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Abstract-In this work we study the effects of population size 
on selection and performance scalability of two dominance-based 
algorithms applied to many-objective optimization. Our aim is 
to understand the relationship between the size of the Pareto 
optimal set, a characteristic of the many-objective problem at 
hand, the population size and the ability of the algorithm to retain 
Pareto optimal solutions in its population and find new ones. This 
work clarifies important issues of the dynamics of evolutionary 
algorithms on many-objective landscapes, particularly related to 
survival selection. It shows that optimal solutions are dropped 
from the population in favor of suboptimal solutions that appear 
non-dominated when survival selection is applied. It also shows 
that this selection lapse, the dropping of optimal solution, affects 
the discovery of new optimal solutions and is correlated to 
population size and the distribution of solutions that survival 
selection renders. Selection makes less mistakes with larger 
populations and when the distribution of solutions is better 
controlled. The results of this study will be helpful to properly set 
population size and have a clearer idea about the performance 
expectation of the algorithm. 

I .  INTRODUCTION 

Conventional evolutionary multi-objective (EMO) algo­
rithms [ 1 ]  are known to scale up poorly to high dimensional 
objective spaces [2] , particularly dominance-based algorithms. 
This lack of scalability has been attributed mainly to some 
characteristics of the landscapes and inappropriate operators 
for selection and variation. In many-objective landscapes the 
number of solutions in the Pareto optimal set increases expo­
nentially [3] with the number of objectives .  Assuming that the 
size of the decision space remains unchanged, an increase in 
the number of objectives also implies that these large num­
ber of Pareto optimal solutions become spread over broader 
regions of decision space [4] . Analysis of many-objective 
landscapes shows that this is the case for the Pareto optimal set 
and also for Pareto suboptimal sets [3] . These characteristics 
of many-objective landscapes are directly correlated to the 
effectiveness of the operators of selection and variation and 
affect the dynamics of the optimizer. For example, the large 

number of non-dominated solutions causes dominance-based 
selection to become random, and their spread on decision space 
causes mating to pair distant solutions making recombination 
too disruptive. In addition to the operators for selection and 
variation, the population size greatly influences the dynamics 
of the algorithm. However, its effects on large dimensional 
objectives spaces are not well understood. 

In this work we study the effects of population size on 
performance scalability of two dominance-based algorithms 
applied to many-objective optimization, a conventional evo­
lutionary multi-objective (EMO) algorithm and an evolution­
ary many-objective (EM yO) algorithm, using relatively small 
population sizes and also using large population sizes set as 
a fraction of the true Pareto optimal set. We are particularly 
interested in understanding the relationship between the size of 
the Pareto optimal set, a characteristic of the many-objective 
problem at hand, the population size the algorithm uses and 
the ability of the algorithm to retain true Pareto optimal 
solutions in its population and find new ones. We analyze the 
dynamics of the algorithms by observing at each generation 
the number of true Pareto optimal solutions that the algorithms 
find. We use MNK-landscapes with 3 - 6 objectives and 20 
bits , for which it is possible to know by enumeration all true 
Pareto optimal solutions of the landscapes. This work clarifies 
important issues of the dynamics of evolutionary algorithms 
on many-objective landscapes, particularly related to survival 
selection. The results of this study will also be helpful to 
properly set population size and have a clearer idea about the 
performance expectation of the algorithm. 

I I .  METHODOLOGY 

In our study we use four MNK-landscapes [3] randomly 
generated with m = 3, 4, 5, 6 objectives, n = 20 bits , and
k = 1 epistatic bit. For each landscape we enumerate all
its solutions and classify them to non-dominated fronts . The 
exact number of true Pareto optimal solutions POST found
by enumeration are I POST I = 152 , 1 554, 6265, and 16845 



for m = 3, 4, 5, and 6 objectives ,  respectively. Similarly, the
exact number of non-dominated fronts of the landscapes are 
258, 76, 29, and 22, respectively.

We run the algorithms for a fixed number of generations , 
collecting all generated solutions . Once evolution is over, 
we compare the set of POST with the sets of unique non­
dominated solutions obtained at each generation after survival 
selection to determine which are true Pareto optimal solutions, 
count the number of true Pareto optimal solutions found at 
each generation, and their accumulated number found during 
evolution. That is, in our analysis we assume that the aim of 
the algorithms is to find all true Pareto optimal solutions. In 
this work, we relate performance scalability to the capacity of 
the algorithm to achieve its aim either when we increase the 
number of objectives for a given population size or when we 
increase the population size for a given number of objectives .  

The motivation to use landscapes with n = 20 bits
and k = 1 epistatic bit is that in small landscapes with
minimum non-linearity it should be relatively simple for the 
algorithm to hit the optimal set. Experiments in these small 
and simple problems allow us to focus our study on the ability 
of the algorithm to retain optimal solutions in its population, 
which is directly correlated to the effectiveness of survival 
selection and the maintenance of selection pressure to find new 
optimal solutions. Also, it is feasible to enumerate these small 
landscapes to know exactly all true Pareto optimal solutions, 
which are important in our analysis. 

In this work we use NSGA-II as the evolutionary multi­
objective optimizer and the Adaptive E-Sampling and E-Hood 
algorithm [5] as the evolutionary many-objective optimizer. 
NSGA-II is a well known algorithm and due to space limita­
tions it is not described here. The interested reader is referred 
to [6] for details about NSGA-II. In the following we describe 
the recently proposed many-objective optimizer used in our 
study. 

III . THE AESEH ALGORITHM

A. Concept

Adaptive E-Sampling and E-Hood (AESEH) [5] is an
elitist evolutionary many-objective algorithm that applies E­
dominance principles both for survival selection and for clus­
tering and mating solutions located close by in objective space. 

In multi-objective optimization, dominance is used for 
survival selection and to rank solutions in the elite surviving 
population, so that mating selection can give more reproductive 
opportunities to dominant individuals. However, this is imprac­
tical in many-objective optimization because of the large num­
ber of non-dominated solutions . In AESEH, dominance is used 
during the survival selection step of the algorithm to eliminate 
inferior dominated solutions , but it has no role in ranking the 
surviving population. For the majority of generations, survival 
selection is achieved by E-sampling, a E-dominance based 
procedure, which samples randomly from the large set of non­
dominated solutions and eliminates solutions E-dominated by 
the samples .  The aim is to get a set of surviving solutions 
spaced according to the distribution implicit in the mapping 
function f (  x ) f-t€ / ( x ) used for E-dominance. Only

during the few initial generations, where the number of non­
dominated solutions is smaller than the size of the surviving 
population, E-sampling plays no role during survival. 

After survival selection, in AESEH there is not an explicit 
ranking that could be used to bias mating . Rather, the algorithm 
uses a procedure called E-hood creation to cluster solutions in 
objective space. This method is also based on E-dominance. 
Here, a randomly sampled solution from the surviving popula­
tion and its E-dominated solutions determine the neighborhood, 
so that recombination can take place between individuals 
located close by in objective space. The motivation to restrict 
mating is to enhance the effectiveness of recombination in 
many-objective problems, where the difference in variable 
space between individuals in the population is expected to 
be larger than in multi-objective problems and therefore more 
disruptive for recombination. 

The main steps of the AESEH are as follows.  

Step 1 Set Es f- 0, used in E-sampling truncation, and its
initial step of adaptation �s . Set Eh f- 0, used in E­
hood creation, its initial step of adaptation �h and the 
reference number of neighborhoods NJ}eJ to adapt Eh .
Set population P f- 0 and create randomly the initial 
population Q. Set population size Psize f- I QI .

Step 2 Evaluate the offspring population Q. 
Step 3 Calculate non-dominated sorting on the population that 

results from joining the current population P and its 
offspring Q to obtain the non-dominated fronts F = {Fd, i = 1 , 2 , · · · , NF .  

Step 4 Truncate the sorted non-dominated fronts F to obtain
the surviving population P of size Psize using the E­
sampling truncation procedure set with parameter Es . 

Step 5 Adapt Es and its step of adaptation �s using as
reference the population size Psize and the number of
sampled solutions Ns returned by E-sampling called
from E-sampling truncation. 

Step 6 Create neighborhoods from the surviving population P 
with the procedure E-hood creation, set with parameter 
Eh · 

Step 7 Adapt Eh and its step of adaptation �h using as 
reference the number of created neighborhoods N H 
and the number NJ}eJ specified by the user. 

Step 8 Create a pool of mates p' with procedure E-hood
mating that pairs solutions within the neighborhoods . 

Step 9 Recombine and mutate the mated individuals in P' to
create the offspring population Q. 

Step 10 Repeat from Step 2 if the termination criterion has not 
been met. 

The next sections include additional details about the main 
procedures of the algorithm. 

B. E-Sampling Truncation (Step 4)

Survival selection is implemented by the E-sampling trun­
cation procedure. This procedure receives the sets of solutions F created by non-dominated sorting and selects exactly Psize 
surviving solutions from them. 

In case the number of non-dominated solutions IFl l  > 
Psize , it calls E-sampling with parameter Es to get from Fl 



its extreme solutions £, a subset of randomly sampled solu­
tions S and their cs-dominated solutions DEs . The surviving 
population P always includes extreme solutions £ and it is
complemented with solutions from S and possibly from DEs . 
If S overfills P, solutions in S are randomly eliminated as
survivors .  Otherwise, if after adding S to P there is still room
for some solutions , the required number are randomly chosen 
from DEs . 

Otherwise ( IFI I  < Psize ) ,  the sets of solutions Fi are
copied iteratively until P is filled. If set Fi , i > 1 ,  overfills P, 
the required number of solutions are chosen randomly from it. 

C. c-Hood Creation and c-Hood Mating (Step 6 and Step 8)

Neighborhoods are created from the surviving population
by the c-hood creation procedure, which is also based on 
c-dominance. This procedure randomly selects an individual
from the surviving population and applies c-dominance with
parameter Ch . A neighborhood is formed by the selected so­
lution and its ch-dominated solutions . Neighborhood creation
is repeated until all solutions in the surviving population have
been assigned to a neighborhood.

Mating for recombination is implemented by the procedure 
c-hood mating. Neighborhoods are considered to be elements
of a list. Neighborhoods are assigned to the list in the same
order they were created. To select two mates, first a neighbor­
hood from the list is specified deterministically in a round­
robin schedule. Then, two individuals are select randomly
within the specified neighborhood, so that an individual will
recombine with other individual that is located close by in
objective space. Due to the round-robin schedule, the next two
mates will be selected from the next neighborhood in the list.
When the end of the neighborhoods list is reached, mating
continues with the first neighborhood in the list. Thus, all
individuals have the same probability of being selected within a
specified neighborhood, but due to the round-robin scheduling
individuals belonging to neighborhoods with fewer members
have more recombination opportunities that those belonging to
neighborhoods with more members . Once the pool of all mates
P' has been established, they are recombined and mutated
according to the order they were selected during mating . 

D. Adaptation (Step 5 and Step 7)
The number of sampled solutions N s by c-sampling de­

pends on the value set to Cs (2: 0). Larger values of Es imply
that sampled solutions cs-dominate larger areas, increasing the 
likelihood of having more cs-dominated solutions excluded 
from the sample. The algorithm adapts Cs at each generation 
so that N s is close to the population size Psize . The closer
N s is to Psize , the larger the number of surviving solutions
that will be spaced according to the distribution implicit in the 
mapped function used for c-dominance. 

Similarly, the number of created neighborhoods N H de­
pends on the value set to Ch (2: 0) . Larger values of Ch imply
that sampled solutions ch-dominate larger areas, increasing the 
likelihood of having more ch-dominated solutions that form its 
neighborhood, and therefore fewer neighborhoods are created. 
The algorithm adapts Ch at each generation so that N H is close
to a user specified number NJjeJ .  

The adaptation rule, similar for both processes, is as 
follows.  If N > Ref it increases the step of adaptation
� +-- min (� x 2, �max ) and E +-- E + �. Otherwise, if
N < Ref it decreases � +-- max (� x 0 . 5 ,  �min ) and 
E +-- max (E - �, O .O ) . In this work we set initial values 
EO = 0 .0 and �o = 0 .005 . Also, �max = 0 .05 and 
�min = 0.000 1 .  

I n  the case o f  adapting the parameter C s  used for truncation, 
the above rule is called with c = Cs , � = �s , N = Ns , and
Re f = Ps ize · On the other hand, in the case of the parameter
Ch used for neighborhood creation, the above rule is called 
with c = Ch ,  � = �h,  N = NH , and Ref = NJjeJ .

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Operators of Variation and Parameters

In both algorithms, NSGA-II and AcScH, we use two
point crossover with rate pc = 1 .0 , and bit flip mutation
with rate pm = l in. Also, for AcScH we set the reference
neighborhood size H:;:� to 20 individuals. The mapping
function f (  x ) ME / ( x ) used for c-dominance in c­
sampling truncation and c-hood creation is additive, as follows 

i = 1 , 2 , · · · , m ( I )  

B. NSGA-/l

In this section we study the effects of population size
on NSGA-II. Let us denote by FI the set of non-dominated
solutions in the combined population P U Q of parents and
offspring before survival selection, by FI <;;; FI the set of non­
dominated solutions in population P after survival selection,
and by F'[ the set of solutions in FI that are true Pareto
optimal solutions .  

Fig. 1 shows the number of solutions in FI and F'[ over
the generations for m = 3, 4, and 5 objectives, running the
algorithm for 100 generations with three different population
sizes I P I  = 50, 100 and 200. First we analyze results for
m = 3 objectives .  When we set population size to I P I  = 50 
or 100, a value smaller than the number of true Pareto optimal
solutions I POST I = 152 , it can be seen in Fig. 1 (a. l )  and (a.2)
that after few generations all solutions in the population are 
non-dominated, I FI I  = IP I · However, not all solutions in FI 
are true Pareto optimal solutions , i .e .  1 FT !  < I FI I  = IP I .  Also,
it is important to note that 1 FT !  fluctuates up and down after an
initial increase. On the other hand, when we set the population 
size to a value larger than the number of true Pareto optimal 
solutions, I P I  = 200 > I POST I = 152 , it can be seen in Fig . 1
(a.3) that the instantaneous non-dominated set is a subset of 
the population, FI = FI C P. Also, note that from generation
35 onwards, all non-dominated solutions in the population are
also true Pareto optimal, FI = F'[ . In this case, the algorithm
finds and keeps in P almost all true Pareto optimal solutions,
147 out of 152 , during the latest stage of the search.

It is known that the number of true Pareto optimal solutions 
I POST I increases considerably with the number of objectives .
However, this is often ignored and the algorithm is set with 
a very small population size compared to I POST I .  To study
these cases, Fig. 1 (b. I )-(b.3)  and (c. I )-(c .3)  show results for 
m = 4 and m = 5 objectives setting population size to the
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Fig. 1 .  Results by NSGA-II. Number of non-dominated FI and actual number of true Pareto optimal solutions F{ in the population over the generations.I POST I = 152, 1554 and 6265 for m = 3,  4 and 5 objectives, respectively.

same values used for m = 3 objectives, which are very small
compared to I POST I .  That is, I P I  :s; 200 < I POST I = 1554 
and IP I :s; 200 < I POST I = 6265, respectively. Note
that these settings of population size magnify the difficulties 
observed for m = 3 with I P I  = 50 or I P I  = 100 . That is,
fewer solutions are true Pareto optimal, although the set of non­
dominated solutions of the population quickly contains mutu-

 

ally non-dominated solutions only. Also, larger fluctuations are 
observed in the number of true Pareto optimal solutions F[. 

In general, if I P I  is set to a value smaller than I POST I ,  
the algorithm cannot keep all true Pareto optimal solutions in 
the population. However, we would expect an ideal algorithm 
to keep as many true Pareto optimal solutions as the size of 
its population, I FF I  = I FI I  = I P I  < I POST I .  This is not
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what we observe. When population sizes much smaller than 
the number of true Pareto optimal solutions are used, it is 
clear from our results that the capacity of the algorithm to 
keep true Pareto optimal solutions reduces considerably with 
the number of objectives, although the size of search space 
remains fixed and there are many more true Pareto optimal 
solutions in landscapes with a larger number of objectives .  

To explain this behavior, Fig.2 shows the instantaneous 
number of true Pareto optimal solutions in the population 
I FF I  and its accumulated number I AFF I  over the generations
for population sizes I P I  = 50, 100, and 200. Note that
a large number of true Pareto optimal solutions are found 
by the algorithm. However, not all these solutions remain 
in the population (except in the case m = 3 IP I  = 200). 
Some of these solutions are lost from one generation to the 
next one during the survival selection step of the algorithm. 
At this step, the algorithm joins the population P with the
offspring population Q and ranks individuals with respect to
dominance-depth. The best rank is given to true Pareto optimal 
solutions and also to some others that are not true optimal 
but appear non-dominated in the combined population. As 
indicated above, we call the set of best ranked non-dominated  

solutions obtained from P U Q as Fl . If this set Fl is larger
than the population P, a sample of them P = F l � Fl is
chosen based on crowding distance during the survival step. 
At this point, some true Pareto optimal solutions are dropped 
in favor of less crowded non-optimal solutions . Summarizing, 
P = F l C Fl and therefore Fl' c Fl is more likely to occur
for population sizes smaller than the number of true Pareto 
optimal solutions I POST I .  

For a given population size less true Pareto optimal solu­
tions are observed in the instantaneous population P when we
increase the number of objectives .  However, the accumulated 
number of true Pareto optimal solutions is bigger in problems 
with a larger number of objectives .  For example, see Fig . 1 
(a.2), (b.2), (c.2) and Fig.2 (a)-(c) for P = 100. This suggests
that the algorithm finds a larger number of different true 
Pareto optimal solutions from generation to generation in prob­
lems with more objectives, although its ability to retain non­
dominated solutions in the instantaneous population reduces. 

Fig .2 (a) and Fig .3 (a)-(c) show results for m = 3, 4, 
5 and 6 objectives using population sizes that correspond
approximately to 1 /3, 2/3 and 4/3 of the set POST, re-
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Fig. 4. Results by Ac:Sc:H. Number of non·dominated Fl and actual number of true Pareto optimal solutions F{ in the population over the generations.I POST I = 152, 1554 and 6265 for m = 3,  4 and 5 objectives, respectively.

spectively. From these figures note that increasing population 
size from 1/3 to 4/3 of POST translates into a striking
performance scalability of the algorithm, measured in terms of 
the number of true Pareto optimal solutions found and kept in 
the population. For population size 4/3 of POST the number
of AFT = FT c Fl and the algorithm can actually find
and keep in the population 147 out of 1 52, 1 545 out of 1 554, 

 

6248 out of 6265 , and 1 6842 out of 1 6845 true Pareto optimal 
solutions for 3, 4, 5 and 6 objectives, respectively.

These results show that the effectiveness of the algorithm 
in many-objective landscapes depends strongly on the size 
of the population. However, it should be noted that larger 
populations demand more computational time and memory. 
Also, a relatively larger number of solutions need to be 
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evaluated for the same number of generations. For example, 
after 100 generations, using a population size 4/3 of POST, 
the conventional EMO algorithm used in this study evaluates 
approximately a number of solutions equivalent to 2%, 19%, 
76% and 215% of the size of  the search space for m = 3, 4 , 
5 , and 6 objectives ,  respectively. Thus, although a sufficiently 

large population allows us to find almost all true Pareto optimal 
solutions, the effectiveness of large populations should be 
evaluated against a reasonable budget of fitness evaluations . 



C. AcScH

In the following we study the effects of population size on
the AESEH algorithm. FigA shows the number of solutions 
in Fl and FT over the generations for m = 3, 4, and
5 objectives ,  running AESEH for 100 generations with three
different population sizes I P I  = 50, 100 and 200. Comparing
with Fig. I ,  it can be seen that AcScH finds and keeps more 
true Pareto optimal solutions in the population than NSGA­
II. This difference becomes more remarkable for 4 or more 
objectives in all population sizes. For example, in m = 4 and 5 
objectives AcScH keeps in the population approximately twice 
as many true Pareto solutions than NSGA-II. This shows the 
advantages of using c-sampling during the truncation of the 
population in the many-objective optimizer. However, similar 
to NSGA-II, note that for the same population size less true 
Pareto solutions are present in the instantaneous population P 
for landscapes with a larger number of objectives .  

Fig .S shows the accumulated number of true Pareto optimal 
solutions found by AcScH together with those found by 
NSGA-II for comparison. Results are shown for m = 3, 4, 5 , 
and 6 objectives using population size IP I = 50, 100 and 200. 
Note that a larger number of true Pareto optimal solutions are 
accumulated by AcScH than by NSGA-II. That is, in addition 
to instantaneously keeping in the population a larger number of 
true Pareto optimal solutions, the many-objective optimizer is 
able to find more new solutions from generation to generation, 
which translates into a larger number of accumulated true 
Pareto optimal solutions .  Note that the difference in the number 
of accumulated solutions becomes larger with the number of 
objectives .  Also, it is worth noting that for 4 or more objectives
the number of accumulated true Pareto optimal solutions found 
by AcScH with a population of 50 is larger than the number of
accumulated solutions by NSGA-II with a population of 100. 
Likewise, AcScH with a population of 100 performs similar
or better than NSGA-II with a population of 200. 

Fig.S (a) and Fig .6 (a)-(c) show results by AcScH and 
NSGA-II for m = 3, 4, 5 and 6 objectives using population
sizes that correspond approximately to 1 /3, 2j3 and 4/3 of
the set of true Pareto optimal solutions POS , respectively.
From these figures note that when a population larger than 
I POST I is used both algorithms perform similarly in terms of
the number of true Pareto optimal solutions found. However, 
for smaller populations, AcScH is more effective and efficient, 
especially for 4 or more objectives .  For example, using a
population size equivalent to 1 /3 of I POST I ,  NSGA-II finds
more than 70% of the true Pareto optimal solutions after 1 00
generations . AcScH with the same population size can find a 
similar number of solutions expending only half the number 
of generations and fitness evaluations . As mentioned above 
and shown in Fig .S ,  AcScH's efficiency becomes more evident 
when very small population sizes are used. 

V. CONCLUSIONS

In this work we analyzed the effects of population size on 
selection and performance scalability of a conventional evolu­
tionary multi-objective algorithm and an evolutionary many­
objective algorithm for many-objective optimization, correlat­
ing population size to the size of the optimal set. We showed 
that optimal solutions are dropped from the population when 

 

survival selection is applied, especially in small populations . 
Since both algorithms used in our study are dominance based, 
this suggests that rather than the inability to distinguish among 
non-dominated solutions, an important issue for scalability 
of the algorithm is the distribution of solutions that survival 
selection renders. The many-objective optimizer uses the c­
sampling procedure, which induces a uniform distribution, 
and keeps more optimal solutions in the population than the 
multi-objective optimizer that uses crowding distance with 
no clear indication of what distribution it produces .  Larger 
populations can cover a broader region in objective space, 
reduce the effect of dropping optimal solutions, and increase 
the effectiveness of the optimizers in many-objective problems. 
In fact, the performance of a conventional evolutionary multi­
objective optimizer can scale up fairly well to high dimensional 
objective spaces if the size of the population is sufficiently 
large compared to the size of the true Pareto optimal set. 
If the aim of the optimizer is to find all optimal solutions , 
our study suggests that population sizes similar or larger 
than the size of the optimal set might be required. However, 
this population sizes become impractical for many-objective 
problems due to the exponentially large number of solutions 
in the optimal set. If the aim of the algorithm is to find a 
significant number of optimal solutions under a reasonable 
budget of fitness evaluations, then more efficient algorithms 
like the many-objective optimizer used in this study become 
important. We also showed that the rate of discovering new 
optimal solutions is higher in problems with more objectives ,  
although the ability to keep optimal solutions in the population 
reduces with the number of objectives .  

As future work, we would like to analyze population size 
and its relationship to scalability using larger landscapes and 
other problems. Also, we would like to analyze in a similar 
manner other multi and many-objective optimizers that use 
different strategies for survival selection. Particularly, it will be 
interesting to study the behavior of indicator based algorithms 
[7] .
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