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Lyapunov functions for evolution variational

inequalities with locally prox-regular sets

Abderrahim Hantoute∗ and Marc Mazade†

Abstract

This paper is devoted on the one hand to the study of specific properties of

an evolution variational inequality, holding in the Hilbert setting. We give on the

other hand a general criterion for Lyapunov pairs of this dynamical system and

some results on the asymptotic behaviour of the solution.
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cone - Uniformly prox-regular set - Hypomonotonicity - Lyapunov pair - Asymptotic
behaviour.
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1 Introduction

This work is devoted on the one hand to the study of regularity properties of locally
absolutely continuous solutions of the differential inclusion

{

ẋ(t, x0) ∈ f(x(t, x0))−NP (C; x(t, x0)) a.e. t ∈ [0,+∞[,
x(0, x0) = x0, x0 ∈ C,

(1)

where C is a closed and uniformly prox-regular subset of a Hilbert space H, NP (C; ·)
denotes the proximal normal cone. On the other hand we also provide explicit criteria
to characterize Lyapunov pairs associated to differential inclusion (1) and asymptotic
behaviour results. Following [1, 29], a pair V,W : H → R ∪ {+∞} forms an a-Lyapunov
pair for differential inclusion (1) if for all x0 ∈ C, x(·, x0) satisfies

eatV (x(t, x0))− eatV (x(s, x0)) +

∫ t

s

W (x(τ, x0)) dτ ≤ 0 for all t ≥ s ≥ 0 (2)

for some a ≥ 0. As mentioned in [1], the choice of an appropriate function W in (2) can
be a key to obtain some stability properties of the solution x(·, x0). It is the same with
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the weight eat which emphazises the fact that V is decreasing.

When the set C depends on t, differential inclusion (1) is called sweeping process and
has been introduced by J.J. Moreau in the 70’s (see [25]). In [18], Henry studied planning
procedures in mathematical economy given by the differential inclusion

{

−ẋ(t) ∈ PTC(x(t))(F (x(t))) a.e. t ∈ [0, T ]
x(0) = x0 ∈ C,

(3)

where F : R
n
⇒ R

n is an upper semicontinuous set-valued mapping with nonempty
compact convex values, C is a fixed closed convex set, TC(·) is the tangent cone to C, and
PTC(x(t)) denotes the metric projection mapping onto the closed convex set TC(x(t)). B.
Cornet [14] considered (3) with a Clarke tangentially regular set C of Rn, and reduced
the problem as in [18] to the existence of a solution of

{

−ẋ(t) ∈ N(C; x(t)) + F (x(t)) a.e. t ∈ [0, T ]
x(0) = x0 ∈ C.

(P ′)

The case of moving sets C(t) in place of the fixed set C has been largely studied, for
example, when the sets C(t) are either convex or complements of open convex sets (see
[10, 11]), and also for general nonconvex closed sets of Rn (see [30]). Several other pa-
pers dealt later in the Hilbert setting with perturbed sweeping processes under uniform
prox-regularity assumptions, as the works of M. Bounkhel and L. Thibault [5], J.F. Ed-
mond and L. Thibault in [16, 17]. More recently, when C is a locally prox-regular set, M.
Mazade and L. Thibault showed in the context of a Hilbert space the well-posedness of
evolution variational inequality (1) (see [21, 22]).

For many motivations, several authors studied independently Lyapunov pairs (see
[7, 8, 9, 20, 26]). In view of developing some criteria for these functions and extend
the study in the nonsmooth case, Clarke et al. [13] called these functions ”weakly or
strongly decrease along the trajectories” and introduced Hamilton Jacobi equations whose
solutions are the lsc Lyapunov functions. The study of Lyapunov pairs of a system is also
an important tool to provide information on the trajectories on different models (see
[3, 4, 6, 28]). It is also used to obtain stability properties of second order differential
equations and nonlinear mechanical systems.
When V is smooth enough (that is C1 for example), by derivating t→ eatV (x(t, x0)), we
can show that (V,W ) forms an a-Lyapunov pair for (1) if and only if

sup
y∈H

sup
y∗∈∂ϕ(y)

V ′(y)(f(y)− y∗) + aV (y) +W (y) ≤ 0 (4)

when ϕ(·) is a lsc convex function or NP (C; ·) is replaced in (1) by a maximal monotone
operator.

Our aim here is to give an appropriate criteria and extend condition (4) considering the
proximal normal cone NP (C, ·) of a uniformly prox-regular set C in differential inclusion
(1). As in [1], we obtain a relaxed condition and prove that (V,W ) forms an a-Lyapunov
pair for (1) if and only if

sup
ξ∈∂PV (y)

inf
y∗∈NP (C;y)

〈ξ, f(y)−y∗〉+aV (y)+W (y) ≤ 0 sup
ξ∈∂∞V (y)

inf
y∗∈NP (C;y)

〈ξ, f(y)−y∗〉 ≤ 0.
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The paper is organized as follows. In the next section, we recall several notions of
nonsmooth and variational analysis, involved throughout all the paper. We also give some
specific results about the solution x(·) of (1). More precisely we estimate the derivative
ẋ(t) and the right derivative of x(·) at 0, denoted by ẋ+(0). Then, we establish in section
3 a general criterion for a-Lyapunov pairs for problem (1). The last section deals with
the asymptotic behaviour of the solution.

2 Preliminaries and regularity properties on global

trajectories

Let us recall some fundamental definitions. Throughout all the paper, (H, 〈·, ·〉) stands
for a real Hilbert space and || · || =

√

〈·, ·〉 is the associated norm. The open (resp. closed)
ball of H centered at x̄ with radius ε is denoted by B(x̄, ε) (resp B[x̄, ε]). The closed unit
ball of H will be denoted by B. For any subset C of H, coC stands for the closed convex
hull of C. Now let C be a nonempty closed subset of H and y ∈ H. The distance of y to
C, denoted by dC(y) is given by

dC(y) := inf{ ||x− y|| : x ∈ C }.

One defines the (possibly empty) set of nearest points of y in C by

ProjC(y) := {x ∈ C : dC(y) = ||y − x|| }.

When ProjC(y) is a singleton, we will write PC(y) in place of ProjC(y) to emphasize this
singleton property. If x ∈ ProjC(y), and s ≥ 0, then the vector s(y−x) is called (see, e.g.,
[15]) a proximal normal to C at x. Sometimes, it will be convenient to write Proj (C, x) in
place of ProjC(x). The set of all vectors of this form is a cone which is termed the proximal
normal cone of C at x. It is denoted by NP (C; x) or NP

C (x), and N
P (C; x) = ∅ whenever

x 6∈ C. Observing that, for x ∈ C, a nonzero vector v ∈ NP (C; x) if and only if that for
some ρ > 0 one has x ∈ ProjC(x + ρ

‖v‖
v), and translating this as ρ2 ≤ ‖x + ρ

‖v‖
v − x′‖2

for all x′ ∈ C, we obtain that the inclusion v ∈ NP (C; x) is equivalent to the existence of
some real σ ≥ 0 such that

〈v, x′ − x〉 ≤ σ‖x′ − x‖2 for all x′ ∈ C. (5)

For x ∈ C, inequality (5) can be also localized in the sense that it holds for some σ > 0
(i.e., v ∈ NP (C; x) ) if and only if there exist some γ ≥ 0 and η > 0 such that

〈v, x′ − x〉 ≤ γ‖x′ − x‖2 for all x′ ∈ C ∩ B(x, η). (6)

One also defines the Mordukhovich limiting normal cone and the Clarke normal cone
respectively by

NL(C; x) := { v ∈ H : ∃vn →w v, vn ∈ NP (C; xn), xn →
C
x }

and
NC(C; x) := coNL(C; x),
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where vn →w v means that the sequence (vn)n converges weakly to v and xn →
C
x means

that xn → x and xn ∈ C for all n ∈ N. It clearly appears in the definition above
that NL(C; x) is the Painlevé-Kuratowski weak sequential outer (or superior) limit of
NP (C; x′) as x′ → x, where for a set-valued mapping M : U ⇒ H from a topological
space U into H the Painlevé-Kuratowski weak sequential outer limit of M at x ∈ U is
the set

seq Lim sup
x′→x

M(x′) := { v ∈ H : ∃vn →w v, vn ∈M(xn), xn → x }.

Like for NP (C; x), sometimes one writes NL
C (x) and NC

C (x) instead of NL(C; x) and
NC(C; x). It is worth pointing out that for x outside the closed set C one has NL(C; x) =
NC(C; x) = ∅, hence (since 0 ∈ NP (C; x) for all x ∈ C)

DomNP (C; ·) = DomNL(C; ·) = DomNC(C; ·) = C,

where for a set valued-mapping M : U ⇒ H we denote by DomM its (effective) domain,
that is, DomM := {x ∈ U : M(x) 6= ∅}.

The elements in the Mordukhovich limiting normal cone can also be obtained as weak
limits of sequences of Fréchet normal vectors. A vector v ∈ H is a Fréchet normal of C
at x ∈ C whenever for any real ε > 0 there exists some real η > 0 such that

〈v, x′ − x〉 ≤ ε‖x′ − x‖ for all x′ ∈ C ∩B(x, η).

Denoting by NF (C; x) or NF
C (x) the cone of all Fréchet normals to C at x ∈ C and

putting NF (C; x) = ∅ for x 6∈ C, it is also known that

NL(C; x) = seq Lim sup
x′→x

NF (C; x′) for all x ∈ C.

Taking (5) into account, we always have

NP (C; x) ⊂ NF (C; x) ⊂ NL(C; x) ⊂ NC(C; x) for all x ∈ C. (7)

After this definition of proximal normal cone, we recall the definition of local prox-
regularity of sets. For a large development this concept, the reader is referred to [27].
In this paper, we will use some results where the quantified viewpoint [22] of the local
prox-regularity has been introduced.

Definition 2.1. For positive real numbers r and α, the closed set C is said to be (r, α)-
prox-regular at a point x̄ ∈ C provided that for any x ∈ C∩B(x̄, α) and any v ∈ NP (C; x)
such that ||v|| < r, one has

x = projC(x+ v).

The set C is r-prox-regular (resp. prox-regular) at x̄ when it is (r, α)-prox-regular at x̄
for some real α > 0 (resp. for some numbers r > 0 and α > 0). The set C is said to be
r-uniformly prox-regular when α = +∞.

It is not difficult to see that the latter (r, α)-prox-regularity property of C at x̄ ∈ C is
equivalent to requiring that

x ∈ ProjC(x+ rv) for all x ∈ C ∩ B(x̄, α) and v ∈ NP (C; x) ∩ B. (8)
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When the set C is (r, α)-prox-regular at x̄, we have

NP (C; x) = NF (C; x) = NL(C; x) = NC(C; x) for all x ∈ C ∩ B(x̄, α).

The (r, α)-prox-regularity of the set C gives the following hypomonotonicity property of
the truncated normal cone.

Proposition 2.2. Let C be a closed subset of H, and x̄ ∈ C. Then, if there exist positive
real numbers r and α such that C is (r, α)-prox-regular at x̄, then the set-valued mapping
NP (C, ·) ∩ B is 1

r
-hypomonotone on B(x̄, α).

We now come to the study of (1). The problem of existence and uniqueness has been
obtained in [16], and is also a consequence of the results obtained in [21].

Theorem 2.3. Let H be a Hilbert space. Assume that C is r-uniformly prox-regular.
Let f : H → H a k-Lipschitz continuous mapping. Then for any x0 ∈ C, the following
evolution variational inequality

{

ẋ(t) ∈ f(x(t))−NP (C; x(t)) a.e. t ≥ 0,
x(0) = x0 ∈ C

(9)

has one and only one locally absolutely continuous solution on [0,+∞[. Moreover one has
the estimation

‖ẋ(t)− f(x(t))‖ ≤ ‖f(x(t))‖ a.e. t ≥ 0. (10)

The next lemma is helpful in studying the derivative ẋ(t) of the solution of (9).

Lemma 2.4. Let H be a Hilbert space. Assume that C is r-uniformly prox-regular. Fix
T > 0 and consider x1(·), x2(·) from [0, T ] into H be two absolutely continuous mappings
satisfying

ẋi(t) ∈ f(xi(t))−NP (C; xi(t)) a.e. , i = 1, 2. (11)

Then for any s, t ∈ [0, T ] with s ≤ t one has

‖x1(t)− x2(t)‖

≤ [‖x1(s)− x2(s)‖+

∫ t

s

‖f(x1(τ))− f(x2(τ))‖ dτ ] exp(
1

r

∫ t

s

(‖f(x1(τ))‖+ ‖f(x2(τ))‖) dτ).

(12)

Proof. Denote by N the Lebesgue-null subset of [0, T ] out of which (11) holds for i = 1, 2.
Fix any t ∈ [0, T ]\N . Since C is uniformly prox-regular, according to the hypomono-
tonicity of N(C, ·) ∩ B we get

〈−ẋ1(t)+f(x1(t))+ẋ2(t)−f(x2(t)), x1(t)−x2(t)〉 ≥ −
1

r
(‖f(x1(t))‖+‖f(x2(t))‖)‖x1(t)−x2(t)‖

2.

Hence,

d

dt
‖x1(t)− x2(t)‖

2 = 2〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉

≤
2

r
(‖f(x1(t))‖+ ‖f(x2(t))‖)‖x1(t)− x2(t)‖

2 + 2〈f(x2(t))− f(x1(t)), x1(t)− x2(t)〉.

(13)
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Observe that the function ‖x1(·) − x2(·)‖ is absolutely continuous on [0, T ] and that for
almost all t ∈ [0, T ],

d

dt
‖x1(t)− x2(t)‖

2 = 2‖x1(t)− x2(t)‖
d

dt
‖x1(t)− x2(t)‖.

We then deduce from (13) that for almost every t ∈ [0, T ] :

d

dt
‖x1(t)− x2(t)‖ ≤

1

r
(‖f(x1(t))‖+ ‖f(x2(t))‖)‖x1(t)− x2(t)‖+ ‖f(x1(t))− f(x2(t))‖.

Applying Gronwall’s lemma, one obtains inequality (12) as desired.
The next lemma is an adaptation of Lemma 1.8 in [23].

Lemma 2.5. Let C be a closed set r-uniformly prox-regular. The function d(·) : H →
R ∪ {+∞} defined by

d(x) :=

{

+∞ if x /∈ C,
d(0, f(x)−NP (C; x)) otherwise

(14)

is lsc at x ∈ C with respect to the strong topology of H.

Before giving the main results of this section, recall that for a set S of H and x̄ ∈ S, the
Clarke tangent cone of S at x̄ is defined as the Painlevé-Kuratowski limit inferior of the
set-differential quotient

T (S; x̄) := Lim inf
t↓0;u→

S
x̄

1

t
(S − u),

i.e., a vector h ∈ T (S; x̄) if for any sequence (xn)n in S converging to x̄ and any sequence
(tn)n of positive numbers converging to 0 there exists a sequence (hn)n in H converging
to h such that

xn + tnhn ∈ S for all n ∈ N.

The Clarke tangent cone T (S; x̄) is known to be closed and convex (see [12]). The Clarke
normal cone NC(S, x̄) of S at x̄ can also be seen as the negative polar (T (S; x̄))0 of the
Clarke tangent cone, that is,

NC(S; x̄) := {v ∈ H : 〈v, h〉 ≤ 0 ∀h ∈ T (S; x̄)}.

Proposition 2.6. Let C be a closed set r-uniformly prox-regular. Denote by x : [0,+∞[→
H the unique locally absolutely continuous solution of

{

ẋ(t) ∈ f(x(t))−NP (C; x(t)) a.e. t ∈ [0,+∞[,
x(0) = x0 ∈ C.

(15)

Then the following properties hold

a) for almost every t ≥ 0, ẋ(t) = (f(x(t))−NP (C; x(t)))0;

b) There exists T > 0 and m > 0 such that for all t ∈ [0, T ],

‖(f(x(t))−NP (C; x(t)))0‖ ≤ ||f(x0)||e
mt/2.
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Moreover if f(x0) ∈ T (C, x0),

c) the mapping t→ (f(x(t))−NP (C; x(t)))0 is continuous on the right at 0;

d) the mapping t→ ẋ+(t) is continuous on the right at 0 with

ẋ+(0) = (f(x0)−NP (C; x0))
0.

Proof. To prove a), we set z(t) := f(x(t)) and we fix t0 ∈ [0,+∞[ such that

ẋ(t0) ∈ z(t0)−NP (C, x(t0)) (16)

and lim
ε↓0

1

ε

∫ t0+ε

t0

‖z(r)− z(t0)‖ dr = 0. (17)

Note that for a.e. t ≥ 0

‖z(t)‖ = ‖f(x(t))‖ ≤ ‖f(x0)‖+ k‖x(t)− x0‖

so z ∈ L1
loc([0,+∞[, H). Almost every point of [0,+∞[ is a Lebesgue-point for z and

hence satisfies (17). Then, define g : [0,+∞[→ H and y : [0,+∞[→ H by

g(t) := z(t0)− (z(t0)−NP (C, x(t0)))
0 and y(t) := x(t0) for any t ∈ [0,+∞[.

One clearly has
ẏ(t) ∈ g(t)−NP (C, y(t)) for all t ∈ [0,+∞[.

Then, by Lemma 2.4, for any ε > 0 , we can write

‖x(t0 + ε)− x(t0)‖

≤

(
∫ t0+ε

t0

‖z(τ)− z(t0) + (z(t0)−NP (C, x(t0)))
0‖ dτ

)

∗

exp(
1

r

∫ t0+ε

t0

‖z(τ)‖ dτ + ε‖z(t0)− (z(t0)−NP (C, x(t0)))
0‖).

Hence,

‖ε−1[x(t0 + ε)− x(t0)]‖

≤

(

1

ε

∫ t0+ε

t0

‖z(τ)− z(t0)‖ dτ + ‖(z(t0)−NP (C, x(t0)))
0‖

)

∗

exp(
1

r

∫ t0+ε

t0

‖z(τ)‖ dτ + ε‖z(t0)− (z(t0)−NP (C, x(t0)))
0‖).

When ε ↓ 0, via (17) we get

‖ẋ(t0)‖ ≤ ‖(z(t0)−NP (C, x(t0)))
0‖.

By virtue of (16), we conclude that

ẋ(t0) = (f(x(t0))−NP (C; x(t0)))
0 for a.e. t0 ≥ 0.
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Proof of b). Following the notations of Theorem 3.1 in [22], we fix 0 < r′ < r. Let
β = ‖f(x0)‖ + 2r′k and T > 0 such that βT < r′

2
. Under these assumptions, for any

λ > 0, the family xλ(·)λ>0 of the solutions of the differential equation

{

ẋλ(t) = f(xλ(t))−
1
2λ
∇d2C(xλ(t)) t ∈ [0, T ],

xλ(0) = x0 ∈ C,
(18)

converge uniformly to the solution x(·) of (9) on [0, T ] as λ ↓ 0. Recall also that (see
Proposition 2.5 in [22])

• 1
2
∇dC(x) = x− projC(x) for all x ∈ UC(r) := {w ∈ H : dC(w) < r};

• the mapping projC(·) is
r

r−r′
-Lipschitz continuous on UC(r

′).

We set c := r
r−r′

and zλ(t) := f(uλ(t)). Consider arbitrary t ∈ [0, T ] and h > 0 such that
t+ h ≤ T . Remark that

−ẋλ(t) + zλ(t) ∈ N(C; projC(uλ(t)))

and according to the hypomonotonicity property of N(C; ·) (see a) of Proposition 2.1 in
[22]) we get

〈−ẋλ(t+ h) + zλ(t+ h) + ẋλ(t)− zλ(t), projC(xλ(t+ h))− projC(xλ(t))〉

≥ −
β

r
||projC(xλ(t+ h))− projC(xλ(t))||

2.

With projC(xλ(s)) = λ(ẋλ(s)− zλ(s)) + xλ(s) for s ∈ {t, t+ h} and (b) of Proposition 2.5
in [22], we get

〈−ẋλ(t+h)+zλ(t+h)+ẋλ(t)−zλ(t), λ(ẋλ(t+h)−zλ(t+h))−λ(ẋλ(t)−zλ(t))+xλ(t+h)−xλ(t)〉

≥ −
βc2

r
||xλ(t+ h)− xλ(t)||

2.

Computing the left hand side, we obtain

−λ||ẋλ(t+ h)− zλ(t+ h)||2 − λ||ẋλ(t)− zλ(t)||
2 + 2λ〈ẋλ(t+ h)− zλ(t+ h), ẋλ(t)− zλ(t)〉

+〈zλ(t+ h)− zλ(t), xλ(t+ h)− xλ(t)〉 − 〈ẋλ(t+ h)− ẋλ(t), xλ(t+ h)− xλ(t)〉

≥ −
βc2

r
||xλ(t+ h)− xλ(t)||

2.

Hence we have

1

2

d

dt
[||xλ(t+ h)− xλ(t)||

2]

≤
βc2

r
||xλ(t+ h)− xλ(t)||

2 − λ||ẋλ(t+ h)− zλ(t+ h)||2 − λ||ẋλ(t)− zλ(t)||
2

+ 2λ〈ẋλ(t+ h)− zλ(t+ h), ẋλ(t)− zλ(t)〉+ 〈zλ(t+ h)− zλ(t), xλ(t+ h)− xλ(t)〉.

Note that

−λ||ẋλ(t+h)−zλ(t+h)||
2−λ||ẋλ(t)−zλ(t)||

2+2λ〈ẋλ(t+h)−zλ(t+h), ẋλ(t)−zλ(t)〉 ≤ 0
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and since f(·) is k-Lipschitz continuous we can write

||zλ(t+ h)− zλ(t)|| = ||f(xλ(t+ h))− f(xλ(t))||

≤ k||xλ(t+ h)− xλ(t)||.

Hence we obtain

1

2

d

dt
[||xλ(t+ h)− xλ(t)||

2] ≤ (
βc2

r
+ k)||xλ(t+ h)− xλ(t)||

2.

Set m := βc2

r
+k. According to Gronwall’s lemma, we obtain that given any t, s ∈ [0,+∞[

with s ≤ t,
||xλ(t+ h)− xλ(t)||

2 ≤ ||xλ(s+ h)− xλ(s)||
2em(t−s)

and hence

||h−1(xλ(t+ h)− xλ(t))|| ≤ ||h−1(xλ(s+ h)− xλ(s))||e
m(t−s)/2,

Finally, letting h ↓ 0, we obtain

||ẋλ(t)|| ≤ ||ẋλ(s)||e
m(t−s)/2, (19)

that holds for any s, t ∈ [0,+∞[ with s ≤ t. Putting s = 0 in the last inequality leads to

||ẋλ(t)|| ≤ ||ẋλ(0)||e
mt/2 = ||f(x0)||e

mt/2

since ẋλ(0) = f(x0)−
1
2λ
∇d2C(x0) = f(x0) as x0 ∈ C. It follows that given any t ∈ [0,+∞[,

the sequence (ẋλ(t)) is bounded in H. Then one find some subsequence (ẋλn
(t))n≥1 that

converges weakly in H to some element vt that satisfies

||vt|| ≤ ||f(x0)||e
mt/2. (20)

According to the r-uniform prox-regularity of C, we have

〈zλn
(t)− ẋλn

(t), x′ − projC(xλn
(t))〉 ≤

β

2r
||x′ − projC(xλn

(t))||2, for all x′ ∈ C. (21)

As n goes to +∞, projC(xλn
(t)) → x(t) so

〈f(x(t))− vt, x
′ − x(t)〉 ≤

β

2r
||x′ − x(t)||2, for all x′ ∈ C,

hence vt ∈ f(x(t)) − NP (C; x(t)) and ‖vt‖ ≥ ‖(f(x(t)) − NP (C; x(t)))0‖. According to
(20) we have

||(f(x(t))−NP (C; x(t)))0|| ≤ ||f(x0)||e
mt/2,

which proves b).
To prove c), as f(x0) ∈ T (C, x0), one has f(x0) ∈ [NC(C, x0)]

0 = [NP (C, x0)]
0 since C is

uniformly prox-regular. So for all w ∈ NP (C; x0), 〈w, f(x0)〉 ≤ 0. Hence

‖f(x0)− w‖2 = ‖f(x0)‖
2 − 2〈w, f(x0)〉+ ‖w‖2 ≥ ‖f(x0)‖

2 for all w ∈ NP (C, x0).
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So proj(f(x0), N
P (C, x0)) = {0} and we get

f(x0) = f(x0)− proj(f(x0), N
P (C, x0)) = (f(x0)−NP (C; x0))

0.

So
||(f(x(t))−NP (C; x(t)))0|| ≤ ||(f(x0)−NP (C, x0))

0||emt/2, (22)

Thanks to Lemma 2.5 we know on the one hand that for any s ∈ [0,+∞[, one has

||(f(x(s))−NP (C; x(s)))0|| ≤ lim inf
t↓s

||(f(x(t))−NP (C; x(t)))0|| (23)

and on the other hand, by (22)

lim sup
t↓0

||(f(x(t))−NP (C; x(t)))0|| ≤ ||(f(x0)−NP (C, x0))
0||. (24)

As a result, from (23) with s = 0 and (24), we deduce that the function ||(f(x(·)) −
NP (C, x(·)))0|| is continuous on the right at 0. Given any sequence (tn)n≥1 ⊂ [0, T ] with
tn → 0, we can write

||(f(x(tn))−NP (C; x(tn)))
0|| →

n→+∞
||(f(x0)−NP (C; x0))

0|| (25)

and then supn≥1 ||(f(x(tn))−NP (C; x(tn)))
0|| < +∞. Therefore there exists some ξ ∈ H

and a subsequence ((f(x(tnk
))−NP (C; x(tnk

)))0)k≥1 that converges weakly inH to ξ when
k → +∞. Using the same technique given by (21), one has ξ ∈ f(x(t)) − NP (C, x(t)).
Inequality (25) yields

‖ξ‖ ≤ lim inf
k→+∞

‖(f(x(tnk
))−NP (C; x(tnk

)))0‖ = ||(f(x0)−NP (C; x0))
0||.

Necessarily, ξ = (f(x(t)) − NP (C; x(t)))0. By uniqueness of the weak cluster point of
((f(x(tn)) − NP (C; x(tn)))

0)n≥1, the whole sequence is weakly convergent to (f(x0) −
NP (C; x0))

0 in H. Since we also have the convergence in (25), the sequence ((f(x(tn))−
NP (C; x(tn)))

0)n≥1 actually converges strongly to (f(x0)−NP (C; x0))
0 which proves b),

i.e. the right continuity of (f(x(·))−NP (C; x(·)))0 at 0 as desired.
Proof of d). By the absolute continuity of x(·) on [0, T ], for all h > 0 with h ≤ T we have

x(0 + h)− x(0) =

∫ h

0

ẋ(r) dr.

Then, from a) it comes

h−1[x(0 + h)− x(0)] = h−1

∫ h

0

(f(x(r))−NP (C, x(r)))0 dr.

The continuity on the right at 0 of the mapping (NP (C, x(·)) + f(x(·)))0 ensures the
continuity on the right at 0 of ẋ+(·) and the existence of the right derivative ẋ+(0) with

ẋ+(0) = (f(x0)−NP (C; x0))
0

which is assertion d).
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3 A general criterion for Lyapunov functions

Let us recall the definitions of subdifferentials of functions.
Let f : H → R ∪ {+∞} be an extended real-valued function and let x ∈ dom f , that is,
f(x) < +∞. Each one of the above normal cones (see, e.g., [24]) leads to a subdifferential
through the normal cone to the epigraph epi f of f , where

epi f := { (x, ρ) ∈ H × R : f(x) ≤ ρ }.

So, the proximal subdifferential, the Fréchet subdifferential, the Mordukhovich limiting
subdifferential, and the Clarke subdifferential are the (possibly empty) subsets of H given
by

∂?f(x) = { v ∈ H : (v,−1) ∈ N ?
(

epi f ; (x, f(x))
)

},

where “?“ stands for P, F, L, C respectively, and the singular subdifferential is given by

∂∞f(x) = { v ∈ H : (v, 0) ∈ NC
(

epi f ; (x, f(x))
)

}.

By convention anyone of the above subdifferentials of f at a point x 6∈ dom f is empty.
The proximal and Fréchet subdifferentials have amenable analytical descriptions. Indeed,
for x ∈ dom f it is known through (6) that v ∈ ∂Pf(x) if and only if there exist γ ≥ 0
and η > 0 such that

〈v, x′ − x〉 ≤ f(x′)− f(x) + γ||x′ − x||2 for all x′ ∈ B(x, η).

Analogously, v ∈ ∂Ff(x) if and only if for any real ε > 0 there exists some η > 0 such
that

〈v, x′ − x〉 ≤ f(x′)− f(x) + ε||x′ − x|| for all x′ ∈ B(x, η).

In this section, our aim is to study Lyapunov pairs of the solutions of the differential
inclusion

{

ẋ(t, x0) ∈ f(x(t, x0))−NP (C; x(t, x0)) a.e. t ∈ [0,+∞[,
x(0, x0) = x0, x0 ∈ C

(26)

where the existence and uniqueness on [0,+∞[ is given by Theorem 2.3 when the set C
is uniformly prox-regular. In the remainder of the paper,

i) V : H → R ∪ {+∞} denotes a weakly lower semicontinuous (lsc) function;

ii) W : H → R+ is Lipschitz continuous on bounded sets;

iii) C is a r-uniformly prox-regular closed subset of H;

iv) x(·, x0) will denote the solution of (26).

Recall the definition of a Lyapunov pair, as in [1].

Definition 3.1. Let a ≥ 0. (V,W ) forms an a-Lyapunov pair for the differential inclusion
(26) if for all x0 ∈ C ∩ domV we have that

eatV (x(t, x0)) +

∫ t

0

W (x(τ, x0)) dτ ≤ V (x0) for all t ≥ 0.

When a = 0, one says that (V,W ) is a Lyapunov pair for (26).
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The next theorem can be seen as an extension of the characterization of Lyapunov
pairs given by Theorem 3.3 in [1].

Theorem 3.2. Let a ≥ 0. Suppose that for all x ∈ C, f(x) ∈ T (C, x). Fix ȳ ∈ C,
λ̄ ∈ [−∞, V (ȳ)[ such that

[V > λ̄] ∩ domV ⊂ C.

Then the following assertions are equivalent

i) For all x0 ∈ C ∩ domV ∩ [V > λ̄],

eatV (x(t, x0)) +

∫ t

0

W (x(τ, x0)) dτ ≤ V (x0) ∀t ∈ [0, ρ(x0)], (27)

where ρ(x0) is given by

ρ(x0) = sup







ν > 0 : ∃ρ > 0, B(x0, ρ) ⊂ [V > λ̄] s.t. ∀s ∈ [0, ν] :

2‖x(s, x0)− x0‖ < ρ and |(e−as − 1)V (x0)−
∫ s

0
W (x(τ, x0)) dτ | < ρ







.

(28)

ii) For all y ∈ C ∩ [V > λ̄]

sup
ξ∈∂PV (y)

〈ξ, f(y)〉+ aV (y) +W (y) ≤ 0,

sup
ξ∈∂∞V (y)

〈ξ, f(y)〉 ≤ 0.

iii) For all y ∈ C ∩ [V > λ̄]

sup
ξ∈∂PV (y)

inf
y∗∈NP (C;y)

〈ξ, f(y)− y∗〉+ aV (y) +W (y) ≤ 0,

sup
ξ∈∂∞V (y)

inf
y∗∈NP (C;y)

〈ξ, f(y)− y∗〉 ≤ 0.

Moreover, when λ̄ = −∞, (V,W ) forms an a-Lyapunov pair for (26).

Proof. We first prove the statement i) ⇒ ii). Let us fix y ∈ C ∩ [V > λ̄], ξ ∈ ∂PV (y) ∪
∂∞V (y) and denote

k(ξ) :=

{

1 if ξ ∈ ∂PV (y),
0 if ξ ∈ ∂∞V (y).

Hence y ∈ C ∩ [V > λ̄] ∩ domV and (ξ,−k(ξ)) ∈ NP (epiV, (y, V (y))). Denote by x(·, y)
the solution of the inclusion

{

ẋ(t, y) ∈ f(x(t, y))−NP (C; x(t, y)) a.e. t ∈ [0,+∞[,
x(0, y) = y.

By i) and recalling that ρ(y) > 0, we let T ∈]0, ρ(y)[ be such that

(

x(t, y), e−atV (y)− e−at

∫ t

0

W (x(τ, y))dτ
)

∈ epiV for all t ∈ [0, T ].
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Let us introduce the mappings ℓ and h given by

ℓ(t) := (e−at − 1)V (y)− e−at

∫ t

0

W (x(τ, y)) dτ and h(t) := k(ξ)ℓ(t). (29)

Observing that lim
t↓0

α‖x(t, y)− y‖2 + αℓ2(t) = 0, we fix ε > 0 such that

α‖x(t, y)− y‖2 + αℓ2(t) ≤ ε for all t ∈ [0, T ].

By the definition of NP
epiV (y, V (y)), there exists α > 0 such that for all t ∈ [0, T ]

〈(ξ,−k(ξ)), (x(t, y), e−atV (y)− e−at

∫ t

0

W (x(τ, y)) dτ)− (y, V (y))〉

≤ α‖(x(t, y), e−atV (y)− e−at

∫ t

0

W (x(τ, y)) dτ)− (y, V (y))‖2

〈ξ, x(t, y)− y〉 − k(ξ)ℓ(t) ≤ α‖x(t, y)− y‖2 + αℓ2(t)

〈ξ, x(t, y)− y〉 − h(t) ≤ α‖x(t, y)− y‖2 + αℓ2(t) ≤ ε.

Hence we get

−ε ≤ −α‖x(t, y)− y‖2 − αℓ2(t) ≤ h(t) + 〈ξ, y − x(t, y)〉 =: ψ(t).

Then we obtain
−ε ≤ 〈ξ, y − x(t, y)〉+ h(t).

Hence the function ψ defined on [0, T ] by

ψ(t) := 〈ξ, y − x(t, y)〉+ h(t)

is such that ψ(t) ≥ ψ(0)− ε for all t ∈ [0, T ].
Let λ > 0. According to Ekeland variational principle, there exists (tk)k∈N, tk ∈ [0, T ]
such that tk ↓ 0 and satisfying

• ψ(tk) ≤ ψ(0); • |tk| ≤ λ; •
d+ψ

dt
(tk) ≥ −ε/λ.

Fix λ = 1. Note that h′(t) = −k(ξ)(aV (y) +W (y)) for all t. Hence we obtain

d+ψ

dt
(tk) ≥ −ε

〈ξ,−ẋ+(tk, y)〉 − k(ξ)(aV (y) +W (y)) ≥ −ε

According to Proposition 2.6, ẋ+(·, y) continuous on the right at 0. When tk ↓ 0 in the
latter inequality we obtain

〈ξ,−ẋ+(0, y)〉 − k(ξ)(aV (y) +W (y)) ≥ −ε

13



Remark that

ẋ+(0, y) = (f(x(0, y))−NP (C; x(0, y))))0

= (f(y)−NP (C; y))0 = f(y) since f(y) ∈ T (C, y)

which entails ii) as desired as ε is arbitrary.
The proof of ii) ⇒ iii) is immediate. Let us prove iii) ⇒ i). We fix x0 ∈ C∩domV ∩[V >
λ̄]. According to the weak lower semicontinuity of V we fix ρ > 0 such that

B(x0, ρ) ⊂ [V > λ̄]. (30)

Using the continuity of x(·, x0), we also select T > 0 such that

sup
t∈[0,T ]

2‖x(t, x0)− x0‖+ |(e−at − 1)V (x0)− e−at

∫ t

0

W (x(τ, x0)) dτ | < ρ. (31)

Now we define h : [0, T ] → R+ as

h(t) :=

∫ t

0

W (x(τ, x0)) dτ

and the functions γ : [0, T ] → R, z : [0, T ] → H×R and η : [0, T ] → R+ given respectively
by

γ(t) := e−at(V (x0)− h(t)) z(t) := (x(t, x0), γ(t)) η(t) :=
1

2
d2(z(t), epiV ). (32)

Observe that η is Lipschitz continuous on every compact interval in ]0, T ] so that for all
t ∈]0, T [ we obtain

∂Cη(t) = d(z(t), epiV )∂Cd(z(·), epiV )(t) 6= ∅.

If z(t) ∈ epiV then ∂Cη(t) = {0}.
In order to establish assertion i), we shall proceed in steps. First in the following

lemma we recall a general estimation of ∂Cη. The proof is given in detail in [1].

Lemma 3.3. Let t ∈]0, T ] be such that z(t) /∈ epiV . Then there exists α > 0 such that

∂Cη(t) ⊂ co





⋃

(u,µ)∈E

〈z(t)−

(

u
µ

)

,

(

−(NP (C; x(t, x0)) ∩ αB+ f(x(t, x0)))
−aγ(t)− e−atW (x(t, x0))

)

〉





where E := Proj(z(t), epiV ) ∩
(

B(x0, ρ)× [γ(t), γ(t) + ρ]
)

.

Next we improve the formula given in the preceding lemma under assumption v).

Lemma 3.4. Let t ∈ [0, T ] be given. Then there exists a positive real M such that

∂Cη(t) ⊂]−∞,Mη(t)] for all t ∈ [0, T ]. (33)
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Proof. First we suppose that V (x(t, x0)) > γ(t) because otherwise ∂Cη(t) = {0} and
the conlusion holds. Then according to Lemma 3.3 we have to show that for every
x∗ ∈ NP (C; x(t, x0)) ∩ αB and (u, µ) ∈ Proj(z(t), epiV ) ∩

(

B(x0, ρ) × [γ(t), γ(t) + ρ]
)

it
holds that

〈z(t)−

(

u
µ

)

,

(

f(x(t, x0))− x∗

−aγ(t)− e−atW (x(t, x0))

)

〉 ≤ (k + LW )η(t). (34)

As the vector (u, µ) ∈ Proj(z(t), epiV ) one has z(t) − (u, µ) ∈ NP
epiV (u, µ) with u ∈

B(x0, ρ) ∩ domV ⊂ [V > λ̄] ∩ domV ⊂ C. Recall that z(t) = (x(t, x0) − u, γ(t) − µ).
Observing that γ(t) − µ ≤ 0, so either γ(t) − µ = 0 and x(t, x0) − u ∈ ∂∞V (u), or

γ(t)− µ < 0 and in this case
x(t, x0)− u

µ− γ(t)
∈ ∂PV (u). Hence according to iii) there exists

u∗ ∈ NP (C; u) such that

〈x(t, x0)− u, f(u)− u∗〉 ≤ (γ(t)− u)(aV (u) +W (u)). (35)

Thus writing

〈x(t, x0)− u, f(x(t, x0))− x∗〉 =

〈x(t, x0)− u, f(x(t, x0))− f(u)〉+ 〈x(t, x0)− u, f(u)− u∗〉+ 〈x(t, x0)− u, u∗ − x∗〉

≤ k‖x(t, x0)− u‖2 + (γ(t)− µ)(aV (u) +W (u)) + 〈x(t, x0)− u, u∗ − x∗〉.

Set ᾱ := max{α, ‖u∗‖}. According to the r-uniform prox-regularity of C, note that

〈x(t, x0)− u, u∗ − x∗〉 ≤
1

2r
(‖u∗‖+ ‖x∗‖)‖x(t, x0)− u‖2 ≤

ᾱ

r
‖x(t, x0)− u‖2,

Set β := ᾱ
r
. Hence

〈x(t, x0)− u, f(x(t, x0))− x∗〉

≤ k‖x(t, x0)− u‖2 + (γ(t)− µ)(aV (u) +W (u)) + β‖x(t, x0)− u‖2.

Consequently

〈x(t, x0)− u, f(x(t, x0))− x∗〉+ a(µ− γ(t))γ(t) + (µ− γ(t))e−atW (x(t, x0))

≤ (β + k)‖x(t, x0)− u‖2 − (µ− γ(t))(aV (u) +W (u))

+ a(µ− γ(t))γ(t) + (µ− γ(t))e−atW (x(t, x0))

= (β + k)‖x(t, x0)− u‖2

+ a(µ− γ(t))(γ(t)− V (u)) + (µ− γ(t))(e−atW (x(t, x0))−W (u))

≤ (β + k)‖x(t, x0)− u‖2 + a(µ− γ(t))(γ(t)− V (u)) + (µ− γ(t))e−at|W (x(t, x0))−W (u)|

≤ (β + k)‖x(t, x0)− u‖2 + 0 + LW |µ− γ(t)|‖x(t, x0)− u‖ (since γ(t)− V (u) ≤ 0)

≤ (β + k)‖x(t, x0)− u‖2 +
LW

2
(‖x(t, x0)− u‖2 + |µ− γ(t)|2)

≤ (2(β + k) + LW )η(t).

Finally in the last lemma we obtain the desired conclusion with M := 2(β+ k)+LW .
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Lemma 3.5. Assertion (1) holds that is, for all t ∈ [0, ρ(x0)] we have that

eatV (x(t, x0)) +

∫ t

0

W (x(τ, x0)) dτ ≤ V (x0).

Proof. We fix t1, t2 ∈]0, T [, t ∈]t1, t2[. By invoking (33) together with Gronwall’s lemma
we obtain that

e−Mtη(t) ≤ e−Mt1η(t1).

Thus by making t1 → 0, it follows that d((x(t, x0), e
−at(V (x0) − h(t))), epiV ) = 0 which

in turn gives us

eatV (x(t, x0)) +

∫ t

0

W (x(τ, x0)) dτ ≤ V (x0). (36)

Recall that

ρ(x0) = sup







ν > 0 : ∃ρ > 0 with B(x0, ρ) ⊂ [V > λ̄] s.t. ∀s ∈ [0, ν] :

2‖x(s, x0)− x0‖ < ρ and |(e−as − 1)V (x0)−
∫ s

0
W (x(τ, x0)) dτ | < ρ







.

The set defined in the right member is not empty. Indeed, according to the lsc property
of V we can find such a ρ (see (30)) and due to the continuity of x(·, x0), there exists
T > 0 such that (31) is satisfied.
Let T < ρ(x0) and fix t ∈]T, ρ(x0)[ such that (31) holds. If ρ(x0) = +∞ then the
inequality (36) is valid on [0,+∞[. Otherwise let tn → ρ(x0), (31) being satisfied for each
tn. Then inequality (36) is true for all n, and according to the lsc of V and the continuity
of x(·, x0), passing to the limit through n gives that (36) is true for all t ∈ [0, ρ(x0)].
Hence iii) ⇒ i) as desired.
When λ̄ = −∞, we get that [V > λ̄] = H and since x(·) is locally absolutely continuous,
ρ(x0) = +∞ so inequality (27) is true for all t ∈ [0,+∞[, that is, (V,W ) is an a-Lyapunov
pair for (26).

4 Asymptotic behaviour of global trajectories

Denote by x(·, x0) the global solution of (26). The next proposition is an extension of
Proposition 4.1 in [23] given when NP (C; ·) is replaced by the subdifferential ∂Pϕ(·) of a
primal lower nice function, V = ϕ and f = 0. Here we give these results for any Lyapunov
function V ( resp. any a-Lyapunov pair (V,W )), according to the definition given in [1].

Proposition 4.1. Let V : H → R ∪ {+∞} be a Lyapunov function for (26). Suppose in
the following that V is bounded below on the set x([0,+∞[). Then

1) lim
t→+∞

V (x(t, x0)) exists in R and lim
t→+∞

V (x(t, x0)) = inf
t≥0

V (x(t, x0));

2) if (V,W ) is an a-Lyapunov pair for (26), then

lim
t→+∞

(

V (x(t, x0)) + e−at

∫ t

0

W (x(τ, x0)) dτ

)

< +∞.

As a consequence,
∫ +∞

0

W (x(t, x0)) dt < +∞ when a = 0.
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3) if (x∞, v∞) ∈ H×H is a (‖·‖×w)-sequential cluster point of {(x(t, x0), ẋ(t, x0)), t ≥ 0}
when t→ +∞ then

lim
t→+∞

V (x(t, x0)) = V (x∞) and v∞ ∈ f(x∞)−NP (C; x∞).

4) In addition, suppose that

a = 0, lim
‖x‖→+∞

V (x) = ∞ and W (x) ≥ ‖f(x)‖ for all x ∈ H. (37)

Then all the solutions of (26) are bounded.

Proof. To prove 1), since V is Lyapunov, V ◦ x(·) is nonincreasing on [0,+∞[ and we
conclude according to the boundedness assumption on V .
Proof of 2). (V,W ) forms an a-Lyapunov pair for (26), so we have

eatV (x(t, x0)) +

∫ t

0

W (x(τ, x0)) dτ ≤ V (x0), for all t ≥ 0. (38)

Dividing by eat in (38) yields

V (x(t, x0)) + e−at

∫ t

0

W (x(τ, x0)) dτ ≤ e−atV (x0)

and when t goes to +∞, this leads to 2).
When a = 0, we get that

∫ +∞

0
W (x(t, x0)) dt < +∞ since lim

t→+∞
V (x(t, x0)) ∈ R according

to 1).
Proof of 3). Let (tn)n≥1, tn > 0, be a sequence such that tn → +∞. Set xn := x(tn, x0)
and vn := ẋ(tn, x0). As a direct consequence of 1), we get that lim

n→+∞
V (xn) = V (x∞).

Further, since f is Lipschitz continuous on H, we have f(xn) →
n→+∞

f(x∞). We have also

vn ∈ f(xn)−NP (C, xn) for all n ≥ 1. The r-uniform prox-regularity of C yields

〈−vn + f(xn), xn − x′〉 ≤
1

2r
(‖vn‖+ ‖f(xn)‖)‖xn − x′‖ for all x′ ∈ C.

Since (vn)n≥1 is weakly convergent, one has M := supn≥1 vn < +∞. So when n goes to
+∞ in the latter inequality we have

〈−v∞ + f(x∞), x∞ − x′〉 ≤
1

2r
(M + ‖f(x∞)‖)‖x∞ − x′‖ for all x′ ∈ C,

i.e. v∞ ∈ f(x∞)−NP (C; x∞), as desired.
Proof of 4). If x0 ∈ C∩domV , then V (x(t, x0)) ≤ V (x0) hence t→ V (x(t, x0)) is bounded
above. From (37) it follows that t→ ‖x(t, x0)‖ is bounded. The consequence in 2) yields
that W ◦ x(·) ∈ L1([0,+∞[, H). According to the hypomonotonicity of NP (C; ·) ∩ B, for
every x ∈ C ∩ domV we have the estimation

〈−ẋ(t, x) + f(x(t, x)) + ẋ(t, x0)− f(x(t, x0)), x(t, x)− x(t, x0)〉

≤
1

r
(‖ẋ(t, x)− f(x(t, x))‖+ ‖ẋ(t, x0)− f(x(t, x0))‖)‖x(t, x)− x(t, x0)‖

2

≤
1

r
(‖f(x(t, x))‖+ ‖f(x(t, x0))‖)‖x(t, x)− x(t, x0)‖

2 (due to (10))

≤
1

r
(W (x(t, x)) +W (x(t, x0)))‖x(t, x)− x(t, x0)‖

2.
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Then we get

d

dt

(

‖x(t, x)− x(t, x0)‖
2
)

≤
2

r
[W (x(t, x)) +W (x(t, x0))]‖x(t, x)− x(t, x0)‖

2 + 2〈f(x(t, x0))− f(x(t, x)), x(t, x)− x(t, x0)〉.

For almost every t ∈ [0,+∞[ one has

d

dt
‖x(t, x)− x(t, x0)‖

2 = 2‖x(t, x)− x(t, x0)‖
d

dt
‖x(t, x)− x(t, x0)‖

hence the last inequality becomes

d

dt
‖x(t, x)−x(t, x0)‖ ≤

2

r
[W (x(t, x))+W (x(t, x0))]‖x(t, x)−x(t, x0)‖+[W (x(t, x))+W (x(t, x0))].

According to Gronwall’s lemma, there exists two positive constants α and β such that

‖x(t, x)− x(t, x0)‖ ≤ α‖x− x0‖+ β a.e. t ≥ 0 where

α := exp
(

2
r

∫ +∞

0
(W (x(t, x0)) +W (x(t, x))) dt

)

, β :=
(

2
∫ +∞

0
(W (x(t, x0)) +W (x(t, x))) dt

)

α.

So for all x ∈ C ∩ domV ,

‖x(t, x)‖ ≤ ‖x(t, x)− x(t, x0)‖+ ‖x(t, x0)‖ ≤ α‖x− x0‖+ β + ‖x(t, x0)‖ a.e. t ≥ 0,

hence all solutions of (26) are bounded, which is assertion 4), as desired.
Define

ω0 := ∩
T≥0

cl‖·‖(x([T,+∞[))

as the strong limit set of the trajectory x(·, x0).
Then the set ω0 is nonempty, connected and compact in (H, ‖ · ‖) whenever x(·, x0) is
strongly relatively compact on [0,+∞[, that is cl‖·‖({x(t, x0) : t ≥ 0}) is a compact subset
of H with respect to the strong topology. The strong relative compactness is satisfied
when the sublevel set {V ≤ V (x0)} is compact in (H, ‖ · ‖).
The next proposition brings more information about the asymptotic behaviour of the
differential variational inequality (26).

Proposition 4.2. Let (V,W ) be a Lyapunov pair for (26) such that

i) V is bounded below on H;

ii) W (x) ≥ ‖f(x)‖ for all x ∈ H.

If x∞ ∈ ω0, then

lim
t→+∞

V (x(t, x0)) = V (x∞) = inf
t≥0

V (x(t, x0)) and 0 ∈ NP (C, x∞) + f(x∞).

Inspired by some ideas of [23] to prove Proposition 4.2, we wil need the following lemmas.

Lemma 4.3. Let λ(·) stand for the Lebesgue measure on R and let v ∈ L1([0,+∞[, H).
Then

λ({t ≥ 0 : ‖v(t)‖ ≥ ε}) < +∞ and λ({t ≥ 0 : ‖v(t)‖ < ε}) = +∞.
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Lemma 4.4. Let (sn)n∈N ⊂ [0,+∞[ be any sequence satisfying sn → +∞. Then, there
exists a strictly increasing mapping ν(·) : N → N such that:
∀δ > 0, ∃m(δ) ∈ N, ∀n ≥ m(δ), ∃tn,δ ≥ 0 such that

a) sν(n) − δ < tn,δ < sν(n) + δ,

b) ẋ(tn,δ, x0) exists, ẋ(tn,δ, x0) ∈ f(x(tn,δ, x0))−NP (C, x(tn,δ, x0)), and

c) ‖ẋ(tn,δ, x0)‖ < δ.

Proof of Proposition 4.2. Observe that ẋ(·, x0) ∈ L1([0,+∞[, H). Indeed, Proposition 4.1
ensures that

∫ +∞

0

W (x(t, x0)) dt < +∞.

Further, according to (10), for a.e. t ≥ 0

‖ẋ(t, x0)‖ ≤ ‖f(x(t, x0))‖+ ‖ẋ(t, x0)− f(x(t, x0))‖‖ ≤ 2‖f(x(t, x0)‖ ≤ W (x(t, x0)).

Assume that x∞ ∈ ω0. Let (sn)n≥1 ⊂ [0,+∞[ be such that

sn → +∞ and x(sn, x0) → x∞.

According to Proposition 4.1, the function V ◦ x(·) admits a limit in +∞ and this limit
equals inf

t≥0
V (x(t, x0)). Hence,

lim inf
n→+∞

V ((x(sn, x0)) = lim
t→+∞

V (x(t, x0)) and V (x∞) = inf
t≥0

V (x(t, x0)).

Thanks to Lemma 4.4, we find some increasing mapping ν : N → N and generate a
sequence (σ(k))k≥1, σ(k) →

k→+∞
+∞, with t′k := tσ(k),k−1 such that for each k ≥ 1

|t′k − sν(σ(k))| <
1

k
, ẋ(t′k, x0) ∈ f(x(t′k, x0))−NP (C; x(t′k, x0)) and ‖ẋ(t′k, x0)‖ <

1

k
.

Applying Proposition 4.1, we get the second conclusion when k goes to +∞.

Acknowledgement
The authors would like to thank L. Thibault for helpful discussions on the subject.

References

[1] S. Adly, A. Hantoute, M. Théra, Nonsmooth Lyapunov pairs for infinite-dimensional
first order differential inclusions, Nonlinear Analysis 75, (2012), 985-1008.

[2] J. P. Aubin, A. Cellina, Differential Inclusions, Springer, Berlin, (1994).

[3] A. Bacciotti, F. Ceragioli, L. Mazzi, Differential inclusions and monotonicity condi-
tions for nonsmooth Lyapunov functions. Set-Valued Anal. 8 (2000), no. 3, 299-309.

[4] A. Bacciotti, Stability in the continuous case. J. Math. Anal. Appl. 270 (2002), no.
2, 488-498.

19



[5] M. Bounkhel, L. Thibault, Nonconvex sweeping process and prox regularity in Hilbert
space, J. Nonlinear Convex Anal.,6, 2005,359-374.
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