et))jen+ and (A.18), we get

2 N & dﬁok,'y 2
[be(s)llz = |2 #e(t) < josen —ay Trofie) > |
k=2 j=Nc+1
< Ne 00 s 9 00 ' dipk - 9
S >z > I< Pinof(et)s ~dy ]Wof(ﬁt) > |
Ne
< N4 Z k2"
k=2
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Therefore
[Ye(t)]l2 < Cyoe/™.

The inequality | X.(¢)|l2 < | Xc(£)]|2 + ||Ye(t)]|2 gives the conclusion. [

Proof of theorem 13: We have
N¢ [e'e)
[Ae(1/€)]l2 = (Iu’ﬂl,e(l/E)\2 + 2z (/O + 2 Ixj,e(1/6)|2>
Jj=2 J=Ne+1

1/2
< (lere/OP + 1X1/N+ %)

The function x; (t) is solution of

) . oo d

I1,e(t) = yoef(et) 22 Tj,e(t) < Pjof(et) “an o flet) >
J:

1‘176(0) = 0,

o) U
o /

1/e . dS@l
1/ < [ awed(es) | S leia1 P | 1 s,
=2

which gives the conclusion. [

Remark : The quasi-static deformation works because the trajectory (11,,7) is stable. If this
trajectory had not been stable, we could have tried to stabilize it first with a suitable feedback as in
[8].

A Study of ¢;, and A ,.
In this appendix, we state some results on the eigenvalues and the eigenfunctions of the operators
Ay : D(A,) — L*(1,C) defined by
D(A,) = H* N Hy(I,C), Ayp=—5¢" —7qp.

The operator A, has an increasing sequence of eigenvalues (A ,)ren+. We call ¢y, the associated
eigenfunctions:

AyPry = Moy b 2 1. (A.1)
We know from [17, Chapter 7, Example 2.14] that ¢, and \; , are analytic functions of ~:

1 2
ory = ok T8y + 7700 +

)‘k,'y =A; + ’}/)\](:) + ’)/2>\’(€2) + ...
When ~ = 0, we have

1 Vv2sin(knq), when k is even
o= —(k 2 — ) )
F 2< )% { V2 cos(kmq), when k is odd.
The following formula is very useful is this article

8(—1)™*"(2m)(2n + 1)
7220+ 1+ 2m)2(2n + 1 — 2m)2

< q¥2n+1, Pam >= (A.2)

where < . > denotes the usual scalar product in L?(I,C). With calculations of order 1 with respect
to 7, we find the following explicit expressions.
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Proposition 40 For every integer k > 1, )\,(91) =0 and

L& (1)
Toa@Ph 1Pk = Mgy (A-3)
If k is an even integer, then
k. 400 o
W 16(-1)5k (—1)7(2j + 1) A
= : ~ 0241 A4
Pk o ; (k+2j + 1)3(k —2j —1)3 7 %+ (A-4)

If k is an odd integer, then

M _16(=D)ThX (1)
L o Z ( 3
We introduce, for every integer k > 1, the functions

~ 1
Py = Pkt 'Y‘Pé )-

The equations (A.1) and (A.3) give

~ 1 ~
AQp~y + ’Yqué ) — Ak Pk, (A.6)
We recall in the next proposition bounds given in [17, Chapter 7 Example 2.14, Chapter 2 Problem
3.7].

Proposition 41 There exist positive constants v*, C* and C, such that, for every v # 0 satisfying

lv| < v* and for every k € N*,
C*~

loky = erll2ay < = (A7)
~ C*~?
lor — ‘Pk,vHLQ(I) < 2 (A.8)
d *
H%(‘Pk,v — i)z < C*, (A.9)
d2
I Py = er)llLzy < €1+ k), (A.10)
C'* 2
Ay — Akl < IJ : (A.11)
Cidi < Ay < C* M\, (A.12)
1 1 C*ry?
‘E_EK R (A.13)

The vectors ¢y, and the complex numbers A, are analytic functions of the parameter v, so we
can consider their derivatives with respect to v. We introduce the notations

dk‘Pk’ﬁ

d"}/k ]'YO

for the k' derivative of the function v — ¥k, evaluated at the point v = 79 and

/ " "
kﬂo’ k,'YO’ k(YO

for the first, second and third derivative of the function v + )\, evaluated at the point v = .
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Proposition 42 We have

dgak, d(pk
A’Yo d’y’y]’yo = (q + )‘;c,'yo)‘:pk:ﬁo + A Y0 d'y'y]vo’ (A,14)
ko = = < QPhoor Phio > (A.15)
dor, < QPhros Lo >
T’Y]VO = )\ FYO_ >\J Ll QOJ'WO. (A16)
7 j=lj#k 90 T ko

In particular,

drk~ 1y 16k (=1) 2
—o=¢p' =— . . ©;
d 4 KV3(i — k)37
gl T b U TR k)
where the sum is taken over all integers j such that j and k have different parity. There exists a
constant C* > 0 such that for every vy € [—7*,7*],

depry Aok~ C*yo
H d’Y ]’YO - d’)/ ]0HL2 g 77 (Al?)
der, C*
| d,y'y]’yoHL2 < T (A.18)
C*
Mool < == (A.19)

Proof: To get the equation (A.14), we derive the equation on ¢y, , with respect to 7. Considering
the scalar product of the equation (A.14) with ¢y ., we get (A.15). We compute the decomposition
(A.16) using the equation (A.14). In the case 79 = 0 the formulas (A.4) and (A.5) give the result.
We first prove the bound (A.18) for 79 = 0. In this case, we have

dprq, o (16k) 72
=T ollz2 = ( ) X ; :
d 1 L)6(7 — k)6
Y ™) prbw U TR —R)

In order to compute this sum, we decompose the fraction

X2

Fp.(X)=
b(X) (X + k)5(X — k)S
in the following way
_ 7 1 1 7 1 1 1 1 1
Fu(X) = TBI12K9 \ X+k X#c) © B12kB <(X+k)2 + (ka)2> TO128k7 ((X+k)3 - (ka)?))

1 1 1 1 1 1 1 1 1
+ 35680 (X+k)4 + (X—k)% + G (X+k)5 — (X—k)5 + Gart (X+k)S + (X—k)8

and we sum each term. We find

N 71 1 1
P .)gp(k) Fre(j) = TR0k 51%9 (252 — ) 128Kk7 k3 + 256k6 (254 - ) + G k;5 + 64k4 (256 —
j
where S, =7 (2n+1) for a = 2,4, 6.
Thanks to the expression (A.16), we have
dgpkﬁ] . dg&;c’»y] _ i 1 o 1 < . > .
dy 1 dy 0= = VRO PR YA 4%Pk0s Pivo = Pivo
J=1,j
o0
T2 xS @Pka0 @ine >~ < 00k 95 >) i
Jfog# <qPk,P;j>
+ ;#ﬁﬁ(%ﬂo - 95),
j=1,j
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) 1/2 ) 1/2
o0 o0
” depk, w} dsﬁk ~/ H Z 1 - 1 + Z <qPk,vg:Pi 0>~ <qPk>Pj>
0 L2 < >‘J 70~ Ak, Aj=Ak Aj— Ak
’ e j=Li#k

X <qprei>
b5 I i gl
j=1j#

For the study of the first term of the right hand side, we have

1 1 C’yo C")/g 1
S Vo vl vy |<< T (72 — k2)2
JY0 ko J k J

< 1 1) S S 1
j:§¢k ()‘J',Wo_Akwo a /\f—’\k> S fyo] E;ﬁk (J+k) (G-k)* + 32 12 (k)2 G-k)*

We compute explicitly the two sums and we get

> ( 1 1 >2 < &
]:17]76145 )\jv'YO - Akv')’O )\] - Ak

For the study of the second term of the right hand side, using ¢; v, = (Y14, — ¢1) + 1 and (A7) we
get

C*™y , C™ o
| < @Pra0s Pine > = < apr 0 > | S+ P
= <Ak i > — <005 > ) 2 )2 & 1 2 1
> < BV : > S (J> > Greg=me T (C0) Y. mrTEroRE
i=T 74k Aj =Mk k =tk (J+k)?(5—k)? =2k J2(G+k)?(5—k)?
We compute explicitly the two sums and we get
1/2
00 2
3 (< @Pk05 Pio > — < 4Pks Pj >> < G
T N T2
J=1j7#k Aj = A k
The third term of the right hand side is bounded by
o0 . o0
Ck'_] 1 C*’y() 1
> <conk Y .
E+ i)2(k — )22 — k2| 4 k+ )3k — i3
i R0k —5)2 1) | Py Gl OM L]

We compute explicitly the last sum and we get

— < Pk Pj > C'y
ky¥j 0
> I ine — @il < S50
j=ti#k Ik

Proposition 43 We have

_ d*pry Aok

d*py,
= - )\kﬂ’o T,}/Q]'YO + 2( + )\k‘ 'YO) d’y ]"YO + )\/,7’}/0()0}9 Yo - (AQO)

d~?

Y0 ] 70

There exists a constant C* > 0 such that for every v € [—v*, 7],

dQQDk C*
HWQW]’YOH[? S 3 (A.21)
C*
| Iwm’ S (A.22)
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Proof: The explicit expression

Aok~
dy

together with (A.18) give the bound (A.22). Using the equation (A.20), we compute the coefficients
zj in the decomposition:

"

kﬁo - _2 < q

]’Ym Pkryo > (A-23)

4>y, .
d 277]’70 = Z %j¥Pjv05
vy :
7j=1
der,
k= _H#]’YOHL%
dg@k,'y
< , Q4 > < q—g y L7, > i
_ 2)\1“{0 4Pk~0> Pivo ) dy Jo: ®io  for j £ k.
(/\j,’yo - )‘k,’Yo) Ajvo — Akﬁo
Thanks to these expressions and (A.19), (A.18 ), (A.11) we get
d?Qk~1 o C & 1 c*
) < - JE—
” d,yQ ]’Y()HL2 k2 ];ik (] n ]{3)2(] — kj)2 + kj4

and we conclude computing the infinite sum. O

Proposition 44 We have

By, 43, d*or, dpr
A% d737]70 = Ak,wa 737]“/0 +3(q + )‘;c,wo) dvzv]vo + 3)‘/1;70 dy ]70 + )‘%:vo‘pkﬁo- (A.24)

There exists a constant C* > 0 such that for every v € [—v*,v*],

dg@k C*
Hﬁ]mum < 3 (A.25)
C*
| 'kff,m| < (A.26)

Proof: Considering the scalar product of (A.24) with ¢y, ,, we get the explicit expression

mo d2§0k77 dgpkﬂ A
ko — —3(q + /\k ’Yo) 2 ]Wov@k Yo > 3/\k 70 T,Y]’Ym@kn'o > (A.27)

Then using (A.19), (A.21), (A.22), (A.18), we get the bound (A.26). Using the equation (A.24), we
can compute the coefficients w; in the decomposition:

d’ <Pk;
Tl ij%vo’

>y, dor,
w = —3 < dq/?ﬁ/]%’ d’yﬁq% >,
3 oy, d?pp .
wj = | My < o >+ < ¢——, j # k.
J Xino — Moo ( ko 2 —— o> Pino dn? lhos Pimo >
Therefore

Bokyr 2 =, 12 C O\ w 1 (C*)4
) — 14 < [ = _
ey ol JZZI s <k6+k4)§ GrR2G—R? &
and we compute the infinite sum. [
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B Existence and bounds for the solutions

This appendix is dedicated to existence and regularity results for the solutions of the following system:

Z%lf = —%gTw —U( )q¢+f(t), qGI» te [OvTL

¥(0) = vo, (B.1)
¥(t,—1/2) = ¥(t,1/2) = 0.

We also give some bounds on the solution in spaces CY([0,T], H*(I,C)) for s = 0, ..., 7, useful in the
application of Nash-Moser theorem.

Let us recall A, is the operator A, : D(A,) — L*(I,C) defined by

1
D(A,) = H* N Hy(1,C), Ayp = —5¢" = vap,

and (T (t))ser is the group of isometries of L?(I, C) with infinitesimal generator —iA,, more precisely,
for ¢ € L?(I,C) and for every t € R,

—+00

Ty(t)p =D <, ppy > e Ml
k=1

Proposition 45 Let T > 0, v € R and u € L*((0,T),R) be such that ||u — |2 < V2/V17. Let
E € {L*(I,C),H}(1,0), H2 N H(I,C)}, v € E and f € LY((0,T),E). There exists a unique
solution v in C°([0,T], E) of
t
0(t) = Ty 0+ [ Tt = 9lituls) = avls) + F(5)ds. (8.2
in L?(I,C), for every t € [0,T]. Moreover,

1¥llcoqo,r,) < elllvolle + 1 fllLror),m))-
Proof: For the existence, we use Banach fix point theorem on
Q: C0,1),B) — C([0,7],E)
¢
¥ = Ty(O)vo + [ Ty(t — s)li(uls) — v)av(s) + f(s)]ds
0

Let 91, ¢2 € C°([0,T], E). Since T,(7) is an isometry of E, for every 7 € R, we have:

1911 — Q) ()5 < / Ju(s) v|*||<w1 2)(5) | mdls

so [|Q(y1) — Q2)leoqo,r),m) < llu— '7HL17||¢1 Yallcoqo,1),B)-
For the bound, we apply Gronwall ’s lemma to the inequality:

¢ 17
)1 < Wolls + 1oy + [ 1us) =1 o(6)ds.0

Remark: An existence result can be proved for every u € L'((0,7),R), considering a partition of
[0, T7:
0,7 = | |[T:-1, T}

such that [lu — Y| 1r_, 1) R) < \/\/127 for i = 1..N.
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Proposition 46 LetT >0,y € R andu € L'((0,T),R) be such that ||[u—~| 1 < v/2/V17. Let 4o €
H?N HY(I,C) and f € L*((0,T),H* N HY(I,C)). If u € C°([0,T],R) and f € C°([0,T), L*(I,C))
then the function v defined by (B.2) belongs to C*([0,T],L*(I,C)). It is the unique solution in
C°([0,T], H* N H{(I,C)) N C*([0,T], L*(1,C)) of

. 02 .
%—f = %ng—l—w(t)qw—l-f(t), qc Ia le [07T]7

(0) = Yo, (B.3)
W(t,—1/2) = (t,1/2) = 0.

Proof: Clearly, v satisfies the equations (B.3). Let us prove the uniqueness of the solution of
(B.3). Let 11, 9 € CO([0,T), H2N H(I,C))NCL([0,T], L?(I,C)) be solutions of this system. Then
A =1 — 19 solves

. 2
3= 2 e, g T, 0T

A(0) =0
A(t,—1/2) = A(t, 1/2) = 0.

The first equation of this system gives
LIAWIR =< Al), A() > + < Af), AH) >=0,
so A =0.0
Corollary 2 Let T > 0, v € R and u € L*((0,T),R) be such that |[u —~||lp1 07 r) < V2/V17.

Let g € H* N HY(I,C) and f € LY((0,T), H> N H(I,C)) N C°([0,T], L*(I,C)). The solution v in
C°((0, T, H* N Hy (I, C)) of

(t) = T (1o + /0 Tt — s)liCu(s) — 7)aib(s) + F(s))ds
in L2(I,C) for every t € [0,T] also solves
B(t) = Ty () + /0 T (t — 8)[i(u(s) — y1)qw(s) + f(s))ds

in L?(I,C), for every t € [0,T), for every v1 € R such that |Ju — Yl o,r)r) < \/%

Proof: We introduce the notations

B, 2) = {w e LOD)RY Julls < f%},

V2

V1T

Q,: D, — C%0,T),H*NH{(,C))
(u,o, f) +— 1 solution of (B.2) .

The previous result shows 2, = {2, on

D(Q4) N D(2, N{C([0, T],R) x (H* 1 Hy)(1,C) x [C°([0,T], L*(1,C)) N L'((0,T), H*(I,C))]},

D(Q’Y) == B (7a ) X H&(LC) X Ll((()?T)aH(%(IvC))a

which is dense in D(£2,) N D(€2,,. We just need to prove that 0, and €, are continuous to conclude.
Gronwall’s lemma gives, when Q(u1, 91,0, f1) = ¥1 and Qy(u2, 92,0, f2) = V2,
1 = ellcoo,mmy < Cllivno = Y20llgg + llur — wall Lo, r) Y2l oo, )+
111 = fall Lo,y m0))-

So €, is continuous and £, = Q,, on D(Q,) N D(£2,).00
This corollary allows us to give the following definition.
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Definition 2 Let 1y € Hi(I,C), u € LY((0,7),R), f € LY((0,T), HX(I)) with ||ul;: < v2/V17.
The generalized solution of (B.1) is the unique function v € C°([0,T], H}(I,C)) solution of

t
0(t) = T + [ Tt = )fu(s)av(s) + F(s)ds
in L2(I,C) for every t € [0,T]. Then, for every v such that ||u — |11 < v/2/V17, we have

B(t) = Ty (1o + /0 Tt — s)[i(u(s) — 7)qb(s) + F(s)]ds,
in L*(I,C) for every t € [0,T].

Proposition 47 Let v € WbY((0,T),R) be such that ||ul|,: < v2/V17, f € LY((0,T),H? N
H(I,C)) n WhL((0,T), L3(I,C)) and 1 be the solution of (B.1). Let v := u(0). Then the func-
tion ¢ := %—f is the solution in C°([0,T], L>(1,C)) of

o(t) = T(t)po + jT(t — ) (iu(s) () (s) + g(s))ds,
po = —iAy)%o + f(0),
9(5) = ii(s) () (5) + £(5).

o Ifyo € H(V)
Ayy(t) € C°([0,T), Hi(I,C)) and we have the following upper bounds when |lull g < 1:

lellcoqom,mary < Cllvollas + 1 fllwior),m21)),
[¥llcoqo,r),m3y < CUlollas + | fllwrro.ry,myy + 1 o), 22))s

o If 1y € H@)(I, C) and f € WHI([0,T],H?> N H}(I,C)) then, ¢ € C°([0,T], H*> N H}(I,C)),
Y € C%[0,7T], H(I,C)), Auy¥(t) € C%([0,T], H*NH(I,C)) and we have the following bounds
when ||ul|ya < 1:

lellooqo.ry,m2) < Cll[vollms + [1flwrio1).m2));
[ llcoqo,r),m4y < CUlYoll e + | fllwrro,1),m2))-

Proof: Deriving the relation on v we get the relation on . For the sequel, we apply the previous
results on ¢. Gronwall’s lemma gives constants C' = C'(u) which are uniformly bounded with respect
to u in a bounded subset of W11((0,T),R), we chose the constant 1 arbitrarily. (J

Proposition 48 Under the same assumptions as in the previous proposition, if u € C1([0,T],R) and
f € CY[0,T],L*(1,C)), then ¢ € CY([0,T], L*(I,C)). It is the unique solution in C°([0,T], H> N
Hy(I,C))nCY([0,T], L*(I,C)) of

©(0) = o,
o(t,—1/2) = p(t,1/2) =

Proposition 49 Let u € W21((0,T),R) be such that ||ull;x < V2/V17, 4(0) = 4(T) = 0. Let
fewhi((0,T), H>*nH}(I,C))N W2 1((0,T), L3(I,C)), v be the solution of (B.1) and ¢ := %—qf Let
~v :=u(0). Then the function & := W is the solution in C°([0,T], L*(I,C)) of

§(t) =T()po + f T(t — s)liu(s)(g€)(s) + h(s)]ds,

€0 = —iAy(0)P0 J(r)g(o)a .
h(s) = 2iu(s)(qap)(s) +it(s)(q)(s) + f(s)-
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o If o € HY(I,C), f € W2L((0,T), HY(I,C)) and Ay € H2 N HY(I,C), A2 + A, f(0) €
H(I,C), then, £ € C°([0,T], HL(I,C)) and ¢ € C°([0,T), H3(I,C)). If f € CO([O T], H3(1,C))
then ¢ € CO([O T), H*(I,C)), Aymw(t) € C°([0,T], H* N Hi(I,C)), Ai( y(t) + Ay f(t) €
CY([0,T), HY(I,C)) and we have the following bounds:

[€llcoqory,my < Clllvollas + (1 F(O)as + 1 lwaa o
[wllwza (1Yol + 1F 1o,y 1))}

lellcogory,msy < Clllvollms + [1£(0)[ s + £ llw o
[ullwza (1Yol + 11 f Lt o.1),m1))

[llcoqory,msy < Clllvollgs + 1 fleoqo, 3y + I fllwrao.r),m2) + 1 f w2 o)1)+
[wllwz (1Yol g + 1f 2o,y 51)) 3

1), HY) T

1),m52) T [ fllw21 o), 51+

e If o € HY(I,C), f € W2((0,T),H* N Hi(I,C)) and Ayo € H* N H{(I,C), A2¢p0 +

A, f(0) € H> N H{(I,C), then, £ € C°([0,T], H> N H}(I,C)) and ¢ € C°([0,T7, 4( ,©)).

If f e CO([O’T]a 4( )) then ¢ € CO([OaT]7H6(I’C))7 Au(t)w( ) € CO([O T] H?N H&( C));
Ai(t)w(t) + Ay f(t) € CV([0,T], H* N Hy(I,C)) and we have the following bounds:

€llcoqo.ry, a2y < C{l[Yollge + 1F(O) s + [ fllw21¢0,7
[ullwea (Yol gz + [ £l o.r),12))

lellcoqorymey < Clllvollms + 11f(0) ][4 + ||fHW2 a0,
lwllwza (1Yol 2 + 1f 1 o,7),12)) }

llcoqo,ry,me) < C{lI%ollze + | fll oo,y 4y + I fllw21(0,1),52)+
wllwza (ol 2 + [ fllLr o), 12)) -

),H2) T

),H2) T

Proposition 50 Under the same assumptions as in the previous proposition, if u € C*([0,T],R)
and f € C?([0,T], L*(1,C)), then &€ € C1([0,T), L*>(I,C)). It is the unique solution in C°([0,T], H>N
Hy(I,C))nCY([0,T], L*(I,C)) of

58 = 158 +iu(t)ge + h(1),
£(0) = &,
§(t,—1/2) = &(t,1/2) =

Proposition 51 Let u € W3((0,T),R) be such that |ull;x < v2/vV17, w(0) = 4(T) = i(0) =
w(T) =0. Let f E W2((0,T), H* N HY(I,C)) n W3L((0,T), L*(I,C)), ¢ be the solution of (B.1),
= %—’f and § = 8t Let v := u(0). Then the function ¢ := % is the solution in C°([0,T], L*(I,C))

of

¢(t) = T(t)¢o + { T(t — s)[iu(s)(g¢)(s) + k(s)]ds,

o = —iAy )0 + h(0), )
k(s) = 3i(s)(q€)(s) + 3ii(s) (q0) (5) + 1 %% () (qe)(5) + 22k ().
If vo € H'(I,C), f € W3’1((0,T),H0( ,C)) and Ao € H?* N Hy(I,C), A0 + A, f(0) €
H? N H{(I,C), iA3py — A2£(0) — iA,f(0) € HI(I,C) then, ¢ € C°([0,T), H}(I,C)) and ¢ €
C°([o, T}, 3( C)). Iff € Cl([o T), H3(I,C)) then ¢ € C°([0,T), H>(I,C)). If f € C°([0,T], H*(I, C))
thenyp € C°([0,T), H'(I,C)), Ayy(t) € CO([O T\, H*NHy (1, C)), A2 v (t)+Auw f(t) € CO((0, T, H?N
HO(L(C))f Au(t)lb( ) + Ai(t)f@) ( ) u( t)(qw( )) + 1A u(t) ( ) € CO([ ) } H?*N H&(I, C)) and we
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have the following bounds

ICllcoqom,myy < Clllvollgr + 1 (O)lms + 11 (O)[ s + ILf llws.ao,m), 1)+
[wllwza{lloll zs + | Fllwr o),z b
lullwsa{llvol g + [1f1 1 0.1), 1)}
[€llcoqory,mey < Clllvollar + [1F(O) s + £ (0) || s+
I fllwsao,r),mvy + I fllw2a0,1),m22)+
lwllwz1 {[1%oll s + | flwra o), 51y} +
lwllwsa {{[%oll zr + ILFll L2 o,y 50y Hs
lellcoqo,ry,msy < Cllilvollar + [1f(O)las + [ fllero,r),m3)+
£ llws.1 o), my + 1 w2101, 12+
lullwza {[[%ollzs + | flwrr oy, 5y b+
lullwsa{llvoll e + [1f1l L1 0.1),1) 3
I¥llcoqor,mry < Cllvollar + 1 fllcoqo,ry,m5) + 1 lerqo,m,me)+
I fllwsao,r),my + I fllwe2a0,1),m2)+
[ullwza{l[Yollms + ([ lwriom)m)H+
lwllwsa {[1%oll e + 1f 2o,y 1) H-

The proofs of the propositions 48, 49, 50, 51 are straightforward, we omit them.

C An other version of the Nash-Moser theorem and its application

C.1 An other version of the Nash-Moser Theorem

Proposition 52 Let us consider the same assumptions as in Theorem 6. We assume moreover that,
for every u,u € VN Er,

19" (us v, w) — @ (v, w) |7 < C Y (14 = lls )0 s 0]l o, (C.1)

where the sum is finite, all the subscripts belong to {1,3,5,7} and satisfy (3.46) with mj «— n;. We
also assume that, for every v,v € V N Ky,

1(¥(v) = ¥(0))gllh < Cllv = 3|[3]lglls, (C.2)

1 (v) = (0)glls < Clllv = vllsllglls + [lv = 2ll5]lgls], (C.3)

1(w(v) = ¢(@))glls < Clllv = Bllsllgllz + llv = Bllsllglls + (v = oll7 + o = B3)llglls], (C4)
1% (v) = P(0)gllz < Clllo —llsllglle + [lv — vll5]lgll7+

(llv = 3ll7 + [lv = D) llglls + (C.5)

(v = llo +llv = Dllzllv = Blls + [l — BlI3)llgls]-

Then, there exist € > 0 and a continuous map

I: Vj — Ej
foo=

where
Vi = {f € Fy Al < o),
such that, for every f € V[;,
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Proof: The map II is the composition of the following maps

Fé—>Fé—>E3

f = 9 = u,

(C.6)
where f = g+ T(g) and w is the limit of the sequence built in the proof of Theorem 6.
First, we prove the continuity of the map
/ /
F 3 F 3
=9

It is sufficient to prove that T': F| é — F,zla is a contraction. Indeed, the inequality

I7(9) = T(@)5 < dllg = gl
with 0 € (0,1) gives
lg = 3lly < 11 — Flly
Let g,g € Fj. Let (uj), (i) and (v;) the sequences built in the proof of Theorem 6, associated

to g. Let (@;), (ii;) and (9;) the sequences associated to §.
Then, there exists C1,Cs,C3 > 0 such that, for every j € N,

i — tiylla < Cillg — ll505 " a € {1,3,5,7}, (C.7)
lv; = Bjlla < Callg — gll365* a € {5,7}, (C.8)
I(uj = v5) = (@ — ) ]la < Callg — Gll509 a € {1,3,5,7}. (C.9)

The proof is exactly the same as the one of (3.25), (3.26), (3.27).

Remark: At this step, we have the continuity of the second map in (C.6)

F/é—>E3

g — .

Indeed, (C.7) gives

o0
lu—alls <Ci | D267 | llg - alls.
j=0

We have -
T(9) —T(3) = Y Ajl(e) — &) + (¢] — &)
§=0

Let us prove that there exists Cy4,Cs > 0 such that, for every j € N*,

I — &llz < Camax{llglls, 13ll5Hlg — g1l (©.10)
lef — &}ll7 < Csmax{llglls, 915} lg — 7. (C.11)

These bounds give
I7(9) = T()ll5 < Co max{l|gll 1gll5}g — 77,

which proves that T is a contraction of a small neighbourhood of 0 in F; é
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We have

e;. —¢é. = A fol 1-— t [(I)”(UJ +tA; ﬂ], ’L'Lj,ﬂj) — q)”(ﬂj + tAjaj;ﬂj, UJ)]dt+
Aj fO (1 —t)®"(a; + tA; Jlg3 Uy — Uy, )] dt+
Aj fo (1 —)®" (it + tAjij; 1y, 05 — ug)]dt.
Using (C.1) for the first line, (3.17) for the second and the third lines of the right-hand side, and

proceeding as in the previous proof, we get (C.10). The inequality (C.11) can be proved in the same
way. [

C.2 Application of Theorem 52

The aim of this subsection is to apply Theorem 52 to the map

. 2 (Yo,v) = (Yo, ),

in order to get the following controllability result.

Theorem 14 There exists y9 > 0 such that, for every v € (0,79), there exist 6 > 0, C > 0 and a
continuous map

I'y: Vy(0) x V(T) — H& ((0,7),R)
(Yo  Wy) — v
where

V5(0) == {0 € SN H] (I, C); [[vho — ¢1.4(0) | 71,0y < 8},
(1

Vo(T) :=={¢yeSN H O 1Yy = Yy (Dlla7 1,0y < 63,
such that, for every o € V,(0), ¥y € Vy(T), the unique solution of (3) with control u := v +
I (0, 9¢) such that ¥(0) = 1o satisfies (T) =1y and
1Ty (%o, Ye) L o,m),R) < Clllvo = Y1y (0)l a7 (r.c) + U5 = Y1y (T)ll a7 (1,0

The bound (C.1) can be proved exactly in the same way as the bound (3.17) in Proposition 10.

Let us recall that we built d®- (¢, v) " .(¥o, U¢) in the following way

@, (10,0) (Yo, U p) = My o (digy ) (Yo, U)).

We will use the following decomposition

[, (o, u) ™ — A (o, @) ~(Vo, Wp) = M2 (A (Yo, Up) = d g o (o, U )]

“1 1 (C.12)
+[M(¢07u) M( )](d(% u)(‘I’Oa\I’f))

In order to prove the bounds (C.2), (C.3), (C.4), (C.5), we use the following corollary of Proposition
15.

Proposition 53 Let us consider the same assumptions as in Proposition 15. We assume we have

another map M and constants As, As, A7, Ag with the same properties as the map M and the con-
stants As, As, A7, Ag. We also assume that there exists some constants C,ns, ns, N7, N9 such that

Canal|wl[ L2,

Cs[msllwll gy + msllwll 2],

Cs[msllwll gz + msllwll gy + nrllwl| 2],
Cs[msllwll gz + msllwll gz + nrllwll g2 + nollwll z2].

(C.13)

EEEE
=
NN NN
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Then, there exists Cy > 0 such that, when 13 is small enough, the right inverses M~ and ML built
in Proposition 15 satisfy

(M~ = M=Y(d)llz2 < Cansldllps,

H(]\i*1 M Ny < Calnslldllns +nslldlns],

|21 = M=) ( @)z < Calmslldllnr + mslldllns + el dlps].

(MY = MY )l < Calmslidline + nslldllar + nlldlls + 1ol d]ns].

Proof: In the proof of Proposition 15, the functions w := M~!(d) and M~1(d) are the sum of
the following series:

w = Zwk with wg 1= M;l(d) and wy 1= M;l[(MV — M) (wi—1)],
k=0

o

B =Y @y, with @o == M (d) and @y := M [My — M) (iy—1)).
k=0

Let k£ € N*. We have

lwe — Wil 2 = MM, — M)(wg—1 = W—1) = (M — M) (@g-1)] 12
< Co[CrAs||wk—1 — wi—1]r2 + Csns||w—1] 2]
< Co[C1As||[wp—1 — Wi—1] 12 + C5Con3(CoAz)E 1 |d]|ps]

By induction, we get, for every k € N
Jwi — Wil 2 < k(Comax{As, As})* 1 Csns||d||4s where Cs := C5Cp.
Since CyA3, Cyl\s < 1/2, we have
lw — @] 2 < 4C5n3]|d| 13-

The other bounds can be obtained in the same way. [

First, we apply this proposition with the map M., (resp. M resp. M ) replaced by M, ) (resp.
My ) TESP. M o a)) defined in section 3.6.1 and the constants

= (w0, 0) = (P10, Mllges Ak = [l (W0, @) — (91,7l 0,

= HWOW) - (Jﬂva)HEga

for k =3,5,7,9, in order to get a bound on the second term of (C.12). Let us check the first bound
of (C.13); the other ones can be obtained in the same way.
Let us recall that

T
My uy (w)1 :/0 w(t) < qy(t),(t) > dt,

3 d
Moy (W) = [ w(t \;(?)¢(t)a¢k,u(t) > —ia(t) < Ua(t), "5 uqr) >
< s w(t)> d

‘Hu(t)ﬁ < (1), Zzﬁ]u(t) >

) <UL (1)1 0 (t)> i [f
bidh (SO202) (1) gy ) S]e Mt k> 2

The computations are similar to the ones in section 3.6.
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Proposition 54 Let T :=4/m. There exist constants §,C3 > 0 such that, for every (1’/;0,'27), (o, v) €
Ey satisfying Az, Ag < 8§, we have, for every w € L?((0,7),R),

|(Myo,u) = Mg 7)) (W] < Canalw] 2.
Proof: We have

—_— T ~ ~ ~
(M = M)(w)1 = /0 (w(t) < qp(t), (W = P)(t) > + < qp(t), (¥ — ¥)(t) > dt
(M = M)(wh| < VT[] g2l = Plleogor) 2y < Cllw|gns.0
Proposition 55 Let T := 4/n. There exist constants 6,Cs > 0 such that, for every (1’/;0,'27), (o, v) €

Eq satisfying A, A3 < 8, for every w € L%((0,T),R), the sequence (Xi(w))k>2 defined by

T Lt ~ Lt
X (w) := /0 W(t)[< qY(t), Pruqy > €90 B < qib (1), ppary > € o M dt

satisfies
[ X lns < Csns|jw]l g2

Proof: We study one by one the terms of the following decomposition

- .ot
fo {[< q(v — P)(®), ) >+ < qVt), Pru) — Phuc) >]e? Jo Mg ds

. C.14
+ < qw( )s @raey > [efo Mntods — o Mty .

We apply Proposition 16 to the first term of the right hand side of (C.14). On the second term of
the right hand side of (C.14), we use an integration by parts (with respect to ¢) and Proposition 42.
In the third term of the right hand side of (C.14), we use an integration by parts (with respect to q)
and the following consequence of Proposition 42

New — Ml < o= 1l 0

The strategy is exactly the same with each term in M, .,)(w), we omit the end of the proof.

In a similar way, we prove bounds on
dpo,u) (Y0, W) = d g, (Yo, V)

in order to get a suitable bound on the first term in (C.12)
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