Supporting Information for

Stability and solid-state polymerization reactivity of imidazolyl- and benzimidazolyl-substituted diacetylenes: pivotal role of lattice water

Karim Fahsi, ${ }^{\text {a }}$ Jérôme Deschamps, $\S^{\text {a }}$ Kamel Chougrani, Il $^{\text {a }}$ Lydie Viau, ${ }^{a}$ Bruno Boury, ${ }^{a}$ André Vioux, ${ }^{a}$ Arie van der Lee ${ }^{\text {b }}$ and Sylvain G. Dutremez*a

[^0]§ Present address: Université Blaise Pascal, Institut de Chimie de ClermontFerrand, Groupe MO, BP 10448, 63000 Clermont-Ferrand, France.
II Present address: Société Chryso, 7 rue de l'EUROPE, 45300 SERMAISES du Loiret, France.

Contents

Results and discussion 2
References 5
Tables 6
Figures 9

Results and discussion

Detailed description of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding interactions present in 1,6-bis(1-imidazolyl)-2,4-hexadiyne monohydrate (2)

The first hydrogen-bonding pattern has a geometry that resembles that of an acetylacetonate (acac) ligand in coordination chemistry. The $\mathrm{C} 2-\mathrm{H}$ fragment of the imidazolyl ring and the CH_{2} group both point at the water molecule $(d(\mathrm{H} 31 \cdots \mathrm{O} 1)=2.756 \AA, d(\mathrm{C} 3 \cdots \mathrm{O} 1)=3.559 \AA$, $\angle \mathrm{C} 3-\mathrm{H} 31 \cdots \mathrm{O} 1=139.20^{\circ} ; d(\mathrm{H} 72 \cdots \mathrm{O} 1)=2.478 \AA, d(\mathrm{C} 7 \cdots \mathrm{O} 1)=3.426 \AA, \angle \mathrm{C} 7-\mathrm{H} 72 \cdots \mathrm{O} 1=$ 158.53°, see Table S1), and the H31, C3, N2, C7, and H72 atoms are nearly in the same plane (rms deviation of fitted atoms $=0.0067 \AA$; the angle between the H31-C3-N2 plane and the N2-C7-H72 plane is 2.33°). A survey of the Cambridge Structural Database (CSD) ${ }^{1}$ indicates that this geometry is fairly common for hydrates possessing imidazole- CH_{2} fragments. Also interesting in the case of $\mathbf{2}$ is the fact that the strongest $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are $\mathrm{CH}_{2} \cdots \mathrm{O}$ interactions and not those involving imidazolyl hydrogens. This observation is counterintuitive on the basis of $\mathrm{p} K_{\mathrm{a}}$ values: the experimentally determined $\mathrm{p} K_{\mathrm{a}}$ value of the C2-H proton of 1-methylimidazole is 33.1 (theoretically determined $\mathrm{p} K_{\mathrm{a}}=35.1$), ${ }^{2}$ and the $\mathrm{p} K_{\mathrm{a}}$ value of methane is $48 .^{3}$ Yet, the situation is not unusual and, for a number of non-ionic compounds (i.e. not imidazoliums and not N-oxides) for which the imidazole part and the CH_{2} group interact with the same water molecule, it is observed that $\mathrm{CH}_{2} \cdots \mathrm{OH}_{2}$ interactions are stronger than $\mathrm{C} 2-\mathrm{H} \cdots \mathrm{OH}_{2}$ interactions (Table S2).

The second hydrogen-bonding pattern is quite different from the first one. In this case, the C5-H fragment of the imidazolyl ring (see generic numbering scheme in Scheme 3) interacts with the water molecule $(d(\mathrm{H} 61 \cdots \mathrm{O} 1)=2.509 \AA, d(\mathrm{C} 6 \cdots \mathrm{O} 1)=3.341 \AA, \angle \mathrm{C} 6-$ $\mathrm{H} 61 \cdots \mathrm{O} 1=143.53^{\circ}$, see Table S1), and the CH_{2} group interacts with a nearby imidazolyl nitrogen $\left(d(\mathrm{H} 71 \cdots \mathrm{~N} 4)=2.590 \AA, d(\mathrm{C} 7 \cdots \mathrm{~N} 4)=3.529 \AA, \angle \mathrm{C} 7-\mathrm{H} 71 \cdots \mathrm{~N} 4=160.15^{\circ}\right)$. Owing to the fact that the $\mathrm{C} 6-\mathrm{H} 61$ and $\mathrm{C} 7-\mathrm{H} 71$ bonds interact with different hydrogen-bond acceptors, the H61, C6, N2, C7, and H71 atoms do not lie in the same plane (rms deviation of fitted atoms $=0.2094 \AA$; the angle between the H61-C6-N2 plane and the N2-C7-H71 plane is 22.06°). It is also noteworthy that the $\mathrm{C} 5-\mathrm{H} \cdots \mathrm{OH}_{2}$ interactions observed in this second hydrogen-bonding pattern are much stronger than the $\mathrm{C} 2-\mathrm{H} \cdots \mathrm{OH}_{2}$ interactions observed in the first one. Interestingly, a similar situation is observed in the X-ray crystal structure of tetrakis(1H-imidazol-1-ylmethyl)methane pentahydrate (refcode PUNCAD in Tables S2 and $\mathrm{S} 3):{ }^{4} \mathrm{C} 5-\mathrm{H} \cdots \mathrm{OH}_{2}$ distances are, on the average, shorter than $\mathrm{C} 2-\mathrm{H} \cdots \mathrm{OH}_{2}$ distances. This
phenomenon cannot be ascribed to a difference in $\mathrm{p} K_{\mathrm{a}}$ values between $\mathrm{C} 5-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H}$ as the two protons have identical $\mathrm{p} K_{\mathrm{a}}$ values (theoretically determined $\mathrm{p} K_{\mathrm{a}}$ values $=35.1$). ${ }^{2}$ Presumably, crystal packing forces and/or geometrical constraints are responsible for this situation.

Detailed description of the $\pi \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions present in $1,6-\operatorname{bis}(1-$ benzimidazolyl)-2,4-hexadiyne (5)

There are two types of $\pi \cdots \pi$ interactions in 5. In the first type (Figure S1), the interacting benzimidazole rings are parallel with an offset distance of $1.838 \AA$. Interaction between the benzimidazolyl groups takes place through the imidazole fragments. The perpendicular distance between the imidazole rings is $3.347 \AA$, the $\mathrm{Cg} \cdots \mathrm{Cg}$ distance $(\mathrm{Cg}$ is the centroid position of the imidazolyl ring) is $3.819 \AA$, and the angle between the $\mathrm{Cg}-\mathrm{Cg}$ vector and the normal to the imidazolyl ring is 28.8°. These parameters are comparable to those found for metal complexes with pyridine-based ligands. ${ }^{5}$ A survey of the Cambridge Structural Database (CSD) ${ }^{1}$ revealed eleven single-component, non-ionic, benzimidazole-based compounds with a $\mathrm{Cg} \cdots \mathrm{Cg}$ distance smaller than $4.0 \AA$: the minimum value was $3.381 \AA$, the maximum value $3.817 \AA$, and the mean distance $3.569 \AA$. Thus, the $\pi \cdots \pi$ interaction observed in $\mathbf{5}$ does not seem to be very strong.

This intermolecular $\pi \cdots \pi$ interaction is supplemented by two symmetrical C-H $\cdots \pi$ interactions (Figure S1). The C-H bonds are those of methylene groups and the π clouds belong to imidazolyl fragments. The geometrical parameters for these identical interactions are: $d(\mathrm{H} 152 \cdots \mathrm{Cg})=2.971 \AA, d(\mathrm{C} 15 \cdots \mathrm{Cg})=3.470 \AA$, and $\angle \mathrm{C} 15-\mathrm{H} 152 \cdots \mathrm{Cg}=112.68^{\circ} . \mathrm{A}$ survey of the Cambridge Structural Database (CSD) ${ }^{1}$ revealed eighty-seven benzimidazolebased compounds with a $\mathrm{CH}_{2} \cdots \mathrm{Cg}$ distance smaller than $4.0 \AA$: the minimum $\mathrm{H} \cdots \mathrm{Cg}$ value was $2.590 \AA$, the maximum value $4.000 \AA$, and the mean distance $3.590 \AA$. Thus, the $\mathrm{CH}_{2} \cdots \pi$ interactions observed in $\mathbf{5}$ appear to be reasonably strong. The H 151 hydrogen borne by the C 15 methylene carbon is probably also involved in a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction with the phenyl part of the same benzimidazolyl group that H 152 is interacting with (see Figure S 1). The geometrical parameters indicate, however, that this interaction is weaker than the $\mathrm{H} 152 \cdots$ imidazolyl interaction: $d(\mathrm{H} 151 \cdots \mathrm{Cg})=3.134 \AA, d(\mathrm{C} 15 \cdots \mathrm{Cg})=3.693 \AA$, and $\angle \mathrm{C} 15-$ $\mathrm{H} 151 \cdots \mathrm{Cg}=117.73^{\circ}(\mathrm{Cg}$ is the centroid position of the phenyl part of the benzimidazolyl moiety).

The second $\pi \cdots \pi$ interaction is shown in Figure S2. It is orthogonal to the first one. As already observed in the first $\pi \cdots \pi$ interaction, this second $\pi \cdots \pi$ interaction involves the imidazole fragments from two facing benzimidazolyl groups. The interacting benzimidazole rings are parallel with an offset distance of $1.352 \AA$; the perpendicular distance between the imidazole rings is $3.295 \AA$, the $\mathrm{Cg} \cdots \mathrm{Cg}$ distance $3.562 \AA$, and the angle between the $\mathrm{Cg}-\mathrm{Cg}$ vector and the normal to the imidazolyl ring is 22.3°. This second interaction is definitely stronger than the first one.

This second intermolecular $\pi \cdots \pi$ interaction is supplemented by two symmetrical edge-on interactions (Figure S2). In each edge-on interaction, the phenyl part of a benzimidazole moiety interacts with the phenyl centroid and the imidazolyl centroid of a nearby benzimidazole moiety. The geometrical parameters for these edge-on interactions are: $d(\mathrm{H} 81 \cdots \mathrm{Cg})=3.137 \AA, d(\mathrm{C} 8 \cdots \mathrm{Cg})=3.808 \AA$, and $\angle \mathrm{C} 8-\mathrm{H} 81 \cdots \mathrm{Cg}=130.96^{\circ} ; d(\mathrm{H} 71 \cdots \mathrm{Cg})=$ $2.857 \AA, d(\mathrm{C} 7 \cdots \mathrm{Cg})=3.767 \AA$, and $\angle \mathrm{C} 7-\mathrm{H} 71 \cdots \mathrm{Cg}=163.86^{\circ}$. A survey of the Cambridge Structural Database (CSD) ${ }^{1}$ revealed five uncomplexed benzimidazole-based compounds for which a similar situation is observed in the solid state (refcodes QAYQIR, RUFBAW01, SURLUN, YORLEW, and WAJBOA). For these compounds, the minimum $\mathrm{C}_{\text {phenyl }}{ }^{-}$ $\mathrm{H} \cdots \mathrm{Cg}$ (phenyl) value was $2.879 \AA$, the maximum value $3.478 \AA$, and the mean distance 3.291 \AA. For the $\mathrm{C}_{\text {phenyl }}-\mathrm{H} \cdots \mathrm{Cg}$ (imidazole) interaction, the minimum $\mathrm{H} \cdots \mathrm{Cg}$ value was $2.966 \AA$, the maximum value $3.322 \AA$, and the mean distance $3.075 \AA$. Thus, the edge-on interactions observed in $\mathbf{5}$ are fairly strong.

References

1. (a) F. H. Allen, Acta Crystallogr., Sect. B, 2002, 58, 380-388; (b) CSD Version 5.32, November 2010, plus May 2011 update (562,000 entries in total), Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, U.K.
2. K. Shen, Y. Fu, J.-N. Li, L. Liu and Q.-X. Guo, Tetrahedron, 2007, 63, 1568-1576.
3. J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley \& Sons, New York, 3rd edn, 1985, p 222.
4. H.-Y. Bai, J.-F. Ma, J. Yang, Y.-Y. Liu, H. Wu and J.-C. Ma, Cryst. Growth Des., 2010, 10, 995-1016.
5. C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885-3896.

Tables

Table S1. Geometrical parameters for the hydrogen-bonding interactions involving the water molecule in solvate 2.

interaction ${ }^{a}$	distance/Å			$\frac{\text { angle/deg }}{\text { D-H } \cdots \mathrm{A}}$
	D-H	H \cdots A	D $\cdots \mathrm{A}$	
O1-H11 ${ }^{\text {i }} \cdots{ }^{\text {N }} 4^{\text {iv }}$	0.869	1.986	2.853	175.69
O1-H11 \cdots N 4^{v}	0.869	1.986	2.853	175.69
C3 ${ }^{\text {iii }}$ - $331{ }^{\text {iii }} \ldots$ O1	0.984	2.756	3.559	139.20
$\mathrm{C} 3{ }^{\text {iiii }}-\mathrm{H} 31{ }^{\text {iiii. }} \ldots \mathrm{O} 1$	0.984	2.756	3.559	139.20
C6-H61 \cdots O1	0.972	2.509	3.341	143.53
C6 ${ }^{\text {i }}$ - $61^{\text {i }}$...O1	0.972	2.509	3.341	143.53
$\mathrm{C} 7{ }^{\text {iii }}$ - $772{ }^{\text {iii }} \ldots \mathrm{O} 1$	0.998	2.478	3.426	158.53
$\mathrm{C} 7{ }^{\text {iii }}$-H72 ${ }^{\text {iii }} \ldots$ O1	0.998	2.478	3.426	158.53

${ }^{a}$ Symmetry codes: (i) $2-x, y, 3 / 2-z$; (ii) $1 / 2+x, 1 / 2-y, 1-z$; (iii) $3 / 2-x, 1 / 2-y, 1 / 2+z$; (iv) $1 / 2+x,-1 / 2+y, 3 / 2-z$; (v) $3 / 2-x,-1 / 2+y, z$.

Table S2. $\mathrm{CH}_{2} \cdots \mathrm{OH}_{2}$ and $\mathrm{C} 2-\mathrm{H} \cdots \mathrm{OH}_{2}$ distances found in the CSD for hydrates possessing non-ionic imidazole- CH_{2} fragments for which the CH_{2} and $\mathrm{C} 2-\mathrm{H}$ parts both interact with the same water molecule.

refcode	distance/Å	
	$\mathrm{CH}_{2} \cdots \mathrm{OH}_{2}$	$\mathrm{C} 2-\mathrm{H} \cdots \mathrm{OH}_{2}$
BEHBIA	2.827	2.587
DAYQOK	2.852	2.462
DUDCEL	2.548	2.963
ESEMAQ	2.852	2.552
KUQYOL	2.474	2.657
LORTUI	2.574	2.677
OFAXEZ	2.828	2.625
TAVNUA	2.750	2.849
PUNCAD ${ }^{a}$	2.972	2.504
PUNCAD ${ }^{b}$	3.089	2.687
PUNCAD ${ }^{c}$	2.679	2.584
PUPHAK	2.573	2.635

Table S3. $\mathrm{C} 5-\mathrm{H} \cdots \mathrm{OH}_{2}$ distances found in the CSD for hydrates possessing non-ionic imidazole- CH_{2} fragments.

refcode	distance/Å
	C5-H $\cdots \mathrm{OH}_{2}$
AHIMUA	2.716
GUHRAC	2.619
SANQOO	2.586
TALVUY	2.523
TISKEM	2.652
PUNCAD ${ }^{a}$	2.532
PUNCAD ${ }^{\text {b }}$	2.348
RUVDUI	2.688

Figures

Figure S1. Close-up view showing one $\pi \cdots \pi$ interaction assisted by two $\mathrm{CH}_{2} \cdots \pi$ interactions in a polymeric chain of 5 .

Figure S2. Close-up view showing one $\pi \cdots \pi$ interaction assisted by two edge-on interactions in a polymeric chain of 5 .

Figure S3. TGA (red) and DSC (blue) curves recorded during the thermolysis of $\mathbf{2}$ at $450^{\circ} \mathrm{C}$.

Figure S4. Raman spectra of 4 and poly-4.

Figure S5. UV-vis absorption spectra of 4 and poly-4.

Figure S6. Infrared spectra of 4, unwashed poly-4, and washed poly-4.

Figure S7. XRPD data of 4: observed (red), calculated (blue), and residual (black) profiles.

[^0]: ${ }^{a}$ Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, Equipe CMOS, Université Montpellier II, Bât. 17, CC 1701, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. E-mail: dutremez@univmontp2.fr; Fax: +33-4-67-14-38-52; Tel: +33-4-67-14-42-23
 ${ }^{b}$ Institut Européen des Membranes, CNRS - UMR 5635, Université Montpellier II, Case Courrier 047, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

