
HAL Id: hal-00825277
https://hal.science/hal-00825277v1

Submitted on 23 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking application network performance in Home
Gateways

Ahlem Reggani, Fabian Schneider, Renata Teixeira

To cite this version:
Ahlem Reggani, Fabian Schneider, Renata Teixeira. Tracking application network performance in
Home Gateways. 4th International Workshop on TRaffic Analysis and Classification (TRAC 2013),
Jul 2013, Cagliari, Italy. pp.1150-1155, �10.1109/IWCMC.2013.6583719�. �hal-00825277�

https://hal.science/hal-00825277v1
https://hal.archives-ouvertes.fr

Tracking application network performance in Home
Gateways

Ahlem Reggani
UPMC Sorbonne Universités and CNRS,

LIP6, Paris, France
ahlem.reggani@lip6.fr

Fabian Schneider
NEC Laboratories Europe,

Heidelberg, Germany
fabian@ieee.org

Renata Teixeira
UPMC Sorbonne Universités and CNRS,

LIP6, Paris, France
renata.teixeira@lip6.fr

Abstract—Home gateways offer Internet connectivity for all
devices in the home, allowing services such as telephony or
gaming. However, typical home gateways do not include any
mechanism to guarantee optimal performance when applications
are competing for the same resources. In this paper we outline
an application performance optimization approach for home
networks. In particular we study the feasibility of application
performance tracking on home gateways, which involves both
identification of active applications and monitoring their perfor-
mance. Our results show that although the home gateway has
limited resources, it still has the capacity to do more than just
forwarding packets. It can collect and export all the information
needed to perform our application performance optimization.

Keywords—Network performance diagnosis, Home gateway,
passive measurements

I. INTRODUCTION

With the spread of broadband Internet access [11], more
and more people have Internet at home. Various services allow
users in a household to perform professional and personal
tasks. But running different network services simultaneously
can lead to performance degradation. Home users face many
performance problems due to various reasons [9], [21]. For
instance, a kid downloading a big file can disturb the quality
of his parents conference call over Skype. Although, the
download only marginally suffers from the minimal bandwidth
requirements of the Voice over IP call, the latter requires low
latency, which is negatively affected by the download if both
share a single queue. The problem is twofold: First, most
home users only have limited technical skills and thus have
no understanding of performance degradation reasons. Second,
even if these skills are present contemporary home network
devices offer almost no options to prioritize traffic and identify
and resolve resource conflicts.

As for the previous example, when network performance
degrades users can only wonder why their conference call
quality is bad? Are there competing applications? Is it the
router? Or the ISP? Maybe the VoIP server is overloaded
. . . In this paper we want to propose a new approach to help
users in such situations by tracking home network application
performance. Our solution leverages the home gateway as the
tracking point. Not only is all home network traffic passing
through the home gateway. It is also the ideal point to tell apart
the traffic from different user devices and network services as

978-1-4673-2480-9/13/$31.00 c© 2013 IEEE

well as to distinguish between internal and external problems
(home/ISP).

Home performance tracking consists of two main parts,
identifying active applications and monitoring their perfor-
mance. The first step is application identification, where we
analyze traffic to identify the set of active applications. The
second, performance monitoring, is about extracting perfor-
mance metrics from the flows belonging to each individual
application. Applications have different requirements on the
network. If we consider the previous example, using the perfor-
mance tracking metrics we can evaluate the actual bandwidth
used for download and the impact on the latency required for
the Skype conference call. Thus, we can optimize these two
parameters to ensure that the quality of the Skype call will
not degrade by enforcing a maximum delay for its packets.
Based on the application type and the performance metrics an
optimal network resource utilization can be determined and
enforced. The resource requirements of applications can either
be manually configured or learned from past measurements
(e.g. when an application was the sole active application at a
time).

Solutions for application performance optimization exists
but only based on end-hosts [6], [16]. Performance optimiza-
tion in home networks however requires a complete view of all
home network traffic. This can either be achieved by placing
the monitor on the home gateway or by putting a monitor
on each end-host. With the increasing number (tablets, smart-
phones) of more and more different types (laptops, gaming
consoles, set-top-boxes, smart-home, eHealth, etc.) of network
devices at home, the task of developing a solution that runs
on every platform appears non-viable. Our home gateway
based solution only needs to support a single platform. It can
easily replace the existing home gateway, given that home
gateways are small and cheap and mainly passive devices
without user’s data stored on them. On the other hand this
also means it has limited resources which makes it challenging
to run computationally expensive performance optimization
algorithms on them. In this paper we:

1) Present our overall approach on how to optimize the uti-
lization of network resources in home networks (in Sec-
tion II) consisting of several components including mon-
itoring, application detection, metric computation, re-
source optimization and traffic shaping;

2) Discuss which metrics are required and review existing
measurement tools that provide these metrics (in Sec-
tion III);

Fig. 1. Performance Optimization System.

3) Study the CPU and I/O capacity of typical home gate-
ways beyond pure forwarding of traffic (Section IV) and
assess the resource consumption of the traffic monitoring
component of our solution (Section V);

4) Examine the overhead involved in exporting the moni-
tored data to an external metric computation and opti-
mization element (in Section VI).

Moreover we discuss how to best perform application identifi-
cation (in Section VII, present our current state of implemen-
tation, (in Section VIII and conclude (in Section IX).

II. THE OVERALL APPROACH

We envision a system that will control traffic in the home
network according to application requirements and household
priorities. The network resource requirements vary from one
application to another. Some will need low delay while others
require high throughput. Household priorities also change
depending on activity and over time. A user can give more
importance to his mails while working, his file download
while installing software or his video streaming when relaxing.
Both application requirements and household priorities help to
decide how to allocate resources. For this optimization system
to exercise the required level of control, it must be installed
mainly in the home gateway. Figure 1 shows the complete
approach of our performance optimization system at home.

When traffic traverses the home gateway (step 1), the traffic
monitoring module records flow and packet information (step
2) for the purpose of determining current active applications
along with their performance metrics (application identifica-
tion and performance metric computation). This information is
send to the traffic optimizer (step 3). The optimizer processes
this information and assigns the corresponding application
traffic profiles. Further it identifies the resource requirements
for a given profile and according to the user configura-
tion (application/household priorities) sends control parameters
(download/upload speed, queue length) to the traffic controller
(step 4) which will tune the traffic to prevent performance
degradation.

In the following we explain each module of this system in
more detail:

• Traffic Monitor, this module is composed of a modified
version of the BISMark-passive [25] function to per-
form passive traffic measurement. BISMark-passive was
originally developed by researcher from Georgia Tech
for the purpose of passively monitoring network traffic
and periodically sending small anonymized updates to
a central server for analysis to help understand home
network usage. The recorded packet and flow information
is send to the . . .

• Application identification & performance metric com-
putation, a process to detect applications and their per-
formance metrics. For any incoming traffic, this process
will identify active applications and their corresponding
metrics (bandwidth, packet loss, latency, etc.) and send
them to the . . .

• Traffic Optimizer, this module takes as input the active
applications with their performance metrics. In addition,
it needs existing knowledge (e. g., learned before) about
application performance profiles (ranges of acceptable
performance for different metrics). This module will
combine these information and the user priority to give
as output the optimal shaping parameters for the . . .

• Traffic Controller, this module is designed to apply
traffic shaping and traffic prioritization in order to forward
the traffic in the best form that avoids performance
degradation. Some tools as tc [1] and/or netem [2] could
be used for traffic shaping.

• User configuration, a learning module that records the
priority that the user assigns to each application (class of
applications). Its output will be included in the Optimizer
decision process.

While it is clear that the traffic monitor and the traffic
controller need to run inside the home gateway, there is some
design space on where to run the application identification and
performance metrics calculation, the traffic optimizer, and the
user configuration.

The proposed modules and their functions need a consider-
able processing power to be performed. In the remainder of this
paper we want to address the question how much processing
can be done in the home gateway and discuss the overhead of
exporting information from the gateway. In this paper, we focus
primarily on the Traffic Monitor and Application identification
and metric computation modules. In the following section we
will discuss which performance metrics we need to monitor.

III. COLLECTION OF APPLICATION PERFORMANCE
METRICS

Understanding network application performance is a pre-
requisite to allocating network resource in a way that users are
satisfied. In networking application performance is represented
with performance metrics such as throughput, delay and jitter.
Other metrics such as the number of retransmissions in a
connection as well as the number of concurrent connections
will help us better diagnose the current situation. In addition
we need to be able to identify the (type of) application which
causes a certain piece of traffic. Thus we aim to collect all
these metrics on a gateway.

Inferring and monitoring network performance metrics has
been well studied. Different tools have been developed to help

users and researchers measure simple network metrics. In the
following we explore the suitability of existing tools for our
purposes.

a) Dedicated metric measurements:: For instance,
Pathload measures bandwidth [12], T-rat evaluates the rates
at which flows transmit data [27], or King estimates delay by
measuring the delay between the closest DNS servers [24].
These tools are actively monitoring a dedicated metric by
issuing probes. Despite being fairly accurate the required
measurement overhead is a concern to our approach which
is supposed to operate permanently.

b) Network performance diagnose:: There are also pas-
sive tools that extract network performance metrics. For exam-
ple, tcptrace uses traces collected on end-hosts to compute a
set of metrics for each observed connection such as amount of
bytes sent and received, number of retransmissions, throughput
and others [18]. Similarly, HostView is a monitoring tool [14]
that records packet header traces and information about appli-
cations and user environment. HostView relies on gt [8], for
application identification.

As we can see, many tools already exists to measure vari-
ous metrics. But, these tools have been developed to perform
measurements on end-hosts. Moreover, they are not optimized
for low resource consumption but rather for high accuracy hap-
pily investing more resources. For our performance tracking
technique however, we need gateway-based monitoring tools.
We can not directly apply the existing solutions for end-hosts
in gateways. First, because of the limited resources in home
gateways. Second, because on the gateway we do not have
access to the same information as we have on end-hosts (e. g.,
process executable or network stack details).

c) In-network traffic monitoring: An approach closer to
our needs is collecting network flow measurements. Protocols
like NetFlow collect IP traffic information, for instance source
and destination IP’s, ports, Timestamps for the flow start and
finish time, number of bytes and packets observed in the
flow and so on. NetFlow is powerful for collecting IP traffic
statistics on all interfaces where it is enabled. Some of our
required metrics can be computed from such information.
However, it does not collect all the information our tracking
needs (e.g. domain names) and is hard to extend.

This is why we base our work on the BISMark
firmware [25]. While monitoring a similar set of information
compared to NetFlow it is tailored for the use on home
gateways (low resource consumption), and easily extensible.
The firmware includes the BISMark-passive function which
passively collects traces including flow and packet records
(timestamps, size, ports, IP addresses, transport protocol and
IP to domain name mappings from DNS traffic). These
(anonymized) traces are periodically send to a central server
for analysis.

Looking at the list of metrics we are interested in at the
beginning of this section, we can already calculate many but
not all of our desired metrics. In fact, the collection process
does not include sequence numbers, acknowledgment numbers
and TCP flags which are required to compute round-trip-time,
jitter, and retransmissions. For that purpose, we extend the
BISMark-passive software to collect the missing metrics by
directly changing the implementation to fit our needs.

Throughput Bandwidth [Mbps]

C
P

U
 U

s
a

g
e

 [
%

]
0

2
0

4
0

6
0

8
0

1
0

0

1 6 20 100 200 500

MIPS1
MIPS2
MIPS3
Geode
ARM
Atom

Fig. 2. CPU consumption for six home gateways (MIPS1: Linksys
WRT54GL, MIPS2: Dlink DIR-615, MIPS3: Netgear WND3700, AMD
Geode LX, OpenRD Kirkwood ARM, Intel Atom 330)

BISMark achieves low resource utilization through three
major mechanisms. First, no computation of metrics is per-
formed on the gateway. Second, it only sends incremental
updates to the server, e. g., , the flow information (IPs, ports,
transport protocol) is send only once and referred to with a
connection identifier afterwards or most timestamps are only
relative timestamps and thus require less bits to encode. Third,
Bismark limits it memory usage for trace data. It records traces
in chunks of 30 seconds and each chunk will not store more
than a preset number of packets and flows (default: 216). Then,
each 10 minutes all chunks are compressed, sent to a server
and deleted on the gateway.

IV. HOME GATEWAY CONSTRAINS

Home gateways typically come as small and cheap boxes
build out of embedded hardware with low resources. Their
limitations include low processing power, small memory size
and most times no storage. Different types and brands of
gateways are available.

Given the low resources in home gateways, our first ques-
tion is: Can we do more than just forward packets through the
gateway? Figure 2 shows the CPU consumption for 6 different
gateways in the market, while forwarding packets at different
bandwidth (x-axis). We refer to our technical report [22] for
the detailed test setup, measurement procedure, and further
results. Each gateway has a maximum forwarding bandwidth,
beyond which no measurements are reported in this plot.

We observe that even at 100 Mbps most gateways have
CPU resources left to capture and process packets. Only the
aged WRT54GL (MIPS1) already reaches its CPU limit. While
the Atom and ARM boxes easily achieve several hundreds
of Mbps, with today’s Internet access link speeds, 50 Mbps
should suffice for almost all users. The Netgear WNDR3700
(MIPS3) is a good compromise between cost (80 USD) and
performance (60 % remaining CPU @ 50 Mbps). We conclude
that more than half of the CPU cycles are left for, e. g., packet
capture, network metrics computation, or application detection.
Thus we select it for further study.

Although CPU capacity is the prime concern, home gate-
ways also have only a small amount of flash memory and

Throughput Bandwidth [Mbps]

C
P

U
 U

s
a

g
e

 [
%

]
0

2
0

4
0

6
0

8
0

1
0

0

1 6 20 100 200 500

losing packets,
beyond 100Mbps,
in both setups

Fwd only
BISmark−passive

Fig. 3. CPU consumption for forwarding only and running Bismark-passive.
Note that the gateway starts losing packet in both setups beyond 100 Mbps.

typically no disk storage space. Thus memory management is
an important concern for our approach. The WNDR3700v2
ships with 64 MB of RAM and 16 MB of flash memory.
After this general performance evaluation we now continue
evaluating BISMark-passive’s performance on the selected
home gateway.

V. BISMARK PASSIVE EVALUATION

As explained in Section III, we rely on BISMark-passive
software to build an extended technique for application per-
formance tracking. Bismark-passive captures all traffic passing
through the gateway using the de facto standard libpcap library.
It then analyzes the recorded packets and extracts the informa-
tion described in Section III. Periodically differential updates
of the extracted information [4] are gzipped and exported to a
server. In Figure 3 we evaluate the BISMark-passive software
by comparing its resource consumption against the case of
just forwarding packets from last section, when running in the
MIPS3 gateway.

As expected the additional task of capturing packets and
analyzing them causes noticeably higher CPU consumption at
bandwidths beyond 5 Mbps. At typical home network speed
(20Mbps), BISMark-passive requires twice as much resources
(40% in total) than just forwarding the packets. However
the additional CPU requirements of BISMark-passive remain
almost constant when looking at 50 Mbps still leaving 40 %
of the CPU for other tasks. Yet, at maximum forwarding rate
(96 Mbps) BISMark-passive uses the entire CPU capacity.

This evaluation tells that BISMark-passive already con-
sumes a decent amount of CPU. Thus, if in addition we com-
pute all our required metrics, run the performance optimization
and the resulting traffic shaping in the gateway, it will generate
a high overhead in terms of CPU/memory usage and is likely
to run out of resources at high rates.

To avoid a possible lack of resources, our idea is to
split the application performance tracking between the home
gateway, which is mainly monitoring and extracting packet
and flow information, and an additional computation element,
which will analyze the compute the performance metrics and
determine an optimized resource utilization. The result of this

0 5 10 15

0
5

1
0

1
5

Packet Rate (kpkts/s)

O
ve

rh
a
e
d
 p

e
r

tr
a
c
e
 (

M
B

)

2
D

 H
is

to
g
ra

m
 o

f
m

e
a
s
u
re

d
 o

ve
rh

e
a
d
 (

lo
g
s
c
a
le

)

mem limit

min

max

Theoretical WorstCase

Theoretical BestCase

0.0 0.1 0.2 0.3 0.4

0
.0

0
0
.1

5
0
.3

0

Fig. 4. Distribution of the real collected traces overhead as a function of
packet rate

optimization is a set of policies (prioritization rules, QoS
parameters) that the home gateway will need to apply to the
traffic passing through it. The computation element, could be
a laptop or media server at home or “cloudified” resources of
a dedicated performance management service.

However with this approach, we need to export information
from the gateway in order to be processed outside (computa-
tion element). This incurs additional bandwidth requirements,
which we will study in the next section. But with this approach
we can trade-off home gateway CPU utilization for increased
upload bandwidth.

VI. OVERHEAD OF PERFORMANCE TRACKING

With the insights from the last section on scarce CPU
resources and our approach to ship of the collected information
from BISMark to a computation element, we need to ensure the
offloading overhead is manageable. Recall that we extended
BISmark-passive to collect more traffic information in order
to enable our application performance tracking. This causes
additional overhead which has to be taken into account.

The difficulty is now that our deployment of the extend
BISMark software has not left the lab experimentation stage,
and we have no data from a real world deployment. Yet, from
analyzing the code of BISMark we know that the overhead
which is equivalent to the size of the collected traces only
depends on the number of packets and the number of flows
that it contains. We also know how much data is produced per
packet and per flow seen by the home gateway. Thus, we can
combine these constants with real world data collected with
the unmodified BISMark firmware, to estimate the required
overhead of our extended version. This data was made avail-
able to us by the researcher from the BISMark project, which
collected these real world traces from 24 different home users
using BISMark gateways.

Figure 4 shows the distribution of the estimated overhead
(MB) from real world traces as a function of packet rate
(K packets/s) in a two-dimensional histogram, where darker
regions indicate high numbers of traces matching the region.
In addition we show theoretical boundaries (worst and best
case). At a given packet rate these boundaries represent the

two extreme cases: (i) Either every packet in the trace belongs
to a different (and new) traffic flow. This represents the worst
case as we need both a packet and a flow entry for each packet.
Or (ii) where every packet in the trace belongs to the very same
flow. In which case we still need to store a packet entry for
each packet but only one flow entry. Finally we assume that
we use no more than 4MB of the gateway memory (RAM
only) which is shown as a discontinuous helper line.

As a first takeaway from Figure 4, we find that the real
world data matches closely with the theoretical best case. This
means that we observe many more packets than different flows,
which matches our expectation. If we look at the zoomed inset
(small picture, <400 packet/s, 97 % of all the traces), we see a
higher variation in the overhead, with some traces reaching the
worst case boundary. Yet, at low packet rates also the absolute
overhead is small.

To better understand the packet rate, we transform (K
packets/s) to (Mbps) assuming an average packet size of
660 bytes from [5]. Thus, based on average packet sizes 5K,
10K, and 15K packtes/s would translate into 26, 53, and
79 Mbps. The figure shows that the memory limitation is
respected up to 8K packets/s, as the best case is prevailing at
these packet rates. Although this would translate to 42 Mbps,
using average packet sizes, we already know that in the best
case we see many more packet than flows. Thus we have less
small TCP maintenance packets (i. e., SYN, ACK, FIN) and
likely many full sized packets. Using full sized (1500 bytes)
packets 8K packets/s translate into 90 Mbps.

Looking at our overall approach the findings from this
overhead estimation show that it is no problem to collect
and export the collected data. Although a worst case of
4 MB memory limit every 30 sec would translate into an
uplink bandwidth requiredment of 1 Mbps, this case is highly
unlikely. On the one hand the traces are compressed once they
are collected which reduces their size to 25 %–50 %. On the
other hand from the distribution of packet rates we observe
in the data, high packet rate occur only in very few cases
(<0.1 %).

VII. APPLICATION IDENTIFICATION

Many projects already map network flows to application
names. What makes application identification in our case more
challenging is that we need to develop techniques that offer
fast application identification and consume small amount of
resources if we want to run it in the gateway. On the other
hand for our purpose it might suffice to only detect a certain
class of traffic as defined by its network performance profile,
i. e., the classes requirements on the network.

In general like for the network performance measurement
tools there are two major classes of tools for labeling network
traffic with their corresponding application. There are end-
host based tools such as ETW [10] (Windows only), lsof or
GT [8] (for UNIX based systems) which associate flows with
the appropriate socket entry from the kernel socket tables.
Despite their high accuracy, these tools are not possible to
use in our gateway-based approach. Thus we need to resort to
non end-host based application identification techniques such
as port based classification or deep packet inspection (DPI).

As an additional requirement for our application performance
tracking, we need to identify active applications in real-time.

The BISMark project already tested a DPI solution, namely
the TIE tool [7] which proved to consume too much resources
for permanent operation. Given that other DPI solutions such
as snort [23] or bro [19], [20] have a extended functionality
over TIE, those will likely also consume too much resources.
Thus, a gateway-based application identification requires a
simpler and less heavy solution.

Considering our data collection process which does not
include full packet headers, real-time application classifica-
tion [17] can be a suitable solution. Although, this technique
has a training phase that might be resource consuming, we
believe it is a good start because it only needs the timings and
sizes of the first packets of a TCP connection [3]. This solution
could also be implemented on a computational element outside
the home gateway, and the information collected with our
extended BISMark software suffices as input. Our idea is to
combine this application classification tool with port-based
classification and the analysis of domain names collected
from BISMark-passive. For HTTP traffic, destination names
are especially useful to identify related services. Then to
distinguish between different HTTP services, we can also use
content-type. If any traffic carries content-type, we can identify
whether it is an image, a video, or simple text.

VIII. IMPLEMENTATION

Given the implementation challenges that home gateways
bring, the evaluation in this paper is crucial for any imple-
mentation decision we choose. In order to track application
performance, we modify BISMark-passive implementation.
For our collection process we add sequence numbers, ac-
knowledgment numbers and TCP flags in the collected traces.
They will be valuable to compute round-trip-time, jitter, and
retransmissions.

We are working on a first small deployment of BISMark
boxes to collect traffic using our modified BISMark-passive
function. The dataset will allow us to deepen our understanding
of home traffic and help avoid performance degradation issues.
We aim at performing the collection period for a long time in
different homes. We already started this step by changing the
BISMark-passive code, setting up the gateways and preparing
the agreement for the users who will be hosting the gateways
at their homes.

We also have already investigated implementation solutions
of our final optimization solution. We will start by testing
available tools such as WonderShaper [26]. We choose this
tool because it already provides low latency for interactive
traffic, allows web surfing at reasonable speeds while upload-
ing/downloading, and ensures uploads/downloads do not hurt
one another.

IX. CONCLUSION

Home networks and application performance are two chal-
lenging areas for study. In our work, we aim at avoiding
performance degradation of all active applications in a home
network by tracking their performance from home gateways.
We discuss the gateway resource limitations along with the

trade-off between different implementation strategies (end-
host vs home gateway). Besides, we introduce our modified
version of BISMark-passive that collects valuable information
for application identification. We show that even if it generates
an additional overhead, the results are promising for a use of
an application identification technique along with this traffic
collection process. We explain possible application identifi-
cation techniques and discuss our solution implementation.
Our overall evaluation shows that it is possible to perform an
application performance degradation technique from the home
gateway following our guidelines.

Future work. We are currently working on the BISMark-
passive software implementation changes. When the extended
version will be ready, we intend to use it on our Netgear boxes.
We hope to recruit many users to deploy our home gateways
and start monitoring traffic.

Later, we plan the build the complete system that controls
and avoids performance degradation in home networks. Here,
we need to perform another resource consumption study for
the traffic control box on the home gateway.

Our final goal is to improve user perception. We believe
that our system combined with end-hosts measurements is an
efficient solution to achieve our goal. In fact, work on the cor-
relation between user perception and application performance
from [13] is complementary to our system and can be used to
improve user experience.

An additional idea for the future is to integrate our home
performance optimization approach with a prediction tech-
nique for user (dis-)satisfaction [15], using the same data that
we already collect.

Acknowledgments. We thank Sam Burnett and Srikanth
Sundaresan for their help with the BISMark part.This work
was supported by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) no. 258378 (FIGARO) and
carried out at LINCS (www.lincs.fr).

REFERENCES

[1] http://lartc.org/manpages/tc.txt.
[2] http://www.linuxfoundation.org/collaborate/workgroups/networking/

netem.
[3] BERNAILLE, L., TEIXEIRA, R., AND SALAMATIAN, K. Early ap-

plication identification. In Proceedings of the 2006 ACM CoNEXT
conference (New York, NY, USA, 2006), CoNEXT ’06, ACM, pp. 6:1–
6:12.

[4] BISMark-passive. https://github.com/projectbismark/bismark-passive.
[5] BORGNAT, P., DEWAELE, G., FUKUDA, K., ABRY, P., AND CHO, K.

Seven years and one day: Sketching the evolution of internet traffic. In
INFOCOM (2009), pp. 711–719.

[6] CHETTY, M., BANKS, R., HARPER, R., REGAN, T., SELLEN, A.,
GKANTSIDIS, C., KARAGIANNIS, T., AND KEY, P. Who’s hogging
the bandwidth: the consequences of revealing the invisible in the home.
In Proceedings of the 28th international conference on Human factors
in computing systems (New York, NY, USA, 2010), CHI ’10, ACM,
pp. 659–668.

[7] DAINOTTI, A., DONATO, W., AND PESCAPÉ, A. Tie: A community-
oriented traffic classification platform. In Proceedings of the First
International Workshop on Traffic Monitoring and Analysis (Berlin,
Heidelberg, 2009), TMA ’09, Springer-Verlag, pp. 64–74.

[8] GRINGOLI, F., SALGARELLI, L., DUSI, M., CASCARANO, N., RISSO,
F., AND CLAFFY, K. C. Gt: picking up the truth from the ground for
internet traffic. SIGCOMM Comput. Commun. Rev. 39, 5 (Oct. 2009),
12–18.

[9] GRINTER, R. E., EDWARDS, W. K., CHETTY, M., POOLE, E. S.,
SUNG, J.-Y., YANG, J., CRABTREE, A., TOLMIE, P., RODDEN, T.,
GREENHALGH, C., AND BENFORD, S. The ins and outs of home
networking: The case for useful and usable domestic networking. ACM
Trans. Comput.-Hum. Interact. 16, 2 (June 2009), 8:1–8:28.

[10] INSUNG, PARK AND RICKY, BUCH. Improve Debugging And Perfor-
mance Tuning With ETW. http://msdn.microsoft.com/en-us/magazine/
cc163437.aspx.

[11] Internet World Stats. http://www.internetworldstats.com/dsl.htm.
[12] JAIN, M., AND DOVROLIS, C. Pathload: A measurement tool for end-

to-end available bandwidth. In In Proceedings of Passive and Active
Measurements (PAM) Workshop (2002), pp. 14–25.

[13] JOUMBLATT, D., GOGA, O., TEIXEIRA, R., CHANDRASHEKAR, J.,
AND TAFT, N. Characterizing end-host application performance across
multiple networking environments. In INFOCOM, 2012 Proceedings
IEEE (March), pp. 2536–2540.

[14] JOUMBLATT, D., TEIXEIRA, R., CHANDRASHEKAR, J., AND TAFT,
N. Hostview: annotating end-host performance measurements with user
feedback. SIGMETRICS Perform. Eval. Rev. 38 (January 2011), 43–48.

[15] JOUMBLATT, D., TEIXEIRA, R., CHANDRASHEKAR, J., TAFT, N.,
AND BRANISLAV, K. Predicting user dissatisfaction with internet
application performance at end-hosts. In INFOCOM, 2013 Proceedings
IEEE (march 2013). (accepted for publication).

[16] KARAGIANNIS, T., AND PETER, K. Homemaestro: Distributed moni-
toring and diagnosis of performance anomalies in home networks. Tech.
rep., Microsoft Research, 2008.

[17] L.BERNAILLE. Real-time application classificationin the Internet. Ph.
d. thesis, Université Pierre et Marie Curie, 2007.

[18] OSTERMANN, S. Tcptrace: A tcp connection analysis tool. URL:
http://www. tcptrace. org (2000).

[19] PAXSON, V. Bro: a system for detecting network intruders in real-time.
Computer Networks 31, 23-24 (1999), 2435–2463.

[20] PAXSON, V. Bro intrusion detection system, 2013. http://www.bro-ids.
org.

[21] POOLE, E. S., CHETTY, M., GRINTER, R. E., AND EDWARDS, W. K.
More than meets the eye: Transforming the user experience of home
network management, 2008.

[22] REGGANI, A., AND SCHNEIDER, F. Packet capture on home gateways:
Is it feasible? Tech. Rep. hal-00763742, UPMC Sorbonnes Universites
and CNRS, Paris, France, Mars 2011.

[23] Snort, 2013. http://www.snort.org.
[24] STEFAN, K. G., SAROIU, S., AND GRIBBLE, S. D. King: Estimating

latency between arbitrary internet end hosts. In SIGCOMM Internet
Measurement Workshop 2002 (2002).

[25] SUNDARESAN, S., DE DONATO, W., FEAMSTER, N., TEIXEIRA, R.,
CRAWFORD, S., AND PESCAPÈ, A. Broadband internet performance:
a view from the gateway. In Proceedings of the ACM SIGCOMM
2011 conference (New York, NY, USA, 2011), SIGCOMM ’11, ACM,
pp. 134–145.

[26] Wonder Shaper. http://lartc.org/wondershaper/.
[27] ZHANG, Y., BRESLAU, L., PAXSON, V., AND SHENKER, S. On the

characteristics and origins of internet flow rates. In Proceedings of
the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications (New York, NY, USA, 2002),
SIGCOMM ’02, ACM, pp. 309–322.

