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A ONE-PARAMETER DEFORMATION OF THE
FARAHAT-HIGMAN ALGEBRA

JEAN-PAUL BULTEL

Abstract. We show, by introducing an appropriate basis, that a one-parameter
family of Hopf algebras introduced by Foissy [Adv. Math. 218 (2008) 136-162] in-
terpolates beetween the Faà di Bruno algebra and the Farahat-Higman algebra. Its
structure constants in this basis are deformation of the top connection coefficients,
for which we obtain analogues of Macdonald’s formulas.

1. Introduction

The center Zn of the group algebra Z[Sn] of the symmetric group is spanned by
conjugacy classes Cµ, which are parametrized by partitions µ of n. The connection
coefficients aλ

µν are the structure constants

(1) CµCν =
∑
λ`n

aλ
µνCλ

of Zn. These coefficients, whose calculation is in general very hard, have important
applications to various enumerative problems or to the calculation of certain matrix
integrals [7].

For a partition µ = (µ1 ≥ µ2 ≥ . . . ≥ µr > 0), define

(2) µ̄ = (µ1 − 1, µ2 − 1, . . . , µr − 1) ,

the reduced cycle type of any permutation of cycle type µ. Denoting by cρ(n) the
conjugacy class Cµ of Sn such that µ̄ = ρ, we can rewrite (1) in the form

(3) cµ(n)cν(n) =
∑

λ

aλ
µν(n)cλ(n) .

It has been proved by Farahat and Higman [4] that the connection coefficients aλ
µν(n)

are polynomial functions of n, and are independent of n if |λ| = |µ|+ |ν|. These are
called the top connection coefficients.

One may use the top connection coefficients to define an algebra R, spanned by
formal symbols cµ indexed by all partitions, whith multiplication rule

(4) cµcν =
∑

|λ|=|µ|+|ν|

aλ
µνcλ .

This is the Farahat-Higman algebra ([4], see also [10, ex. 24 p 131]). It is also proved
in [4] that R is isomorphic to the algebra of symmetric functions Λ. The construction
of an explicit isomorphism ϕ : Λ → R is more recent, and due to Macdonald [10, ex.
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2 J.-P. BULTEL

25 p 132] (another proof has been given by Goulden and Jackson [6]). More precisely,
Macdonald constructed a basis (gµ) of Λ such that

(5) gµgν =
∑

|λ|=|µ|+|ν|

aλ
µνgλ,

and obtained a recursive formula for the calculation of aλ
µν .

Murray [12] explicited the images in Λ of the projections of symmetric functions
of Jucys-Murphy elements in R under this isomorphism. In Section 3, we give a new
derivation of his result, and new proofs of various results of Biane [1] and Matsumoto-
Novak [11].

It is well-known that the algebra of symmetric functions is a Hopf algebra. Its
standard coproduct, denoted here by ∆0, comes from its interpretation as the algebra
of polynomial functions on the multiplicative group G0 of formal power series with
constant term 1. It has, however, another Hopf algebra structure, known as the
Faà di Bruno algebra, coming from its interpretation as the algebra of polynomial
functions on the group G1 = {ta(t)|a ∈ G0} of formal diffeomorphisms of the line
under composition (see, e.g., [3]). In fact, Macdonald’s basis gµ is the dual of the
image hµ = S1(hµ) of the basis of complete homogeneous functions hµ by the antipode
of the Faà di Bruno algebra F .

This suggests to interpret gµ as living in the dual F∗ of F . However, contrary to
R, this dual is not commutative, being the universal enveloping algebra of the Lie
algebra g1 of G1. Thus, such an interpretation does not make sense a priori.

To clarify this situation, we make use of a one-parameter deformation Fγ of F re-
cently discovered by Foissy [5] in his investigation of combinatorial Dyson-Schwinger
equations in the Connes-Kreimer algebra. We then obtain for the structure con-
stants of Fγ in the dual basis of S1(hµ) a one-parameter deformation of Macdonald’s
formulas which are recovered for γ = 0.

We follow the conventions of [10]. For the convenience of the reader, the most
essential ones are recalled in Section 2.

2. Notations and background

2.1. Partitions. Let n be a positive integer. A finite sequence of strictly positive
integers (λ1, λ2, . . .) is called a partition of n if λ1 ≥ λ2 ≥ . . . and λ1 + λ2 + . . . = n.
We then write λ ` n. The λi are the parts of λ, |λ| = n is the weight of λ and the
number l(λ) of parts in λ is the length of λ. The multiplicity mλ(k) of k in λ is the
number of parts in λ equal to k. We set

(6) zλ =
∏
k≥1

kmk(λ)mk(λ)!

2.2. The algebra of symmetric functions. We denote by Λ the algebra of sym-
metric functions. The bases (mλ),(eλ), (hλ),(pλ) and (sλ) are respectively the mono-
mial, elementary, complete, power sum and Schur symmetric functions. These bases
of Λ are parametred by partitions of all integers. For any basis (bλ), we denote by bn
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the symmetric function b(n). Denote by 〈 , 〉 the usual scalar product on Λ, for which
(sλ) is an orthonormal basis. For this scalar product, (pλ) is an orthogonal basis, and
one has

(7) 〈pλ, pµ〉 = δλµzµ

The bases (mλ) and (hλ) are dual to each other.

(8) 〈hλ,mµ〉 = δλµ

(δ is the Kronecker symbol). We denote by p⊥n the adjoint of the multiplication by
pn, in the sense

(9) 〈pnf, g〉 = 〈f, p⊥n (g)〉
where f and g are any two symmetric functions. This operator is a derivation. More
precisely,

(10) p⊥n = n
∂

∂pn

This operator acts on the hn as follows

(11) p⊥nhN = hN−n

for any N > n, so that

(12) p⊥n =
∑
r≥0

hr
∂

∂hn+r

Now, let X and Y be two alphabets. For any symmetric function f and any scalar
k, we identify f with f(X), and we define the algebra morphisms f → f(X + Y ),
f → f(kX) and f → f(k) by

(13) pn(X + Y ) = pn(X) + pn(Y )

(14) pn(kX) = kpn(X)

(15) pn(k) = k

The standard Hopf algebra structure of Λ is defined by the coproduct ∆0

(16) ∆0(f) = f(X + Y )

where we identify f(X + Y ) with an element of Λ ⊗ Λ by identifying f ⊗ g with
f(X)g(Y ). The counit ε and the antipode S0 are given by

(17) ε(f) = f(0)

and

(18) S0(f) = f(−X)

Denote by H0 this Hopf algebra.

(19) H0 = (Λ, ., 1,∆0, ε, S0)

One can give another interpretation of H0. Let

(20) G0 = {a | a(t) = 1 + a1t+ a2t
2 + . . .} = 1 + tC[[t]]
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be the multiplicative group of formal power series with constant term 1, and let H
be the algebra of polynomial functions on G0. Let kn ∈ H be the map defined by

(21) kn(a) = an

The standard coproduct for functions on a group is

(22) ∆f(a, b) = f(ab)

where ∆f is identified with an element of H⊗H. Then, hn 7→ kn is an isomorphism
of Hopf algebras H0 → H.

2.3. Other bases of the algebra of symmetric functions. The formal series

(23) u = tH(t) = t+ h1t
2 + h2t

3 + . . .

has an inverse for the composition, so that we can rewrite t in terms of u, as follows.

(24) t = u+ h?
1u

2 + h?
2u

3 + . . .

The h?
k are homogeneous symmetric functions of degree k, and the algebra morphism

ψ from Λ to Λ defined by ψ(hk) = h?
k is an involution :

(25) ψ2 = IdΛ

The Lagrange inversion formula shows that (n + 1)h?
n is the coefficient of tn in

H(t)−(n+1), so that

(26) h?
n =

hn(−(n+ 1)X)

n+ 1

We can define a multiplicative Z-basis (h?
λ) of Λ, by

(27) h?
λ = h?

λ1
h?

λ2
. . . = ψ(hλ)

In [10, ex. 24 p 35], Macdonald shows that

(28) (n+ 1)h?
n =

∑
λ`n

(−1)l(λ)

(
n+ l(λ)

n

)
uλhλ

where

(29) uλ =
l(λ)∏

i≥1mi(λ)!

Let (gλ) be the adjoint basis of (h?
λ), that is

(30) 〈gλ, h
?
µ〉 = δλµ

One has

(31) gn = −mn = −pn

The algebra morphism ψT (adjoint of ψ) is also an involution, and it maps gλ to mλ.
The matrix Ψ of ψ is strictly upper triangular in the basis (hλ) and one has

(32) Ψλλ = (−1)l(λ)
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Theorem 2.1 (Macdonald [10]). The linear map

(33) Φ :

{
R → Λ
cλ 7→ gλ

is an isomorphism of algebras.

2.4. Top connection coefficients. Now, let us recall some properties of the top
connection coefficients aν

λµ, which are the structure constants of the Farahat-Higman
algebra R. By Theorem 2.1,

(34) gλgµ =
∑

|ν|=|λ|+|µ|

aν
λµgν

When µ and ν are partitions of length 1 (µ = (r) and ν = (m)), Macdonald gives in

[10, ex. 24 p 131] an explicit formula for a
(m)
λ(r),m = |λ|+ r, that is

(35) a
(m)
λ(r) =


(m+1)r!

(r+1−l(λ))
Q

i>0 mi(λ)!
if l(λ) ≤ r + 1

0 otherwise

Moreover, Macdonald gives a recurrence formula, for any partition ν with |ν| = |λ|+r

(36) aν
λ(r) =

∑
(i,µ)/µ∪ν=λ∪(νi)

a
(νi)
µ(r)

One can deduce from these formulas that the aν
λr are zero except if ν ≥ λ ∪ (r),

and that a
λ∪(r)
λ(r) > 0. The multiplicative structure of the Farahat-Higman algebra is

uniquely determined by (35) and (36).

2.5. Jucys-Murphy elements. Let n and i be two integers, i ≤ n. Define

(37) ξi =
∑
j<i

(j, i) ∈ C[Sn],

called the ith Jucys-Murphy element. It is the sum of all transpositions (i, j) with
j < i. The Jucys-Murphy elements do not belong to the center Zn of C[Sn], but they
generate a maximal commutative subalgebra of C[Sn]. Let

(38) Ξn = {ξ1, ξ2, . . . , ξn}
be the alphabet of Jucys-Murphy elements. It is known that the algebra of symmetric
functions in Ξn is exactly Zn [8]. Hence, since (Cµ)µ`n is a basis of Zn, one can rewrite
f(Ξn) as

(39) f(Ξn) =
∑
µ`n

kf,µ(n)Cµ

for any homogeneous symmetric function f , and this decomposition is unique. We
can rewrite this formula in terms of the reduced cycle types

(40) f(Ξn) =
∑

kf,µ(n)cµ(n).
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Let r be the degree of f . When |µ| = r, kf,µ(n) does not depend on n. Let us
rewrite it as kf,µ and define a new element f(Ξ) of the Farahat-Higman algebra R,
by considering only maximal terms in the expansion of f(Ξn) for n large enough.

(41) f(Ξ) =
∑
µ`r

kf,µcµ

Murray [12] has shown that for any f , the isomorphism Φ between R and Λ maps
f(Ξ) to f(−X) = S0(f).

(42) Φ(f(Ξ)) = f(−X)

Since Φ(cµ) = gµ, using the duality between the bases (h?
λ) and (gλ), one has

(43) kf,µ = 〈f(−X), h?
µ〉

3. More about Murray’s result

3.1. A new derivation. Let us give a new proof of (42). Lascoux and Thibon [9]
give the formula

(44) pm(Ξn) =
m+1∑
k=1

∑
κ`k,l(κ)≤m−k+2

φκ,maκ,n

where aκ,n is defined by

(45) aκ,n =
1

(n− k)!
zκ∪1n−kCκ∪1n−k

The Cλ are the classical conjugacy classes, and the φκ,m are defined from

(46) φκ(t) =
(1− q−1)k−1

k!zk

pκ(q − 1)

q − 1

∣∣∣∣
q=et

by

(47) φκ(t) =
∑

m≥|κ|+l(κ)−2

φκ,m
tm

m!
.

From (44), C(m+1)∪1n−k is the only class of modified weight m which can give a
contribution to pm(Ξn). Indeed, for |κ|− l(κ) = m, if we had l(κ) > 1 we would have
|κ| > m+1, but the κ satisfying this inequality do not occur in the sum (44), so that
the formula

(48) pm(Ξ) =
∑
µ`m

kµcµ

becomes

(49) pm(Ξ) = kmcm

Now we only have to determine the coefficient km. In order to do that, suppose that
n = m+ 1. In this case we have

(50) pm(Ξm+1) = ξm
1 + ξm

2 + . . .+ ξm
m+1,
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that is,

pm(Ξm+1) = 0m + (1, 2)m + ((1, 3) + (2, 3))m + . . .

+((1,m+ 1) + (2,m+ 1) + . . .+ (m,m+ 1))m(51)

Only the last term can give a contribution to Cm+1. This term can be rewritten

(52)
∑

(i1,m+ 1)(i2,m+ 1) . . . (im,m+ 1)

where the sum is over the (i1, i2, . . . , im) where the ik are integers such that 1 ≤ ik ≤
m. In this new sum, only terms with the ik all distinct can give a contribution to
Cm+1. The number of these terms is m!, that is, the cardinality of Cm+1, so that
the coefficient of Cm+1 in pm(Ξm+1) is 1. This coefficient does not depend on n since
(m + 1) has a maximal modified weight, so that the coefficient of cm in pm(Ξ), that
is km, is again 1, so that

(53) pm(Ξ) = cm.

Hence, Φ(pm(Ξ)) = Φ(cm) = gm = −pm, and

(54) Φ(pλ(Ξ)) = Φ(
∏

i

pλi
(Ξ)) =

∏
i

Φ(pλi
(Ξ)).

From that we have Φ(pλ(Ξ)) =
∏

i(−pλi
) = (−1)l(λ)pλ = pλ(−X), and since Λ is

spanned by the pµ, this implies (42).

3.2. Examples. Using his result and simple calculations in Λ, Murray [12] computes
coefficients in the expansion of certain symmetric functions of the Jucys-Murphy
elements over the cλ. For example, he shows the following formulas

(55) 〈ek(−X), h?
λ〉 = 1

(56) 〈hk(−X), h?
λ〉 =

∏
i

Catλi−1

(where Cati is the ith Catalan number) giving the top coefficients in the expansion of
ek(Ξ) and hk(Ξ). In the same vein, let us give a new proof of a result of Matsumoto
and Novak for the monomial functions. Let k be an integer, λ ` k and µ ` k. We
denote by Lλ

µ the coefficient defined by

(57) mλ(Ξ) =
∑
|µ|=|λ|

Lλ
µcµ

Matsumoto and Novak [11] show that

(58) Lλ
µ =

∑
(λ(1),λ(2),...)∈R(λ,µ)

RC(λ(1))RC(λ(2)) . . .

where

(59) R(λ, µ) = {(λ(1), λ(2), . . .)/∀i, λ(i) ` µi and λ = λ(1) ∪ λ(2) ∪ . . .}
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and for any partition λ of N ,

(60) RC(λ) =
1

N + 1
mλ(N + 1) =

|λ|!
(|λ| − l(λ) + 1)!

∏
i≥1mi(λ)!

Matsumoto and Novak also give a combinatorial interpretation for RC(λ). Let us
show how to derive (58) from (43). We have

Lλ
µ = 〈mλ(−X), h∗µ〉(61)

= 〈mλ, h
∗
µ(−X)〉

=

〈
mλ,

hµ1((µ1 + 1)X)hµ2((µ2 + 1)X) . . .

(µ1 + 1)(µ2 + 1) . . .

〉
=

1∏
i(µi + 1)

〈
mλ,

∏
i

∑
λ(i)`µi

mλ(i)(µi + 1)hλ(i)

〉
Expanding the right factor of the scalar product, we obtain nonzero terms only if
hλ(1)hλ(2) . . . = hλ, since otherwise one has 〈mλ, hλ(1)hλ(2) . . .〉 = 0. Hence,

(62) Lλ
µ =

1∏
i(µi + 1)

∑
(mλ(1)(µ1 + 1))(mλ(2)(µ2 + 1)) . . . 〈mλ, hλ〉

The sum is over the (λ(1), λ(2), . . .) such that λ(i) ` µi for all i and
⋃

i λ
(i) = λ, that

is, over the set R(λ, µ). Moreover, one has 〈mλ, hλ〉 = 1, so that

(63) Lλ
µ =

∑
(λ(1),λ(2),...)∈R(λ,µ)

mλ(1)(µ1 + 1)

µ1 + 1

mλ(2)(µ2 + 1)

µ2 + 1
. . .

This is the result of Matsumoto and Novak.

3.3. Coefficient of the cycle with maximal length in pλ(Ξn). We call modified
cycle type of a product of cycles the sequence (l1 − 1, l2 − 1, . . .), where the li are
the lengths of the factors. For example, the product (13)(234) has modified cycle
type (2 − 1, 3 − 1) = (1, 2). Biane [1] obtains an explicit formula for the number
αλ of factorisations with modified cycle type λ for a cycle of length n + 1, where
n = |λ| =

∑
i λi, that is

(64) αλ = (n+ 1)l(λ)−1

Let us prove this with symmetric functions. We consider in the Farahat-Higman
algebra R the product

(65) cλ = cλ1cλ2 . . .

Since R is isomorphic to Λ, it is commutative, so that the order of the elements of λ
has no importance. Hence, we can assume that λ is a partition. One has

Φ(cλ) = gλ1gλ2 . . . = (−pλ1)(−pλ2) . . .(66)

= (−1)l(λ)pλ = pλ(−X)

Hence, from (42),

(67) cλ = pλ(Ξ)
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Moreover, cλ is the sum of all cycle products of modified type λ, and cn is the sum of
all the cycles of length n+ 1. Hence, the total number of cycle products of modified
type λ is kn

λ card(cn), where kn
λ is the coefficient of cn in cλ. The number αλ of these

factorisations does not depend on the choice of the cycle, so that αλ = kλ
n

card(cn)
card(cn)

= kn
λ ,

which is also from (67) the coefficient of cn in pλ(Ξ). Hence, one has

(68) αλ = (−1)l(λ)〈pλ, h
∗
n〉,

so that

(69) αλ =
1

n+ 1
(n+ 1)l(λ)〈pλ, hn〉 = (n+ 1)l(λ)−1〈pλ, hn〉

(since the bases (mλ) and (hλ) are dual to each other, 〈pλ, hn〉 is the coefficient of mn

in pλ, that is, 1).

3.4. Generalization. Here, we give a combinatorial interpretation for the coefficient
of cµ in pλ(Ξ). Now we have

(70) 〈pλ, h
?
n〉 = (−1)l(λ)(n+ 1)l(λ)−1

On another hand, since pλ(Ξ) = cλ1cλ2 . . . in R,

(71) cλ1cλ2 . . . =
∑
|λ|=|µ|

〈pλ(−X), h∗µ〉cµ,

so that 〈pλ(−X), h∗µ〉 corresponds to the total number of decompositions in an arbi-
trary product of modified type λ of a product of disjoint cycles with modified type
µ. In such a decomposition, each cµi

comes from certain
∏

i cλ(i) , where λ(i) ` µi

is a subpartition of λ, with λ(1) ∪ λ(2) ∪ . . . = λ, that is, (λ(1), λ(2), . . .) ∈ R(λ, µ).
Moreover, each (λ(1), λ(2), . . .) must be counted m(λ(1), λ(2), . . .) times, where

(72) m(λ(1), λ(2), . . .) =
∏
j≥1

mj(λ)!

mj(λ(1))!mj(λ(2))! . . .

For a given cµi
, the number of decompositions of cµi

of a certain type
∏

i cλ(i) corre-
sponds to the coefficient of cµi

in pλ(i)(Ξ), that is 〈pλ(i)(−X), h∗µi
〉, so that we have

from (70)

(73) 〈pλ(−X), h∗µ〉 =
∑

(λ(1),λ(2),...)∈R(λ,µ)

m(λ(1), λ(2), . . .)
∏

i

(µi + 1)l(λ(i))−1

Note that it is nonzero only if λ is a refinement of µ. Finally, one has
(74)

pλ(Ξ) =
∑
|λ|=|µ|

 ∑
(λ(1),λ(2),...)∈R(λ,µ)

(∏
j

mj(λ)!

mj(λ(1))!mj(λ(2))! . . .

)(∏
i

(µi + 1)l(λ(i))−1

) cµ

Note that from (70) we have

(75) h?
n =

∑
µ`n

(−1)l(µ)(n+ 1)l(µ)−1pµ

zµ



10 J.-P. BULTEL

Expanding h?
µ by means of this expression, since we have for

⋃
i λ

(i) = λ

(76)
∏
j≥1

mj(λ)!

mj(λ(1))!mj(λ(2))! . . .
=

zλ

zλ(1)zλ(2) . . .

we see that (73) can also be obtained by simple calculations in Λ.

4. The Faà di Bruno algebra and its deformation

4.1. The Faà di Bruno algebra. There is another coproduct on Λ, denoted here
by ∆1 and defined by

(77) ∆1hn =
n∑

k=0

hk(X)⊗ hn−k((k + 1)X)

or equivalently

(78) ∆1hn =
n∑

k=0

∑
µ`n−k

mµ(k + 1) hk ⊗ hµ

This coproduct defines a Hopf algebra with the counit ε as in H0, and the antipode
S1 = ψ, that is, the involution mapping hλ to h∗λ. The Hopf algebra

(79) H1 = (Λ, ., 1,∆1, ε, S1)

is called the Faà di Bruno algebra. It has the following interpretation. Let

(80) G1 = {α | ∃a ∈ G0,∀t, α(t) = ta(t)} = tG0 = t+ t2C[[t]]

be the group of formal diffeomorphisms of the line tangent to the identity, and let
again kn be the linear form

(81) kn : α(t) = t+ a1t
2 + a2t

3 + . . . 7→ an

Let ∆ be the coproduct such that ∆kn(α, β) is the coefficient of tn+1 in

(82) (α ◦ β)(t) = α(β(t))

The bialgebra F defined by this coproduct is isomorphic to H1 under the correspon-
dence kn 7→ hn.

4.2. A deformation of the Faà di Bruno algebra. Let γ be a real parameter in
[0, 1], and ∆γ be the coproduct on Λ defined by

(83) ∆γ(hn) =
n∑

k=0

hk ⊗ hn−k((kγ + 1)X)

or equivalently

(84) ∆γ(hn) =
n∑

k=0

∑
µ`n−k

mµ(kγ + 1)hk ⊗ hµ

Foissy obtains this coproduct in [5] in his investigation of formal Dyson-Schwinger
equations in the Connes-Kreimer Hopf algebra, and shows that for γ ∈]0, 1], the
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resulting bialgebras Hγ are Hopf algebras, isomorphic to the Faà di Bruno algebra.
Obviously, ∆0 corresponds to H0.

4.3. Graded dual of the deformed Fàa di Bruno algebra. Consider now the
Hopf algebra H′

γ, the graded dual of the deformation Hγ considered in section 3.
Denote by ?γ the product on H′

γ. For any f ∈ H′
γ and any symmetric function g

in Hγ, denote by 〈f, g〉 the action of f on g. One has for any f ∈ H′
γ, g ∈ H′

γ and
h ∈ Λ, by definition of a dual Hopf algebra,

(85) 〈f ?γ g, h〉 = 〈f ⊗ g,∆γ(h)〉
where

(86) 〈a⊗ b, c⊗ d〉 = 〈a, c〉〈b, d〉

Denote by (dλ), (qλ) and (bλ) the bases respectively dual to (hλ),
(

pλ

zλ

)
and h∗λ in

the sense of H′
γ, that is, for example

(87) 〈dλ, hµ〉 = δλµ

For any γ in [0, 1],

(88) qn = dn = −bn
Note that these bn generate H′

γ. H0 is self-dual, so that in the case γ = 0,

(89) dλ = mλ, , qλ = pλ, , bλ = gλ

When γ 6= 0, Hγ is not self-dual and not commutative, since the coproduct ∆γ on Λ
is not cocommutative.

4.4. Multiplicative structure of H′
γ. Now, let f and g be two elements of H′

γ.
One has for any partition µ,

〈f ?γ g, hµ〉 = 〈f ⊗ g,∆γ(hµ)〉
= 〈f ⊗ g,∆γ(hµ1)∆γ(hµ2) . . .〉

=

〈
f ⊗ g,

∏
i

∑
ki+li=µi

hki
⊗ hli((γki + 1)X))

〉

=

〈
f ⊗ g,

∑
ki+li=µi

∏
i

hki
⊗ hli((γki + 1)X)

〉
=

∑
〈f ⊗ g,

∏
i

hki
⊗ hli((γki + 1)X)〉(90)

where the parameters of the sum are the same as above. Hence,

〈f ?γ g, hµ〉 =
∑

〈f, h(k1,k2,...)〉〈g,
∏

i

hli(γki + 1)X)〉(91)

=
∑

〈f, h(k1,k2,...)〉〈g,
∏

i

∑
ρ`li

mρ(γki + 1)hρ〉
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Now let us change the parameters of the sum, considering the partitions ρi, with
|ρi| = li and ki = µi − |ρi|. The sum is now over the (ρ1, ρ2, . . . , ρ), such that for all
i, |ρi| ≤ µi, and ρ is the union of the ρi. We obtain

(92) 〈f ?γ g, hµ〉 =
∑

〈f, h(µ1−|ρ1|,µ2−|ρ2|,...)〉〈g,
∏

i

mρi
(γµi − γ|ρi|+ 1)hρi

〉,

and finally,

(93) 〈f ?γ g, hµ〉 =
∑

(
∏

i

mρi
(γµi − γ|ρi|+ 1))〈f, h(µ1−|ρ1|,µ2−|ρ2|,...)〉〈g, hρ〉

One can use this formula to expand f ?γ g on the dµ, where f and g are any two
elements in H′

γ

4.5. Action of q⊥n on the hµ. We define an operator q⊥n on Λ as follows, for f ∈ H′
γ

and g ∈ Hγ.

(94) 〈f ?γ qn, g〉 = 〈f, q⊥n g〉

The operator q⊥n is a derivation, because it is the adjoint of the right multiplication
by a primitive element :

(95) q⊥n (fg) = fq⊥n (g) + q⊥n (f)g

We shall need its action on the hµ. Let n > 0 and µ be a partition. We can write
from (93) :

(96) 〈f ?γ qn, hµ〉 =
∑

(
∏

i

mρi
(γµi − γ|ρi|+ 1))〈f, h(µ1−|ρ1|,µ2−|ρ2|,...)〉〈qn, hρ〉

Since qn = dn for all n, one has 〈qn, hρ〉 = δnρ, so that a term in this sum gives a
nonzero contribution only if

(97) ρ = (n)

In this case we have also 〈qn, hρ〉 = 1, and

(98) 〈f ?γ qn, hµ〉 =
∑

i/µi≥n

mn(γµi − γn+ 1)〈f, hµ\µi∪(µi−n)〉

Since mn(γµi − γn+ 1) = γ(µi − n) + 1, one can deduce

(99) q⊥n hµ =
∑

i/µi≥n

(γµi − γn+ 1)hµ\µi∪(µi−n)

When µ consists only in one part N , this formula can be rewritten

(100) q⊥n hN = (γN − γn+ 1)hN−n

Since q⊥n is a a derivation, one has its action on the multiplicative basis (hµ), and one
can use (100) to fully explicit it. We have q⊥n = Dn + En, where Dn and En are the
derivations defined by

(101) Dnhn = hN−n
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and

(102) Enhn = γ(N − n)hN−n,

that is,

(103) Dn =
∑
r≥0

hr
∂

∂hn+r

and

(104) En = γ
∑
r≥0

rhr
∂

∂hn+r

so that

(105) q⊥n =
∑
r≥0

(1 + γr)hr
∂

∂hn+r

We can see that this is valid also in the degenerate case γ = 0.

4.6. Action of q⊥n on the pµ. From (100), we have

(106) q⊥n hN = p⊥nhN + γ(N − n)hN−n

On another hand,

(107) (N − n)hN−n = p1hN−n−1 + p2hN−n−2 + p3hN−n−3 + . . .

Then,

q⊥n hN = p⊥nhN + γp1hN−n−1 + γp2hN−n−2 + . . .(108)

= p⊥nhN + γp1(p
⊥
n+1hN) + γp2(p

⊥
n+2hN) + . . .

= p⊥nhN + γ
∑
r>n

pr−np
⊥
r hN

so that

(109) q⊥n = p⊥n + γ
∑
r>n

pr−np
⊥
r

5. A deformation of the Farahat-Higman algebra

5.1. Recurrences for the structure constants of H′
γ. Denote by aν

λ,µ(γ) the
structure constants in the basis bµ.

(110) bλ ?γ bµ =
∑

ν

aν
λ,µ(γ)bν

When γ = 0, the bµ are identified with the gµ, and then aν
λ,µ(0) coincides with aν

λ,µ,
the top connection coefficient.

Since bn = −qn, one has

(111) aν
λ,(n)(γ) = 〈bλ ?γ bn, h

?
ν〉 = −〈bλ ?γ qn, h

?
ν〉
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Hence,

(112) aν
λ,(n)(γ) = −〈bλ, q⊥n h?

ν〉

Since q⊥n is a derivation, one can rewrite this as

(113) aν
λ,(n)(γ) = −

∑
i

〈bλ, h?
ν\(νi)

q⊥n (h∗νi
)〉

The ith term in this sum corresponds to the coefficient of h∗λ in

(114) h?
ν\(νi)

q⊥n (h∗νi
)

Hence this term gives a nonegative contribution only if there exists a partition µ such
that

(115) (ν \ (νi)) ∪ µ = λ,

that is,

(116) µ ∪ ν = λ ∪ (νi)

Hence, the ith term is also equal to the coefficient of h∗µ in q⊥n (h∗νi
), that is, aνi

µ(n)(γ).

Summarizing, we have proved:

Theorem 5.1. The structure constants aν
λ,(n)(γ) satisfy the recursion

(117) aν
λ,(n)(γ) =

∑
aνi

µ(n)(γ)

where the sum is over the (i, µ) such that

(118) µ ∪ ν = λ ∪ (νi)

This formula is a generalization of (36), which is recovered for γ = 0.

5.2. Multiplicative structure of the deformed Farahat-Higman algebra. In
the case where ν has only one part, there is a closed formula for aν

λ(r)(γ).

Theorem 5.2. For r ∈ N, N ∈ N and µ a partition,

(119) a
(N)
λ,(r)(γ) =

(
1− N − r

N + 1
γ

)
a

(N)
λ,(r)(0)

a
(N)
λ,(r)(0) corresponds to a

(N)
λ,(r) in formula (35), where m is replaced by N .

Together with the recurrence formula (117), this determines completely the multi-
plicative structure of H′

γ, since it is generated by the bn. In order to derive (119), we
shall need the following lemmas.

Lemma 5.3. Let r and n be two positive integers, with r < n. Then,

(120) p⊥r h
?
n =

∑
ρ`n−r

(−1)l(ρ)−1(n+ 1)l(ρ)pρ

zρ
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Proof. From (75) we have

(121) p⊥r h
?
n =

∑
µ`n

(−1)l(µ)(n+ 1)l(µ)−1

zµ

p⊥r (pµ)

The action of p⊥r on pµ is

(122) p⊥r (pµ) = r
∂pµ

∂pr

= rmr(µ)pµ\(r)

On another hand,

(123) zµ\(r) =
zµmr(µ \ (r))!

rmr(µ)!

with mr(µ \ (r)) = mr(µ)− 1, hence mr(µ)!
mr(µ\(r))! = mr(µ), so that

(124)
zµ

rmr(µ)
= zµ\(r)

Hence,

(125)
p⊥r (pµ)

zµ

=
pµ\(r)

zµ\(r)

and

(126) p⊥r h
?
n =

∑
µ`n

(−1)l(µ)(n+ 1)l(µ)−1pµ\(r)

zµ\(r)

or, equivalently,

(127) p⊥r h
?
n =

∑
ρ`n−r

(−1)l(ρ∪(r))(n+ 1)l(ρ∪(r))−1pρ

zρ

Since l(ρ ∪ (r)) = l(ρ)− 1, we deduce the required formula .

Lemma 5.4. Let r and N be two positive integers, with N > r. Then,

(128)
∑
n>r

pn−r(p
⊥
nh

?
N) = −N − r

N + 1
p⊥r h

?
N

Proof. From (120), one has

(129)
∑
n>r

pn−r(p
⊥
nh

?
N) =

∑
n>r

∑
ρ`n−r

(−1)l(ρ)−1(n+ 1)l(ρ)pρ∪(n−r)

zρ

for µ = ρ ∪ (n− r) and k = n− r, we obtain :

(130)
∑
n>r

pn−r(p
⊥
nh

?
N) =

∑
µ`N−r

∑
k∈µ

(−1)l(µ)(N + 1)l(µ)−1 pµ

zµ\(k)

(131)
∑
n>r

pn−r(p
⊥
nh

?
N) =

∑
µ`N−r

(−1)l(µ)(N + 1)l(µ)−1

(∑
k∈µ

1

zµ\(k)

)
pµ



16 J.-P. BULTEL

From (124), one has

(132)
∑
k∈µ

1

zµ\(k)

=
∑
k∈µ

kmµ(k)

zµ

Hence,

(133)
∑
k∈µ

1

zµ\(k)

=
1

zµ

∑
k∈µ

kmµ(k) =
|µ|
zµ

So we can rewrite (131) as

(134)
∑
n>r

pn−r(p
⊥
nh

?
N) =

∑
µ`N−r

(−1)l(µ)(N + 1)l(µ)−1N − r

zµ

pµ

(135)
∑
n>r

pn−r(p
⊥
nh

?
N) =

N − r

N + 1

∑
µ`N−r

(−1)l(µ)(N + 1)l(µ)pµ

zµ

From (120), we get the required formula.

Proof – (of Theorem 5.2) Since br = −qr and gr = −pr, one has

(136) 〈bλ ?γ br, h
?
N〉 = −〈bλ, q⊥r h?

N〉
Then, from (109) and lemma 5.3,

〈bλ ?γ br, h
?
N〉 = −〈bλ, p⊥r h?

N〉 − γ〈bλ,
∑
n>r

pn−r(p
⊥
nh

?
N)〉(137)

= −〈gλ, p
⊥
r h

?
N〉+ γ

N − r

N + 1
〈bλ, p⊥r h?

N〉

= −〈gλpr, h
?
N〉+ γ

N − r

N + 1
〈gλ, p

⊥
r h

?
N〉

= 〈gλgr, h
?
N〉 − γ

N − r

N + 1
〈gλgr, h

?
N〉

=

(
1− γ

N − r

N + 1

)
〈gλgr, h

?
N〉

From that, we deduce (119).

6. A deformation of the Witt algebra

6.1. A simpler multiplicative formula in H′
γ. Now let us expand qk ?γ qn on the

qµ. One has

(138) qk ?γ qn =
∑

µ

1

zµ

〈qk ?γ qn, pµ〉qµ,

so that

(139) qk ?γ qn =
∑

µ

1

zµ

〈qk, q⊥n (pµ)〉qµ
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From (109), deduce that

(140) q⊥n pµ = p⊥n pµ + γ
∑
r>n

pr−np
⊥
r pµ

so that

q⊥n pµ = p⊥n pµ + γ
∑
r>n

rpr−n
∂pµ

∂pr

(141)

= p⊥n pµ + γ
∑
r>n

rmr(µ)pµ\(r)∪(r−n)

Hence, qµ gives to qk ?γ qn a contribution to the factor of γ only if µ = (k + n). In
this case we have

(142) 〈qk, q⊥n pk+n〉 = γ(k + n)k

Hence,

(143) qk ?γ qn = q(k,n) + kγqk+n

this formula also completely determines the multiplicative structure of H′
γ. In the

case γ = 1, we can see that it is coherent with the result of [3].

6.2. Lie algebra structure corresponding to H′
γ. Now, suppose that γ 6= 0.

Since H′
γ is a connected cocommutative Hopf algebra, it is the universal enveloping

algebra of a Lie algebra Lγ. From (143), its bracket is determined by

(144) [qk, qn]γ = γ(k − n)qk+n.

Denote by dn,γ the differential operator

(145) dn,γ = t1−nγ d

dt

The dn,γ satisfy the same relation (144) as the qn of Lγ, so that H′
γ can be interpreted

as a Lie algebra of differential operators: it is the Lie algebra generated by the dn,γ. In
the case γ = 1 one has dn,1 = t1−n d

dt
. These operators generate L1, that is called the

Witt algebra. It is known that the universal enveloping algebra of the Witt algebra
is the dual of the Fàa di Bruno algebra. Note also that from the commutativity of
H′

0, (144) is also valid in the degenerate case γ = 0.
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