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1 [Fe(PM-BIA)2(NCS)2] complex will be called thereafter as FePMBIA.  1
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The spin crossover properties and the domains of existence of the different phases for the [Fe(PM BIA)2(
NCS)2] complex are obtained from combining DFT and classical molecular dynamics (MD). The potential
energy surfaces expressed in the Morse form for Fe N interactions are deduced from molecular DFT cal
culations and they allow producing Infra Red and Raman frequencies. These Fe N potentials inserted in a
classical force field lead from MD calculations to the relative energies of the high spin and low spin
configurations of the orthorhombic structure. The MD investigations have also allowed assessing the
experimental (P,T) phase diagram by showing the monoclinic polymorph in its two spin states, and gen
erating two triple points.
1. Introduction

Few inorganic transition metal ion complexes exhibit two elec
tronic states of their d electrons, the Low Spin state (LS) and High
Spin state (HS). The switching between these two states is sub
jected to small energy magnitudes and the transitions can be
achieved with external constraints such as temperature and pres
sure as well as by applying light. The observed behavior, referred
to as Spin CrossOver (SCO) and mainly studied in FeII complexes,
has been widely investigated by research groups worldwide both
from the fundamental and applied (display applications, . . .) [1
4]. The transition temperature at which there is same proportion
of LS and HS is called T1/2. In the case of first order transition, the
thermal hysteresis is described by T1/2" and T1/2; associated with
the corresponding enthalpy change DH. One of these complexes,
[Fe(PM BIA)2(NCS)2],1 is characterized by iron surrounded by a dis
torded octahedron involving two N (20 pyridylmethylene) (PM) and
two 4 aminobiphenyl (BIA) ligands and completed by two thiocya
nate anions. It is known to undergo a gradual SCO at T1/2 = 190 K
in the monoclinic polymorph (II phase, Z = 4, space group P21/c)
[1 8]. A very abrupt transition is observed for the orthorhombic
polymorph (I phase, Z = 4, space group Pccn) with T1/2" = 173 K and
T1/2; = 168 K between the low spin (LS, S = 0) to the high spin state
(HS, S = 2) of the Fe2+ ion [4]. Among its interesting magneto optical
properties, this SCO may be light induced, the limit temperature
above which a photomagnetic effect in a material is erased the
so called TLIESST (for « Light Induced Excited Spin State Trapping »)
depending strongly on the structural distortion of the 3d6 Fe2+ envi
ronment [9] and/or the nature of the ligand [10]. As often [8,11,12],
pressure plays a role in the opposite sense of temperature in as far
the starting spin state is the high spin: by increasing pressure, both
I and II polymorphs of FePMBIA yield a HS ? LS transition [13].

In such a complex compound, density functional theory (DFT)
[14,15] approach is useful for understanding the property differ
ences between the two spin states, namely ionic charges of the
Fe2+ cation or the N atoms, geometric molecular building and mag
netic properties, as shown in the study of FeII complexes: the SCO
with a measurable T1/2 originates from the crystal field around FeII

which must be of medium strength such with use of N based li
gands [16]. But ab initio methods cannot well explain intermolec
ular interactions in molecular crystals, because dispersion forces
are insufficiently reproduced. Consequently, the obtained energy
values may be far from experiments, leading sometimes to wrong
hierarchy stability between the spin states. In view of this draw
back the determination of the transition enthalpy DHLS?HS is made
difficult.

For that, classical methods, such as molecular dynamics (MD),
where van der Waals forces or hydrogen bonding may be modeled
inside a generalized atom atom force field, are preferred. Never
theless, the knowledge of atomic charges (qi) and of the potential
energy surface (PES) deduced from molecular DFT calculations, is
very often used as a starting step in a MD approach, as in [17];
the quantum results allow evaluating force field parameters. In



Fig. 1. Molecular view of the Fe(PM-BIA)2NCS2 complex. The numbering of the
nitrogen atoms is the one found within the text, figures and tables.
this context we may define such an original methodology, combin
ing DFT calculations and molecular dynamics, first in the molecular
state and finally in the crystalline one, as ‘‘semi classical molecular
dynamics’’.

2. Methodology

Because the classical intramolecular force field comprises elec
trostatic forces acting between atomic charges, stretching 2 body
interactions, bending 3 body forces and dihedral 4 body interac
tions, in order to model a molecule, the first step is a DFT proce
dure. Ab initio calculations applying the GAUSSIAN code to the
FePMBIA molecule in its two spin states are firstly carried out, fol
lowed by a Mulliken analysis [18]. For this purpose, the hybrid
B3LYP⁄ functional, with effective core potential LANL2DZ (Los
Alamos National Laboratory with Double Zeta polarization) function,
has been used for all atoms. For a reminder, in the original formu
lation of the B3LYP hybrid functional, one modification of the ex
change weighting parameter called B3LYP⁄ was proposed by
Reiher [19]. Resulting optimized molecular structure and point
charges allow generating the PES. The curve is fitted with Morse
VFe–N and harmonic VFe–C–N potentials, by varying alternatively
one of the three Fe Ni distances of FePMBIA in each spin state
while the two others remain constant. Only I phase whose vibra
tion properties are experimentally known has been used.

In a second step, MD simulations are performed including other
intramolecular interactions described by 2 body, 3 body and 4
body potentials at the level of the molecule. Internal van der Waals
interactions occurring between pyridine and phenyl rings or
describing S . . .H hydrogen bonds must be added. All these param
eters are adjusted with respect to the molecular geometry and the
spectroscopic properties by using the DL POLY code [20] which
yields a molecular field for each spin state.

Then these generalized force fields can be applied to the molec
ular crystal lattice. After a minimization step at 1 K for both spin
states, MD simulations are performed up to 300 K by increasing
temperature. Similar MD runs are done by cooling. Best van der
Waals parameters are searched for, in order to reproduce struc
tures both in LS state (25 K and 140 K) and HS state (298 K)
[2,4,21].

With these final intermolecular force fields, the complete set of
runs allow evaluating respectively T1/2" and T1/2; and transition
enthalpy DHLS!HS at T1/2, the so called DH1/2. T1/2 and DH1/2 are re
lated, as shown in a phenomological thermodynamical view, by
modeling the LS HS domain mixture as a regular solid solution
[22]. In such a way, the Gibbs free energy GLS!HS, referred to the
LS state, is expressed as a function of the molar fraction of HS state
cHS in the crystal according to:

GLS!HS cHSDHLS!HS þXcHSð1 cHSÞ
þ RT cHS ln cHS þ ð1 cHSÞ lnð1 cHSÞ½ � DSLS!HSf g ð1aÞ

X is a constant, which may be related to the interacting energy
between domains and the domain size [23]. DSLS!HS represents the
transition entropy during the spin transition, and R the ideal gas
constant. Searching the equilibrium condition in the crystal as:

@GLS!HS=@cHS 0; ð1bÞ

a relationship is found in this model giving temperature as a func
tion of thermodynamical functions:

T ½DHLS!HS þXð1 2cHSÞ�=fR ln½ð1 cHSÞ=cHS� þ DSLS!HSg; ð1cÞ

At the so called T1/2 temperature for which cHS = 1/2, Eq. (1c)
implies that T1/2 is X independent, as for an ideal mixture, and
T1=2 DHLS!HS=DSLS!HS. For other temperatures, cHS – 1/2, even if
X = 0; the enthalpy function will be evaluated by using Eq. (1c)
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and assuming a Boltzman distribution of the HS domains. The var
iation enthalpy is then deduced as the enthalpic term of the Gibbs
free energy:

DH cHSDHLS!HS þXcHSð1 cHSÞ ð1dÞ

with an S shape, more pronounced when X P 2RT1/2.
At the same time, cell parameter variations versus temperature

may be directly compared to experiments [3]. Isotherm and isobar
MD runs are also performed on the LS state (I phase) in order to
study its instability, the resulting I ? II transition in both spin
states and to assess the experimental (P,T) phase diagram [13,24].
3. Force field in the two spin states of a FePMBIA molecule

3.1. Potential energy surface fit

Fig.1 gives a molecular view of the FePMBIA complex. The num
bering of the nitrogen atoms is the following: N1 is attached to the
pyridylmethylene group (PM), N2 to the aminobiphenyl ring (BIA)
and N3 belongs to thiocyanate anion. DFT calculations are achieved
for each spin state by a geometry optimization of this structure.
The PES fit requires studying successively its sections by two of
the Fe N1, Fe N2 and Fe N3 distances, in order to know its varia
tion with Fe N1, Fe N2 and Fe N3 distances. Except the last case,
the molecular geometry constraints imply that, when dFe N1 dis
tances vary, hFe N2 C angles are not constant. In the same man
ner, hFe N1 C angles vary with dFe N2. Point Mulliken charges
deduced from DFT calculations are given in Table 1. For Fe2+, they
show that qLS � 3/2 qHS. Thus, it will not be surprising that exis
tence of point Mulliken charges devoted to one spin state will im
ply two different intramolecular force fields.

All Fe Ni (i = 1, . . .,3) 2 body interactions are described by a
Morse expression:

VMorseðrijÞ Eo
ij 1 expð qijðrij ro

ijÞÞ
n o2

1
� �

ð2Þ

where Eo
ij is the potential depth, qij the electronic hardness and ro

ij

the equilibrium distance between two i and j species. It needs to
be mentioned here that for the commodity of the many parameters
for the six fits, we chose to make constant the qij value to 1.33 Å 1

independently from the nature of Ni and of the spin state. A con
stant value of qij is currently used in classical force field, even if
the coordination polyhedra around a specific atom i are of different
types and strongly distorted (see as an example, [25]).



Table 1
Mulliken charges of atoms in the Fe–(N)6 octahedron (in e).

LS HS

Fe 1.5099 1.0442
N1 �0.7245 �0.7662
N2 �0.7678 �0.6936
N3 �0.7567 �0.7326
Furthermore we used harmonic 3 body interactions for the Fe
N1 C and Fe N2 C angles:

VharmðhijkÞ 1=2kijkðhijk h� ijkÞ2 ð3Þ

where kijk is the stiffness constant of the angle hijk and ho
ijk the equi

librium angle.
Taking into account the Coulomb forces due to qFe2þ and qNi

charges, Fig. 2(a) (c) show the Morse fit of PES combined with
angular harmonic potential (case of N1 and N2) when Fe2+ is in
the LS state. Fig. 3(a) (c) give the same kind of results for the HS
state. All the corresponding parameters are given in Table 2. It
can be noted that the minimum position rmin is smaller than ro

ij

as a consequence of the influence of the Coulomb field leading to
a slightly modified curvature of the total potential V(rij) = VMorse(
rij) + VCoulomb(rij) as seen by the 2nd order derivative:

½d2VðrijÞ=dr2
ij�min 2Eo

ijq
2
ij exp½ 2qijðrmin ro

ijÞ�
þ 2kqiqj � ð1 0:5� qijrminÞ=r3

min ð4Þ

where k is the Coulomb constant. From Table 2, the potential depths
in the LS state (Eo;LS

FeN1
, Eo;LS

FeN2
, Eo;LS

FeN3
) are deeper than in the HS state

(Eo;LS
FeN1

, Eo;LS
FeN2

, Eo;LS
FeN3

) and:

Eo;LS
FeN1
� 3Eo;HS

FeN1
and Eo;LS

FeN2
� 3Eo;HS

FeN2
:

3.2. Intramolecular force field

The force field devoted to a given spin state requires the input
of:

(i) all 2 body stretching harmonic interactions, such as C H, C
C, C N, C S, N S, but also weak N N octahedron
interactions;

(ii) 3 body interactions, namely H C C, H C N, C C C, C C N,
which will be described by bending harmonic potentials
associated (Eq. (3)) and coupled potentials. There are two
extra contributions needing to be accounted for in the cou
pling potentials; these are the coupling between adjacent
bonds for species i, j and i, k in V(rij,rik):
Vðrij; rkjÞ Aijkðrij r� ijÞðrik r� ikÞ ð5Þ
and the potential accounting for the bond and the angle V(rij,hijk):
Vðrij; hjkÞ Aijkðrij r� ijÞðhijk h� ijkÞ ð6Þ

Fig. 2. Fit of the quantum potential energy surface (PES) in the LS spin state by
combining Fe–N1 Morse and Coulomb potentials with (straight red line in a) or
without N2–Fe–C harmonic potential (dotted blue line); by combining Fe–N2 Morse
and Coulomb potentials with (straight red line in b) or without N1–Fe–C harmonic
potential (dotted blue line); by using Fe–N3 Morse and Coulomb potentials (straight
red line in c). Black squares symbolize the PES values.
in both Eqs. (5), (6) Aijk is a stiffness constant.
(iii) 4 body dihedral and inversion interactions for maintaining

the planarity of pyridine and of phenyl rings as well as for
describing low vibration modes. The 4 body dihedral poten
tial is:
Vcos Aijkl½1þ cosðm/ijkl dijklÞ� ð7Þ
where Aijkl is a stiffness constant, /ijkl is the dihedral angle and dijkl

the reference dihedral angle acting as an out of phase. Interactions
due to inversion (with the /ijkl angle) correspond to the following
expression:
Vplan Aijkl½1 cosð/ijklÞ� ð8Þ
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Starting values for parameters involved in all these intramolecular
potentials, i.e. Eqs. (2), (3), (5) (8), come from the COMPASS force
field which is devoted to organic molecules [26].



Fig. 3. Fit of the quantum potential energy surface (PES) in the HS spin state.
Symbols have the same meaning as in Fig.2.
(iv) long range potentials in a Lennard Jones form VLJ (rij) have
to be accounted for to describe the van der Waals interac
tions between adjacent phenyl rings and S . . .H hydrogen
bonds and to reproduce the deformation modes involving
two ligands connected to Fe2+:
VLJðrijÞ 4eo
ij½ðrij=rijÞ12 ðrij=rijÞ6� ð9Þ
eo
ij is the potential depth, rij the distance at which the long range i j

interaction vanishes. The corresponding parameter values are ex
tracted from [27].
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The ro
ij equilibrium Morse values are changed in order to

match the MD geometry (rmin) with experiment. In the same
way the stiffness constants in the other 2 body potentials and
in the 3 body potentials, as well as in the coupled ones, are
modified according to the vibration modes. For both spin states,
the complete force fields are given as Supplementary informa
tions (Tables S1 and S2).

3.3. Application to the molecule in LS and HS spins states

The established force fields are applied to the FePMBIA mole
cule in MD runs by using DL POLY code. All simulations are per
formed at 0 K in the NVT ensemble coupled to a Berendsen
thermostat (relaxation time constant = 0.1 ps) [28], with a long
range distance cut off equal to 12 Å when calculating Coulomb
forces by the Ewald method [29] or van der Waals interactions.
As a result, Table 3 provides a comparison between experimental
and MD octahedral FeN6 geometries for the two spin states. The
dFe–N distance magnitudes are well reproduced together with the
hN–Fe–N angles. The expected trend for a greater distortion in HS
octahedron versus LS is found as exhibited by distance and angle
extrema:

DdHS 0:21 > DdLS 0:03 Å; DhHS 26:4 > DhLS 13:7 deg

Low frequency vibration modes are well reproduced. Table 4
shows that the difference DmMD between measurements of Hoeffer
[30] and MD results does not exceed 23 cm 1 for octahedral Fe N
stretching modes, whereas DFT agreement is better (DmDFT < 12
cm 1). The position of the bending modes of the N C S group ap
pear below experimental values (DmMD < 35 cm 1 in LS state,
<10 cm 1 in HS state); agreement is better for stretching C S and
C N modes in both states (DmMD < 24 cm 1). In the high frequency
region due to the C H modes, well matching values are found upon
comparing with DFT calculations; for these modes, 0 < mLS

mHS < 49 cm 1, smaller than with DFT values (Table S3 as supple
mentary informations).

For each spin state, the total energy found at 0 K
(ELS = 26.11 eV, EHS = 25.99 eV) yields directly the molecular to
tal energy difference between the two spin states DELS?HS:

DHLS!HS DELS!HS þ PDVLS!HS ð10Þ

Because MD runs of a single molecule are only done under
the NVT ensemble in the DL POLY code [20], DVLS?HS = 0 in this
expression, and therefore, DELS?HS gives directly the transition
enthalpy: DHLS?HS = 0.12 eV = 11.2 kJ/mol. Incidentally, this value
is close to the experimental one determined by differential scan
ning analysis (DSC) on FePMBIA crystalline powders, obtained
under atmospheric pressure (NPT conditions): (i) in the 160
190 K range, by [2] DHLS?HS = 10.06 kJ/mol; (ii) more recently
by [31] DHLS?HS = 11.5 kJ/mol. Consequently, rigourously speak
ing, these two obtained values cannot be compared and another
simulation method will be preferred calling for the whole crystal
system which is modeled in the NPT ensemble as detailed in the
following.

4. I-FePMBIA crystal in the two spin states

4.1. Intermolecular field in the crystal phase

At this step, molecular force field in one of the two spin states
may be applied in MD runs to the crystal. For this purpose, the
experimental structure corresponding with its three cell parame
ters (a, b and c), determined at 25 K and at room temperature, is
used as a starting configuration and repeated in each crystallo
graphic direction. The resulting 8 cell « box » is optimized at 0 K



Table 2
Parameters for Morse potentials describing the 2-body Fe–Ni interactions and harmonic potentials of 3-body Fe–Ni–C interactions deduced from the DFT potential energy surface.

Eo (eV) q (Å 1) ro (Å) rðoptÞ
min (Å) rðDFTÞ

min (Å) k (meV/deg2) hðoptÞ
min (deg) hðDFTÞ

min (deg)

LS
Fe–N1 1.54(1) 1.33 2.34(1) 2.000(5) 1.998 1.0 119(1) 114.5
Fe–N2 1.33(1) 1.33 2.38(1) 1.990(5) 1.983 0.52 119(1) 114.3
Fe–N3 1.23(2) 1.33 2.355(5) 1.925(5) 1.936

HS
Fe–N1 0.44(2) 1.33 2.78(1) 2.280(5) 2.28 0.52 119(1) 117.0
Fe–N2 0.405(5) 1.33 2.68(1) 2.180(5) 2.170 0.92 119(1) 113.5
Fe–N3 0.92(2) 1.33 2.41(2) 2.03(1) 2.014

Table 3
Octahedral geometry of the Fe2+ environment: comparison between experiments and
molecular dynamics.

Distances (Å) LS HS

ro expa MD ro expb MD

Fe–N1 2.105 1.965 1.967 2.586 2.251 2.250
Fe–N2 2.100 1.964 1.967 2.640 2.230 2.229
Fe–N3 2.067 1.938 1.934 2.288 2.040 2.041
N1–N1 2.695 2.695 2.850 2.850
N1–N2 2.546 2.552 2.707 2.707
‘‘ 2.896 2.893 3.246 3.246
N1–N3 2.831 2.828 3.191 3.191
N2–N3 2.837 2.844 3.030 3.030
‘‘ 2.781 2.780 3.293 3.293
N3–N3 2.695 2.694 2.969 2.970
Angles (deg)
N1–Fe–N1 86.58 86.47 78.58 78.60
N1–Fe–N2 80.79 80.86 74.37 74.40
‘‘ 94.98 94.61 92.90 92.93
N1–Fe–N3 92.98 92.90 95.97 95.96
N2–Fe–N3 90.88 90.89 90.33 90.30
‘‘ 93.27 93.54 100.86 100.84
N3–Fe–N3 88.08 88.29 93.36 93.35

a [21].
b [2].

Table 5
Intermolecular interactions in the two spin states (For ‘‘chemical’’ clarity,the weak
potential depths are given in kJ/mol units instead of eV).

eo
ij (kJ/mol) LS HS

rij (Å) rij (Å)

C . . .C 0.393 3.040 3.420
C . . .N 0.357 3.043 3.570
C . . .S 0.752 3.040 3.741
C . . .H 0.208 2.900 2.900
N . . .N 0.324 3.220 3.662
N . . .S 0.685 3.400 3.846
N . . .H 0.208 2.900 2.913
S . . .S 1.439 4.030 4.030
S . . .H 0.234 2.470 2.900
H . . .H 0.038 2.150 2.150
in the NVT ensemble coupled to a Berendsen thermostat (relaxa
tion time constant = 0.1 ps) with the same cut off as in Section 3.3
(12 Å). Then, isotherm simulations are made in the isostress NrT
ensemble coupled to a Berendsen barostat (relaxation time con
stant = 1.0 ps): (i) to ensure that the average system pressure is
maintained to the atmospheric one; (ii) to allow b/a and c/a ratios
to vary; (iii) to ensure that the orthorhombic symmetry is con
served (the angles a, b and c of the simulated cell ought to be very
close to 90�). Contrary to an isobar simulation run performed in the
NPT ensemble, isostress NrT ensemble implies that pressure does
not rigorously conserve the angles within the cell. Each run is fol
lowed by a new simulation in the isobar NPT ensemble with the
same relaxation time constants as in the NVT or NrT runs.
Table 4
Fe–N and NCS group frequencies (in cm 1): comparison between experiments of Hoeffer [

LS

exp MD DFT

I.R. Raman

Fe–N 237 250 243
342 346 339
364 369 363
368 369

d(N–C–S) 447, 453, 458, 473, 487 418, 431, 446, 452 427, 435
C–S 809, 831, 847 825, 845 770, 775
C–N 2124 2148, 2161 2098, 210

 

It is clear that cell volume and structure will be sensitive to the
most numerous van der Waals interactions, that is C . . .C, C . . .H
and H . . .H interactions, but also to the more energetic hydrogen
bonds (N . . .H and S . . .H). Without compressibility data, it is
impossible to adjust all the corresponding Lenard Jones potentials
(Eq. (9)). Therefore, we introduce the constraint that each potential
depth eo

ij does not depend on the spin state and we modify C . . .C,
C . . .N, C . . .S, N . . .N, N . . .S, N . . .H and S . . .H parameters by look
ing for their influence on the crystal data at 25 K (LS state) and
298 K (HS state) and on the corresponding van der Waals contacts.
Table 5 gives the complete set of parameters (eo

ij and rij) for both
spin states. Between the LS and HS states, some differences
may be noted, mainly for C . . .S and S . . .H interactions where
respectively LS

rS H = 3.040 Å is smaller than HS
rS H = 3.741 Å and

LS
rS H = 2.470 Å smaller than HS

rC S = 2.900 Å: this means that
S . . .H hydrogen bonds are stronger in the LS phase than in the
HS phase, in agreement with the evolution of corresponding inter
molecular distances with T (LSdC. . .S = 3.796 Å, HSdC. . .S = 3.901 Å, and
LS

dS H
= 2.94 Å, HS

dS H
= 3.03 Å), given by [4,32]. The van der Waals

part of the energy Evdw represents a little more of the 1/10 of the
total energy (LS

EVDW = 281.25 kJ/mol, HS
EVDW = 278.90 kJ/mol);

but if these intermolecular terms are disregarded, DHLS?HS will
be underestimated of �2.3 kJ/mol.
30], molecular dynamics and DFT.

HS

exp MD DFT

I.R. Raman

151 128 163
207 197 208
246, 259, 271 225 241, 257, 271
326 327, 334 323

, 441 438, 469, 478 429, 460, 488 436, 442, 448
840 837, 846 779, 783

9 2074, 2081 2093, 2111 2044, 2067
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4.2. Intermolecular interactions in the crystal state: towards
thermoinduced transition LS ? HS

After this van der Waals interaction determination, we are able
to simulate an orthorhombic phase cell in its two spin states at 0 K
under atmospheric pressure: the total HS energy (EHS = 28.65
eV = 2674.0 kJ/mol) is found to be slightly lower than in the LS
state (ELS = 28.29 eV = 2640.4 kJ/mol). By constraining the van
der Waals potential depths to be independent of the spin state,
these total energy values are certainly not correct. Moreover, quan
tum effects prevail at low temperatures. At these temperatures, be
cause the difference between these values is of the order of their
numerical fluctuation (±10 kJ/mol), the transition enthalpy cannot
be evaluated precisely through an equation similar to Eq. (10),
even if DL POLY code gives us both total energy E and enthalpy H
during each step of a NPT or NrT run.

A better value for DMDHLS?HS must be determined in another
manner. For this purpose, the molecular crystal system has to be
studied by varying its thermodynamic state through isotherm iso
baric runs. Increasing temperature runs are made on LS phase at
0 K minimized by applying LS field; this field is also used for the
resulting room temperature phase but with decreasing tempera
ture, in order to study the hysteresis behavior near the T1/2 temper
ature. Similar approach is used for HS phase starting in the 0 298 K
temperature range with increasing and decreasing step runs.

As argued in the preceding section, the octahedral geometry
and the molecular packing depend strongly of the spin state, yield
ing a transition of the first kind. During the LS HS spin state tran
sition, cell parameters and, at least, cell volume will therefore
undergo discontinuities, allowing to understand the T1/2 transition
temperature through crystallographic considerations. Figs. 4(a) (c)
give the respective variation of a, b and c cell parameters as a func
tion of T. The three curve sets show different behaviors. The
a curve, obtained when HS force field is applied to the HS phase,
shows the instability of this phase below 100 K, whereas the
c curves is too imprecise for extracting transition informations.
However, the crossing of the b curves, obtained with LS and HS
force fields and applied with increasing temperature, specifies
more precisely the T1/2" temperature (T1/2" = 120 K), which is
50 K lower than the experimental one (173 K, [2]). As a result,
the effect of the instability of the HS state below 100 K, shown in
the evolution of the a cell parameter, is found again in the cell vol
ume: by increasing temperature a cell volume expansion occurs at
100 K (Fig. 4(d)). At this temperature, the difference of the cell vol
ume between LS and HS phases (DVcell = 121 Å3) may be compared
to the experimental value deduced form crystal data
(DVcell = 57.4 Å3, [3]). The observed relatively large differences in
temperature and in volume can be accounted for by the drawbacks
of a purely classical model in view of the prevailing quantum ef
fects in this temperature region.

At each run step, the total energy and therefore the enthalpy gi
ven by the DL POLY code are spin state dependent. Because of the
fluctuations of enthalpy, both for the LS configuration with LS field
on one hand and for the HS one with HS field on the other hand, the
enthalpy difference DMDHLS?HS cannot be accurately determined
by the corresponding difference. For this purpose, MD runs com
bining increasing and decreasing temperature in the two states
will be accurate, because of the possibility to use Eq. (1d). The en
thalpy difference DMDHLS?HS between the two states is obtained by
acting the LS field on LS and HS configurations at increasing tem
perature, as reported on Fig.5 (lower points): a sharp transition oc
curs between 140 and 160 K, when cHS content increases according
to Eq. (1a), (1b), (1c), (1d). By using now the HS field on both spin
state phases during cooling runs (Fig.5, upper points), DMDHLS?HS is
found not to depart from 14 ± 1 kJ/mol, which corresponds to the
absence of LS crystal domains (cHS = 1). Therefore, DMDH1/2 may
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be taken as the value of DMDHLS?HS, that is DDMDH1/2 � 14 ± 2 kJ/
mol (the slightly lower accuracy is due to the fluctuations of the
LS background around zero). This MD value lies a little above the
data arising from DSC (DDSCHLS?HS = 10.06 kJ/mol, [2]; 11.5 kJ/
mol, [31]). A more precise determination of DMDH1/2 would be cer
tainly obtained through the evaluation of the Gibbs free energy
variation DMDGLS?HS resulting from the integration of the hybrid
classical Hamiltonian which contains potential and kinetic terms
and which describes both LS and HS spin states (see [20,27]). Nev
ertheless, the evolution of DMDHLS?HS with T leads to a transition
temperature value (T1/2 = 150 K), more precise and higher than
the one deduced from the structural results (see above), and there
fore in better agreement when compared to the experiments (T1/

2" = 173 K and T1/2; = 168 K, [2]).
The results of simulations presented here allow also compari

sons with experimental structures (25 K, 140 K and 298 K). Then,
in the LS spin state, Table 6 shows that the b parameter is larger
by 7.2% at 25 K and 12.5% at 140 K, but this is compensated by a
c parameter with a lower value ( 11.7% at 140 K). This is even bet
ter shown for the HS spin state where the small differences on the
three cell parameters compensate perfectly when looking for the
Vcell cell volume: DVcell/Vcell = 0.7%. All this result set leads to prefer
the more precise thermodynamical value T1/2 = 150 K.
5. Pressure stability of I-FePMBIA crystal: the pressure induced
I ? II phase transition

The influence of pressure on FePMBIA has been studied by mag
netic susceptibility measurements [13], optical reflectivity [8] and
completed by a recent neutron diffraction study [24]: the ortho
rhombic I phase undergoes a transition towards the monoclinic
II phase, independently of the spin state. This expectedly means
that the (P,T) phase diagram must involve four solid phases LSI,
HSI, LSII and HSII, and therefore two triple points between three of
these four phases. Because it would be difficult to study experi
mentally these last parts of the (P,T) phase diagram, in particular
the respective positions of the triple points, MD is helpful for
assessing it. Therefore, simulations have been performed in the
NrT ensemble in different isotherm isobar conditions from 25 to
300 K with pressure up to 20 kbar. All these processes were carried
out for orthorhombic [Fe(PM BIA)2(NCS)2] in order to exhibit its
instability with increasing pressure. Furthermore, simulating the
monoclinic phase in both spin states would have required estab
lishing not only a new intramolecular parameter set, but also to se
lect appropriate van der Waals force field in II phase. It is well
admitted to use the same force field for room pressure and high
pressure phases, as in B2O3 [25]. Because of the symmetry breaking
between I and II structures, the corresponding phase transition will
be of the first kind and therefore better detected in modeling pro
cesses. At low temperature, the cell volumes of I and II in their LS
state are known to differ (Vcell;LSI = 3339 Å3 at 140 K, (Vcell;LSII =
3294 Å3 in metastable state at 120 K, [4]); this means increasing
pressure will favor more strongly the LSI ? LSII phase transition.

Fig. 6(a) (c) give the respective variations of a, b and c cell
parameters as a function of P for different isotherms between
25 K and 160 K, when LSI force field is acting: with increasing P,
a and c show a sudden decrease in the range 7 12 kbar for 25 K,
50 K, 80 K, whereas a small b jump is observed; a departure of
the b angle from 90� increases. Because the resulting volume vari
ation is negative, SCO must not occur and therefore, as argued be
fore, a LSI?LSII transition is assumed. For upper isotherms, the a
and c curves have smaller discontinuities, one at lower P values,
namely around 3 kbar, and the second one at 9 kbar. By compari
son with the experiments of [13], two transitions must be taken
into account: (i) for the lower transition, by combining SCO with



Fig. 4. Evolution of the a cell-parameter with temperature in the two spin states and comparison with diffraction data of [3] (a); evolution of the b cell-parameter with
temperature in the two spin states (b); evolution of the c cell-parameter with temperature in the two spin states (c); evolution of the cell volume Vcell with temperature in the
two spin states (d). Symbol notations are: filled green circles: LS-field acting on LS-phase at 0 K with increasing temperature; filled blue triangles: HS-field acting on HS-phase
with increasing temperature; empty symbols correspond to runs but in decreasing temperature from 298 K; filled red squares correspond to diffraction data.

Fig. 5. Evolution of the difference enthalpy between the two spin states versus
temperature (heating runs: filled green circles; cooling-down runs: empty blue
triangles). Comparison with DSC measurements (filled red squares [2,31]).

Table 6
Cell parameters and cell volume in MD for the LS-state (25 K and 140 K) and for the
HS-state (140 K and 300 K); comparison with experiments.

LS HS

MD exp diff. (%) MD exp diff. (%)

25 K
a (Å) 12.1393(4) 12.224(3)a �0.7
b (Å) 15.5257(6) 14.484(4)a 7.2
c (Å) 17.4516(6) 18.130(5)a �3.7
V (Å3) 3289.1(4) 3210(1)a 2.5

140 K
a (Å) 12.287(1) 12.370(3)b �0.7 13.216(2)
b (Å) 16.610(2) 14.764(3)b 12.5 16.481(2)
c (Å) 16.146(2) 18.281(4)b �11.7 15.688(2)
V (Å3) 3295(1) 3339(2)b �1.3 3417(1)

298 K
a (Å) 13.211(3) 12.949(7)b 2.0
b (Å) 15.818(3) 15.183(2)b 4.2
c (Å) 16.688(3) 17.609(5)b �5.2
V (Å3) 3487(2) 3462(2)b 0.7

a [21].
b [2].
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Fig. 6. Evolution of the a cell-parameter with increasing pressure between 25 K and
170 K (LSI-field acting during MD runs) (a); evolution of the b cell-parameter (b);
evolution of the c cell-parameter (c). Fig. 7. Evolution of the a cell-parameter with increasing pressure between 190 K

and 300 K (HSI-field acting during MD runs) (a); evolution of the b cell-parameter
(b); evolution of the c cell-parameter (c).
a change of symmetry, pressure may authorize a phase in the HS
state, but more compact than the LSI polymorph (here DVcell =

35 Å3), leading to a LSI ? HSII transition; (ii) because pressure will
favor a transition from HS to LS state, the upper transition will be
HSII ? LSII.

When HSI force field is applied during MD runs, HSI phase will
transform logically into a monoclinic HSII polymorph. Fig. 7(a)
(c) give the respective variations of a, b and c cell parameters as
a function of P for different isotherms between 190 K and 300 K:
the discontinuities appearing on the a and b curves, leading to a
cell volume contraction, show that the expected HSI ? HSII transi
tion occurs at P � 3 kbar below 280 K, at significantly higher pres
sure at 300 K (P � 5 kbar where DVcell = 70 Å3).
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Knowing both enthalpy and volume variations during the
LSI ? HSI transition at T1/2, as given in Section 4.2 (DH1/

2 = 14.0 kJ/mol, DVcell = 121 Å3), the use of the Clausius Clapeyron
relation in its form valid for the transitions of the first kind:

ðdP=dTÞT1=2 ðDHLSI!HSIÞ=ðTDVLSI!HSIÞ ð11Þ

allows estimating the slope of the curve corresponding to the
LSI ? HSI transition at 1 bar: ðdP=dTÞT1=2

= 0.08 kbar/K. Therefore,
Eq. (11) may be used as a guide for the curve delimiting LSI and
HSI area. One may remark that the value found is 1/2 of the one de
duced from the experimental slope of a straight line separating LSI

and HSI regions built from data of [24] (ðdP=dTÞT1=2
= 0.16 kbar/K).



Nevertheless, this difference is acceptable if we keep in mind the
uncertainties found in the evaluation of DH1/2, T1/2 and DVcell. More
over, the present MD value of ðdP=dTÞT1=2

is of the same order to the
one found for the [Fe(sal2 trien)][Ni(dmit)2] complex which is
known to have its SCO near 245 K (ðdP=dTÞT1=2

= 0.06 kbar/K, [11]).
From an experimental point of view, by putting the respective

values of T1/2 (170 K) and DVcell (57.4 Å3) and knowing the slope
dP/dT (0.16 kbar/K), DH1/2 can be evaluated from Eq. (11) (DCCH1/

2 = 23.5 kJ/mol). This value is twice the DSC one (DDSC-

HLS?HS = 10.06 kJ/mol [2], 11.5 kJ/mol [31]). In fact, this procedure
is certainly incorrect, because in the pressure range involved
(1 bar to 6 kbar) the true limiting curve between LSI and HSI

domains is probably not a straight line, as a consequence of the
evolution of the compressibility with pressure in each phase. This
means that the slope dP/dT should be smaller than 0.16 kJ/mol, and
therefore, the deduced DCCH1/2 value closer to the DSC ones.

At this step, the (P,T) phase diagram may be built and compared
to experiments (Fig.8). MD points are shifted to lower pressure and
to lower temperature. Consequently, the calculated triple points
are more separated than the ones estimated from experiments:
the low pressure triple point which defines the LSI, HSI and HSII

equilibrium is located at 170 K and a pressure of�3.0 kbar, the sec
ond triple point corresponding to the LSI, LSII and HSII equilibrium is
close to 100 K at �6.8 kbar. These results may be compared to the
experiments [13]. By studying the pressure effect on the hysteresis
loop, these authors concluded that the data in the 6 8 kbar range
correspond to a SCO coupled to a crystallographic phase transition.
The present investigation confirms these findings and further pro
vides the nature of the spins states according to the natures of the
polymorphs, I and II. In other words, because the data of Ref. [13]
take into account the metastability of the LSI phase in the corre
sponding thermodynamic conditions which transforms into the
HSII phase, the line delimiting HSI and HSII phase domains in Fig.8
would be located at pressures lower than 7 kbar and at lower tem
peratures, as found by MD.

Another interest in this phase diagram is found by inspecting
the slopes of the curves corresponding to the two transitions
LSI ? LSII and HSI ? HSII which are on opposite directions:
ðdP=dTÞLSI!LSII

is clearly negative, whereas ðdP=dTÞHSI!HSII
is slightly

positive below room temperature. Because pressure favors more
compact II phases (LSII or HSII) with a smaller molar volume as
shown by [4] (Vcell;LSII = 3294 Å3 < Vcell;LSI = 3399 Å3), Eq. (11) implies
Fig. 8. (P,T) phase diagram showing four solid phases (LSI: filled green circles; HSI:
filled blue triangles; LSII: empty green circles; HSII: empty blue triangles). Domains
delimitated by straight curves generate two triple points. Experimental points from
[13,24] are also shown for comparison (LSI: filled red squares; HSI: filled red down
triangles; LSII: empty red square; HSII: empty red up triangles).
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that pressure and temperature play antagonist roles during the
LSI ? LSII transition with a positive enthalpy variation DHLSI!LSII .
On the other hand, the HHSI!HSII transition will correspond to a
small negative enthalpy variation DHHSI!HSII , associated, or not, to
a small cell volume variation at room temperature, and to a signif
icant cell volume contraction for T below 280 K. This last assump
tion is confirmed by the behavior of the corresponding
experimental cell volumes [4,24,32]: starting from nearly equal
values at 293 K (Vcell;HSII = 3464 Å3; (Vcell;HSI = 3462 Å3), the two vol
ume values diverge with decreasing temperature (DVcell = 20 Å3

at 250 K, DVcell = 30 Å3 at 225 K), until 210 K where HSII phase be
comes unstable (DVcell = 40 Å3).

It will kept in mind that all discrepancies appearing in this sec
tion arise partly from assuming one force field for I and II, in par
ticular for long range van der Waals interactions. Nevertheless,
the observed trends should not be changed.
6. Conclusions

Starting from the potential energy surface of the [Fe(PM BIA)2(
NCS)2] complex obtained by DFT calculations on its distorted
molecular geometry, Morse two body Fe N interactions have been
evaluated for both spin states of the orthorhombic polymorph (I).
The potential wells and the equilibrium distances depend both of
the nature of the bound N atom and of the spin state of the Fe2+

ion. An adjustment of other two body potentials, combined with
van der Waals interactions, allow then to calculate vibration modes
(I.R. and Raman) of the molecule in its two spin states by molecular
simulation. In agreement with the experimental molecular geome
try, the FeN6 octahedron is found more distorted in the high spin
state than in the low spin one, as exhibited by distance
(DdHS = 0.21 > DdLS = 0.03 Å) and angle extrema (DhHS = 26.4 >
DhLS = 13.7 deg). Transferring the two obtained fields to the crystal
state, molecular simulations give structural informations on the
crystal lattice of the orthorhombic phases. Intermolecular interac
tions show evidence of hydrogen bonding between NCS sulfur end
atoms with nearest neighbors hydrogen belonging to the aromatic
cycles. The evolution of the structure with temperature shows that
the LS ? HS transition occurs at T1/2" = 120 K which is 50 K lower
than the experimental value. The corresponding volume change
of the unit cell, DVcell = 121 Å3, may be compared to the crystallo
graphic data at 170 K (DVcell = 57.4 Å3).

The change of the transition enthalpy, DMDH1/2 = 14 ± 2 kJ/mol
corresponds to the transition temperature T1/2 = 150 K. If T1/2

agrees with experiments (T1/2" = 173 K and T1/2; = 168 K), the MD
enthalpy value lies a little above experimental measurements
(DDSCHLS?HS = 10.06 kJ/mol and 11.5 kJ/mol). A more precise deter
mination of DMDH1/2 would certainly be obtained through the eval
uation of the Gibbs free energy variation DMDGLS?HS resulting from
the integration of the hybrid classical Hamiltonian which contains
potential and kinetic terms and which describes both LS and HS
spin states.

The relative disagreement for DMDH1/2 and for the structural re
sults can also be accounted for by the drawbacks of a purely clas
sical model in view of the prevailing quantum effects accounting
below 100 K.

The molecular simulations have led to assess and complete the
experimental (P,T) phase diagram of [Fe(PM BIA)2(NCS)2]. This is
relevant to showing the domains of existence of the monoclinic
polymorph (II) generated by its two spin states. Furthermore the
delimitation of the different domains allowed generating two triple
points:

� for LSI, HSI and HSII equilibrium: at 170 K and �3.0 kbar,
� for LSI, LSII and HSII equilibrium, at 100 K and �6.8 kbar.



On the other hand, the lack of data at low temperature leads us
to provide neutron diffraction experiments on the LSI phase, in or
der to precise the (P,T) phase diagram below 175 K, in particular
the stability range of this phase. These experiments are underway.

Indirectly, this work contributes to the general efforts done to
identify the factors allowing to control the existence of the SCO
phenomenon in molecular materials. This demonstrates how the
packing may affect the geometry of a ligand and then the SCO prop
erties. All the present results would be improved by using specific
force field derived for each one of the four phases. This implies
obtaining new van der Waals force field parameters as a function
of the spin state and of the symmetry.
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