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DMD algorithms for experimental data processing
in combustion

By F. Richecoeur†‡, L. Hakim†‡, A. Renaud†‡ AND L. Zimmer†‡

The present study aims at investigating the parameters influencing the quality of the
dynamic mode decomposition when applied to experimental data from turbulent com-
bustion. It is shown that the choice of the snapshots and the decomposition methodology
have a strong influence on the mode spectra and the frequency resolution. Finally, the
simultaneous decomposition of experimental data is performed with optimal parameters
showing the quantitative information which can be obtained to highlight the coupling
mechanisms involved in combustion instabilities.

1. Introduction

Combustion instabilities result from a powerful coupling between turbulence, com-
bustion and acoustics leading to damaging pressure oscillations in industrial furnaces,
gas turbines or aeronautic turbines (Candel et al. 2009). To better understand the
underlying mechanisms, experiments have been designed to mimic real configurations
featuring thermo-acoustic instabilities (Huang & Yang 2009) and were equipped with
high performance diagnostics allowing to track heat release rate, flame front, velocity
fields, acoustics, spray distribution with the highest possible resolution both in space
and time (Ballester & Garc̀ıa-Armingol 2010; Aldén et al. 2011; Schulz & Sick 2005).
It is now understood that instabilities emerge from a resonant coupling between acous-
tics, combustion and aerodynamics. To highlight these phenomena, diagnostics require
post-processing to correlate physical quantities and extract complementary information.

Commonly used post-processing tools, such as Fourier transforms, Fast Fourier Trans-
forms (FFT), phase averaging, cross-correlation, wavelets, λ2 criterion. . . , can be applied
to describe combustion dynamics. All these processing techniques aim at filtering or pro-
jecting the data to extract coherent components from turbulent quantities. Recently
Proper Orthogonal Decomposition (Berkooz et al. 1993) emerged as a decomposition tool
in most energetic orthogonal modes. This technique has been extensively used to ana-
lyze velocity fields in unsteady flows (Gilliam et al. 2004) and in combustion chambers
(Stöhr et al. 2011; Duwig et al. 2012). The first advantage of POD is that it can be used
with non time-resolved data. The second advantage of this tool is its ability to compute
modes from the data snapshots without preconceived knowledge of the flow dynamics.
The third advantage of POD is the possibility to correlate diagnostics by using extended-
POD (Glezer et al. 1989; Maurel et al. 2001; Borée 2003; Duwig & Iudiciani 2010) where
information from two different quantities can be merged to extract dynamics and in-
teractions. This interesting processing creates an orthogonal projection basis from one
diagnostics then another diagnostics is projected on it so that the main modes are the
one featuring a strong correlation between the different quantities. However, POD suffers
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from limitations due to the lack of criteria to choose the dynamically active modes and
provides limited interpretation since the time component is generally not resolved.

Dynamic Mode Decomposition (DMD) is one of the most recent post-processing tool
taking advantage of the richness in space and time of the current diagnostics (Schmid
2010; Schmid et al. 2011). The dynamic decomposition is based on the Koopman modes
(Rowley et al. 2009) to extract modes from the data snapshots and to associate an unique
frequency to each mode. This is of major interest for combustion applications where one
wants to be able to separate phenomena occuring at different frequencies. Similitudes
between POD and DMD have been highlighted by Muld et al. (2012), Schmid et al.
(2012) and Semeraro et al. (2012) showing that DMD modes may be reconstructed from
POD modes. However, to extract information from the time resolved data gathered with
multi-diagnostics in combustion chambers, DMD seems to be an appropriate candidate
given its easiness of implementation and its low CPU cost. DMD was essentially applied
to velocity fields and nothing has been performed in reactive flows. Especially in two-
phase combustion, data concerning the liquid distribution, acoustics and heat release
may be exploited to investigate the combustion dynamics. Such systems show non-linear
couplings that are very complicated to describe with the traditional post-processing tools.
The purpose of this research is to investigate the benefits of using DMD to analyze
combustion dynamics and investigate the bias of the methodology when dealing with
experimental data.

In literature, different computing algorithms have been presented leading to different
ways of computing spectra. The first section of the report analyzes the two main al-
gorithms, points the link between them and proposes different ways of simultaneously
analyze different diagnostics to highlight correlations. The second section presents the
different bias observed on the processing of two-phase flow measurements and some ideas
to adapt and improve the processing technique for experimental combustion. In the third
part, the two DMD computing techniques are tested on experimental measurements ob-
tained in a turbulent combustion chamber.

2. Methodology

In this section two different methods are detailed. The first one is called “multiple-
variable” DMD and gives an optimal basis for all the diagnostics. The second one, the
“extended” DMD is developed in the manner of extended POD from Borée (2003) and
gives information on diagnostics correlation.

2.1. DMD calculation

DMD of the experimental data is obtained as introduced by Schmid (2010) and exem-
plified in Schmid (2011) and Schmid et al. (2012). Let (vi), i ∈ J1, N + 1K, be N + 1
vectors representing N + 1 experimental snapshots (of velocity or radical OH* fields for
example) equally spaced in time. A matrix V1 = (v1, v2, ..., vN ) is formed with the N first
vectors. The main idea of DMD is to assume the existence of a constant linear mapping
A relating vi to the subsequent vi+1, such that one may write V1 as a Krylov space

V1 = {v1, Av1, ..., AN−1v1}

If the sequence is sufficiently long (N sufficiently large), the vectors (vi)i∈J1,N+1K become
linearly dependent. The vector vN+1 is then expressed as a linear combination of the
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independent sequence (vi)i∈J1,NK:

V2 = (v2, v3, ..., vN+1) = AV1 = V1S + r (2.1)

where r is the residual vector. The eigenvalues of S then approximate the eigenvalues of
A. The objective is to minimize the residual:

S = arg min
S
‖V2 − V1S‖

First a singular value decomposition of V1 is used:

V1 = UΣWH (2.2)

where U contains the proper orthogonal modes of V1, Σ is a square diagonal matrix
containing the singular values of V1, and WH is the conjugate transpose of W , the right-
singular matrix of V1 for the singular values Σ. S is calculated by multiplying V2 by the
V1 pseudoinserve:

S = V +
1 V2 = WΣ−1UHV2 = Y ′Λ(Y ′)−1

with Y ′ and Λ the eigenvectors and eigenvalues of S. Thus the projection of V2 on the
modes V1Y

′ gives:

V2 = (V1Y
′)Λ(Y ′)−1 (2.3)

From this expression, one obtains the contribution of each dynamic mode to the data
sequence V2:
• its amplitude is given by the norm of the corresponding column vector of V1Y ,
• its frequency and damping are provided by the eigenvalues in Λ.

Another way of proceeding is to use the V1 decomposition of Eq. (2.2) and replace in
Eq. (2.1). Rearranging terms, one obtains:

UHV2WΣ−1 = UHAU = S̃ = Y ΛY −1 (2.4)

so that the eigenvalues Λ and eigenvectors Y of S̃ are directly linked to those of A and
the eigenvalues and eigenvectors of A are given by Λ and UY , respectively. One can note
that S and S̃ are similar, thus, they have the same eigenvalues:

S = WΣ−1S̃(WΣ−1)−1 (2.5)

Now V2 may be projected onto a basis formed by the eigenmodes UY of A. One gets:

V2 = (UY )ΛY −1ΣWH (2.6)

From this expression, one retrieves the contribution of each dynamic mode to the data
sequence V2:
• its amplitude is given by the norm of the corresponding line vector in Y −1ΣWH ,
• its frequency and damping are provided by the eigenvalues in Λ.

2.2. Multi-variable DMD

In this method, the data matrix V1 is composed of a superposition of different variables
(pressure, velocity, ...) placed one after the other as illustrated in Figure 1.

A DMD on V1 results in a basis of dynamic modes which is common to all the variables.
Thus, it describes the whole system dynamics and not only one variable dynamics.

The problem is that the amplitude of each dynamic mode does not give information
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Figure 1. Data matrix in the multi–
variable DMD. Mv is the space length
for velocity diagnostics and Mp is the
space length for pressure diagnostics.
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Figure 2. Effects of the number of samples on the
mean, fluctuating and local spectral resolution. Local
begin corresponds to a fixed initial snapshot whereas
local end corresponds to a fixed final snapshot for the
frequency resolution around the PVC frequency.

on the respective contribution of each variable to this mode. The idea is then to plot one
spectrum for each variable instead of one spectrum for all the variables. In the example
depicted in Fig. 1, the peak amplitude Ak at each eigenfrequency ωk is calculated for the
velocity spectrum by:

Ak = ‖UY (1 : Mv, k)‖ × ‖Y −1ΣWH(k, :)‖ (2.7)

and for the pressure spectrum by: Ak = ‖UY (Mv + 1 : Mv +Mp, k)‖×‖Y −1ΣWH(k, :)‖
With this two expressions, the contribution of each variable to the system dynamics can
be quantified. The same methodology can be developed from equation (2.3).

2.3. Extended DMD

Another way to analyze the dynamics of a system with multiple diagnostics is to compute
an ”extended” DMD. The idea, derived form extended POD (Borée 2003), is to compute
a frequency basis from one diagnostics and to make the projection of the second diag-
nostics onto this basis.
Let now V1 = (v1, v2, ..., vN ) be a data matrix of N velocity snapshots and P1 =
(p1, p2, ..., pN ) a data matrix of pressure signals sampled at the same instants as the
velocity snapshots. As explained in Section 2.1, a DMD on pressure gives:

P2 = UpYpΛpY
−1
p ΣpW

H
p (2.8)

The columns of φ = UpYp are the pressure spatial modes. Their amplitude and temporal
evolution are contained in B = ΛpY

−1
p ΣpW

H
p . We look for the velocity spatial modes ψ

that have the same time evolution than the pressure spatial modes. Thus, ψ must satisfy:
V2 = ψB′, where the elements of B′ are defined as follows:

B′(i, j) =
B(i, j)

‖B(i, :)‖
, (i, j) ∈ J1, NK2 (2.9)
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In other words, the lines of B are normalized so that the amplitude Ak of each spatial
mode corresponding to the eigenfrequency ωk in B′ can be retrieved by:

Ak = ‖ψ(:, k)‖ (2.10)

The extended DMD does not provide a common basis to all the variables but an opti-
mized basis for one selected diagnostics. One can then quantify what portion of a given
diagnostics dynamics occurs at a given frequency. This portion is obtained as a ratio
to the mean value. The common basis B can be computed from one diagnostics or the
other, and with one of the two decompositions in equations (2.3) or (2.6).

3. Observations on DMD computations

In practical cases, several problems have to be solved when applying DMD algorithms.
One has to choose the number of snapshots to deal with but also the most appropriate
series of snapshots from the experiments, knowing that some of the data may contain
noisy information. In this section, we report some key phenomena observed on DMD
computation of experimental data: (1) the frequency resolution depending on the number
of snapshots, (2) the influence of the last snapshot of the series and (3) the positive effect
of computing simultaneously several diagnostics with the multi-variable DMD.

3.1. Frequency resolution and last snapshot dependency

One of the important aspects with DMD is that the spectral resolution may be variable.
It is known that applying DMD algorithms on fluctuating data (removing the mean)
will lead to a uniform frequency base, similar to the one obtained by Fourier transform
as shown by Chen et al. (2012). On the other hand, making the decomposition on the
raw data (without subtracting the mean) will lead to a non uniform frequency content.
To illustrate the influence of the number of snapshots on the frequency resolution, data
gathered on a multi-point injector are used (see Providakis et al. (2012) for more details of
the configuration). DMD is applied on the Mie scattering of dodecane droplets conveyed
by a swirled flow and recorded in a cross-plane of the combustion chamber, 15 mm from
the exit of the injector at a frequency of 10 kHz. The data are simply resized so as to
keep values in a matrix of 115×115 pixel. This flow presents a Precessing Vortex Core
type of instability around 2500 Hz. The mean frequency resolution follows the classic
decrease with an increase of the number of samples (see the continuous line in figure 2).
On the same plot, the standard deviation of the frequency resolution is also given. This
deviation is due to the variation of the resolution frequency depending on the frequency
for a given series. One can see that variations around the mean frequency resolution is
very important as one may have ±40 Hz for a mean resolution of 142 Hz. This mean
fluctuation tends to decrease with an increase in the number of samples, however, its
relative level stays quite constant.

But the most important information is the local frequency resolution around the fre-
quency of interest (here the PVC frequency). It is known that this local frequency may
depend both on the number of snapshots and on the last snapshot, especially when using
experimental data (Chen et al. 2012). In figure 2, the local frequency resolution around
2500 Hz is represented with dots. For a given number of snapshots, we can either fix
the initial snapshot (white dots) or fix the last snapshot (black dots) of the series. This
way, we can observe simultaneously the variations of the frequency resolution with the
number of snapshots and the last snapshot. When the last snapshot is kept constant
(black dots), the frequency resolution decreases like the mean evolution even if a large
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Figure 3. DMD spectra of (a) velocity, (b) Mie scattering, (c) Mie scattering and PIV field.

dispersion may be observed for some frequency ranges. When the initial snapshot is kept
constant and the last one is changed, the fluctuation of the frequency resolution may be
stiff. One can see interesting features for some case for which the frequency resolution is
much smaller than the average, which may represent a good DMD mode, with a strong
and well defined peak. Therefore, if one wants to have an optimal DMD, it seems better
to have a fixed starting snapshot and to change the last snapshot until the frequency
resolution shows a specific decrease. The quality of the last snapshot strongly influences
the quality of the DMD, the number of snapshots is not the only parameter to play with
to achieve an optimal resolution. Unfortunately, no rules can be deduced for an appro-
priate choice of snapshot series and frequency resolution and residuals should be check
for every computation.

Finally, another way to improve the detection of coherent structures may be to combine
data. To illustrate this process, one uses the multi-variable DMD algorithm (Eq.2.6) and
combine both PIV velocity field and Mie scattering data. For this example, 1000 samples
are used on both the velocity field and Mie scattering. First, two decompositions are
computed on separated variables. One can see that the spectra obtained for PIV alone
does not exhibit a string peak around 2500 Hz (Fig. 3(a)). The same observation is also
done on Mie scattering data (Fig. 3(b)). The DMD spectrum is much noisier than in
PIV case. Interestingly, when applying multi-variable DMD with the same data, one
can see the peak around 2500 Hz becoming clear. It may be shown also that there
exists an optimum to adjust the scales of the different variables. In the present case, the
optimum for fast convergence of the DMD was obtained for a PIV velocity field with
values ranging from -10 m/s to +50 m/s whereas Mie scattering data was ranging from 0
to 36000 counts. For a different scaling of the data, while analyzing the same snapshots,
the structure could not be recovered. However, this optimum will depend on the actual
variables, so no general rules may be obtained.

We consider these observations are extremely important. They emerge from the anal-
ysis of experimental data and prove that DMD computation has to be run with care to
deal with the irregular quality of the experimental snapshots.

3.2. Discussion

As it is emphasized, one of the main drawbacks of the DMD technique when it comes
to dealing with experimental data is its dependency to the last snapshot. A method,
which can be viewed as an extension of the extended DMD technique, is presented here
as a work in progress and no example will be given. Its objective is to help counter
this phenomenon and to improve signal to noise ratio. It is inspired by the averaged
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Figure 4. The spectra of the two decompositions from Eq.(2.4) and (2.8)
are compared. The eigenfrequencies and the damping are the same but the
mode amplitudes change drastically.

periodogram method commonly used in Fourier analysis. The leading idea is to divide the
snapshot sequence into n successive and separate blocks of the same length {V 1, ..., V n},
to apply the extended DMD technique to these blocks as if they were different data sets
and then to average the resulting modes for each relevant frequency. The periodogram
method can be directly applied for Fourier transform since the decomposition basis is
predetermined. On the contrary, the key feature of the DMD is its capability to extract
an adequate basis from the data. A first step is therefore to obtain a common basis on
which to project each part. This is done by performing a DMD analysis on one of these
blocks to get the basis and the modes for this part: Vj = ΦjB. The projection of the
other parts on the basis B is then performed: Φi = ViB

−1. Only one DMD is indeed
performed, the other steps just being projections of the data on the previously computed
basis.

The spectrum is obtained by plotting the average of the norms of the modes versus their
frequency. The averaging of the modes themselves cannot however be straightforward
since a phase shift between them can exist and has to be accounted for, otherwise the
modes simply destruct each other. Thus, one of the modes is chosen as the phase reference
while the others are phase-shifted, namely by multiplying them by eiφ with φ between
0 and 2π. The best phase shift for each mode is obtained when the correlation between
the reference mode and the phase-shifted mode is the highest. The averaging step can
then take place as the modes are all in phase.

By averaging modes obtained from different parts of the same data sequence, this
technique can reduce the last snapshot bias, provided the computed basis is relevant.
However, to successfully apply this method, long data sequences are required in order to
be split into different blocks. In addition, the phenomenon is required to remain steady
over the observation time.
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4. Dynamic analysis

This section aims at (1) comparing the two computation techniques presented in sec-
tion 2.1 with experimental data and (2) illustrating the kind of information which can
be obtained from the computation of multi-variable DMD. Examples are carried out on
data from a turbulent test bench featuring a swirled injection of a propane/air premixing.
The chamber is equipped with microphones and photo-multipliers synchronized with a
time resolved PIV setup. The experiment is deeply presented by Lamraoui et al. (2011).

The first computations showed a strong difference on the DMD spectra depending on
the decomposition algorithm. Recommendations read in the literature were encouraging
to use the S̃ method (Eq. 2.6): ”... a pratical implementation [of the S method] yields
an ill-conditioned algorithm that is often not capable of extracting more than the first or
first two dominant dynamic modes. This is particularly true when the data stem from an
experiment...” (Schmid 2010). The two methods are first used to decompose the velocity
field of the swirled flow. Figure 4 presents the two spectra obtained with the two methods.
On the top, the S̃ method provides a noisy spectra, the identification of clear dominant
peaks is impossible. The reconstruction of spatial modes associated to the highest peaks
does not feature coherent structures and the dynamics of the flow cannot be described.
The middle subfigure shows the spectrum obtained with the S method. The dominant
peak corresponds to the mean flow and a tiny dynamics is observed around 480 Hz.
This frequency represents much more the dynamics of the flow clearly controlled by a
strong average axial flow and a natural jet instability around 500 Hz. The 482 Hz-mode
representation shows the natural instability of the jet where coherent structures can be
observed despite the low level of the mode. A deep look at the two spectra shows that the
dominant peaks observed with the first method correspond to the most damped modes.
Indeed, the way the mode amplitude is computed enforces artificially the damped modes.
This bias in the S̃ method forces us to use the most traditional method with the S matrix.

Finally, the multi-variable method is used to decompose the turbulent reactive flow
variables. Velocities, pressure and radical emission are decomposed simultaneously, and
the spectra of each variable is plotted in figure 5. It allows to show the mechanisms
underlying to combustion dynamics. Pressure is strongly marked by the eigenmodes of
the test bench. The first two modes correspond to the first two longitudinal modes of the
chamber. The second spectrum shows that the velocity field does not feature the same
dynamics. At frequencies corresponding to the acoustic modes, the velocity field has
no coherent intense structures. The dynamics is contained in a natural mode of the jet
which can be observed by reconstructing the corresponding mode. The photomultiplier
is sensitive to both the pressure and velocity fluctuations but the coupling mechanisms
with heat release are different. The main heat release fluctuations indirectly come from
pressure oscillations which have an impact on the injection lines (Lamraoui et al. 2011).
Another part of the heat release oscillations come directly from the perturbation of
the velocity field and so the flame position. Further processing is required to deeply
characterize the coupling but DMD already revealed useful information since each mode
is associated with one frequency and one damping coefficient, allowing to decompose
physically the data fields.

5. Conclusion

The purpose of this study was to explore the different parameters influencing the
quality and the precision of the decomposition. It is shown that the choice of the sequence
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Figure 5. The multi-variable DMD allows to plot one spectra for each quan-
tity with a common frequency basis. In a turbulent reactive flow, the dynamic
of each variable may be different.

of snapshots among the data series may strongly modify the decomposition and thus the
decomposition technique. Finally, the first computations show the great potential of the
technique to highlight the dynamical coupling in the reactive turbulent flows.
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