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The well-known Space-Alternating Generalized Expectation Maximisation (SAGE) algorithm has been recently considered for
multipath mitigation in Global Navigation Satellite System (GNSS) receivers. However, the implementation of SAGE in a GNSS
receiver is a challenging issue due to the numerous number or parameters to be estimated and the important size of the data to
be processed. A new implementation of the SAGE algorithm is proposed in this paper in order to reach the same efficiency with a
reduced complexity. This paper focuses on the trade-off between complexity and performance thanks to the Cramer Rao bound
derivation. Moreover, this paper shows how the proposed algorithm can be integrated with a classical GNSS tracking loop. This
solution is thus a very promising approach for multipath mitigation.

1. Introduction

In Global Navigation Satellite System (GNSS) applications,
multipath (MP) errors are still one of the major error sources
for conventional receivers. The additional signal replicas due
to reflections on the local environment introduce a bias in the
delay lock loops (DLLs), which finally leads to a positioning
error [1, 2]. Several techniques have been developed for
multipath mitigation. One of the most popular approaches
is the Narrow Correlator Spacing [3], which reduces the chip
spacing between the early and late correlators in order to mit-
igate the impact of multipath. However, this technique suf-
fers from high sensitivity to noise and cannot perform with
short delay multipath (<0.1 chip). Based on the Maximum
Likelihood (ML) estimation, the Multipath Estimating
Delay-Lock-Loop (MEDLL) [4] algorithm has also been pro-
posed to estimate the delay and the power of all the paths by
studying the shape of the cross-correlation function. This

approach shows better performances than the Narrow Cor-
relator Spacing technique, but short delay multipath mitiga-
tion is still an issue [4]. More recently, Bayesian approaches
have been proposed [5–7]. Indeed, most of the time, prior
information could be used in order to improve the delays
estimations. However in practice, it is difficult to get correct
prior information. Measurement campaigns can be used
to build a first-order Markov process for a sequential esti-
mation, but the performance will consequently be strongly
dependent on the measured environment (design of the
city. . .).

Last, the use of array antenna algorithms has been pro-
posed for multipath mitigation [8, 9]. Array antennae enable
a spatial sampling that makes it possible to distinguish differ-
ent sources in the spatial domain. Therefore, mitigation tech-
niques based on such an array are independent of the relative
delays of the MP. Consequently, the rejection of any kind
of MP seems possible (and especially short-time delay MP).
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In conventional mobile receivers, the room available to
incorporate an array antenna is reduced. Only a small
number of elements can be integrated. This study will focus
on a square 2× 2 elements antenna. The choice of the shape
of the array antenna is out of the scope of this paper, and we
will only focus on the array processing.

Using appropriate weights on each channel, beamform-
ing technics perform a spatial filtering in order to concentrate
the energy beam towards the signal of interest, while trying
to minimise the gain towards the interferences. However, in
the MP mitigation context, these classical approaches present
limited performances for the following reasons [10].

(i) Near angle signals are difficult to separate because of
the low antenna resolution [10, 11].

(ii) Line-of-sight signal (LOSS) and multipaths are
strongly correlated, which implies a severe degrada-
tion of adaptive beamforming algorithms.

(iii) Adaptive algorithms should operate after the correla-
tion step in order to work with positive SNR signals.
That implies that only a small number of samples are
available to estimate the array covariance matrix. Bad
covariance matrix estimation can lead to inversion or
eigenvalues decomposition instabilities.

To overcome these problems, several solutions have been
proposed. In [12, 13], for example, the authors propose to
use additional Choke ring techniques, GPS microstrip array
antenna, and/or angle constraint for negative elevation in
order to reject ground multipaths. However, for a generic
application, we cannot assume any specific MP DOA.

In order to improve the MP mitigation, another
approach proposes to include the different DOA paths
parameters in the estimation procedure [10, 14–18]. In
other words, we estimate a set of parameters (amplitudes,
times/delays, Doppler shifts, elevations, and azimuths) for
all the incoming sources. The main difference with the
beamforming approach is that, instead of filtering the sources
in the spatial domain only, the different incoming paths are
jointly identified in the space, time, and frequency domains.
In order to estimate the parameters of all impinging signals,
the Space Alternating Generalized Expectation Maximisation
(SAGE) algorithm [16], which is a low-complexity gener-
alization of the Maximum Likelihood (ML) algorithm, has
been considered. The SAGE algorithm is usually used in
communication systems [16], but the potential of SAGE in
a navigation context has also been proven [17, 18]. Never-
theless, the computational cost increases due to the number
of unknown parameters. Moreover, the memory size is also
a challenging issue. Thus, the SAGE algorithm can hardly
be directly implemented in real time for GNSS receivers.
Last, the SAGE algorithm provides an estimation of the time
delay and phase of the LOSS, as do the DLL and PLL (Phase
Lock Loop). Thus, the use of SAGE implies to switch off the
DLL/PLL, and, consequently, we lose the “smoothing effect”
of the tracking loops.

In order to reach the efficiency of the SAGE algorithm
with a reduced complexity, and to keep the compatibility
with conventional GNSS tracking loops (DLL/PLL), we

proposed a new implementation of SAGE in [10]. The main
idea is to apply the SAGE algorithm after the local correlation
step. Indeed, the cross-correlation between the received
signal and the local code can be seen as a compression step
of the baseband signal. Thus, by reducing the size of the
input signal, the complexity of the algorithm will reduce
in the same proportion. By applying the ML estimation on
the postcorrelated signal, we estimate the relative delay and
Doppler of the paths. These estimations are then used to
drive the GNSS tracking loops. We named this new algorithm
the SAGE/STAP multicorrelator algorithm.

Comparisons based on Monte Carlo simulations between
the SAGE/STAP algorithm, the SAGE algorithm, and beam-
formers have been done in [10]. This paper focuses on the
Cramer Rao Bound (CRB) derivation in order to present the
theoretical trade-off between the complexity reduction and
the estimation accuracy of the SAGE/STAP algorithm. More-
over, this paper presents an implementation of the proposed
algorithm hybridized with the GNSS tracking loops

This paper is organized as follows. The signal model and
the main assumptions are outlined in Section 2. A review
of the SAGE algorithm, the SAGE/STAP multicorrelator
algorithm, and its implementation in a GNSS receiver is
given in Section 3. The simulation results in Section 4 show
the trade-off between the complexity and the accuracy of the
SAGE/STAP multicorrelator algorithm and present the per-
formances of the proposed algorithm in realistic scenarios.
Finally, in Section 5 we present our conclusions.

2. Signal Model

Let us assume that we receive L narrowband planar wave
fronts of wavelength λ on an array of M isotropic sensors.
The M-sized vectorized received signal, z(t), can be written
as

z(t) =
L−1∑

l=0

sl

(
t,ψl

)
+ n(t), (1)

where sl(t,ψl) is given by

sl

(
t,ψl

)
= γla

(
θl,ϕl

)
exp

(
2 jπνlt

)
c(t − τl), (2)

and n(t) ∼ N(0, σ2
nIM) is an additional complex white

Gaussian noise. Let us note that L the number of incoming

paths (LOSS included) and ψl = [γl, θl,ϕl, τl, νl]
T are, respec-

tively, the complex amplitude, elevation, azimuth, time delay,
and Doppler shift of the lth path. Note that the index
l = 0 corresponds to the LOSS. Here, c denotes the
pseudorandom-noise (PRN) sequence that consists of a Gold
code with a code period T = 1 ms, 1023 chips per period,
and a rectangular chip shape. a(θ,ϕ) represents the steering
vector of a 2 × 2 square array antenna. The channel para-
meters are assumed constant during the observation time.

Collecting the samples of the complex baseband signal
leads to aM×Nsnap, matrix, whereNsnap denotes the number
of SnapShots. Typically in GNSS, Nsnap is larger than 2000,
and, thus, a direct processing of the baseband signal is hardly
implemented in real time. In order to compress the signal,
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Figure 1: Principle of the STAP multicorrelator.

we propose to use the scheme presented in the Figure 1. The
aim of the array antenna is to sample the wave fronts and to
get access to the spatial domain. The banc of correlators is
used to compress the signal and to get access to the relative
delays of the sources, and finally the postcorrelation time taps
enable to get access to the frequency domain. We can see
that the first and last parts of this architecture are equivalent
to a STAP (space time adaptive process) array applied to
the postcorrelated signal. Thus, we call this architecture the
STAP multicorrelator array. This array is then defined by
4 parameters: the number M of antennas, the number N
of postcorrelation taps, the number P of correlators, and
the time spacing Cs between each correlator. Note that the
sampling time of the postcorrelated signal is equal to Tint.
Therefore, we have the following relation between the num-
ber of SnapShots and the number of postcorrelated Taps:
Nsnap = NTint fs, where fs denotes the sampling frequency
of the baseband signal. The nth output of one correlator
delayed by a time spacing of pCs is given by

rC,l

(
τrl, νrl, p,n

)

=
1

Tint

∫ nTint

(n−1)Tint

c(t − τl)c
(
t − τ̂ − pCs

)

× exp
[
−2 jπ(νl − ν̂)t

]
dt,

(3)

with n ∈ [1,N], if P is even p ∈ [−P/2,P/2] and if P is
odd p ∈ [−(P − 1)/2, (P − 1)/2]. We introduce the relative
delay of the DLL estimation τ̂ and the relative Doppler of the
FLL (Frequency Lock Loop) estimation ν̂ with respect to the

lth path parameters: τrl = τ̂ − τl, νrl = ν̂ − νl. We can then
approximate the integral as

rC,l

(
τrl, νrl, p,n

)

= r
(
τrl + pCs

)
sinc[πνrlTint] exp

[
2 jπ

(
νrl

2n− 1

2
Tint

)]
,

(4)

with r(·) the autocorrelation function of the PRN code and
sinc[x] = sin[x]/x. The amplitude and phase components are
independent of p and n; they can be inserted in the modified
complex amplitude γ̃l of the incoming path:

γ̃l = γl sinc[πνrlTint] exp
[
− jπνrlTint

]
. (5)

Then,

rC,l

(
τrl, νrl, p,n

)
=
γ̃l
γl
r̃C

(
τrl, νrl, p,n

)
, (6)

with

r̃C
(
τrl, νrl, p,n

)
= r

(
τrl + pCs

)
exp

(
2 jπνrlnTint

)
. (7)

The outputs of the P correlators are rearranged in a
column vector. The N cross-correlation functions obtained
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are then concatenated in order to get the temporal evolution
of the postcorrelation signal:

r̃C(τrl, νrl) =




r̃C

(
τrl, νrl,−

(P − 1)

2
, 1

)

...

r̃C

(
τrl, νrl,

(P − 1)

2
, 1

)

r̃C

(
τrl, νrl,−

(P − 1)

2
, 2

)

...

r̃C

(
τrl, νrl,

(P − 1)

2
, 2

)

...

r̃C

(
τrl, νrl,

(P − 1)

2
,N

)



NP×1

. (8)

Finally, the output signal of the STAP multicorrelator
array can be collected in a mNP column vector:

x =

L−1∑

l=0

xl(Ψl) + npc, (9)

where npc is the output noise and xl(Ψl) is given by

xl(Ψl) = γ̃la
(
θl,ϕl

)
⊗ r̃C(τrl, νrl), (10)

where ⊗ denotes the Kronecker product, and the parameters

are now Ψl = [γ̃l, θl,ϕl, τrl, νrl]
T

, where τrl, νrl denote the
relative delay and Doppler of the path l.

3. SAGE Algorithm

3.1. Concept of SAGE. The problem associated with the
signal model (2) consists in estimating the parameters ψl =

[γl, θl,ϕl, τl, νl]
T , l = 0, 1, . . . ,L−1 for all the paths. The esti-

mation of L is not discussed in this paper. Usually, L is fixed to
a value large enough to capture all the dominant impinging
waves. Classical information theory methods for model size
selection like Akaike’s and Rissanen’s [19] criteria can be
used. The ML estimation is given by ψ̂ = arg maxψ p(Z |

ψ), where Z is the sampled complex baseband signal and
p(Z | ψ) is the likelihood function. The direct maximization
of the likelihood function is a computationally prohibitive
task since there is no analytical solution. Moreover, p(Z | ψ)
is generally not a concave function of ψ, and L is usually
high. To perform this optimization, we use the iterative
process of the SAGE algorithm [16]. The basic concept of
the SAGE algorithm is to us a hidden data space. Instead
of estimating the parameters of all impinging waves in one
search, the SAGE algorithm sequentially estimates the
parameters of each signal. The SAGE algorithm breaks down
the multidimensional optimization problem into several
smaller problems. In spite of this complexity reduction,
SAGE is still hardly implemented in real time due to the size
of the baseband signal.

3.2. The SAGE/STAP Multicorrelator Algorithm. The main
idea to take advantages of SAGE with more reasonable hard-
ware requirements is to process the data at the output of the
STAP multicorrelator array. Using the signal model (10), the
likelihood function is then

p(x | Ψ)

=
1

πNPM det Qpc
exp

(
−[x − xsi(Ψ)]HQ−1

pc [x− xsi(Ψ)]
)

,

(11)

where xsi(Ψ) =
∑L−1

l=0 xl(Ψl) contains the superimposition
of the post-correlation signals. Qpc denotes the covariance
matrix of the postcorrelation noise. The noise is no longer
white after the correlation step, and it is shown in [20] that
the postcorrelation noise covariance matrix is given by

Qpc = E
(

npcn
H
pc

)
= σ̃2

n(IMN ⊗QP), (12)

where σ̃2
n denotes the noise power after the correlation step,

and QP is define thanks to the auto-correlation function of
the PRN code r(·):

QP =




r(0) r(Cs) · · · · · · r(P · Cs)

r(Cs) r(0) r(Cs)
...

... r(Cs) r(0) r(Cs)
...

... r(Cs) r(0) r(Cs)

r(P · Cs) · · · · · · r(Cs) r(0)



P×P

.

(13)

The first step of the SAGE algorithm, so-called expecta-
tion step (E-STEP), consists in estimating the hidden data
space with

x̂l = x −

L−1∑

l′=0
l′ /= l

xl′(Ψl′). (14)

The second step, so-called maximization step (M-STEP),
carries out the maximization of the log-likelihood function
which is associated with the estimated hidden data space.
In the case of the STAP multicorrelator signal, the log-
likelihood function is

Λ(Ψl) = ln p(x̂l | Ψl)

= − lnπNPM

− ln det Qpc − (xl(Ψl)− x̂l)
H

Q−1
pc (xl(Ψl)− x̂l).

(15)

The maximization of Λ with respect to Ψl can be concen-
trated, as the dependence to γ̃l is linear:

γ̃l =

[
a

(
θ̂l, ϕ̂l

)
⊗ r̆C(τ̂rl, ν̂rl)

]H
x̂l

Mr̆
H
C (τ̂rl, ν̂rl)r̃C(τ̂rl, ν̂rl)

, (16)

where r̆
H
C (τrl, νrl) is given by

r̆
H
C (τrl, νrl) = r̃

H
C (τrl, νrl)

[
IN ⊗Q−1

P

]
. (17)
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Finally, the reduced likelihood function to maximize is

Λ̃(Ψl) =

∣∣∣
[

aH
(
θl,ϕl

)
⊗ r̆

H
C (τrl, νrl)

]
x̂l

∣∣∣2

Mr̆
H
C (τrl, νrl)r̃C(τrl, νrl)

. (18)

In order to better understand the expression (18), let us
assume no noise is present, and we can develop (10) as

xl = γ̃la
(
θl,ϕl

)
⊗ r̃C(τrl, νrl)

= γ̃la
(
θl,ϕl

)
⊗ e(νrl)⊗ r(τrl),

(19)

where

e(νrl) =
[
exp

(
j2πνrlTint

)
· · · exp

(
j2πνrlNTint

)]T
N×1,

(20)

r(τrl) =

[
r

(
τrl −

(P − 1)

2
Cs

)
· · · r

(
τrl +

(P − 1)

2
Cs

)]T
P×1

.

(21)

Then, inserting (19), (20), and (21) in (18), we can
express the reduced likelihood function as

Λ̃
(
θ,ϕ, τr , νr

)

=
∣∣γ̃l

∣∣2

∣∣aH
(
θ,ϕ

)
a
(
θl,ϕl

)∣∣2

M︸ ︷︷ ︸
space FT

∣∣eH(νr)e(νrl)
∣∣2

N︸ ︷︷ ︸
frequency FT

×

∣∣∣rH(τr)Q−1
P r(τrl)

∣∣∣2

rH(τr)Q−1
P r(τr)

.

(22)

As we can see, the first two terms are similar to space
and frequency Fourier transforms. Thus, the two parameters
M and N will mainly influence the accuracy of the DOA
and the Doppler estimations for both algorithms (SAGE and
SAGE/STAP). However, the couple {P,Cs} influences only
the performances of the SAGE/STAP algorithm with respect
to the paths delay estimation. This point will be detailed in
more detail in Section 4.

3.3. Implementation in a GNSS Receiver. To implement the
SAGE/STAP algorithm in a GNSS receiver, we propose the
architecture illustrated in Figure 2.

The first front end bloc contains the RF filters, the down-
conversion step, the ADC and a calibration stage [21]. A cal-
ibration stage aims to compensate the technological defects
such as the RF dispersion of the filters and antenna defects.

The baseband signal Z is the output of this blocx. We
must therefore use the STAP multicorrelator array for each
tracked PRN code in order to compress the data. Afterward,
we use the SAGE algorithm in the processing bloc. Finally, the
SAGE estimation of the relative delay and Doppler τr0, νr0 is
used to drive the DLL and PLL/FLL. Thus, the key idea of our
solution is to substitute the conventional DLL and PLL/FLL
discriminators by the SAGE/STAP estimation.

4. Simulation Results

The aim of this section is to study the impact of the com-
pression step (realized by the STAP multicorrelator array) on
the SAGE algorithm performances. Thus, this section focuses
on the comparison between the classical SAGE and the
SAGE/STAP multicorrelator algorithms. The estimation per-
formances of both algorithms were numerically evaluated
with Monte Carlo simulations and theoretically through
the CRB derivation. The derivation of the CRB for the
SAGE/STAP algorithm is given in the annexe. For the
conventional SAGE algorithm, the CRB can be found in [17].
The simulations parameters are as follows: σ2

n = −131 dBW,
γ0 dB = −160 dBW, θ0 = 61◦, ϕ0 = 131◦, υ0 = 100 Hz, and
we use N = 20 blocks of 1 ms of integration. The sampling
frequency of the baseband signal is fs = 10 MHz. The 2 × 2
square array antenna contains 4 isotropic identical sensors
spaced by λ/2.

In a first time, we analyze the influence of P (the number
of correlators) and Cs (the correlators’ delay spacing) on
the performances of the SAGE/STAP algorithm. In order
to cover all the cross-correlation function, we should have
PCs > 2Tc. This condition is necessary if we want to take
into account all the multipaths with a relative delay τrl ∈
[0,Tc]. Therefore, we have the following relationship P =

ceil(2Tc/Cs), where the operator ceil(x) denotes the nearest
integer greater than or equal to x. We now focus our attention
on the Cs parameters.

To study the influence of Cs, we calculate the root-
mean-square error (RMSE) of the time delay based on 100
Monte Carlo simulations for both algorithms (SAGE and
SAGE/STAP multicorrelator). In this first simulation, we
assume no multipath, and the RMSE is plotted on Figure 3
as a function of Cs, for different signal bandwidths: B =

2 MHz and B = 4 MHz, where B denotes the two-sided
RF bandwidth. When comparing the RMSE of SAGE and
SAGE/STAP algorithms, we can see that both algorithms
present the same performances in the case Cs ≤ 1/B. This
behavior is confirmed theoretically with the curve of the CRB
as a function of Cs. We can see that the standard deviation
increases when Cs becomes higher than the inverse of the
signal bandwidth. We can deduce from this observation
the following empirical rule which results from a tradeoff

between accuracy and complexity:

P = ceil(2Tc/Cs), Cs =
1

B
≈

1

fs
. (23)

This conclusion can also be observed on the shape of the
likelihood function. In Figures 4 and 5, we plot a section
of the likelihood function through the delay for the SAGE
and SAGE/STAP multicorrelator algorithms. In other words,

we compare |rH(τr)Σ
−1
P r(τr)| and |r(τr)|

2 for different signal
bandwidths (B = 2 MHz on Figure 4 and B = 4 MHz on
Figure 5) and different correlator spacings Cs. We can see
that if the condition (23) is fulfilled, the likelihood functions
are identical for the SAGE and SAGE/STAP multicorrelator
algorithms. If not, the likelihood function of the SAGE/STAP
algorithm becomes wider than the classical SAGE likelihood
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Figure 2: Proposed receiver architecture.
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function, which will consequently increase the variance of
the estimation.

In a second time, we evaluate the performances of
both algorithms in the case of one multipath. The reflected
multipath and the LOSS are considered to be in-phase which
corresponds to one of the worst possible cases. In Figure 6,
we plot the RMSE of the estimated time delay for both
algorithms as a function of the relative time delay and relative
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SAGE and SAGE/STAP algorithms. B = 2 MHz and Cs = 0.1, 0.2
and 0.5 Chips.

azimuth between the LOSS and the MP (denoted ∆τ and
∆ϕ). The multipath parameters are γ1 dB = −163 dBW, θ1 =

30◦, υ1 = 105 Hz.
We assume that the receiver is perfectly synchronized

with the LOSS at the beginning of the simulation. Therefore
the initial relative parameters are υr0 = 0 Hz, υr1 = 5 Hz,
τr0 = 0 Chip. In order to choose the couple {P,Cs}, we use
the results of the first simulation together with the condition
(23): fs = B = 10 MHz, Cs = 1/B = 0.1 Chip, and P =

2Tc/Cs = 20. Here again, we can see that both algorithms
present the same performances whatever the multipath posi-
tion (in space and delay). We also plot in Figure 7 the CRB
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Figure 5: Likelihood function section through the delay for the
SAGE and SAGE/STAP algorithms. B = 4 MHz and Cs = 0.1, 0.2
and 0.5 Chips.

for the SAGE and SAGE/STAP algorithms. The behaviour of
both CRB shows that the algorithms are theoretically equiv-
alent. Thus, the SAGE/STAP multicorrelator can reach the
efficiency of the SAGE algorithm but with a strongly reduced
complexity. Indeed, the size of the baseband signal is
M fsNTint compared to MNP = MN2Tc fs for the postcor-
related signal in the optimal configuration. The compression
factor is Tint/(2Tc) ≈ 500.

We compare now the RMSE and the CRB of the SAGE/
STAP algorithm in Figure 8 in the same configuration. We
can see that the RMSE reaches the CRB if the sources are
spaced by more than 50◦. This result is particularly inter-
esting because in this situation, close and far time delay
multipaths are completely mitigated by the algorithm, which
is mainly due to the multiantenna contribution. In the case
where the relative azimuth is weaker, the algorithms mainly
use the time and frequency domains to mitigate the mul-
tipath. In this condition, the array antenna is not useful
anymore, and the rejection performances are similar to single
antenna mitigation techniques (e.g., MEDLL). In Figure 9,
we plot the RMSE and the CRB for the LOSS elevation
estimation. Here again, the RMSE reaches the CRB, excepted
in the case of short-time delay (∆τ < 0.1 Chip) and close
space sources (∆ϕ < 20◦). This shows the limitation of the
SAGE approach for cases where the MP is close to the LOSS
on the 4 dimensions considered in the estimation process.

The efficiency of the SAGE/STAP algorithm was illus-
trated in the previous simulations. Now, we want to address
the impact of this algorithm on the performances of
conventional GNSS tracking loops.

First of all, we evaluate the error envelope for a conven-
tional DLL enhanced by a conventional beamformer (CBF)
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and for a DLL driven by SAGE (denoted DLL/SAGE). The
loops parameters are loop order = 2, damping factor = 0.707,
BDLL = 1 Hz, BPLL = 10 Hz. In the case of classical DLL, we
use the early-minus-late discriminator (EMLD) with a chips
spacing equal to 0.1 Chip and the arctangent discriminator
for the PLL. In Figure 10, we plot the error envelope as a func-
tion of the relative azimuth and delay of the MP. Although
the DLL is enhanced by a CBF, the SAGE/STAP algorithm
provides the best multipath mitigation whatever the MP
position.
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In the last simulation, we propose to test the SAGE/STAP
algorithm with the DLR channel model available online
(http://www.kn-s.dlr.de/satnav/) [22]. The DLR channel
model generates the number of paths (LOSS + MP), their
complex amplitudes, relative delays, and Doppler shifts. In
the free version available online, the DOA are not generated.
Thus, we computed the DOA of the MP thanks to the
position of the scatterers, which are randomly positioned
based on statistics established during measurement cam-
paigns [22].

The LOSS parameters are θ0 = 43.7◦, ϕ0 = −88.61,
υ0 = 395.75 Hz, and we simulated a CBOC signal [23] on
the L1 band with B = fs = 25 MHz. Thus, according to (23),
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Figure 10: Error envelope for the DLL driven by SAGE and the
DLL enhanced by a conventional beamforming. The envelope error
is plotted as a function of the relative delay and azimuth. ∆γdB =

−3 dB, ∆θ = 31◦, ∆υ = −5 Hz.

we have P = 49 and Cs = 40 ns. The speed of the vehicle
has been chosen to 0 m/s in order to tackle the problem of
stationary MP. The other simulation parameters (N , DLL
and PLL) are the same as in the previous simulations. In
Figure 11, we plot the pseudorange error and the Doppler
estimation of the conventional DLL/PLL and the DLL/PLL
driven by the SAGE/STAP multicorrelators algorithm. As we
can see, the SAGE approach provides a real improvement in
the time delay and Doppler estimation with respect to the
conventional multiantenna receiver architecture in a tracking
scenario. More tracking simulations with this solution can be
found in [24].

5. Conclusion

In this work we have addressed the problem of estimating the
propagation time delay of the LOSS in a GNSS receiver under
severe multipath conditions. To reduce the influence of the
multipaths, we investigated the use of array antenna algo-
rithms. Previous studies suggest using the SAGE algorithm
with an array antenna in order to reduce the estimation error
of the delay of the LOSS. However, SAGE is hardly imple-
mented in real time due to the memory requirements and
computation cost. Moreover, SAGE is hardly compatible with
classical GNSS tracking loops.

In order to take the advantages of SAGE with more rea-
sonable hardware requirements, we proposed a new imple-
mentation based on a STAP multicorrelator array. The CRB
derivation and the Monte Carlo simulations were used in this
paper to study the trade-off between accuracy and complex-
ity. This trade-off appears by the influence of the parameters
P (number of correlators) and Cs (correlator space) on
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Figure 11: Pseudorange error and Doppler estimation for the
conventional DLL/PLL and the DLL/PLL driven by the SAGE
algorithm. θ0 = 43.7◦, ϕ0 = −88.61, υ0 = 395.75 Hz.

the SAGE/STAP multicorrelator performances. The size of
the data to be processed is then drastically reduced, and
the CRB and Monte Carlo simulations attest that there is
no performance loss between the classical SAGE algorithm
and the SAGE/STAP multicorrelator algorithm. Moreover,
the SAGE/STAP multicorrelator algorithm can constitute the
discriminator of GNSS tracking loops. Thus, with this new
implementation, the high-resolution performances of SAGE
are now available for GNSS receiver, which is a very promis-
ing approach for the multipath mitigation problem in GNSS.

Appendix

Cramer Rao Bound

The likelihood function for the signal at the output of the
STAP multicorrelator array is given in (11). Therefore, the
log-likelihood function is

ln p(x | Ψl)

= − lnπNPM − lndetQpc − (x− xsi(Ψ))HQ−1
pc (x − xsi(Ψ)),

(A.1)

where xsi(Ψ) =
∑L

l=1 xl(Ψl) contains the superimposition of
the postcorrelated signals, Σpc denotes the covariance
matrix of the postcorrelated noise, and Ψ =

[|γ̃|
T

arg (γ̃)
T
θTφTνr

TτrT]5L is the parameters vector with

γ̃ = [γ̃0, γ̃1, . . . , γ̃L−1]
T
L×1 the modified complex amplitude

vector of the L impinging wave fronts, θ = [θ0, . . . , θL−1]T

the elevation vector, φ = [ϕ0, . . . ,ϕL−1]T the azimuth vector,

νr = [νr0, . . . , νrL−1]T the relative Doppler vector, and

τr = [τr0, . . . , τrL−1]T the vector of relative delay.
The CRB is found as the [i, i] element of the inverse of

the so-called Fisher Information Matrix (FIM) I(Ψ):

var(Ψi) ≥
[

I(Ψ)−1
]
ii
. (A.2)

The definition of the FIM is

[I(Ψ)]i, j = −E

[
∂2 ln p(x | Ψ)

∂Ψi∂Ψ j

]
. (A.3)

As we assume that the noise covariance is independent of
the parameters, the FIM for a complex multivariate Gaussian
process is [6, 11]

[I(Ψ)]i, j = 2 Re

(
∂xsi(Ψ)H

∂Ψi
Q−1
pc

∂xsi(Ψ)

∂Ψ j

)
. (A.4)

Note that the FIM can be a bloc partitioned symmetric
matrix. Thus, we can write

I(Ψ) =




I|γ| I|γ| arg(γ) I|γ|θ I|γ|φ I|γ|τr I|γ|νr

Iarg(γ)

Iθ
. . .

... Iφ

...

. . . Iτr

Iνr |γ| Iνr




6L

, (A.5)

where the bloc matrices can be obtained by

[
I|γ|

]
n,p
= 2 Re


 ∂xn

H

∂
∣∣γ̃n

∣∣Q−1
pc

∂xp

∂
∣∣∣γ̃p

∣∣∣


,

[
Iarg(γ)

]
n,p
= 2 Re


 ∂xn

H

∂ arg
(
γ̃n

)Q−1
pc

∂xp

∂ arg
(
γ̃p

)

,

[Iθ]n,p = 2 Re

(
∂xn

H

∂θn
Q−1
pc

∂xp

∂θp

)
,

[
Iφ

]
n,p
= 2 Re

(
∂xn

H

∂ϕn
Q−1
pc

∂xp

∂θp

)
,

[Iν]n,p = 2 Re

(
∂xn

H

∂νrn
Q−1
pc

∂xp

∂νr p

)
,

[Iτ]n,p = 2 Re

(
∂xn

H

∂τrn
Q−1
pc

∂xp

∂τr p

)
,

[
I|γ|θ

]
n,p
= 2 Re

(
∂xn

H

∂
∣∣γ̃n

∣∣Q−1
pc

∂xp

∂θp

)
,

...

(A.6)

with 1 ≤ n ≤ L, 1 ≤ p ≤ L. Last, we need to calculate the
differential of the STAP multicorrelator signal model given
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in (10) with respect to |γ̃l|, arg(γ̃l), θl,ϕl, νrl, τrl. To that end,
we use the following signal model:

xl = γ̃la
(
θl,ϕl

)
⊗ e(νrl)⊗ r(τrl). (A.7)

The differential of the Kronecker product of 2 matrixes
Ap×q and Br×l with respect to a parameter x is given by [6]

∂

∂x
[A(x)⊗ B(x)] =

∂A(x)

∂x
⊗ B(x)

+ Up×r

(
∂B(x)

∂x
⊗ A(x)

)
Ul×q,

(A.8)

with U the permutation matrix. Note that in our model,
we are working with column vectors, and each subvector is
depending on different independent parameters. Therefore,
the differential of the signal is simply given by

∂xl

∂θl
= γ̃l

∂a
(
θl,ϕl

)

∂θl
⊗ e(νrl)⊗ r(τrl),

∂xl

∂ϕl
= γ̃l

∂a
(
θl,ϕl

)

∂ϕl
⊗ e(νrl)⊗ r(τrl),

∂xl

∂νrl
= γ̃la

(
θl,ϕl

)
⊗
∂e(νrl)

∂νrl
⊗ r(τrl),

∂xl

∂τrl
= γ̃la

(
θl,ϕl

)
⊗ e(νrl)⊗

∂r(τrl)

∂τrl
,

∂xl

∂
∣∣γ̃l

∣∣ = exp
(
j arg

(
γ̃l
))

a
(
θl,ϕl

)
⊗ e(νrl)⊗ r(τrl)

= exp
(
− jπνrTint

)
a
(
θl,ϕl

)
⊗ e(νrl)⊗ r(τrl),

∂xl

∂ arg
(
γ̃l
) = jγ̃la

(
θl,ϕl

)
⊗ e(νrl)⊗ r(τrl).

(A.9)
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