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A ONE-PARAMETER DEFORMATION OF THE
NONCOMMUTATIVE LAGRANGE INVERSION FORMULA

JEAN-PAUL BULTEL

Abstract. We give a one-parameter deformation of the noncommutative La-
grange inversion formula, more precisely, of the formula of Brouder-Frabetti-Krattenthaler
for the antipode of the noncommutative Faá di Bruno algebra. Namely, we obtain
a closed formula for the antipode of the one-parameter deformation of this Hopf
algebra discovered by Foissy.

1. Introduction

The existence of combinatorial interpretations of the Lagrange inversion formula
[12] can be traced back to the existence of noncommutative generalizations [4, 11]. In
its simplest form, the classical version gives the compositional inverse of an invertible
formal power series. In other words, it expresses the antipode of the Hopf algebra
of polynomial functions on the group of formal diffeomorphisms of the real line, also
known as the Faá di Bruno algebra [5].

Formal power series in one variable with coefficients in a noncommutative algebra
can be composed (by substitution of the variable). This operation is not associative,
so that they do not form a group. However, the analogue of the Faá di Bruno algebra
still exists in this context. It is investigated in [1] in view of applications in quantum
field theory. In [1], one finds in particular a combinatorial formula for its antipode.
This formula is rederived by Novelli and Thibon [10], who also show that it is equiv-
alent to the noncommutative Lagrange formula of Gessel and Pak-Postnikov-Retakh.
They obtain it from the Brouder-Frabetti-Krattenthaler formula by a simple appli-
cation of the antipode of the Hopf algebra of noncommutative symmetric functions.

In [2], Foissy obtains, as a byproduct of his investigation of combinatorial Schwinger-
Dyson equations, one-parameter families of Hopf algebras. They interpolate respec-
tively between symmetric functions and Faá di Bruno, and between noncommutative
symmetric functions and the noncommutative Faá di Bruno algebra.

The main result of this paper is a closed formula for the antipode of the noncommu-
tative family. As we shall see, this is a natural deformation of the Brouder-Frabetti-
Krattenthaler formula. As in the original version, we obtain a closed formula for the
antipode of the simple complete noncommutative symmetric functions Sn. Namely,
we compute explicitely the coefficients αI (I � n) in their expansion in the basis of
complete noncommutative symmetric functions SI . As in the original version, we
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end up with a sum of products of binomial coefficients over a Catalan set, that is

(1) αI = (−1)l(I)
∑

ρ∈Al(I)

l(I)∏
k=1

(
ikγ + 1
ρk

)
,

where An is the set of sequences ρ = (ρ1, ρ2, . . . , ρn) of length n, where the ρi are
nonnegative integers such that

(2)


ρ1 + . . . + . . . + ρn = n− 1

ρ2 + . . . + ρn ≤ n− 2
. . .

...
ρn ≤ 0

We also give a recurrence formula for the antipode of the simple complete noncom-
mutative symmetric functions. Namely, we obtain a formula for their expansion in
the ribbon basis, and some other properties of the corresponding coefficients.

2. Notations and background

2.1. A one-parameter family of Hopf algebras. We denote by Sym the Hopf
algebra of noncommutative symmetric functions. Our notations for noncommutative
symmetric functions will be as in [3, 6].

In this text, we will be interested in a deformation Hγ of the algebra H of non-
commutative formal diffeomorphisms, where γ is a real parameter. As an associative
algebra, Hγ coincides with the algebra of noncommutative symmetric functions.

Its coproduct ∆γ is given on complete symmetric functions by the formula

(3) ∆γSn(A) =
n∑
k=0

Sk(A)⊗ Sn−k((kγ + 1)A)

where for a scalar α, Sn(αA) is defined as the coefficient of tn in

(4) σt(αA) = σt(A)α =

(∑
n≥0

tnSn(A)

)α

(see [6]). This deformation of the noncommutative Faà di Bruno Hopf algebra of
[1] has been recently discovered by Foissy ([2]) in his investigation of combinatorial
Dyson-Schwinger equations in the Connes-Kreimer algebra. As a Hopf algebra, H0

is the algebra of noncommutative symmetric functions, and the noncommutative Faà
di Bruno Hopf algebra is the case γ = 1. It can be shown that for γ 6= 0, Hγ is
isomorphic to H1 [2].

2.2. Conventions. We denote by A the underlying alphabet of the standard real-
ization of noncommutative symmetric functions. We identify any F ∈ Sym with its
realization F (A) when convenient.

We denote by F 7→ F ? the antipode of Hγ and we set X = σ1(A)?. We denote by
Xk = S?k the kth homogeneous component of X, and for any composition

(5) I = (i1, i2, . . . , ir),
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we set XI = Xi1Xi2 · · ·Xir . For

(6) F =
∑
I

aIS
I ,

we set F|I = aIS
I .

For J = (j1, j2, . . .) � n and I = (i1, i2, . . .) � l(J), we set

(7) CI(J) = (j1 + . . .+ ji1 , j1+i1 + . . .+ ji1+i2 , ji1+i2+1 + . . .+ ji1+i2+i3 , . . .)

One has CI(J) � n and l(CI(J)) = l(I). Set also

(8) C(J) = {CI(J)|I |= l(J)},
and denote by An the set of sequences ρ = (ρ1, ρ2, . . . , ρn) of length n, where the ρi
are nonnegative integers such that

(9)


ρ1 + . . . + . . . + ρn = n− 1

ρ2 + . . . + ρn ≤ n− 2
. . .

...
ρn ≤ 0

We reserve the letters I, J and K to denote compositions of integers. As we shall
never mention integer partitions in this document, we use the letters λ, µ, ν and ρ
to denote elements of the sets An. For any finite sequence ρ of integers, we denote
by |ρ| the sum of its elements and by l(ρ) its length.

3. A closed formula for the antipode of the Hopf algebra H of
formal diffeomorphisms

The classical Lagrange inversion formula for the reversion of formal power series
can be interpreted in terms of classical symmetric functions (see [9], Ex. 24 p. 35, Ex.
25 p. 132, [7] Section 2.4 and [8]). Similarly, for various noncommutative analogues
of the Lagrange inversion formula (see [4], [11] and [1]), Novelli and Thibon give in
[10] interpretations in terms of noncommutative symmetric functions.

Brouder, Frabetti and Krattenthaler obtain in [1] a form of the noncommutative
Lagrange inversion formula. Namely, they give an explicit formula for the antipode
of the Hopf algebra H of noncommutative formal diffeomorphisms. The elements of
H can be identified with noncommutative symmetric functions by means of the corre-
spondence an (of [1]) = Sn (of Sym), which identifies H with Sym as an associative
algebra. Under this correspondence, the coproduct ∆ on H takes the form

(10) ∆Sn(A) =
n∑
k=0

Sk(A)⊗ Sn−k((k + 1)A)

We denote again by ? the corresponding antipode. Novelli and Thibon give in [10] a
combinatorial interpretation for the coefficient λI defined by

(11) S?n =
∑
I|=n

(−1)l(I)λIS
I ,
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whose value is given in [1] by

(12) λI =
∑

(a1,...,ap−1)

p−1∏
k=1

(
ik + 1
ak

)
In formula (12), the sum is taken over the set of all the sequences (a1, . . . , ap−1) where
the ai are nonnegative integers such that

(13) a1 + . . .+ ap−1 = p− 1

and for all 1 ≤ j < p− 1,

(14) a1 + . . .+ aj ≤ j

Now, let us explain this combinatorial interpretation. We have
(15)

∆(σ1(A)) =
∑
n≥0

n∑
k=0

Sk(A)⊗Sn−k((k+1)A) =
∑
k≥0

Sk(A)⊗σ1((k+1)A) =
∑
k≥0

Sk⊗σ1(A)k+1,

so that

(16) 1 =
∑
k≥0

Sk(S
?
0 + S?1 + S?2 + . . .)k+1

Denote by h the sum of all hk = S?k with k ≥ 0. This formula can be rewritten as

(17) h−1 = S0 + S1h+ S2h
2 + . . .

Setting c = S−1
0 and dn = −S−1

0 Sn, we obtain

(18) h = c+ d1h
2 + d2h

3 + . . .

From this formula, we can compute recursively h0, h1, ...

(19) h0 = c, h1 = d1cc, h2 = d1cd1cc+ d1d1ccc+ d2ccc, . . .

Each di can be interpreted as the symbol of an (i+1)-ary operation in Polish notation,
as follows

(20) h0 = c, h1 = d1(c, c), h2 = d1(c, d1(c, c)) + (d1(d1(c, c), c) + d2(c, c, c), . . .

so that h corresponds to the following sum of ordered trees.

+ + + + + . . .f        =

c c c

c c c c

c c c c

c
2 2

2

2

2

3

Figure 1. The terms h0, h1, h2 expressed as a sum of ordered trees.

Under this interpretation, hn is the sum of all Polish codes of ordered trees with no
vertex of arity 1 on n+ 1 leaves. Given such a tree T , define its skeleton as the tree
obtained by removing the leaves and labeling the internal vertices with their arity.
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Figure 2. A tree and its skeleton.

Given a skeleton S, define its 1-composition I1(S) as the sequence (j1−1, j2−1, . . .),
where the jk are the labels of the vertices, given in prefix order.
Novelli and Thibon show that the number of trees with skeleton S is

(21)

p∏
k=1

(
ik + 1
ak

)
where (i1, . . . , ip) = I1(S) and ak is the arity of the k-th vertex of S in prefix order.
Let I = (i1, . . . , ip) be a composition of n. The coefficient λI of SI in hn is equal to
the number of ordered trees on n+ 1 leaves whose sequence of non-zero arities minus
one in the prefix reading is I. From that, Novelli and Thibon deduce the formula
(12), where the set of (a1, . . . , ap−1) corresponds to the set of the skeletons of these
trees.

4. The antipode of the one parameter deformation Hγ of H

We shall now give an analogue of formula (12) in Hγ. For I � n, let αI be the
coefficient defined by

(22) Xn =
∑
I�n

αIS
I

Our main result is the following theorem:

Theorem 4.1. For any composition I of any integer, the coefficient αI is given by
the formula

(23) αI = (−1)l(I)
∑

ρ∈Al(I)

l(I)∏
k=1

(
ikγ + 1
ρk

)
Note that for all ρ ∈ Al(I), one has ρl(I) = 0, so that the last factor in each term of

this formula is 1, and αI does not depend on the last element of I. The rest of this
section is devoted to the proof of this formula.
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4.1. A recurrence formula for Xn. A calculation similar to the one leading to
formula (16) yields

(24) 1 =
∑
k≥0

Sk(1 +X1 +X2 + . . .)kγ+1

Let us set Y = X − 1. Since one has

(25) Xkγ+1 = (Y + 1)kγ+1 = 1 + (kγ + 1)Y +

(
kγ + 1

2

)
Y 2 + · · · ),

one can deduce

1 =
∑
k≥0

Sk(1 + (kγ + 1)X1 + (kγ + 1)X2 + . . .

+

(
kγ + 1

2

)
X1X1 +

(
kγ + 1

2

)
X1X2 +

(
kγ + 1

2

)
X2X1 + . . .

+ . . .(26)

This equality can be rewritten

(27) 1 = S0(1 +X1 +X2 + . . .) +
∑
k≥1

(
Sk
∑
I

(
kγ + 1
l(I)

)
XI

)

(where the second sum is taken over all the compositions of all the positive integers).
Now, let us extract the homogeneous component of degree n. We obtain

(28) 0 = Xn +
n∑
k=1

Sk

( ∑
I�n−k

(
kγ + 1
l(I)

)
XI

)
,

that is,

(29) Xn = −
n∑
k=1

∑
I�n−k

(
kγ + 1
l(I)

)
SkX

I

4.2. Preliminary lemmas. We shall need the following lemmas.

Lemma 4.2. Let I be any composition, and let αI be the coefficient defined in (22).
Then,

(30) αI = −
∑

K�l(I)−1

(
i1γ + 1
l(K)

)
α(i2,...,i1+k1 )α(i2+k1 ,...,i1+k1+k2

) . . .

Proof. One has

(31) αIS
I = Xn|I = −

(
n∑
k=1

∑
J�n−k

(
kγ + 1
l(J)

)
SkX

J

)
|I
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Note that a term of the first sum can give a nonzero contribution only if k = i1, so
that we have

(32) αIS
I = −

( ∑
J�n−i1

(
i1γ + 1
l(J)

)
Si1X

J

)
|I

Set Ĩ = I \ (i1) = (i2, i3, . . .). This formula becomes

(33) αIS
Ĩ = −

 ∑
|J |=|Ĩ|

(
i1γ + 1
l(J)

)
XJ


|Ĩ

The term of Ĩ in a XJ is nonzero only if J ∈ C(Ĩ), hence, only if there exists
K � l(I)− 1 such that J = CK(Ĩ).

(34) αIS
Ĩ = −

 ∑
K�l(I)−1

(
i1γ + 1
l(K)

)
XCK(Ĩ)


|Ĩ

On another hand,

(35) XCK(Ĩ) = Xi2+...+i1+k1
Xi2+k1+...+i1+k1+k2

. . . ,

so that,

(36)
(
XCK(Ĩ)

)
|Ĩ

= αi2,...,i1+k1αi2+k1 ,...,i1+k1+k2
. . . S Ĩ

From (34) and (36), one deduces the result of the lemma.

Before introducing a second lemma, we shall need the following definition.

Definition 4.3. Set B1 = {0}. Define by induction Bn as the set of sequences of
n integers (ρ1, . . . , ρn) such that there exists a composition I � n − 1 of length ρ1

satisfying 
(ρ2, . . . , ρi1+1) ∈ Bi1

(ρi1+2, . . . , ρ1+i1+i2) ∈ Bi2
...

Now, let us give a first explicit formula for αI .

Lemma 4.4. Let I be a composition of any integer. Then,

(37) αI = (−1)l(I)
∑
ρ∈Bl(I)

l(I)∏
k=1

(
ikγ + 1
ρk

)
Proof. From (30) we deduce by induction on l(I)
(38)

αI = (−1)l(I)
∑(

i1γ + 1
l(K)

)(
i2γ + 1
ρ(1)

)(
i3γ + 1
ρ(2)

)
. . .

(
i2+k1γ + 1

ρ(1)

)(
i3+k1γ + 1

ρ(2)

)
. . .
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where the sum is taken over the set of sequences (K, ρ(1), ρ(2), . . .) such that K �
l(I)− 1 and ρ(s) ∈ Bks for all s.
From this equality, we deduce our result.

To finish the proof of the theorem, we only have to show that for all n, An = Bn.
Indeed, replacing Bl(I) by Al(I) in (37), we obtain precisely the statement of Theorem
4.1. Since one has A1 = B1, let us fix n and suppose that Ak = Bk for all k < n, in
order to derive this result by induction.

4.3. Proof that Bn ⊆ An. Let ρ ∈ Bn. Then, there exists a composition I � n− 1
of length ρ1 such that ρ and I verify the relations given in definition 4.3.
Let us rewrite ρ in the form (ρ1, ρ

(1), ρ(2), . . .), where for all s, ρ(s) ∈ Bis . By assump-
tion, one has Bis = Ais . Hence,

(39) ρ1 + . . .+ ρn = l(I) + (i1 − 1) + (i2 − 1) + . . . = n− 1

Let s be such that 2 ≤ s ≤ n. Hence, ρs will be the jth element of some ρ(k) ∈ Bik ,
and one will have

(40) s = n+ j − ik+1 − ik+2 − . . .
Since ρ(k) ∈ Bik = Aik , one will have also

(41) ρs + . . .+ ρ1+i1+i2+...+ik ≤ ik − j
Moreover,

(42) ρ(k+1) ∈ Bik+1
= Aik+1

, ρ(k+2) ∈ Bik+2
= Aik+2

, . . . ,

so that

ρs + . . .+ ρn ≤ ik − j + (ik+1 − 1) + (ik+1 − 2) + . . .

≤ ik − j + ik+1 + ik+2 + . . .

≤ n− s(43)

Hence, one has ρ ∈ An, so that

(44) Bn ⊆ An
Example 4.5. Suppose that B2 = A2 and let us consider the sequence ρ = (2, 1, 0, 1, 0).
It belongs to B5, because (1, 0) ∈ A2 = B2.

(45)
2

≤ 1 ≤ 0
1 0

≤ 1 ≤ 0
1 0

On the top of each box, we have written a number greater than the sum of its value
and the values of all the cells on the right in its block. In this way, we can also write

(46)
4 ≤ 2 ≤ 1 ≤ 1 ≤ 0
2 1 0 1 0

and

(47)
4 ≤ 3 ≤ 2 ≤ 1 ≤ 0
2 1 0 1 0

,
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so that we have ρ ∈ A5.

4.4. Proof that An ⊆ Bn. Let ρ ∈ An, and suppose that

(48) ρ = (ρ1, ρ
(1), ρ(2), . . .)

where all the ρ(s) except the last one belong to a Bis = Ais . Let this last one be λ.
All the inequalities necessary to have λ ∈ Al(λ) are satisfied, since ρ ∈ An. The only
problem we can encounter is to have |λ| 6= l(λ)− 1. On another hand, one has

(49) |λ| ≤ l(λ)− 1

since ρ ∈ An. In the case where |λ| < l(λ)− 1, suppose that for all j, one could not
build an element of Aj with the j first terms of λ, so that we would have

(50)

(λ1 6= 0)
and (λ1 + λ2 6= 1 or λ2 > 0)
and (λ1 + λ2 + λ3 6= 2 or λ2 + λ3 > 1 or λ3 > 0)
and . . .

Now, let us derive the following lemma.

Lemma 4.6. Conditions (50) imply for all j the inequality

(51) λ1 + λ2 + . . .+ λj > j − 1

Proof. Under conditions (50), one has λ1 6= 0, so that λ1 > 0. In order to derive our
result by induction on j, let us fix j and suppose that it is true when one replaces j
by any k < j. Looking at (50), one can see that there are two distinct cases.

1st case :

(52) λ1 + . . .+ λj 6= j − 1

In this case, since one has by assumption

(53) λ1 + . . .+ λj−1 > j − 2,

a first possibility is λ1 + . . . + λj−1 = j − 1. In this case, when λj = 0, one has
λ1 + . . . + λj = j − 1. Since this statement is in contradiction with our hypothesis,
we must have λj > 0, and inequality (51) is true.

The only other possibility is that λ1 + . . . + λj−1 > j − 1, in which case inequal-
ity (51) is also true.

2nd case : there exists an integer k such that 2 ≤ k ≤ j and

(54) λk + . . .+ λj > j − k
One has by assumption

(55) λ1 + . . .+ λk−1 > k − 2,

Since the λi are integers, one can rewrite (54) and (55) as follows.

(56) λk + . . .+ λj ≥ j − k + 1
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and

(57) λ1 + . . .+ λk−1 ≥ k − 1,

so that,

(58) λ1 + . . .+ λj ≥ j

and inequality (51) is again true, so that it is true in all cases.

By setting j = l(λ) in (51), we obtain

(59) |λ| > l(λ)− 1

This is in contradiction with (49), so that we have shown that one can build from
the sequence (ρ1, ρ

(1), . . . , ρ(k)) a ρ(k+1) such that a ik+1 satifying

(60) ρ(k+1) ∈ Bik+1

does exist. By repeating of this process, one can build a sequence

(61) (ρ1, ρ
(1)
1 , ρ

(1)
2 , . . . , ρ

(2)
1 , ρ

(2)
2 , . . .) = ρ

such that for all s, there exists a is verifying ρ(s) ∈ Bis . Note that we do have
I � l(ρ) − 1, and that (39) implies ρ1 = l(I). Hence, ρ ∈ Bn, An ⊆ Bn, so that we
have derived the property

(62) An = Bn
Hence, the result of lemma 4.4 is identical with the one of theorem 4.1.

4.5. Remarks and combinatorial interpretation. Subtracting each row to the
first one, we can rewrite the system (9) as

(63)


ρn + . . . + . . . + ρ1 = n− 1

ρn−1 + . . . + ρ1 ≥ n− 1
. . .

...
ρ1 ≥ 1

This remark allows us to see that formula (23) is consistent with formula (12), which
corresponds to the case γ = 1. Note also that the set An is in bijection with the set
of nondecreasing parking functions of length n. An explicit bijection can be obtained
by associating (ρ1, ρ2, . . .) ∈ An with the parking function

(64) (1, . . . , 1︸ ︷︷ ︸
ρ1 times

, 2, . . . , 2︸ ︷︷ ︸
ρ2 times

, . . .).

Hence, it is clear that An is a Catalan set, which is also consistent with results of
Novelli and Thibon. For any tree T , denote by ak(T ) the arity of the kth vertex of
the skeleton of T , and for any x and i, set

(65) xi↓ = x(x− 1)(x− 2) . . . (x− i+ 1)
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From the combinatorial interpretation of (12), we can rewrite the formula (23) as

(66) αI = (−1)l(I)
∑
T

l(I)∏
k=1

(ikγ + 1)ak(T )↓

(ik + 1)ak(T )↓

where the sum is over the set of ordered trees T on n + 1 leaves whose sequence of
non-zero arities minus one in prefix reading is I.

5. Other closed formulas for some coefficients in expansions of Xn

In this section, we will be interested in the coefficients βI in

(67) Xn =
∑
I

βIRI

where (RI) denotes the basis of ribbon noncommutative symmetric functions.
We can give a first expression of the βI by expanding the SJ over the RI , that is

(68) βI =
∑
J≤RI

αJ

where we use the notation J ≤R I to see that J is a refinement of I, that is, for some
K � l(J),

(69)


j1 + j2 + . . .+ jk1 = i1
jk1+1 + . . .+ jk1+k2 = i2
...

5.1. A closed formula for β1n. Denote by δn the coefficient β1n for any n. From
(68), we deduce that this coefficient is also equal to α1n , so that from (30) we have

(70) δn = −
∑
I�n−1

(
γ + 1
l(I)

)∏
i∈I

δI

From that, the series L(t) =
∑

n≥0 δnt
n can be rewritten

(71) L(t) = 1− t
∑
n≥1

∑
I�n−1

(
γ + 1
l(I)

)∏
i∈I

(δit
i),

so that

(72) L(t) = 1− t
∑
I

(
γ + 1
l(I)

)∏
i∈I

δit
i

where the sum is over all the compositions I. By setting L̃(t) = L(t) − 1, we then
obtain

(73) L(t) = 1− t
((

γ + 1
0

)
+

(
γ + 1

1

)
L̃(t) +

(
γ + 1

2

)
L̃(t)2 + . . .

)
,

so that

(74) L(t) = 1− tL(t)γ+1
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Then, we have 1− L(t) = tL(t)γ+1, so that the series y(t) = 1− L(t) is a solution of
the equation

(75) t =
y(t)

(1− y(t))γ+1
= yσy(γ + 1)

(Recall that the complete homogeneous symmetric functions of a scalar α are defined
by σt(α) =

∑
n≥0 hn(α)tn = 1

(1−t)α ). From the classical Lagrange inversion formula

(see [9], Ex. 24 p. 35), we can write

(76) y(t) = tσ?t (γ + 1),

where F 7→ F ? is here the antipode of the Faá di Bruno algebra, that is, the one of
the classical commutative case with γ = 1. From that, we deduce that for n > 0,

(77) −λn = h?n−1(γ + 1),

that is,

λn = − 1

n
hn−1(−n(γ + 1))(78)

= − 1

n

(
−n(γ + 1) + (n− 1)− 1

n− 1

)
(79)

= − 1

n

(
−nγ − 2
n− 1

)
(80)

On another hand, we have

(81)

(
−nγ − 2
n− 1

)
=

(−nγ − 2)(−nγ − 3) . . . (−nγ − n)

(n− 1)!
= (−1)n−1

(
n(γ + 1)
n− 1

)
Summarizing, we have shown the following proposition.

Proposition 5.1. The coefficient β1n is given by

(82) β1n = (−1)n
1

n

(
n(γ + 1)
n− 1

)
5.2. A closed formula for βn. We have from (68)

(83) βn =
∑
I�n

αI

From (30), this equality can be rewritten as

(84) βn = −
∑
I�n

∑
K�l(I)−1

(
i1γ + 1
l(K)

)
α(i2,...,i1+k1 )α(i2+k1 ,...,i1+k1+k2

) . . .

By setting

(85) J = (i1, i2 + . . .+ i1+k1 , i2+k1 + . . .+ i1+k1+k2 , . . .),

we can deduce

(86) βn = −
∑
J�n

(
j1γ + 1
l(J)− 1

) ∑
J(2)�j2,J(3)�j3,...

αJ(2)αJ(3) . . .
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From (68) and this equation we have

(87) βn = −
∑
J�n

(
j1γ + 1
l(J)− 1

)
βj2βj3 . . .

Now, let us set

(88) β(t) =
∑
n≥1

βnt
n

We then obtain

β(t) = −
∑
r≥1

∑
l(I)=r

(
i1γ + 1
r − 1

)
ti1βi2t

i2βi3t
i3 . . . βirt

ir(89)

= −
∑

i1≥1,r≥1

(
i1γ + 1
r − 1

)
ti1β(t)r−1(90)

= −
∑

k≥1,s≥0

tk
(
kγ + 1
s

)
β(t)s(91)

= −
∑
k≥1

tk

(∑
s≥0

(
kγ + 1
s

)
β(t)s

)
(92)

= −
∑
k≥1

tk(1 + β(t))kγ+1(93)

= −(1 + β(t))
∑
k≥1

(t(1 + β(t))γ)k,(94)

so that,

(95) β(t) = −(1 + β(t))t(1 + β(t))γ

1− t(1 + β(t))γ

This equality can be rewritten as

(96) β(t)− tβ(t)(1 + β(t))γ = −t(1 + β(t))γ − tβ(t)(1 + β(t))γ

We then have β(t) = −t(1 + β(t))γ, so that the series

(97) B(t) =
∑
n≥0

βnt
n = 1 + β(t)

is a solution of

(98) B(t) = 1− tB(t)γ

This equation is exactly the one of L(t), where γ+ 1 is replaced by γ. From that, we
can give the following proposition.

Proposition 5.2. The coefficient βn is given by

(99) βn = (−1)n
1

n

(
nγ
n− 1

)
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6. A recurrence formula for the βI

The coefficients βI satisfy some relations. For example, let us give the following
proposition.

Proposition 6.1. Let J be a composition of length s whose last part js satisfies
js > 1. Then,

(100) βJ = β(j1,...,js−1,js−1,1) + β(j1,...,js−1,js−1)

Proof. Denote by J̃ the composition obtained by subtracting 1 to the last part of J ,
and by Ĵ the one obtained by adding a part 1 at the end of J̃ . Then, formula (68)
allows us to write

(101) βJ =
∑
K≤RĴ

αK +
∑
K≤RJ̃

αK′

(where K ′ is defined as the composition obtained by adding 1 to the last part of K).
Indeed, the refinements of J whose last part is 1 are exactly the refinements of J̃ with
a part 1 more added at the end, that is, the refinements of Ĵ . On another hand, the
refinements of J whose last part is not 1 are exactly the refinements of J̃ with last
part incremented of 1. Since the αI do not depend on the last part of I, the equation
(101) can be rewritten as

(102) βJ =
∑
K≤RĴ

αK +
∑
K≤RJ̃

αK

And from (68) we deduce

(103) βJ = βĴ + βJ̃

We also give in this section a recurrence formula for the coefficients βI . Namely,
we express βI in terms of the βJ with |J | < |I|. In order to do that, let us introduce
some preliminary definitions.

6.1. Cuts of a composition.

Definition 6.2. Let n > 0 be an integer, and φ a function from the set of the n first
nonzero integers to itself. We will say that φ is a cut function of size n if

(104) φ(1) = 1

and

(105) 0 ≤ φ(k + 1)− φ(k) ≤ 1

for any k such that this equality makes sense.
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Definition 6.3. For all compositions J and for all cut functions φ of l(J), let us
define the cut of J corresponding to φ as the following sequence of compositions :

(106) DJ,φ = (J (1), J (2), . . .),

where for all n, J (n) is defined by

(107) J (n) = (jk, jk+1, jk+2, . . . , js),

where k and s are such that φ(x) = n for all integers x ∈ [k, s], and φ(x) 6= n for all
other values of x, so that

(108) φ(k) = φ(k + 1) = . . . = φ(s) = n

We also define the length of a cut as the number of compositions of which the cut
is composed. Finally, we will say that a cut DJ,φ is a refinement of a cut DJ̃ ,φ̃ when

each J (k) from the first cut is a refinement of the J̃ (k) corresponding in the second
one, that is, we will write

(109) (J (1), J (2), . . .) ≤R (J̃ (1), J̃ (2), . . .)

when

(110) J (1) ≤R J̃ (1), J (2) ≤R J̃ (2), . . .

We shall also need the following definitions.

Definition 6.4. Let I be a composition and J a refinement of I. We then define the
I-cut of J as the cut

(111) (J (1), J (2), . . .)

such that for all k, J (k) � ik. We also define φI,J as the corresponding cut function.
Note that it is such that for all s,

(112)
∑

φI,J (k)=s

jk = is

Definition 6.5. Let I and J be two compositions of same weight n such that

(113) J ≤R I
We will say that a cut Dψ,J is I-admissible and that the corresponding cut function
ψ is (I, J)-admissible if

(114) ψ(2) = 2

and if for all k and s such that φI,J(k) = φI,J(s),

(115) ψ(k) 6= ψ(s)

For example, if J 6= I, the I-cut of J is not I-admissible

Now, let J and I be two compositions such that

(116) J ≤R I,
and let

(117) DJ,φ = (J
(1)
φ , J

(2)
φ , . . .)
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be any cut of J such that

(118) φ(2) = 2

(or, equivalently, J
(1)
φ = (j1)). Then, we can obtain from DJ,φ a I-admissible cut

(119) DJ̃ ,φ̃ = N (DJ,φ)

by replacing each J
(k)
φ = (jx, jx+1, . . . , jy) by the composition in which each part is the

sum of all the js corresponding to values of s such that x ≤ s ≤ y and such that all the

φI,J(s) are equal to the same n. The parts of this J̃
(k)

φ̃
must be arranged by increasing

order of the corresponding n for all possible n. This new cut is I-admissible, and for
all k, one has

(120) J
(k)
φ ≤R J̃

(k)

φ̃
,

so that DJ,φ is a refinement of DJ̃ ,φ̃. Moreover, the set

(121) DJ̃ ,φ̃ = {DJ,φ/φ(2) = 2 and DJ̃ ,φ̃ = N (DJ,φ)}

coincides with the set of the refinements of DJ̃ ,φ̃ such that

(122) J (1) = (j1)

6.2. Expression of βI in function of the βJ with |J | < |I|. Formula (30) can be
rewritten as

(123) αJ = −
∑
DJ,φ

(
j1γ + 1

l(DJ,φ)− 1

)
α
J

(2)
φ
α
J

(3)
φ
. . . α

J
(l(DJ,φ))

φ

,

where the sum is over all the cuts DJ,φ of J verifying

(124) φ(2) = 2

We then deduce from (68) the following formula :

(125) βI = −
∑

DJ,φ, J≤RI

(
j1γ + 1

l(DJ,φ)− 1

)
α
J

(2)
φ
α
J

(3)
φ
. . . α

J
(l(DJ,φ))

φ

where this time, the sum is over all the cuts DJ,φ of all the refinements J of I that
satisfy (124). By setting

(126) DJ̃ ,φ̃ = N (DJ,φ),

we then obtain

(127) βI = −
∑

J≤RI,DJ̃,φ̃,DJ,φ∈DJ̃,φ̃

(
j1γ + 1

l(DJ,φ)− 1

)
α
J

(2)
φ
α
J

(3)
φ
. . . α

J
(l(DJ,φ))

φ

where the sum is over all the cuts of all the refinements of I that belong to a DJ̃ ,φ̃
for certain I-admissible cut DĨ,φ̃. In other words, it is over all the refinements of all

the I-admissible cuts whose first element has only one part. By setting K = J̃ , we
then deduce from (68) the following proposition.
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Proposition 6.6. The coefficients βI satisfy the following recurrence formula :

(128) βI = −
∑

DK,ψI− admissible

(
k1γ + 1

l(DK,ψ)− 1

)
β
K

(2)
ψ
β
K

(3)
ψ
. . . β

K
(l(DK,ψ))

ψ

6.3. Expression of βI when I has two parts. In this section, we suppose that

(129) I = (i1, i2)

In this case, for any J ≤R I, the I-cut of J is (J (1), J (2)) with

(130) J (1) � i1 et J (2) � i2

Then, the I-admissible cuts of J are the ones with one of these two types :

(131) ((j1), (j2), . . . , (jl(J)))

or

(132) ((j
(1)
1 ), (j

(1)
2 ), . . . , (j

(1)

l(J(1))
, j

(2)
1 ), (j

(2)
2 ), . . .)

The formula (128) can then be rewritten in this case as

βI = −
∑

J�i1,K�i2

(
j1γ + 1

l(J) + l(K)− 1

)
βj2βj3 . . . βjl(J)

βk1βk2 . . . βkl(K)

−
∑

J�i1,K�i2

(
j1γ + 1

l(J) + l(K)− 2

)
βj2βj3 . . . β(jl(J),k1)βk2 . . . βkl(K)

From that, we deduce the result of the following proposition.

Proposition 6.7. The coefficient βI corresponding to a composition I = (i1, i2) with
two parts satisfies the recurrence formula

βI = −
∑

J�i1,K�i2

(
j1γ + 1

l(J) + l(K)− 1

)∏
j∈J̃

βj

(∏
k∈K

βk

)

−
∑

0<|J |<i1,0≤|K|<i2

(
j1γ + 1

l(J) + l(K)

)∏
j∈J̃

βj

(∏
k∈K

βk

)
β(i1−|J |,i2−|K|)

where we have made use of the notation

(133) J̃ = (j2, j3, . . . , jl(J))
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