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ON THE SOLITON RESOLUTION FOR EQUIVARIANT WAVE
MAPS TO THE SPHERE

RAPHAEL COTE

ABsTrACT. We consider finite energy corotationnal wave maps with target
manifold S2. We prove that for a sequence of times, they decompose as a sum
of decoupled harmonic maps in the light cone, and a smooth wave map (in the
blow up case) or a linear scattering term (in the global case), up to an error
which tends to 0 in the energy space.

1. INTRODUCTION

1.1. Statement of the main results. Let (M, ¢g) be a Riemannian manifold, and
R!*4 be endowed with the Minkowski metric = diag(—1,1,...,1). Wave maps
U: (R n) — (M, g) are defined formally as critical points of the Lagrangian

LU, 0U) = + / 10U, 05U) g
R1+d

2
In local coordinates, they satisfy the Euler-Lagrange equation
QU = —n*PTE(U)0, U U’
(Ua atU)‘t:O = (U07 U].))
where Ffj are the Christoffel symbols on T'M.

We consider the case where d = 2 and M is a 2 dimensional surface of revolution
with metric

(1.1)

ds® = dp® + g(p)*d6?,
where (p,6) are the polar coordinates on M, and g € €3(R).
We assume that U has corotationnal equivariant symmetry, that is, denoting (7, w)
the polar coordinates on R?, it takes the form

Ul(t,r,w) = (¥(t,r),w).
for some function ¢. System (1.1]) then simplifies to the following equation on 1 :
(@)

r2

0

D Outh — Dytr — 0,0+
(¥, 0u9) |t=0 = (Yo, Y1)

We say that such a solution ¢ = (1, 0:9) to (WM) is a wave map.
We define the energy space s# x L? and similarly the Hilbert space H x L? as
follows: given a couple of function ¢ = (¢g, ¢1), and for 0 < 1 < ry < o0,

- T2 2
B = [ (10l + oot + LOGAL) g

T1

o 2
I600Bre = | (|ar¢o<r>|2 ; M) dr,

2
T1 r

where f = g¢’.
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DNl e L2 ([ry o)) = / <|¢1(r)|2 + |0y do(r)]* + W) rdr.

T1 r
-

We omit r1,79 in the case r1 = 0 and ro = oo: the energy is E(¢) := E((;;O,oo),
and S x L? = {$ | E(¢) < +o0}.

If 1/7 = (¥(t), pb(t)) is a finite energy wave map, then at least formally its energy
is preserved: for all ¢ where defined,

(1.2) E(4(t)) = E((0)).
(WM)) is energy critical in the following sense. Consider the scaling (for A > 0)

apgder) = (o (55) 3o (5:5))-

Then 1; is a wave map if and only if A[)\]QZ is a wave map, and the energy is scaling
invariant: . B

E(y) = E(A[A]Y).
Notice that the H x L? norm is also scaling invariant.
Recall that if ¢ € S, then ¢ continuous and bounded, and has well defined limits
at 0 and 400, which cancel g: we denote them ¢(0) and ¢(co). If 5 is a wave map,
these limits do not depend on time.
This motivates the introduction of the set of points where g vanishes

v :={{eR|g¥) =0}
Also, let

Gla) = / " low)ldy.

Let ¢ € ¥ and make the non degeneracy assumption that g’(¢) # 0. Then one can
see that ¢ — ¢ € H if and only if ¢ € # and ¢(0) = ¢(c0) = ¢ (cf. Lemma[A.2]in
the appendix). H can then be seen as the tangent (Hilbert) space to % at point £.
We recall the local well-posedness result in the energy space, due to Shatah and
Tahvildar-Zadeh.

Theorem ([26]). Let (1g,v1) € S x L?. Then there exists a unique wave map
¥ = (¢,00)) € €I, x L?) solution to (WM)), defined on a mazimal interval
I=: (T~ (¢), TT(x))), and which preserves the energy (1.2)).

The wave map equation has been intensively studied as a model for geometric
wave equations. It has been long understood that the geometry of the target M, i.e.
the metric g, plays a crucial role in the long time behavior of wave maps. We recall
the result by Struwe [28|: a wave map that blows up in finite time must bubble up
a harmonic map at blow up time. In particular, if M does not admit non constant
harmonic maps, then any wave map is global in time.

Let us mention a few results on the general case , where the proofs are much
more technical. The first breakthrough was concerned with global well posedness
for small data in the critical Sobolev space H4/2~1 x FH/? with target N = S9!,
and due to Tao [29] 30]; it was then generalized by Tataru [32] to general targets.
The result by Struwe [28] was extended to non symmetric data by Sterbenz and
Tataru [24, 25] (see also the works by Tao [31] and Krieger and Schlag [I8] when the
target is the hyperbolic space). We refer to the review article [I7] and the reference
therein for more details, and from now on we focus on the equivariant case
only.

Actual examples of wave maps blowing up in finite time were constructed by Rod-
nianski and Sterbenz [23] and Raphaél and Rodnianski [22] (as a perturbation of
2



the self similar regime), and by Krieger, Schlag and Tataru [19] (with prescribed,
polynomial blow up rate).

On a different side, together with Kenig, Lawrie and Schlag [0, [7], we classified the
asymptotic behavior of wave maps with energy less than 3 times the energy of a
harmonic map, for large time or near blow up time.

Our goal in this paper is to obtain a similar classification for wave maps of arbitrarily
large energy, that is to relax the bound on the energy. We provide a description of
a wave map into decoupled profiles, a so called soliton resolution.

It turns out that these profiles are harmonic maps and linear scattering terms.
Recall that a harmonic map is a solution @) of finite energy of

f@Q)

r2

1
aer + ;arQ =

(Hence (Q,0) is a finite energy stationary wave map). From [4], they are classified
as follows: a non constant harmonic map is monotonic, satisfies one of the ODEs

r0,Q = g(Q) or rd.Q=—g(Q),

and joins two consecutive points of ¥, that is for some ¢,m € ¥, £ < m,

{Q(0),Q(c0)} = {¢,m} and ¥ N(¢L,m)=2.

It has energy E(Q) := E(Q,0) = 2(G(m) — G(¢)). In particular if #% = 1, there
exists no non constant harmonic map (if ¥ is empty, there is no finite energy map).
On the other hand, given ¢ € ¥, we define the linearized wave map flow around ¢:

g'(0)°
7'2

(LW,) Oup— 0o — 0,0+ L g =0,

Solutions to this linear wave equation preserve the following H x L? related quantity

. (¢ 2 2 .
L B e L U

We now state the main result of this paper. For this, we make the following as-
sumptions on the metric g:

(Al) G(x) — £o0 as & — *oo.
(A2) 7 is discrete,
(A3) Forall e ¥, ¢'(¢) € {-1,1}.

Assumption (A1) prevents the formation of bubbles at infinity, and is a very natural
assumption. (A2) is also a natural assumption of non degeneracy of g, which prevent
a decomposition with harmonic maps of arbitrarily small energy.

The physically relevant metrics g are

(1) g(p) = sin(p) (wave maps to the sphere S?), and
(2) g(p) =1 — p? (radial 4D Yang-Mills equation).

Hence (A3) allows to handle wave maps to the sphere S?; however, dealing with the
radial 4D Yang-Mills equation requires to relax (A3) to
(A3) Forallt e ¥, ¢'(¢) € {—2,-1,1,2}.
It should be noted that most of the results in this article hold under (A3’) instead
of (A3). One could even consider the natural condition ¢'(¥) C Z \ {0}, which
makes the linearized problem (LW, around ¢ to be of wave type (in dimension
2|¢'(0)] + 2). However large |¢’(¢)| raise technical issues for the Cauchy problem as
noted in [5, Theorem 2|, which is restricted to the case (A3’); if these issues could
be dealt with, most results here hold under this last condition.
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Theorem 1.1. We make assumptions (A1)-(A2)-(A3’).
Let J(t) be a finite energy wave map. Then there exist a sequence of times t, T
T*(zﬁ), an integer J > 0, J sequences of scales Ay, < -+ K Ay p K€ A1, and J
harmonic maps Q1,...,Q such that
Qs(0) =v(0), Qjt1(0) =Q;(0) forj=1,....J—1,

and that the following holds.

(1) (Blow up case) If TT(¥)) = +oo, denote { = 1)(c0). Then Q1(c0) = ¢,

M <ty and there exists a solution ¢r(t) € €(R, H x L?) to the linear

wave equation (L such that

-

(1.3) P(tn) = Z (Q5 (-/Ajm) = Q;(00),0) + (£,0) + GL(tn) + by.

(2) (Global case) If T+ (1)) < +o0, denote { = m, s ) W(t, T () — t) (it is
well defined). Then J > 1, A\, < T () — t,, and there exists a function
¢ e A x L ofﬁm'te energy such that Q1(c0) = ¢(0) = ¢ and

— —

(1.4) Z (Qj (-/Ajn) — Q;(00),0) + & + by
j=1

In both cases, b, vanishes in the following sense
16nollLe + [[bn,1llz =0 as n— +oo,
and more precisely, for any sequence A, > 0, and A > 0
1bn,0llz2(a/x,<r<an,) = 0.
If we furthermore assume (A3), then (in both cases)
1Bnllrxzz =0 as n— +oo.

Remark 1.2. Assume (A3). In the global case, E()) = Z] 1 EB(Qj) + Hd)L”ngL?’

and in the blow up case, E(¢)) = Z] 1 EQj) + E(¢). This gives a bound on J.
(when assuming solely (A3’), only an inequality holds, but still provides a bound
on J).

Also, if T+ (¢) = 400, then J = #(¥ N[1(0),¥(00)]) — 1. This last number can be
made arbitrarily large when ¥ is infinite (as for g = sin).

Remark 1.3. Many possibilities are left open regarding the behavior of the A; ,,: for
example, in the global case, one could have A;,, — 0 (infinite time blow-up), or
AJn — +oo (infinite time flattening). Although no such solutions were constructed
for (WM)), let us refer to [9] in the context of the semilinear wave equation.

The construction of solutions with multiple profiles (J > 2) having various asymp-
totic behavior is an important open problem.

The question whether the decomposition holds for all times and not merely for a
sequence is open. However there are some cases where it can be proved.

Corollary 1.4. Assume (A1)-(A2)-(A3).
We use the notations of Theorem [I-1: we dispose of a sequence of harmonic maps
Q1,...,Q . Assume that

J
2|G(6) = G(y(0)] = ZE(QD,
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or, equivalently, that the sequence £ = Q1(00),Q1(0),Q2(0),...,Q;(0) = ¥(0) is
monotonic.
Then the decomposition holds for all times, that is, there exists J functions \;(t) <
s K A (t), such that
(1) If TT(¥)) = +o0, then A\ (t) < t and
J

(L5)  P(t) =D (Q5 (/A1) = Q4(00),0) + (£,0) + G (t) + b(),

Jj=1

where b(t) — 0 in H x L? as t — oo.

-,

(2) If TT () < +oo, then \i(t) < TT(¢) —t and

J
(1.6) B(t) =Y (Qy (-/X(1) = Q4(00),0) + 6 + (),

j=1
where b(t) — 0 in H x L* ast — T (1)).

Remark 1.5. Notice the condition of Corollary [I.4] always holds if J =0 or J = 1.
Also, the decomposition also holds for all times when the excess energy of 7,[7 with
respect to the energy to connect ¢(0) to 1(c0) is not enough to bubble more
harmonic maps: that is

-,

() < 21G(1(00)) — G(u(0))] + 46,
where & = minge s {y(0).0 (00 {|G(6) — G((0)], [G(6) — G(u(o0))]}.

Theorem is an extension of [6] [7] where only one profile was allowed (i.e J =
1) through the bound on the energy. It is in the spirit of the seminal papers by
Duyckaerts, Kenig and Merle [I0, 1Tl 2], 13] where large solutions of the radial
energy critical (focusing) wave equation in 3D were described. It is actually very
similar in nature to [I2]. In [13], the authors show the strong soliton resolution; i.e
they give a decomposition for all times and not only for a well chosen sequence of
times. The improvement from [I2] is involved and relies on refined version of the
“channels of energy” methods, which currently are known for the 3D linear wave
equation only. For wave maps, the relevant linearized operator is of wave type in
even dimensions, where only weak versions of the channels of energy are available
(see [8]). Proving the analog of [I3] for equivariant wave maps is hence a challenging
open question.

Let us however observe that their analysis, even in [I3], can not provide a description
of type I blow up solutions (i.e when lim sup 1+ gy [|U(#) || g1 L2 = +00): it is clear
that a decomposition into a finite sum of rescaled profiles and a scattering term
cannot hold in that case. This phenomenon does not occur in the wave map case
(mainly because the energy is coercive, even if it doesn’t bound H x L?), and we
give a description of any wave map, without any further assumption.

1.2. Outline of the proof. Let us mention two delicate issues. First, geometry
has to be taken into account: the harmonic maps do never belong to H x L2?. This
means we must derive a procedure to extract them without relying on a linear
profile decomposition, as for the wave equation.

Second, the linearized operator of the wave map flow at spatial infinity is of wave

type in even dimension: most of the delicate linear estimates available in the radial

3D case break down for wave maps, in particular the so-called “energy channels”.

When ¢'(¢) is odd, the relevant linearized equation corresponds to a wave

equation in R? with d = 0 mod 4, and the linear estimate obtained in [§] in this

case suffices to conclude. When ¢'(¢) is even, then d = 2 mod 4 and the desired
5



linear estimate fails. This is the reason why we must restrict ourselves to (A3)
instead of (A3’).

The first step in the proof is to choose a sequence of times t,, — TT (1/7) on which the
space-time kinetic energy inside the light cone vanishes. This is a reformulation that
the averaged kinetic energy inside the light cone vanishes, which is a well known
result, and is the content of Section 2.1. Section 2.2 focuses on various aspects of
the profile decomposition in H x L? to be used later in the paper.

The second step, Section 3, is concerned with sequence of wave maps whose space-
time kinetic energy vanishes, and shows, in Theorem [3.5] that up to a subsequence,
one can construct a bubble decomposition i.e extract the harmonic maps. This
decomposition holds up to an error which tends to 0 in L°°. Notice that this result
does not make use of assumption (A3) or (A3’), but only (Al) and (A2).

The bound on the error is insufficient to capture the linear scattering term for
example, but it is enough to derive a sharp scattering theorem below the threshold
in L. As linear scattering is involved, we do need assumption (A3’) here. This
result has its own interest: let us state it here, and postpone the proof to Section 4.

For £ € ¥, define dy as the distance of £ to the closest (distinct) element in V:
de =inf{|t — k| | ke ¥\ {{}}.
dgy > 0 due to assumption (A2).
Theorem 1.6. Let { € ¥ and assume (A1)-(A2), and
g e{-2,-1,1,2}.
Let @/; be a wave map such that ¥ (o0) = £, and that for some ¢ < dg,
(1.7) vt € (0,7 (%)), [[(t) — lp= < e < dy.

-,

Then T+ (1)) = +00 and 1) scatters at +oo, in the sense

% = £l s(10,400)) < +00.
(Se is an adequate Strichartz space, defined below on (2.4)). It follows that there
exists a (unique) solution ¢1, to (CW4)) such that

“&(t) - (£,0) — (5L(t)||H><Lz —0 as t— +oo.

Remark 1.7. Observe that if g vanishes in at most one point ¢, then dy = +00, and
so Theorem [I.6] proves that all wave maps are global and scatter in this case. This
strengthens the global well posedness result by Struwe [28] mentioned above.

As a consequence of Theorem [1.6] we can extract the scattering term (for all times,
not merely a sequence) in the global case. In an analogous way, we can define the
regular part 5 in the blow up case. This is the content of Propositions and
of Section 5. Let us emphasize that this step only requires (A3’).

In Section 6, we revisit Theorem [3.5] Under the additional assumption (A3) — crucial
but used only on this step, we show that the error term tends to 0 in H x L2. This
section is independent of Sections 4 and 5.

Finally, we gather all the previous results together in Section 7 and prove Theorem

and Corollary

1.3. Acknowlegdment. The author would like to thank the anonymous referee
for very helpful comments and remarks.
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2. PRELIMINARIES

The purpose of this section is to recall or adapt a few important earlier results, and
derive some consequences.

2.1. The self-similar region.

2.1.1. Global wave maps. Throughout this Subsection, 1; is a finite energy wave
map such that T (1)) = +oo0.

Proposition 2.1 (|7, Proposition 2.1]). For all X\ > 0,

limsup E(p(t); At,t — A) = 0 as A — +oo.

t——+oo
Proof. The argument in [7] is done for g = sin, after ideas of [3], and extends

seamlessly for any non linearity g. O

We derive a few consequences from this. One fundamental outcome of Proposition
is that the kinetic part of the energy vanishes in an averaging sense. More
precisely, we have:

Corollary 2.2 ([7, Corollary 2.2]).
1 T t—A
lim sup —/ / 0w (t,r)[Prdrdt =0 as A — 4o0.
Totoo T Ja Jo

From there, we find a sequence of times for which the condition (3) in Theorem [3.5
holds.
Corollary 2.3. There exists a sequence t, T +oo such that

1 tn+s
sup -
5,0<s<tn /2 8 Jt,—s

Proof. Corollary [2.2] shows that

t/2
/ |8t¢(t,r)|2rdrdt -0 as n— +oo.
0

1 [T ft-A
lim sup — Oup(t,r)|*rdrdt - 0 as A — +oo,
T
A Jo

T—4oc0

/2
hence, if we let f(t) = / |03b(t, 7)|?rdr, and as t/2 <t — Aif t > 2A, we have
0

1 /7
lim sup —/ f@®)dt -0 as A— +oo.
T—too I Ja

We now argue by contradiction. Assume that the conclusion is not correct, then
this means that for some § > 0,

1 T+s
liminf  sup f/ f(t)dt > 416.
T—+00 5 0gs<T/2 S JT—5

Fix A and Ty > 2A be large enough such that for all T' > Ty,
1 T
— t)dt <6
e 7 [ 10

1 T+s(T)
e there exists s(T') € [0,T/2] such that —/ f(t)dt = 400.
s(T) T—s(T)
7



Consider the sets (T — s(T),T + s(T)) for T € [Ty, 2Tp]. Their diameter is bounded
by 2Ty, hence Vitali covering lemma applies: there exist a sequence (T™),, such that
the intervals (T — s(T™),T™ + s(T™)) are disjoints and

[To.2T) ¢ |J (T —s(T),T+s(T))C U —58(T™), T™ + 5s(T™)).
TE[T(),QT()]

From this last condition, it follows that
Ty <10 s(T™).

On the other hand, by definition of the s(7T™), we get that
T71+S(T’l’b)
/ f(®)dt > 406s(T"),
Tr—s(T™)
and as the intervals under consideration are disjoint, we infer
3T(, T"+s(T"
Z/ )dt > 400 " s(T™) > 40T
T /2 n—s(T™) -

But as Ty/2 > A, we also have

1 3T
— f()dt <9,
310 J1y /2 0

and we reached a contradiction. O

Finally we recall that the L°° norm outside vanishes in the self similar region and
outside the light cone.

Corollary 2.4 ([7, Corollary 2.3]). For any A > 0 we have
l0(t) —¥(00)||Lee(rzre) = 0 as t— oo.

Proof. The argument in [7] is done for g = sin and can be extended seamlessly for
any non linearity g. O

2.1.2. Blow up wave maps. Throughout this Subsection, QZ is a finite energy wave
map such that T (1)) < +oo. The results here very similar to those in the global
case, and in fact simpler (integration can be done up to the light cone).

Proposition 2.5 ([27, Lemma 2.2|). For all A € (0,1),
E@E:NTH@) — ), THW) —1) =0 as t11.
Corollary 2.6 (|27, Corollary 2.2]).

-,

TH) T ()t
/ / 0 (t,r)Prdrdt =0 as T — TT ().

T+ - T Jr
Corollary 2.7. There exists a sequence t,, T T*( _’) such that
Tt () —
Sup / / |3t¢(t r)|*rdrdt =0 as n — 4oo.
5,0<s<T+ () — —s

Proof. 1t is very similar to the proof of Corollary 23] Let

T ()t
f(t) = /0 |0 (t, ) |*rdr — 0.
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f(t) = 0 and we know that

1 T+ (%) L

Assume that the conclusion fails, for the sake of contradiction: then there exists § >

0 and a function s defined on [T (¢) — 6, T+ (1)) such that 0 < s(T) < T () =T
and

)
(2.1) iy /T ICLET
Corollary [2.6| yields Ty < T () such that for all T € [2Ty — T+ (4), T (1)),
1 % (%)
(2.2) T /T F(t)dt < 6.

We apply Vitali covering lemma to the intervals (T — s(T"),T + s(T')) where T €
[Ty, TT(v)) to find a sequence T™ such that (T™ — s(T™),T" + s(T™)) are disjoints
and

[To, T+ () € J(T" = 5s(T"), T" + 5s(T")).

Hence taking the length:
TH@) =Ty <10 s(T™).
n

Therefore, as the intervals are disjoint, and using (2.1]),

T (%) T +5(T™) .
/2 feydt=>" / f()dt = 46(T () — Ty).

To—T+ () n JT"—s(T™)

Now TH () — (2Ty — 1) = 2(T+ () — Ty), and we reached a contradiction with
2-2). O

2.2. Energy concentration on the light cone for (LW/)). For the rest of this
Subsection, we fix £ € ¥ and focus on the linear equation (LW]).
We define the transformation .7 by

(79)(r) = $(r)/re' O,

Then ¢ is a solution of (CWy)) if and only if G = (7 ¢, 7 ;) solves the radial wave
equation in 2 + 2|¢’(¢)| dimensions:

(23) att@ - arrso -
Observe that

1+2|¢'(¢
20Ol

10l 1, = ||‘7¢“H1(r1+2|9'(2)|d7)'
The norms Hy; and H are equivalent. It follows that 7 is a bicontinuous bijective
linear map L2(rdr) — L2(r'+219'Oldr) and H — H (#1219’ Ol dy).
We start by recalling a result regarding equipartition of energy and concentration
of energy on the light cone for linear solutions.

Proposition 2.8. Let ¢ be a solution to (DW). Then
lim sup ||$(t)||HxL2(\r—t|>A) -0 as A— +oo.
t——+o0
Also,
()| — L1602 d (160 — 130)I2 t
10:6() 122 = SN0, <2 and (O, = SISO, xz2 ast— +oo.

9



Proof. The first statement is the content of [8, Theorem 4]. The second is equipar-
tition of the energy, and is classical for the linear wave equation. O

We will sometimes use, in the context of a profile decomposition, the following
weaker form, namely all the energy concentrates on one scale.

Corollary 2.9. Let ¢ be a solution to , and (tn, A\n) be two sequences with
An > 0, and such that

M — +00.

An

Then for any ¢ > 1, as n — 400,

A[A —tn, T H — [|é(0 .

H " ) H,g><L2(%tngr<ctn) ||¢( )HHZXLZ

Now we recall a result giving some condition so that some energy of a linear solution
remains outside of the light cone. It was already crucial in [6] [7]. Here is the only
place in the argument where we need to restrict to odd ¢’(¢) (and hence (A3) to
have the nonlinear argument run).

Proposition 2.10 ([8, Theorem 1]). Assume ¢'(¢) is an odd z'nteger There exists
B(£) > 0 such that the following holds. Let (;S be a solution to , such that

9r9(0) =
Then for all t € R,

SO Fr L2z 1epy = BONSO)IF 12

Proof. As mentioned, this is an easy consequence of [8, Theorem 1] and the remark
that follows. We refer to [6, Corollary 2.3] for the complete argument to pass from

the linear wave equation to (LW|). O

2.3. Profile decomposition for in H x L?. Again, we fix £ € ¥ for the
rest of this subsection.

Our goal is to derive a suitable notion of linear profile decomposition, adapted to
our setting, in particular L>° bounds. The notion of profile decomposition was first
introduced by Bahouri and Gérard [I] in the context of the energy critical wave
equation and Merle and Vega [21] in the context of the mass critical Schrodinger
equation.

Using transformation .77, a notion of profile decomposition for the wave equation
will immediately translate to a similar decomposition for 7 but we will in fact
improve it. We elaborate on this in what follows.

For I an interval of R, we define

1
drdt\ 2+3/9"®
(2.4) I6lls,(r) = (/ / (L, r)|2+3/e O T = > :

It is simply the norm of .7 ¢ in the Strichartz space L2+3/g (Z)( 1+2~"/(€)drdﬁ), adap-

ted to the H' critical wave equation in dimension 2 4 2g (£) (we refer to [5, Section
3] for further details).

Lemma 2.11. Let 0(¢) = 5_’_%/9/(@ € (0,1). There exist C > 0 such that for any

finite energy solution v to the linear wave equation (LW ).

o(¢ 1-6(¢
250 ) < CUFONES L2 I, o) -
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Proof. As v is a finite energy solution to the linear equation , all terms in
the desired estimate are finite.

Denote M = ||v| zx(r,ze) and A = [[Y(0)||rx 2. The norm ||¥(#)|| x> is bounded
below and above by ||7(0)||gxr2 (indeed, it is equivalent to the conserved quan-
tity ||¥(t)|| m, x£2). Due to Lemma it follows that M < KA for some K only
depending on /.

As all the functional spaces under consideration are invariant under scaling and
time translation, we can assume that |y(0,1)| > 2M/3.

Let s,t € R, and r > ¢ > 0. Then for any p € [¢q,r] we have

2
(1) = 1(5,0) ( / 9y, + / D, )|’ + / Iaw(tﬂ“')ldr’>
[s,t]
31117/ 10,y (s, 7 )2 dr’ —|—3 ‘/ (', p)|? pdt’
—|—31n7/ 0y (t, r')|?r dr’
P Jp

T t—s
<l +3 [ jant o
q q [s,t]
After averaging in p € [¢, 7], we obtain

0y (t', p)[?pdt' dp

T — t
(t7) =0 @) < O L 5(0) s +C ||T

r t—s|? .
<0 (m 4 '| sl |) 1701

Pick ¢ = 1, s = 0. Observe that for all y > 0, 0 < In(1 + y) + y < 2y. Then fix
B = M2/(1801A2). We deduce, for all r € [1,1+ B] and [t| < y/B(r — 1),

Iy(t,7)] = 2M/3 — A\/C1(In(1 + B) + B) > 2M/3 — A\/2C,B > M/3.
Hence (notice that 0 < B < K?/(18C}) is uniformly bounded in M, A),

1+B drdt
24+3/g' (¢ / T
”fYHS-ER/g (ORS / / (7‘[/3)2+3/9 G) iy
1 [t|<y/B(r—1) r

230 [ VB =1, B 243/¢/ (0
M/3 g'( >C——-=(M/3 g
> (/3) 1 o (/)
A5439O
T
3
We can conclude, with 6 = 573/90) M < CAQHVHS(]R) =

From this, the profile decomposition for (LW, takes the following form.

Theorem 2.12 (Profile decomposition). Let z/?n a bounded sequence of H x L?.
Then there exists a sequence of scales (tjn, Ajn)n and linear pmﬁles V;,o solutions
to , such that, up to a subsequence that we still denote wn, we have for all

J > 1
r 1 t; r
. Loav, (— f)) +7m(0),
Z( o < jn /\j,n> Njn 7 Ajn Ajn "

where 7y, is a solution to which satisfies
hmsup ||7JnHSg(R) + vsnllze =0 as J— +oo,

11



and for all j,

t.
Vn,tjn=0 or (jn has a limit which is 4+ oo or — oo) ,

Ajn
and if j # k,
Nin  Aen tin —thn
. —I—L—>—|—oo, or Vn,/\jn:)\knand‘]’ik’%—l—oo .
)\k,n )\j,n ’ ’ J,n

Furthermore, there hold

(1) Pythagorean expansion of the H, x L? norm: for all fized J, we have as
n — +0o

J
- - 2
HwnH%ngLz = Z HA[/\J‘,n]Vj,L (_tjm) HoxL? + H’YJW(O’T)”%QxL? + On(l).

j=1

(2) Pythagorean expansion of the energy: for all J fized, we have as n — 400
J
E(yn) = ZE (A[/\j,nﬂ/}‘,L (_tj,n)) + E(77,0(0)) + o(1).
j=1
(8) L profile selection: ||t || has a limit as n — 400 and exists

(2.5) 1i711n||1/1n |poe = SI;IJ) IV;(0)||e where _Zo:={j>1]|Vn, t;, =0}
Jj€ o

(with the convention that the sup is 0 if Z is empty).

Proof. This is essentially contained in [I, Main Theorem|. We refer to [6, Corollary
2.15] for the profile decomposition in the wave map context and the Pythagore-
an expansion of the H x L? norm, and to [6, Lemma 2.16] for the Pythagorean
expansion of the energy.

The only extra points with respect to the usual profile decomposition are

[Vsnllze, =0

and the L*> profile selection. For the former, the Pythagorean expansion ensures
that ||¥7,(0)]|gxr2 is a bounded sequence, hence this follows from the previous
Lemma and

limsup [|77,n | s,®) — 0.
n

For the latter, let r,, such that

() — e | < %

First assume liminf,, ||t,|L~ > 0, and let € > 0 such that 2¢ < liminf,, ||¢y|| L -
Choose J so large that ||vjn|lzee < € for n large enough. Then consider j < J. If

Jj & 2o, then |t; |/ — +00 so that ||V (— if’") ||L= — 0. Hence

Yu(ra)l <Y

J<J5€ fo

In particular _#y # 0. As ‘111 %

Vi <0, rn) ‘ +on(l)+e.
Ajn

— 400, we see that

. Tn . .
im| Y (05| = max Ol 15 < k€ i
J<T,G€ Lo P Lo
This shows that
timsup 45l o < sup {[V; Oz~ |7 € £}

12



For the reverse inequality, first notice that as j — +o0, ||V;(0)||z — 0 (due to the
Pythagorean expansion of the energy), and so ||V;(0)|/ -~ — 0. Hence there exists
jo such that

sup {[[V;(0)l[ze= [ 7 < J.5 € Jo} = [[Vio |z~
Also, as V},(0) is continuous and tend to 0 at 0 and +o0, there exists ro > 0 such
that

Vio (0, 70) = sup {[[V;(0)[z= | j € o}
Consider the sequence ¥, (Aj, 7). Then we have the expansion

T'n
Un(Njo,n0) = Vjo (0,70) + v (0, )\_) +77,1(0, Ajo. . T0)-
J<IIE€ Fo\Lio} o
Again due to orthogonality of the profiles, we see that
lin}linf |nll L= = limninf [tn(Njo.nT0)] = |V} (0,70)].
If liminf,, [|1n ||z~ = 0, then choosing a subsequence such that 1,y — 0 in L°°,

and arguing as previously, we see that #, = @. Therefore ||, — Vjn|lr= — 0 for
all J, and so ||¢n]|zee — 0. The desired equality also holds in this case. O

Proposition 2.13 (Pythagorean expansion with cut-off, [8, Corollary 8]). We use
the notation of the previous Proposition. Fiz J > 1 and let 0 < rp, < s, < +00 be
two sequences. Then we have the expansion:

||"/}n||?{g><L2(rn<T<Sn)

J
N 2
= Z HA[)\Jan]Vij (_t,],’l’hr)H + “’7‘]’”(07r)||%[14><L2(7’n<7‘<8n) J'_ On(l).
=1

HyXL?(rp, <r<sn)

Proof. This is the content of [8, Corollary 8]. The proof there is done for one
sequence i.e. 7, = 0. To derive the above expansion, it suffices to do the difference
between the expansions with cut-off r < s,, and r < 7. O

We will use several times the following simple remark.

Corollary 2.14. Let 1/7n be a bounded sequence in H x L? with no energy at all
scales, that is, for any sequence A, > 0,

VA>1, [[Ynllmxren,/agr<ar,) =0 as n— 4oo.
Denote JmL the linear evolution (to (W) with data 1, at time 0, then

%n,Llls®) — 0.
Proof. Let (V;.1; (tjn; Ajn)n); be a profile decomposition of () in the sense of
17

Theorem [2.12] Let us show that all the profiles ‘_/; 1, are trivial. Indeed, first consider

the case of a profile V'kJ; where tj »/Ag,n — 400 or —oo. Then by Propositionm
and Corollary (with ¢ = 2), we have for all ¢ > 1

o2
on(1) = ”rdjn||H><L2(tk‘n/2<r<2tkm)

= AVt (=)
j=1

2

!

HyxL2(tg,n/2<7<2tk n)
+ H’?J’”(O’ r)||%{1{XLZ(tk,ﬂ,/2<r<2tk,n) + 0"(1)

- 2
2 HA[)\k,n]Vk,L (_tk,na T) + On(l)

Hox L2(tg n/2<r<2t n)

2 Vi, ()7, 22 + 0n(1)-

13



Therefore, ||Vi.1 (0|, x> = 0 and Vj. 1 = 0.
In the other case where ¢ ,, = 0 for all n, there holds similarly for all A > 1

0n(1) = [0nllFr 12000 0 ja<r < AN

2

HyXL?2(Ag,n JAST<ANE n)

k
=> HA[Aj,n]Vj.,L (—tj,mr)‘

j=1
+ ||’7J,n(0,7’)||%1e><L2(/\k,n/A<r<A,\k,n) + on(1)

> [[ Ay lPir (0.7) ’ +on(1)

HzXLQ(Ak’n/AgT'gAAk,n)

> ||‘7k,L(O)||%'1[><L2(1/A,A) + on(1).

This means that Hvk,L(O)”ngm(l/A,A) = 0, and as this is true for all A > 1, it
implies that I_/'kyL(O) =0.

As claimed, we proved that all profiles ‘7] 1 are trivial. As a consequence, 1;” is
the remainder term ¥, which (does not depend on J and) satisfies the desired
dispersion property. O

We recall the notion of nonlinear profile. If V is a solution of the linear equation
(LW¢) and T € R, there exists a unique wave map U solution to (WM)), defined on
a neighborhood of T and satisfying U(0) = U(c0) = £ and

1T (&) = V(t) — (6,0)||gxr2 — 0 as t—T.
Notice that if T'= 400, then U is defined on some interval [T, +00) and scatters
at +oo, i.e

1U =l s(11,+00)) < 0.

This notion follows from local well posedness [, Theorem 2|; we refer to [I5] [16]
for further details.

Proposition 2.15 (Evolution of the decomposition). Let zEn be a sequence of wave
maps such that

(1 (0) — (£,0)),, admits a profile decomposition in the sense of Theorem

from which we use the notations.

Denote U; nonlinear profiles associated to (YZ, — lim,, ;” “ ) Let t,, be such that

th —tin
vJ>1, —“—L%<THU;), and sup||U; —{|
Ajn n
Then for n large enough, T+ () > tn, and for all t € [0, t,],

. ZJ t—tin T 1 t—tin T
T\ N N N T N T A

Jj=1

tin tn—tini < F00.
(- o tin

+ ’VJ,n (ta T) + F’n,J(tv ’I"),
where limsup,,_, oo (|77l s,(0,t]) + 7l Lo (0,60), Hx22) = 0 as J — +o0.

Proof. Tt is the translation of [I0, Proposition 2.8| via the transformation 7. O

Notice that ¥, (0) — (£,0)), is a bounded sequence in H x L2, in particular 1, (0) =
1 (00) = €. Let us emphasize that we can not evolve a decomposition where har-
monic maps appear: this is a fundamental difference with the semi linear wave
equation, where such stationary profile were allowed (they belong to H' x L?).
We will often use this result in the following particular case.

14



Corollary 2.16. Let ¢, be a sequence of wave maps such that ¥, (00) = 1, (0) = £,
and
(1) U (0) = (£,0) is a bounded sequence in H x L2.
(2) If 1/_1;171/ denotes the linear solution to with, initial data 1, (0) — (£,0),
then ||¢n,Llls@) — 0.

Then for n large enough g[_fn is defined globally on R and
Su]l%) ||1En(t) —(£,0) — %n,L(t)”HxLz —0 as n— +oo.
te

Remark 2.17. Notice we can combine Corollary with this last result, as the
hypothesis of the latter are the conclusions given by the former.

Proof. The second condition means that any profile decomposition is trivial (i.e)
does not contain any non trivial profile. Hence with the notation of the previous
Proposition, 1, (0) — (£,0) = 45, (0) =: ¥, .(0) (does not depend on J) and

Jn(t) + (£,0) = Jn,L(t) + Tn(t>‘
To conclude, we argue by contradiction:
(1) if 1, blow-up in finite time, consider ¢, = T+ (¢,) + 1 (and similarly for
T7 (Jn))
(2) if the convergence does not hold, there exists n > 0 and ¢,, be such that
[rn (o)l sz = 0.
Each hypothesis contradicts Proposition [2.15] O

3. BUBBLE DECOMPOSITION FOR A SEQUENCE OF WAVE MAPS

Our goal here is to study a sequence of wave maps with vanishing (space-time)
kinetic energy. First we prove that at any scale, there is local (strong) limit which
is a harmonic map (possibly constant).

Proposition 3.1 (Profile at any scale). We assume (A1)-(A2).
Let A > 0 and ¥, be wave maps be defined on the time interval [—A, A], such that
(1) 1/_1'n have uniformly bounded energy E(z;n) <E.

(2) ¥ (0) is bounded.
(8) For some sequence 1, — +00,

10snll L2 ((=a,4),L2(r<rn)) = 0 as n — +00.

Then Jo(n), up to a subsequence o(n), converges to some harmonic map (Q,0)
locally strongly in the following sense: for any R > 0,
(3.1) sup [y (t) = (Q,0) |l erxz2(1/moR) — 0 as n — +oo.

t

)

Remark 3.2. Assume furthermore that for some sequences ¢, C [-A, A] and r,, —
Too € (0,400),

’(/Ja(n) (tn,rn) = L.
It follows from the convergence that Q(r~) = [, hence from classification of har-
monic maps, @ is non constant if and only if g(I) # 0.

Remark 3.3. A result of this type was already obtained in [28], but only for the
first scale (and in the LZ (H x L?([0, +00)10c) topology), i.e. under the additional
assumption that

sup  E(1,;0,1) < .
te[—A,A]

for some small dg > 0.
15



Proof. Up to rescaling, we can assume that A = 1. As E(¢,) and v,(0) are
bounded, 1, is bounded in € ([—1,1], (H' N L>) x L?). Therefore, up to a subse-
quence, there exists 1o, such that ¥, — ¥ a.e. (—1,1) x (0, 4+00), and ¥,, = VYoo
in Goc([—1,1] x [0,+00)) and

Un 2 hse L¥((=1,1), H' x L?) star-weakly.
From Fatou Lemma, we deduce that

vVt e [-1,1] — a.e., /Wrdr < liminf/ wrd“

r

It follows that 1;00 satisfies the wave map equation (WM)) in a weak sense, and has
finite energy F(¢oo) < liminf, E(¢y,). Now, as ||0¢n | 2((—1,1),22(r<ry)) — 0, then
for all R > 0,

10¢ocllL2((=1,1),2(r<r)) = 0,

and hence 0yt = 0, that is 1/_1'00 is a weak harmonic map: r0,(rd.v) = f(v). It
follows by elliptic regularity that 1o, = (Q,0) a smooth harmonic map.

Let us prove as a first step that there holds strong local convergence in space-time
L2 ((—1,1),H x L?)1o¢). Let K be a compact of (—1,1) x (0, +0oc) (in space time).

loc

Then
(32) HT/Jn(ta?”) - '(/Joo(t7r)||L2(K,'rdrdt) + ”atwn(ta T)HLZ(K,Tdrdt) —0

due the compact embedding H' N L*® (rdrdt) — L(K,drdt/r) and to the vanishing
of the kinetic energy. Fix now ¢ € 2((—1,1) x (0,+00)). We compute

[ (@0~ 00ttty
_/Awn ) () — o) (£ )t Pyt
/ o ( V(7Y (6 — 1) (£ 7)o (, )t

—/%wmmm—%mwmeWﬁ
_/ﬁ%%ﬂ%ﬁ@ﬂmw

(Vn — oo (£, 7)p(t, 7)drdt
/3 V(1) (Vn — Yoo) (t, 1) Opip(t, 1) rdrdt

_ / 1O (£, 7) 2o (t, Pyrdrdt + / Dyt (£,7) (¥ — o) (£, 1)Ouio (t, 7)rdlrdt
7\/f(7/)n(t;r))7f(¢oo(ta7’))

(¢n - wOO)(t7 T)Qp(tﬂ T’)det
/3 V(&) (Un, — Yoo ) (t, ) 0p (L, r)rdrdt

Now, using again the compact embedding Hyoc(rdrdt) — L2 _(drdt/r), and the

loc
Cauchy-Schwarz inequality, we have

‘/atwn(wn — oo ) (t, 1) Opp(t, r)rdrdt
< Oebn 10kl L2 || (¥ — Yoo) V1Ol L2 — 0,
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and similarly

‘/ f(%/fn(f,r));rf(woo(t,r))

(U (t, 1) — Yoo (t, 7)) p(t, 7)drdt
SN (Wn) = F(Woo)) /7|2l (on — oc)V/sp /7| 2
<

wr (Sp [Yn[| o)l (¥n = toc) \/7||L2 — 0
(We recall that f is €, hence we can define wy(A) 1= sup, ,e(—a 4] W;

we already noticed earlier that 1, was a bounded sequence of Lg,). Finally, as
10r(¥n — Yoo) || L2(rdrar) is bounded,

‘/8 — Yoo) (t, 1) (U — Vo) (t,7)Orp (8, T)rdrdt‘
<10k (¥ = o)t )| 2 | (n — Yoo (8, 7)10rp(t, 7)][| 22 — 0.
This proves that

/ ((&wn — Ophoo)?(t, 1) + (¥n — wm)z(t’r)> p(t,r)rdrdt — 0.

r2
Let us now prove (3.1). Due to the previous convergence, the set
P ={te[-1,1]|VR>0, [[¥n(t)—(Q,0)|lmxr2(1/r)r+1) = O}

is dense in [—1,1].
We now need the following version of uniform continuity of the flow around the
harmonic map (Q,0).

Lemma 3.4. Let QQ be a harmonic map, T > 0 and € > 0. There exist 6 > 0 such
that for all 0 < rp < 2r1 < rg < 400 and wave map Y such that

[9(0) = (Q, )l zrxz2 (s ra)) < 6
Then for all time t € (T~ (ﬁ),T*‘(lﬁ)) such that |t| < min{T, (ry —r1)/2},

[9(8) = (Q: )|z L2 ((ry+1tlra—1e) S €
Proof. We postpone it to the Appendix. O

Fix R > /2 (so that 2/R < R) and let £ > 0.
Define the integer K to be the integer part of 2R 4 1 so that K > 2R. Then for all
k € [-K, K — 1], there exist t;, € [k/K, (k+1)/K] such that t;, € . Let 6 > 0 be
provided by the previous Lemma [3.4| with 7' =1 (and our previously fixed € > 0).
Let N be such that

Vk e [-K,K—=1],¥n > N, |[¢n(tr) — (Q,0) |z xr2(1/2R),R+1)) < 0-

Let t € [-1,1] and n > N. There exists k € [-K, K — 1] such that |t — ;| < 1/K.
Hence by- as 1/K < 1),

[9n () — (Q, 0| mrx £2([1 /2Ry 11/ K. R+1-1/K]) < €
Now R+1—1/K > R and 1/(2R) + 1/K < 1/R; hence Lemma [3.4] yields

Vte[-1,1], |¢n(t) - (Q,0)lExz2(/r.R) <6,

that is
V=N, sup [¥n(t) —(Q,0)|laxr2(i/rR) <€
te[—1,1]
This is the desired convergence. O
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We now prove a bubble decomposition result, which is the main result of this
Section. It will be central in the soliton resolution in both the blow-up and global
cases, and that we will also crucially use for the sharp scattering result (Theorem

9.

Theorem 3.5 (Bubble decomposition). We assume (A1)-(A2).
Let T > 0 and (Yn)n € €([-T,T],H x L?) be a sequence of wave maps. Assume
that for some R > 0,

(1) The 1/_)'n have uniformly bounded energy sup,, E(¢,) = E < 400.
(2) For some l €V, ¥,(0,R) — £ as n — +o00.
(3) Att =0, the dptp, have vanishing L?-norm on [0, R)]:

1

sup

A R
X / / |0y (t,7)|*rdrdt — 0 as n — +oo.
A<t A J-aJo

(4) z;n (0) has vanishing energy on scale 1:
Vit e [-T,T), Vr >0, E(n(t);r,R) =0 as n — +oo.
Then there exists an integer J > 0, J scales (\jn)n verifying
0<Agn € K dap € Mim < 1,

and J harmonic maps Q; € J€ such that, up to a subsequence 1,5(,(”),
J
Yoy () = (£,0) = > (Qs(-/Ajn) — Q4(0),0) + bu(t),
j=1
where b, € €([-T,T),H x L2([0, R))) satisfies the following convergences. For all
A>0,
(1) (No energy at all scales) Let Ay, be such that 0 < A\, < min{R,T}/A. Then
sup  [|ba(t) | Erxr2(an jacr<arn,) — 0 as n— +oo.
te[—AXn, AN,
(2) (No energy up to the last scale) If J > 1, then

sup Non (Ol zrxL2(r<ar,,,) =0 as n— 4o0.
te[— AN n, AN n]

If J =0, then sup,c(_1/5.1/9) |bn (D)l zrx 2(r< i) — 0.
(3) Let €4 = {(t,r) | |t| < min(Ar,T), r < R} be a truncated cone. Then
SUP(t,r)e%a bn (t,7)[ — 0.
Also
(2) Forall1<j<J, Qjt1(00) =Q;(0), and Qi(c0) = L.

Proof. Up to rescaling, we can always assume T = 1. We first need to introduce
some notation.

As E(¢,) < E and ¢, (0, R) — ¢, hence is bounded, there hold an L* bound on
1y for some K > 0,
vn, Ve, [ (t, )] < K.
By (Al), ¥ N[—K, K] is finite. For £ € ¥, denote £~,{T € ¥ the preceding and
following points in ¥ (respectively), that is £~ < £ < ¢T ({=,4Y)N ¥ = {{}. Then
define
ne = min{sup{|g(x)| | = € (¢,£7)},sup{|g(2)| | = € (7, 0)}} > 0,
and
5o = %inf{ng |0e ¥ N[=K, K]} > 0.
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Finally, for @ € % a non constant harmonic map such that Q(co) = ¢ and nor-
malized in the sense that

Q) = 5(Q(0) +Q(c0)),
let €, > 0 be such that
Vr < vee, 19(Q(r)] < 60/2, and [g(Q(1/r)] < do/2,

and
go=inf{e, | L e ¥ N[-K,K]} > 0.
Notice that by definition of g, if @ is a normalized harmonic map such that Q(o0) €
[-K, K] and rg is such that |g(Q(ro))| = do/2, then
if 7 <egro or r = 19/c0, [g(Q(r))| < do/2.
Also notice that due to monotonicity of the energy along light cones, hypothesis
(2) and (4) are in fact uniform in ¢ € [—1, 1]. More precisely, there holds
(2°) for all r >0, sup,e(_q 17 [|¥n(t) — €l Lo ((r.r)) — 0 as n — +o0.
(4°) for all r >0, sup;e(_q 1 E(y(t);r, R) — 0 as n — +o0
Let us prove (4’) first. Let r > 0 and 6 > 0. For ' < r/2 be such that 1/ € N,
apply (4) with t = kr’, k € [-1/r';1/r']. This gives N such that for all n > N and
all k € [-1/v";1/r'],
E(n(kr');r', R) < 6.
By monotonicity of the energy, with 7 € [—r/, r'] we get
E(Wn(kr' 4+ 7);7" + |7|, R) < E(¥n (kr'); 7', R) < 6.
The kr’ + 7 cover all [1,1], hence (4’).
We now turn to (2’). Notice that for ¢ € H,
l9(8) 3 < (1+ 1g'(6)|2=)E(6,0),
so that for all ¢ and r» > 0,

19 Wn (O Fr (rmyy < (1 + ”g/||%°°([7K,K]))E(1Zn(t)§7'7 R) =0,

where the convergence is uniform in ¢ due to (4’). Due to Lemma we deduce
that (for all 0 < r < R/2)

sup [|g(¥n ()l Loo (jr,r)) — O-
te[—1,1]

As ¥'N[—K, K] is finite and ¢,,(0, R) — £ € V, it follows from a continuity argument
that

Vr >0, sup |9 (t) = £l poo(rr)) — 0 as n — 400,
te[—1,1]

as desired.

Step 1: Extraction of the profiles, and definition of A;,, and b
We recall that an extraction is a function ¢ : N — N which is (strictly) increasing.
We now define the set of scales S made of couples A := ((ry,)n, ¢) where

(rn)n € [0, RN, and ¢ : N — N is an extraction,
such that
(3.3) Ygp(ny(0,7) has a limit Iy such that [g(lx)| = do.

We denote by Sy the subset of S made of scales ((ry,)n, ¢) such that for some non
constant harmonic map @, it satisfies furthermore

(3.4) VA >0, ||1;¢(n)(0) —(Q(rn), 0| Ex L2 ([rn/A,4r,]) — 0.
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Notice that for all r > 0, |1, (0) — (£, O)ll % L2 ([r,5)) — 0 due to our hypothesis (4).
Hence the pointwise bound gives

Vr >0, [lg(¥n(0)llzo(ir,r)) — O

It transpires that for any A = ((rp)n,0) € S, then r,, — 0. Also, in this case, if we
define

d)”(t 7‘) = ¢U(n) (rnt an)
then ¢, is a wave map defined for ¢ € [-1/r,,1/r,] and for all A > 0,

R/ry Ar,,
/ / |01 (t,7)|Prdrdt = —/ / 10t (n) (Tnt, 1) |?rdrdt — 0,
0

Ary,

9(¢n(1)) = lim g(vo(n) (rn)) = g(Ix) # 0.

It follows from Proposition (by rescaling again by a fixed factor A and using a
diagonal argument) that there exists an extraction = and a non constant harmonic
map (@, such that

VA >0, SUPA] Gy () = (@, 0) | s 12((1 /4,47 — O-

te[—A

In particular, due to continuity of the flow, we have that
VteR, lim lim E(grm(t);1/4, A) = E(Q,0).
A—+oco n
Unscaling, this can be rewritten as

(35) VA > 0, sup quﬁow(n) (t) - (Q(Tﬂ(n))a 0) ||H><L2([r,r(n)/A,AT.,r(n)]) — 0.
te[—Ary,Ary)
Notice that the scale \ := ((r(n))n, @ om) € Sp, we say it is adapted to A € S, and
we call @) the local limit at scale .
We now proceed with the extraction of the profiles. First assume that Sy is empty.
In this case, let us prove that for n large enough, ||g(¢n(0))||cc < do. Indeed,
recall that ¢(,(0,R)) — 0. If there exist an extraction ¢ such that for all n,
|9(¥o(n)(0))]lcc > do, then by continuity of g(t)gn))(0), for all n there exist ,, such
that |g(¥e(n))(0,70)] = do. As g7 ({£80}) N [~ K, K] is compact, up to extracting
a subsequence, we can assume that g(v¢(n))(0,7,) — £ where [g(f)| = do. Hence
((rn)n,o) € S and we saw at the previous paragraph how to construct an adapted
scale to it: it follows that Sy # &, a contradiction. Hence for n > N,

19(¥n(0))[loc < o
Then we choose J = 0 and En = Jn

If Sy is not empty, we proceed by induction and construct a (finite) sequence of
scales \j = (7. )n,0;) € Sp for j =1,...J, such that

(1) There exist an extraction 7; such that 041 = o o 7,.

(2) Orthogonality: Trj& — 0 as n — +00.
Jymi1(n)
(3) For j € [1,J — 1] and all n € N and r € (Tj+1,m5€07Tj,7;(n)), there holds
|9(to, 11 (n) (0,7))] < do.

(4) For all v € [0,€07 5,2, (n)), |9V, ()(0,7))] < do.
The first two conditions give an order on Sy, the third one ensures that the scale
Aj and Aj4q are “consecutive”, and the fourth one is the stopping condition.
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Let ¢1 be an extraction such that for all n € N, [|g(¢s, (n)(0))|| o= ([0,r]) = do. We
can furthermore choose ¢1 such that 1y, () (r1,,) has a limit I; € g~'({£do}), where
1,5 is defined as follows: 71 ,, is such that |g(¢,,(r1,5)] = do and

Vr e (TLTHR]? |9(1/’n(077"))| < 50'
¢1 and 71, are well defined because v, is continuous, g(1,(R)) — 0 and Sy is not
empty.
Then (r1,,01) € S, and let m; be adapted. This yields the first scale
AL = ((T1,w1(n))n,01 o) € S,

and @ is the local limit at scale A;.
Now assume that ((rjn)n,0;) is constructed. For some non constant harmonic map
@Q; we have the convergence

VA> 0, e, m)(0) = (Qj(jn)s O mrx£2(ry 0 /4 Ars ) — O a8 1 — +00.
For A > 2, the convergence also holds in L*°(r; /A, Ar;,), due to Lemma
Now, as |g(Q;(e0))| < d0/2, we see (with A = 1/e() that for large n,

|9(1/Jaj(n)(0,507’j,n))\ < 25/3

If for n large enough, sup{|g(¥s,(n)(0,7)| | 7 € [0,e07n]} < do, wWe stop here.
Otherwise, we construct ((7j41,n)n,0j+1) as follows. First choose an extraction p;
such that denoting

¢j+1 = 0j 0 Py,
we have
Vn, sup  [9(¥g,,1(n)(0,7))| > do.

TE[O,EoT‘j,pj (.,L)]

This allows to define 71, such that [g(vg,,,(n)(0,7j41,n)| = do and

Vr S (f_j-i-l,naeorj,pj(n))? |g(¢¢»1+1(n) (T)| < 60'

Extracting further, we can assume without loss of generality that ¥, () (0, 7j11.n)
has a limit {41, i.e. ((Fj+1.n)n, ®j+1) € S. Notice that due to the local convergence

Vo, (x;n))(0)) = (Qj(75,p,(n)): 0)
on the scale 7 ,, it follows that
T
I 0 as n— +oo.
Tj,p5(n)
Let finally choose an extraction w; adapted such that ((741.n)n,;+1) € So, where
Oj41 1= @jp1 0w@; and rj11 ., 1= Tji o (n)- Finally let Qj+1 be the local limit at
scale ((rj41,n)n, 0j41)-
Then 7; := p; o w; is an extraction such that
Oj+1 = 0j 0 m;.
Also, we see that
Tit1,n _ ’Fj—&-l?wjv(n)
Timi(n)  Tjp;(w;(n))

Finally, by the definition of 7 1, we have

— 0 asn— +oo.

Vr € (Tj+1,n»‘50rj,7rj(n))7 |g(¢a'j+1(n) (T)| < §O~

Hence (rj4+1,n)n,0j+1) is as desired.

Notice that from our construction, we have Q;41(c0) = Q;(0).
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We now claim that this process has to stop after a finite number of steps. Indeed,

fix J > 1 consider the sequence (1/7[,‘,(”))”. Then for 1 < 57 < J, we have for all
A >0,

E(¢aj(n)§ l/ArTFjOmo‘ITj(’ﬂ)vj? AT‘ijO"‘OT"J(n)aj) — E(Q;,0;1/4, A).
Now for j < j/, if we denote w =m;0---omj_y, and T =mjo---om
lrﬂ'jlo"'o”k(n))j/ — Tw(n),j N 0

Trjo-om(n),j Twon(n),j

due to the fact that the scales r, j» and r(,) ; are orthogonal.
Summing this for 1 < j < J, we thus get

J
E > liminf By, () > Y B(Q;,0;1/4, A).
n
j=1

Letting A — 400, we get £ > 7| E(Q;,0). As Q;(0),Q;(c0) € [-K, K] for all
7, we have that
E(Q;,0) > Ex := nf{G(k) — G(K') | k, k' € VN [~-K, K],k >k},

Ex > 0 due to assumption (A2). Hence E > JEk and this prove that the process
has to stop after at most E/Ek steps.

Thus we have constructed a sequence of J scales ((1.n)n;01)s -+, (Tsn)n,00) € So
and of non constant harmonic maps ¢); . We can now define for j =1,...J,
o=0y, )\j,n = Tj,0j110-0075(n)
It will be convenient to write
)\O,n =R, /\J+1,n = 0.

From our construction, we have that for all j =1,...,J, and A > 0,

sup ”wa(n) (t) - Qj('/)‘j7n)||H><L2()\j,n/A<7'<A)‘j,n) =0 asn— oo,
tE[—ANj n,ANj n]
and

SUD ([ V() (t) = Ll irx L2 (2o fA<r<A0m) — 0.
te[—1,1]

Also, foralln e Nand j =0,...,J,

>\' n
(3.6) DR 0 as n— +oo
7,
(37) ||g(7/}o(n) (0))HLOO(P\J'+1,n/50750>\j,n]) < do,
Define the error term: for t € [—1,1]
J

(38) b (t) = Yo () (1) ) =D (Qs(-/Ajn) — Q(00)z,0),

j=1

Step 2 : Convergence at all scales. Let A > 0 and a sequence A, C [0, R/A] be
given. We now prove conclusion (1), that is

(3.9) sup ||En(t)HHxL2([An/A,A,\,L]) — 0 asn — +4oo.
t

ns n

This means that b, has no profile in the cone %4.
First let us prove

(3.10) ||bn<0)||Loo([0’R]) —0 asn— +oo
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From assumption (4), for all A > 0,

||gn(0)|\HxL2(R/A<r<R) —0 asn— +oo.

And it follows that from Step I and an easy induction that for all j = 1,...,J, and
A>0,

||gn(0)“HxLz()\jyn/AgrgA)\jyn) —0 asn— +oo.
Hence due to Lemma [A73]
||bn(O)HLoc(R/Agr<R) + ”bn(o)”L‘X’(rj,n/AgrgA)\j,n) — 0 asn — 4oo.

We now argue by contradiction. Let r,, € [0, R] be such that lim sup,, b, (0, r,)| > 0.
From convergence on the scales A, of b,(0), we have that

To(n Aj n
Vj=0,...J, L0 4 2t
Ajsp(n)  Tp(m)
We can assume that for some extraction p, and for some jg € [0, J],
Ao+t L Tpn) K Ajo.n-

Forj j07 QJ (rp(n)/)‘j,n) - QJ(O) = Qj+1(oo) and fOI‘j > j(]a Qj(rp(n)/)‘j,n) —
Q;(o0) = Q;-1(0), hence

J Jo
> Qilrpom/Nin) = Q3(00) = 3 Qy1(00) = Q(%0) = Q(0) = Qu(00).

Now, as Q1(c0) = ¢, we deduce that
b (0, Tp(n)) = ¢60p(n)(rn) - @5, (0) + on(1).

Up to extracting further we can assume, (recall b, (0) is continuous and b, (0, R) —
0),
Do) (05 7p(m)) = €,
where ¢ # 0 is small so that we also have g(e + Q;,(0)) # 0. It follows that
"/}aop(n) (07 Tn)) = bp(n) (Ov Tp(n)) + Qjo (0) + On(l) — &+ Qjo (0)

Arguing as in Step 1, (and relying on Proposition [3.1)), we deduce that there exists
a harmonic map @ such that Q(1) = Q;,(0) + ¢ (in particular, @) is not constant)
and an extraction w such that

VA > O, ||w00pow(n)(0) - Q||H><L2([TPOW(7L)/AyATpow(n)]) —0 asn— —+00.
But then convergence also holds in L* and as [|g(Q)||r= = 2do, and we deduce
im0t ([t (O)) 2 (00100 ) > 200

and we reached a contradiction with (3.7)). This proves that for all sequences (r,),, C
[0, R], lim,, b,,(0,7,,) = 0, and hence

16, (0) || Lo (j0,R)) — 0 as n — +oo0.

which is (3.10]).

We now prove (3.9) arguing by contradiction. Up to extracting a subsequence, we
can assume without loss of generality the existence of A > 0 and of a sequences t,,
such that 0 < |t,| < A\, < AR, and for some p > 0 and € > 0
t
b (t)ll ExL2(n, JA<r<Ar,) =€, and )\i = p.
n

Also (2) and (4) show that

tn, A >0 asn — +oo.
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Similarly, due to (3.5)), for all j =0,...,J,
A Ajn
R N
Ajn An
Up to extracting further we can assume that there is jo € [0, J] such that for all n,
>\j0+1,n <L\, K )‘jo,n'
Now consider the wave map

Gn(t,r) = wa(n) (Ant, Anr).

By inspection, ¢, is a finite energy wave map defined for times ¢ € [—A, A], and
for n large enough,

(3.11)

5. (1) - @00 > e/,

An HxL2(1/A<r<A)

R/An R
A/ / |0; P (t,7)|?rdrdt = In /A)\n/ |04 () (, 1) [Prdrdt — 0.

Hence for some harmomc map @, ¢, — Q in the sense of Proposition 3.1} @ is not
constant due to . Unscaling, we have

VR, sup  [[Ba(t) = (Q(-/An), 0) |l mrx£2(nn /4, 40,]) — O

€[~ AXn, AN,
But then, for any t € [—A\,, A\,], bu(t, A\n) — Q(1) # 0 as n — 4oo: this
contradicts (3.10]). Hence (3.9) is proved.
Notice that it follows immediately from (3.9) and Lemma that

(3.12) sup{|bn,(t,7)| |0 < r < R,0 < |t| < min{l,Ar}} - 0 as n — +oo.

As [[6,(0) [ o< ([0,r)) =+ 0, and ¥4(,,)(0) € ¥, we see that for n large enough,
wo(n) (O) = QJ(O) =

Let us drop the first terms of the sequence, and assume that this holds for all n.
Then (3.8)) can be rewritten

J
(3'13) ( ) wn - Z QJ /)‘L (O>70)'

Jj=1

Step 3: (Convergence up to the last scale) We do the proof for J > 1, the proof in
the case J = 0 being completely similar. Fix A > 0, we now prove that

(3.14) sup 16 ()13 L2 (10, 425,.]) = O-
LE[~ANsn AN 1.0]

From Step 2, we know that there exists «,, T +oo such that

sup 160 (O #rx L2 (7.0 fetmsanrsn]) = O-
te[—anAin,anAin

Let us first prove that
(3.15) By (0);0; anAsn) — 0.

We argue by contradiction. If the above convergence does not holds, there exists
€ > 0 and a subsequence that we still denote 1), (,,) such that for some g, < Ay 5/,
we have
E(wa(n) (0)7 0; 2/~Ln) =¢e>0.
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By decreasing € > 0 if necessary, we can furthermore assume that
SOl -1

5 .
(we recall that | := Q;(0) € ¥, so that f(I) = 0 and f'(I) = ¢’(1)*> > 0). By

monotonicity of the energy, we see that for t € [—pun, fin],

E(Wo(n)(); 0 1) <& and  E(Wy(y(£):0;3p,) > €

(3.16) VreR, |G(z)-G)|<e/2=[f(x) - f(DN(=-1D]<

Let
ﬁn (ta T) = (wa(n) (Mnta Mnr)a ,U/natwa'(n) (,unt; /J/nr))

Then @, (t,r) is a wave map defined on the time interval [—1, 1], and for all ¢t €
[_17 1]7

(3.17) E(i,(t);0;1) <e and E(u,(t);0;3) > ¢
The definition of € shows that for all ¢ € [-1,1], r € [0, 1]

B19 funtr) — POt - o) < LG 21

Also the condition (3) yields

1 rR/pn
(3.19) / / Oy (¢, 1) [2rdrdt — 0.
—-1J0

This allows to apply Proposition As [[un(0) = Q1 (0) | oo (0,3 .0 /(atnpin)) — 0, the
local limit is constant, i.e. for all B > 0,

(3.20) s [ (t) = (1, 0)l| zrx £2(11/3,B)) — O

te[—1,1

Let ¢ : R — R be an even cutoff function such that ¢(z) = 1 for || < 1/2 and
o(x) =0 for |z| > 1. We can compute

// |0run (t, 1) [2p(r)p(t)rdrdt
- / / (£, 7) — D)rytn (£, 1) (P)ip (1) relrdt
//Wdtﬂ—DﬁwUer()+ﬂHMUMMt
/ / wn(t, 1) — Dugtun (t, 7)o (r)p(t)rdrdt
/ / Unlts) = DI 1) (1)
// wn(t,7) — DOyun (b, 7)) (r)p(t)rdrdt
= [10alen)Petryotieyrarar — [ [ LD o
+ //(un(t, ) — 1)Ogun (t,r)o(r)¢’ (t)rdrdt
// n(t, ) = D)Brtin (t, 1) (P (t)redrdt

Now from estimate ,
/WMMJW%HMWWﬁ:dU
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Combining (3.19)) with the Cauchy-Schwarz inequality, we also have

/ / (i (£, 7) — D)yt (£, 7)o (1) ()rdrdt = o(1).

Also, as ¢’ has support on [1/2,1], estimate (3.20) and the Cauchy Schwarz in-
equality, we have

[ wntt.r) = Dot )p(0rdrat = o),
We now use that f/(I) = ¢’(1)?> > 0. Then it follows from (3.18]) that

/ / (un (t,7) ~ gﬂum "D oy (tyrdrdt
. f’Q(l) // Iun(t»;)—” o(r)(t)rdrdt.

Hence

0< [[ Bruattr)Perporarde
S _f/2(l) / / |u"(t’;2 “I o(ryp(yrdrdt + o(1).

From this we deduce first that

// W@(T)gp(ﬂrdrdt -0,

then
/ |0 (t, 1) 20 (r)p(t)rdrdt — 0.
Adding up the last 2 results along with (3.19)), we get

1/2
/1/2 ”Un(t) - (l7o)||%1><L2(T<1/2)dt — 0.
Now recalling ([3.20]), we get

1/2
VB >0, / i (1) = (1,0) |21 ooyt — 0.

—1/2

This shows that
1/2

VB >0, E(in(t):0, B)dt — 0.
—1/2

However, this contradicts the second estimate in (3.17), and from there, estimate
(3.15) holds true.

From (3.15)) it is now easy to prove (3.14)). Let A > 0. For n large enough, a,, > 2A.
By finite speed of propagation, we deduce that

sup E(Ja(n) (t)y 0, A)\J7n) — 0.
tG{*A)\J,nwA)‘J,n]

By coercivity of the energy around I = 5 (,,)(0), we deduce

sup H"Za(n) (t) - (l’ O)HHXLz([O’A)\J,n]) — 0.
te[—AAJ,nvA)‘JJL]

Notice that for all 1 < j < J, as Aj, < Aj,, we have
Q5 (-/Xjn) = Q3(0), 0}l mrxL2(10,4x,,,)) = 0-
The last two statements and (3.13]) yield (3.14)).
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In the case J = 0, the same proof shows that

sup || (8)||zrx 22 (j0.1/2)) — O-
te[—1/2,1/2]

Now (4’) reads: for all r € (0, R),

sup ||gn(t)||H><L2([T,R]) — 0.
te[—1,1]

We add up these last two statements to conclude the case J = 0. O

4. SCATTERING FOR WAVE MAPS BELOW THE L° THRESHOLD

Proof of Theorem[I1.6 Let 1/_; be a finite energy wave map, with ¥ (co) = £ and such
that it satisfies (1.7)). Notice that 1)(0) = ¢ and there exists ¢ > 0 (depending only
on dp and ¢) such that

1
(¢, ) — 1.

c

(41) Ve [0,TH@)),Vr =0, cly(t,r) — € < gt r)| <
From this point wise bound, we derive that
(4.2) Ve € [0, (1), [[b(t) = (,0)]luxr2 < CE().

Also notice that T+ (7,/?) = +o00. Assume indeed for the sake of contradiction that
T+(1) < oo. Due to [28], a bubble would form: hence for a sequence of times
tn T TT (1), and of points 7y, ¥ (tn, ) — k where k is such that ¢,k are two
consecutive elements of V. Thus liminf,, |[¢(t,) — ¥(c0)||lpe = [k — €| = d¢ > ¢, a
contradiction.

We now do an induction on the energy in the spirit of the Kenig Merle concentration
compactness argument [I5] [I6]. Define E. to be the supremum of all E' > 0 such
that all wave maps 1/7 of energy E(z/?) < E, which satisfies ¥(o0) = ¢ and , are
global and scatters.

Then [5, Theorem 2] shows that E. > 0 (recall |¢’(¢)] € {1,2}). We argue by
contradiction and assume that E. is finite.

Step 1. We first construct a critical element, that is a wave map V defined on
[0, 4+00), that satisfies (I.7), but ||V — €||s,([0,100)) = +00-

Let 1/7n be a minimizing sequence of wave maps, i.e. Jn satisfies (hence
T+ () = +00)), and

- 1
E(yn) < E. + W and [|¢h, — g”Sz([O,-&-O@)) = +oo.
Up to rescaling, we can also assume that for all n
E(4n(0); 1, +00) = E,/100.

Choose a sequence of times t,, with vanishing L? norm of 9;1,,(t,). More precisely,
we claim that for all n, there exist a sequence of times ¢, ,, such that

1 tn,m+s  ptn,m/4
(1) sup 7/ / |0yt (t,7) [Prdrdt < 1/m.
0<s<tn,m/2 5 Jtn,m—s JO
- 1
(2) E(n(tnm)itnm/m;tnm(l —1/m)) < o

1
3 ntnm —L > (r m<77
(3) I ltnm) = i3t pmy < —
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Indeed Corollary provides us with a sequence satisfying the first condition,
and then, up to extracting, Proposition and Corollary 24 allows to satisfy the
second and third conditions (we emphasize that these last two results hold for any
sequence).

Now choose t, = %, . Then Theorem applies to the sequence of wave maps

B (t,7) = P (tn + tnt, t,r), with R = 1/2: indeed, we have by scaling
1 [ e
sup 7/ / |0y o (t, )| rdrdt — 0,
o<a<1 A Jox Jo

and for t € [-1,1], and r > 0, we have due to our second condition

E(@n(t);r,1/2) = E(Jn@ﬂ)? Ttn,tn/2) = 0.
Also notice that due to finite speed of propagation, we have
(4.3) Va>1, [¥n(tn) — (60| mxr2(sat.) — 0.

We can therefore apply Theorem It yields a bubble decomposition which is
trivial: it can not contain any harmonic map profile @; due to (L.7), and we see
that for all A > 0 and sequence 0 < pi,, < t,,

(4.4) ||t (tn) — (¢, Ol s L2 ([un /A, Aun]) — 0, and ¥, (tn) — £l Lo (0,2, /2) — O.

Condition (2) then translate into absence of profile on scale 1:

(4.5) [ (tn) = (£, 0) |l i 2t rs(1=1/m)tn]) — O-
Using the third condition, we also get
(46) ||wn(tn) - ZHL‘X’ — 0.

In view of ([£.2) v (t,) — (£,0) is bounded in H x L2, hence admits (up to a
subsequence) a profile decomposition in the sense of Theorem Denote Vj 1, the
linear profiles, and (t;,, ;) the parameters.

We claim that there are no nontrivial profiles V; such that ¢;,, = 0. Consider indeed
such a profile V;, for the sake of contradiction. Up to extracting, and changing scale
by a fixed factor, it suffices to rule out three cases:

1) >‘j7n <L tn, 2) )\jm =1n, 3) )‘]}n >ty
In case 1), from (4.4)), for any A > 1, we have

||1/7n(tn) = (6,0) |z xL2(ex; 0 JA<r<AN, ) — O

Recall the Pythagorean expansion with cut-off Proposition 2.13] it implies in par-
ticular that

1
50 (0550w (055)|
Ajm /) Xin Ajin HXL2(Ajn/ASTr<ANj n)

Unscaling, we get
V5L (O xr2(1/a,4)) — O

As this is true for all A > 1, we get X_/'JL(O) =0.
In case 3), from (4.3) and Proposition we similarly get with v = 2

r 1 r
) Vs
‘ (VJ’L (O7 >‘j,n> ’ Aj,n o nE (07 )‘j,n>>

Unscaling, we deduce

— 0.
HxL2(r>2t,)

||‘7j,L(0)HHxL?(r;m/,\j,n) — 0.

Ast,/Njn — 0, we get ‘_/’J»’L(O) =0.
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In case 2), from (4.5) and Proposition [2.13] we get

1
(v (o) 500 (07) )| o
tn) Ajn tn HxL2(tn /n<r<tn(1—1/n))

which after unscaling yields

Vi, Ol s 21 /n.1-1/n)) — 0.
Similarly, (4.3) and Proposition m give after unscaling

V3,20 | ¢ 22 (o 00y — O-

Hence \7}7L(0) = 0.
We ruled out all three cases, and this establishes our claim that there is no profile
with tj’n =0.

t.
2™ 5 400 and the nonlinear

Consider now the set ¢ of indices j such that

n
profile V; does not scatter at +o0 (or blows up in ﬁrjlite time). Any of these profile
have energy greater or equal to FE. > 0, hence (by Pythagorean expansion of the
energy) there only is a finite number of them.
If there is no such profiles then for all j, ||V;||s@>—t,,./x,.,) is bounded (it tends to
0 if tj,/\jn — —00). Then Proposition shows that there is a uniform bound
M such that, for all sequence 7,, > t,,

[¥n = Llsy((tn, 7)) < M.

This in turn implies that 1/7n scatters at +oo: it is a contradiction. Hence ¢ # @.
We can assume without loss of generality that _¢# is indexed by 1,..., Jo.

Among such j < Jy, choose A, slowest, then among such j, we consider jy such
that t;, ,, is lowest, i.e

. A et
Vj g J07 )\]JL — +00  or (A],n = )\j(h" and w — —OO> .
Jo,n Jo,n

V= ‘7]‘0 will be our critical element. First let us show that V' is global and satisfies
([L7). Let t € [0, TF(V)) and 7 > 0. Define 7, = tj, » + Ajo.nt. Then

HVjU’L”Sz([f%,n&;fi’”]) - ”Vjo,LHSe((—OO,t]) < too.

By construction, for j € 7 \ {jo},
Tn — t;

I 5 oo hence |VjLl

— 0.
Ajn

_tj,n Tn—tjn
Sell=x70 =]

For j ¢ 7, notice that 7, > 0 for n large enough (¢,,/A;, — +00) and
L by
o if 7]l,n — +00, ||‘/j,L||Sz(R) < 400, and
din

. t'n
o if L0 5 o0, ”Vij”Sz([ — 0.

Ajn
Hence Proposition [2.15 applies, we can evolve the profile decomposition up to 7,:
s
YT Njount) ==V () =L+ > (V; Tn —tin Nom, )\ _
’ e Nin | Ajm
3#50,3<T I s

+ '7J,n(7_na )‘jo,nr) + TJJL(TTH )\jo,nr)-

tin
— 32 +00)

By inspection (arguing as in the proof of equation (2.5))), we deduce that

[V(t,r) =4 < e
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It follows that I_/; satisfies ([1.7]); as noticed above, we then have T"‘(V) = +o0.
Also, due to the Pythagorean expansion of the energy, we see that

E(V) < E,.

As we chose it so that it does not scatter at +oo, we must have E(V) = L. by
definition of the critical energy: therefore V' is a critical element.

Step 2. We reach a contradiction.
For this, we can repeat the argument of Step I on V: there exist a sequence of
times t,, T +o0o such that

tnts ptn/4
(1) sup / / |0,V (t,7)|*rdrdt — 0 as n — +o0,
0<s<tn/2 S Jt,

@) V(L) €= — 0, )
(3) V(tn) — (¢,0) admits a profile decomposition, with profiles U; r.
Also, as the bubble decomposition yield no bubble, convergence up to the last scale
shows that

. V (t,) — (£, HxL2([0,t,/2]) .
(4.7) IV (tn) — (€,0)]| —0

Arguing as in Step I, we see that one of the nonlinear profiles [jjo is critical, in

particular (U' o) =FE.=FE (17) By Pythagorean expansion of the energy, it follows
that there are no other nontrivial linear profiles in the profile decomposition of
V(t,), and that the dispersion term tends to 0 in H x L2. In short, there holds

— t; r 1 t; r
t'n,a —(¢ = j — 2o 1 — o n 1 9
V( T) ( ’0) <UJ01L < )‘]'oﬂl7 )‘]'0771) ’ /\jo,n atUjoyL ( /\jo,n’ /\jo,n>)+0 ( )

where the o0, (1) is in H x L2

Assume ¢, , = 0. Observe that V has energy on the light cone: from monotonicity
of the energy along light cones, Proposition and (4.7]), we have

lim sup ||17(tn) — (0, 0)laxr2(r—t,j=a) =0 as A — +o0.
n—-+o00

In particular,
IV (tn) = (6 0) [ Ex2(fr—tn]>t,/2) — O
Now, as Uj, .(0) # 0, let p > 0 such that ||ﬁj0,L(0)HH><L2([p,2p]) =: a9 > 0. Then

1 r
(o0 (0557) 00 (055))| “on 20
JO’ Jo.m Josm HXL2([P)‘j0,n72P>‘jo,n])

Comparing with V (¢,) we must have for n large enough
20Njon = tn/2 and  pAj, . < 3t /2.
Up to extracting, we can furthermore assume that Aj;, ,,/t, — X € (0,+00). But

then, unscaling the concentration on V (t,) we have

hmiup HﬁjOaL(O)||H><L2(|7’*tn|/)‘m nZ2A/Xjo.n) —0 as A— +oo.
n—+00

But this implies ﬁjo £(0) = 0, a contradiction.

TL

Assume now that —— — +o00. Then ||Uj, L|ls,((—o0i—t;../A,.)) — O so the same

holds for the non hnear profile: ||[Uj, [ s,((—oci—t;../2,..]) = 0- Then applying Propo-
sition [2.15] backward in time up to time t = 0 < t,,, we get

IV =€l 5,0,t,) < 1Ujo = €ls,((—00i—t;.n/2;.]) T 0(1) = 0.
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Hence by monotone convergence, we deduce [Uls,(0,400)) = 0, and V = 0, a
contradiction.

t'n
Assume finally that )\J— — —00. Then ||Ujy Lllsy((=t;. /A n,+00)) — 0 80 the same

holds for the non linear profile: [|Uj, = £l|s,((~t;../Ajn,400)) — 0. Then we can use

Proposition to get that for any sequence 7,, > tp,
IV = Ulsy((tn,ra)) = 0

This implies ||V —£||s,((t,,+o0)) — 0: in particular V' scatters at +o0, a contradiction.

We reached a contradiction in all cases, hence F,. = +oc. U

5. OUTSIDE THE LIGHT CONE

Proposition 5.1 (Scattering state). We assume (A1)-(A2)-(A3’).
Let 1) be a finite energy wave map such that TT (1)) = +oo. Denote £ = (c0). There

exist a map ¢r solution to linear problem (LW,|) and an increasing non-negative
continuous function a(t) such that a(t) = o(t) and

||1/;(t) = (£,0) - Q;L(t)||H><L2(r>a(t)) —0 as t— +oo.

Proof. First we recall Proposition hence it suffices to construct J;L such that
forall A > 0,
(5.1) [9(t) — (6,0) — 1) mxr2(rsi_a) — 0 as t — +oo.

The proof follows the scheme of |7, Proposition 2.8|, except now it is more involved
to obtain scattering for the approximations of ¢ around the light cone. We crucially
rely on our new scattering result Theorem

Let t,, T 400 and define the sequence of wave maps (En with data at time %, as
a suitable extension in J# x L? of J(tn)hztn /2, as in Lemma Specifically let

(;n(tn) = (¢n,0, Pn,1) Where
o ¥tn,tn/2) —

d’n,O(r) = tn
) ) ifr>t,/2,

(tn,r
P2 (1) = Opp(tn, 7).
(Recall that ¢ = )(00)). Then ¢,(0) = ¢n(cc) = £ and from Lemma
(5.2) [ 6n(tn) = (6,0l £2(r<tn j2) — 0.

By construction 1/7 and (En coincide at time t,, on [t,/2, +00), hence by finite speed
of propagation, as long as they are defined at time ¢,

(5.3) Vr 2t /24 |t —tal, an(ta r) = 1/;(1577").

r+0 ifr<t,/2,

Step 1: Let us show that for n large enough,

(1) &n is defined on [Ag, +00) for some Ay not depending on n.
(2) ¢, scatters at +oo.
Choose A\ = 1/2 in Proposition and apply it to

—

limsup E(¢(t);t/2,t — A) = 0 as A — +o0.
t—+o0

We then deduce that
limsup E(¢n (t,);0,t, — A) = 0 as A — +oo.
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Let E; > 0 be the minimal energy of a non constant harmonic map @ with Q(o0) = ¢
(equivalently, Ey = 2min{G({1) — G(¢),G(¢) —G(¢-)}, where {1 € ¥\ {{} are the
closest elements to ¢, with /_ < ¢ < £1). Choose Ag large enough, so that for n
large enough,

E(J(t”)? Oa tn - AO) g E[/za
By finite speed of propagation, we deduce that for all 7 such that 571 (t+7) is defined
BBty +7);0,tn — Ao — |7]) < E(n(t0); 0, b — Ag) < Ey/2.

We recall the blowup criterion derived in [28]: blow up concentrates in the light cone
an energy at least Fy. Hence for |7| < ¢, — Ao, this blow up criterion shows that
U (tn 4 7) is well defined: it then suffices to choose 7 = Ag —t,,, and T (¢,) < Ay.
Of course we can drop the first terms, so that is holds for all n.

We now turn to scattering at +oo. For this, we will prove that as n — +o0,

(5.4) sup  |[¢n(t) = £||L~ — 0.
tE[tn, T (én))

By monotonicity of the energy outside cones, we see that for all A € R, the limit
limy 4o E((t),t — A, +00) exists, let us denote it &(A). As the energy density is
non-negative, &(A) is an increasing function of A, and is also bounded by E(%)).

-,

Denote & = limg—, 100 &(A) < E(¢)). Let us show that
(5.5) E()(t); /2, 4+00) — &.
Indeed, let € > 0, and choose A large so that

E—e<&A) <& and limsup E(Y(t);t/2,t — A) <e.

t—+00
There exist T large such that for all t > T,
E(A) <K EW(t)it — A, 400) < E(A) +¢ and E()(t):t/2,t — A) < 2e.
Then for all t > T, we have
E—e<EA)SE@W(t)it—A 400) < E(A) +e < E+e.

Hence for ¢ > max{T, 24},
& —e < E(P(t);t — A, +00) < E((t);/2,+00)
SEWt);t/2,t —A)+ & +e < &+ 3e.

(5.5) follows.
Now, from (5.5) and we have

(5.6) limsup |[E((t);t — A, +00) — & — 0 as A — +oc.
t——+oo

From and , we deduce that
(5.7) E(fn(tn)) = & asn — +oo.
We now prove . Let € > 0. From , there exist A; and 77 such that
Vi Ty, |E(@(t):t— A, 400) — & <e.
We also use Corollary 2:4] Let T such that
VE2To, [h(t) = LllLee(rze/2) < e
Define now N such that ¢ty > max{Ty,2A4,,T5} and for n > N,

|E((;n(tn)> - (5"| < e
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Then for n > N, we have ¢, > ty so that if ¢ > t,, then t — Ay >t —¢,/2 >
tn/2+ |t —t,|. By (5.3)), it transpires
V€ [tn, TH (), |E(n(t)it — A1, +00) — &| <e.

By conservation of the energy,

V€ [tn, TH(6n)), E(gn(t);0,t — A1) < 2e.
Due to the point wise bound, we get as ¢,,(0) = ¢

V€ [tn, T (¢n)),  [dn(t) =l Lo (rge—ay) < Ce.

Also if t > t,,, then t > Ty and again by and

Vr2t—Ay,  [on(t,r) =L =[o(tr) —{ <e.
This proves that for n > N,

V€ [tn, T (0n), [l @n(t) — 1= < 22,

which is exactly (5.4)

Then Theorem pplies for all n > N, and shows that T+($n) = +o0 and (En
scatters at +o0o. Also notice that and show that for some C' > 0 and for
n large enough,

(5.8) sup ||Gn (t) — (€,0)|| gxr2 < CE.

t/’!'L

Step 2: Construction of (EL and end of the proof.
Let ¢, 1 be the linear solution of (LW,|) which is the scattering state of ¢,,, that

is, for all n,

(5.9) I fn(t) — (£,0) — G ()llrxzz = 0 as t — +oo.

Recall that the flow of (LW]) preserves the H, x L? norm. Along with the bound
on ||¢y, (t)|| gxrz, this shows that

62Ol sxr> < CE.

Up to extracting, we can assume that $n7L(O) has a weak limit ¢1,(0) in H x L2.
We define ¢ (t) as the linear solution of (LW,|) with initial data ¢ (0) at time 0.
Let 7,, be such that
o - 1
||¢n(7—n) - (67 0) - ¢n,L(Tn)||H><L2 < E
Up to extracting further, we can assume that the sequence b (1) — (£,0) — é L(Th),
which is bounded in H x L?, admits a profile decomposition in the sense of Theorem

2. 12

1 tjﬂl T 1 tjﬂl T
t2 (AleJ’L (_ N Aj,n) SR ( i Aj,n>> 790 (07)

J,m

Notice that this appears as a profile decomposition for the sequence (q;n L(Tn, 7))

with first profile d_;L and parameter 1, = 7,, A1, = 1. Indeed, the profile decom-
position is constructed of via taking weak limits, that is:

V;,1.(0) is the wealk limit of A[\j,,]Se(t;n)(dn () — (£,0)),
where S(t) is the linear flow of (LW/)) and A is the scaling operator

i = (o (55)£ (12))
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Also ¢1,(0) is the weak limit of S(—7)(A[L]én(mn) — (£,0)) = S(—70)(dn(70) —
(¢,0)). Indeed endow H x L? with the natural scalar product derived from the
H,; x L? norm:

,5) = / (104 + 0npodrors + 9/ (02250 v
Then S(t) is an isometry for (,) and if g € H x L?,
(S(=m)(@n(a) = (£,0)), ) = (Bu(ra) = (,0), (7))
- <$n,L<m>,s<—m>so> +0(1/n) = (60.£(0),3) +O(1/n) = ($1.(0), 5) -
We now proceed to prove ; it suffices to show

VAZ0, [[$(t) = (£,0) = Lt rxr2(rsi—a) = 0.
Let A > 0 and N be such that for ¢y > 2A. Notice that in a similar faghion as
previously, there hold the following profile decomposition for the sequence (¢, (7,,)—

(€,0) = 1. (70))n
5”(7—"’7‘> - (é O) - QT;N,L(TTNT) = QgL(Tn’r) - $N7L(Tn’r)

t; r 1 t; r
+ ) =0V - + v7.n(0,
Z( A jL( Ajn /\j,n> x J’L< Ajn /\j,n>> 90007
Now recall | and (| E, so that

(5.10) ||z/7(t) —(£,0) = dN L) | ExL2(rst—tn/2) — 0 as t — +00.
As ¢>n and 1/) coincide for r >t — t,,/2, hence for r >t — t5 /2, we get

6n(t) = (£,0) — dn, ()l srx2(rst—tn/2) — 0 as t — +o0.
Using the Pythagorean expansion with cut off (Proposition [2.13]), we deduce that
for all profiles in the above profile decomposition, the H x L?(r >t —t,,/2) (semi-)
norm tends to 0, and more specifically for the first profile, we get
||$L(Tn) - 5N,L(Tn)HHxL2(r>Tn—tN/2) —0 asn— +4oo.
As ¢p(t) — $N,L( t) is solution to the linear solution (CW), using monotonicity of
the Hy; x L? norm on outside cones, we deduce
162(8) = Sn.L Ol rxrz(rzi-tnj2) = 0 as t = +oo.
Combined with ((5.10)), we get

() = (€,0) = L)l rrwr2(rm1—tx/2) = 0 ast — +oo.
As ty/2 > A, this proves (5.1), and the proof is complete. O

We now turn to the analogous result regarding blow up wave maps.

Proposition 5.2. We assume (A1)-(A2).
Let 1) be a finite energy wave map that blows up at time T (1)). Then there exist
l = Hmy ey (t, TT(p) —t) € ¥ and a wave map ¢ defined on a neighborhood

of T*(z/_;) such that for t < T*(L/?) and t > max{0,T~ (5)}
Vr > T —t, Ot r) = (t,7),

and

-,

||$(t) — (£70)“HXL2([O,T+(1/7)715]) — O as tT T+( )

Proof. Step 1. Let us first construct qg



-,

Claim 5.3. (t,TT(¢) — t) has a limit £ € ¥ as t T T (1)).
Proof. Indeed, we recall Proposition [2.1| with A = 1/2:
E@(); (T () - 1)/2, T*( ) —t) =0 as t1TH(P).

In particular, we get

—.

sup G((t,r) = G (t, T () — 1) = 0.
rel(T+ ()=0)/2,7+ ()1

Also recall that for all ¢, ||9(t)| L~ < K. As G is a homeomorphism R — R from As-
sumptions (A1)-(A2), we get that G~! is uniformly continuous on [G(—K), G(K)]
and from there,
s () — B THW) )] 0.
re[(TH(¥)—t)/2, T+ (¢)—t]
Now we use again the vanishing of the energy in the self-similar region:

T ()t dr
[ P o,
(T*()—1)/2 r

so that there exist 7(t) € [(T(¥) — t)/2, T () — t] such that g(s(t, r(t)) — 0 as
t1TH(D).

Due to the previous uniform convergence and continuity of g, we deduce that
g(p(t, TT () — t)) — 0. Now t — (¢, T () — t) is continuous on [0, T (1)).
As ¥ = g~1({0}) is discrete, this implies that (¢, T+ (1)) — t) has limit £ € ¥ as
t — TT(¢), as desired. O

-,

Now consider any sequence of times 7, 1 T (/) and the wave maps (En defined at
time 7, as follows

Y, THW) =) =€ b
On(Tn,1) = o T+ () = 7 PresrslEn
(T, ) itr > TH) =
_Jo if0 <7 <TH () -7
Oy pn(Tn,1) = {atw(Tn,r) itr > TH) -7

Let m > n. By definition and finite speed of propagation, we have

Vr > T+(1;) — Tn = [Tn = Tml, (;n(var) = (Em(var)a
hence, using again finite speed of propagation,
Vr > 2TH () = 270, Gu(TH (D)) = $u(TT (), ),
It is then meaningful to define 5 to be the wave map with initial data at time
TH():
(5.11) H(THW),r) = du(TT (), 7) for = 2T () — 27,.

Step 2. Properties of q;
Let &(t) := E({(t); T (4) — t,00). This is a non-decreasing function, so let us
define here
&= lim_&(t).
1T+ (4)

- —.

Of course & < E(1). Then by construction of ¢,, and as ¢, (7, T (¢) — 1) — £,
there holds

E(¢n) = &.
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Hence by monotone convergence, we deduce that

- — -, -,

B(3) = lim B(@(T+(8)); T* () — 27, +0)

< Hm B(Gn (T () = 7); T () = T, +00) = &,

-,

that is F(¢) < &. On the other side,
E($) = B($(T"(1));0,+00) > lim E(Gn (T (§) = 70); T (1)) = 7, +00) = &,

and finally we obtain that ¢ has finite energy
(5.12) E(p)=&.

By th_e; deﬁnifion of (E and finite speed of propagation, we have for all ¢ €
(T(9), T*(¥)):
¥r > 8T () —t —2m,  G(t,7) = Gnlt,7),
which yields for t = 7,
Vr > 3T (§) = 37, G(7ayr) = (7, 1) = 1),

Hence, again by finite speed of propagation, we conclude that for ¢ € (T~ (¢), 7]
Wr > 3T () —t =27, Glt,7) = $(t,7),

-,

Letting n — 400, we finally obtain that for t € (T (¢), T (¢)):

(5.13) Vr > THp) —t,  ¢t,r) = P(t,r).

By continuity, for ¢t < T+ (1)), it also holds for r = T+ (¢)) — t. In particular,
FLTHW)—t) =0 as t1THD).

Now by definition of &, (5.13) implies that
E($(t,r); TT(¥) — t,+00) — & = E(4),
and by difference

E((t,r); 0, T () =) = 0.
As @(t, T+ (i) — t) — £, this implies
sup lp(t,r) — €] =0 as t1TH@).
r€[0,T+ () 1]

Therefore ¢(0) = ¢ and

-

18(8) — (6.0 2 (0.4 ey — O- H

6. H x L? CONVERGENCE FOR THE BUBBLE DECOMPOSITION

In this Section we consider again a sequence of wave maps, and improve the result
of Theorem under the extra assumption (A3), that is

Veey, 4 e{-1,1}

We show that that the error term in the bubble decomposition does in fact converge
to 0in H x L2. This is the only step in this paper where we use (A3): it guaranties
that Proposition holds for the linearized problem . This Section is
independent of Section 4 and 5.
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Proposition 6.1. We assume (A1)-(A2)-(AS3).

Let 1, be a sequence of wave maps as in Theorem [3.5, and we use its notations.
We recall the existence of harmonic maps Q1,...Qy and scales Ay, < -+ A < 1
and denote

—

bn(t,r) == wn(t’“ ZQJ (r/Ajn),0).

Then
160 (0) | s L2(jo,r)) = 0 as n — +oc.

Proof. By Theorem we recall that l_;n has vanishing energy at all scales on [0, R],
that is for any A > 1 and sequence (\,), C [0, min{R, T}/A],

(6.1) 160 (8) | Loo ([ AN, ANM] H X L2 (A A< < ANL)) — O-

We will mainly use this property for the scales Ag ... A, here. More precisely, we
will use the following convergence: there exists an increasing sequence o, — 400
(and we also denote Ag, = 1), such that

(1) Non Lo (—anrsnmanrsnl HxL2(r<ansa)) — 05

(2) ||5”(t)||L°°([_an/\j.n;an)\j,nLHXL2(>\j,n/an<7‘§an)\j,n)) — 0 fOI‘ all.] = 17 ey ']_
L

(3) 1B (#)l] e (- 4,41, Hx L2 (220, fan)) = Oy

(4) [|9bn (0)[| L2 (r< ) = O

(5) 120}l L= r< ) — O

(6) SuPie(—a,a 15 (8)]| zrx 12 (r< ) i bounded.
We now argue by contradiction. Assume that ||b, (Ol & xr2(0,r)) 7+ 0 as n — 4-o0.
Up to extracting, we can assume that for some dg > 0,

(6.2) v, 1bn (0) ]l 7110, R)) = do-

Due to convergences (1)-(2)-(3), and up to extracting further, there exists j €
[1,...,J] and §; > 0 such that
(6.3)

1Ba (@)l x22(0.0,7,0)) = 0 and ¥ €N ba(O)l] 0\ x> 61

an

Let 3, 1 400 such that 3, = o(an), B2 = 0(A\j_1,n/Ajn) and for all k =0,...,J,
ﬂn = O(Akfl,n/Ak,n)a

as n — +00.
We consider two times:

A.
Jj—1ln
Ti,n ‘= ﬁn)\j,na T2,n = .

Bn

We denote m = @Q;(oc0): the linearized flow which will interest us is now given by
(LW,,). Let Z_)‘nyL be the linear solution to (LW,,) with initial data at time O:

by, (0,7) iftr <4dm,
bp,(0,7) = M(5TQ’H —r) ifdm, <r<bn,
0 o if r > 572,
Otbp,(0) = 0.
Claim 6.2. We have
(6.4) [ ¥n(ri0) — (M, 0) = b (L) | x L2 (fra o 3man)) — O @S 10— o0
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Proof. By definition of b, and (2), notice that
||7/}n(71n) - (m, O) - bn(T17n)||HXL2([7'1,71737—2,71]) — 0.

Hence we are led to compare l_;n and gn L.
First consider the interval [y ,,, 271 ,,]. Due to finite speed of propagation, we have

0n, L (T1 ) | x 22 (71 2710]) < MO0, L (O Ep x 22((0,371.]) — O
by (6.3)). Using (2), we conclude
an(Tl,n) - bn,L(Tl,n)HHXLZ([TL”,ZTL”])
<o (Tl Hyx L2 (11 270 0)) + 10n, L (T X L2 (71 0 2707 = O

We now work on [271 ,,, 372 ). Consider the wave maps ﬁn with initial data defined
as follows

noa n)
VU (0,7T1,n) m_

m + fo<r <y
Ti,n
9 (0 T) _ 'd}n(oa 7") if Ti,n g r < 47—2,71
m+ Yn(0,4m20) —m m(57’27n —r) ifdmn, <r<bn,
T2,n
m ifr > 51,
8 ’0 (0 ) atwn((),T) 1f Tl,n < r g 47—2,11
T) =
i otherwise.

7, (0) is an extension of ¥, (0) with adequate affine reconnection. 7, coincide with
Wy, ON [T, 472.,] at time 0, and hence at time 71, < T2, we have

(6.5) Vr € 2710, 372m)s Un(Tim, ™) = Un(T1m,7).

Observe that 5n(0) = ﬁn(oo) = m. Because ¥,,(0, 71 ,,,) and ¥, (0, 472 ,,) tend to m,
and with the equivalence of energy and H x L? norm for L>-small perturbation of

m € ¥ (Lemma |A.1), we infer that
7, (0) = (m,0) is bounded in H x L.

From the definition of 71, and 72, and as En(O) has no energy at all scales on

[0, R] (statement (6.1))), we see that iJ,,(0) has no enery at all scales, that is for any
A > 1 and sequence A\, > 0,

(6.6) |9,,(0) — (m, 0)|[ rxL2(n, yA<r<AN,)) — O

Hence Corollary combined with Corollary allows to conclude that ﬁn is
globally defined on R and

67)  SupFa(t) = (1,0) ~ Fu s (@lliers 0 a5 71— +oo,
teR
where ,, 1, is the linear solution to (LW, ) with initial data J,, ,(0) = 7,,(0)— (m, 0)

at time 0.
Now notice that 9, , — b, 1, is a solution to (LW,,) which also satisfies

192,2.(0) = B, 2.(0) | 12, 2 — 0.
By conservation of the H,, x L? norm, we deduce that
(6.8) 19, 2.(r1) = b (7)1 22 = 0.
Combining (6.5]), (6.7) and yields

”Jn('rl,n) - (m7 0) - gn7L<Tl,n)HH><L2([TL",372,,J) — 0.
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This proves the claim. O
We now evolve up to time 7o ,.
Claim 6.3. We have

||7/;n(72n) —(m,0) — gn,L(TQ,n)||H><L2([7—2Y"727-21n]) —0 as n — +oo.

Proof. Let ©@,, be the wave map with initial data at time 77, as follows:

wn('rl,nv Tl,n) - mT

m+ fO<r<mpy
Ti,n
@ (7_ T) _ 7/}n(7'1,n77") if Ti,n g r g 37—2,7;
n\Tln, 1) = 0,37 -m
m + M(ZLTQJI —r) if 37, <r<4dm,
T2,n
m ifr>4mn,

Ohn (i p,r) T, <7< 3m,
0 otherwise.

0ywn (T1n,T) = {

Notice that E(,(71,,);0,371,,) — 0 (consider separately the intervals [0, 7y ,,] and
[T1,n,371,n]), hence @, is defined at least on the time interval (=271 ,,,471.,,), and
by monotonicity of the energy along cones

(6.9) E(&,(0):0,271.,) — 0.

Similarly, E (@, (T1,n); 3T2,n,—271 pn, +00) — 0 because 372, —271,, > 272 5, (consider
separately the intervals [372, — 271, 372.5], [3T2.n, 472.,], and [472 ., 00)). Hence,
again by monotonicity of the energy along light cones,

(6.10) E (,(0); 372, — T n,00) = 0.

By equivalence of the energy and the H x L? norm under the assumption of small
energy (Lemma [A.1]), it follows that

[©n(0) = (M, 0)|[ zrx £2(0,271,,)) T @0 (0) — (M, 0) | 1 x L2((372 1 — 71 s +00)) — O
Now by finite speed of propagation,
Vr € [271.m,372m — Tim),  @n(0,7) = ¥ (0,7).

Then it follows easily from (6.1]) (and the definition of 74 ,,, 72 ,,, and m) that @, (0)—
(m,0) has no energy at all scales, that is, for any A > 1 and sequence \,, > 0,

(6.11) [@n(0) = (m, 0)[|rx L2 (A, Ja<r<aN,) — O

From there, we conclude by Corollary combined with Corollary that @,
is global and if we denote <@, 1 the linear solution to (LW,,) with initial data
@, (0) — (m,0) at time O :

(612)  [[@n.zllse) + 5D [&n(t) = (1,0) = @Bl ixzz =0 as n— +oo.
teR
Notice that at time 7 5, we have

16n,2(T1,n) = @n, L (T )| Hx L2 (110 372.0])

< ||5n,L(Tl,n) + (m,0) — 1/7n(7'17n)HHxLQ([n,,L,gTz,n])
+ ||ﬁn(7—1,n) - (m,()) - ﬁn,L(Tl,n)||H><L2(([7'1,n,37'21n])

— 0.

Now gn,L — @y, 1 is a solution to (LW,,): due to monotonicity of the H,, x L? along
cones, and as [T2.n, 272 ] C [T2,n, 3720 — (T2.n — T1,n)], We deduce

160, 2(T2,0) = @ L (T2 | 1 L2 (2.0 275.0]) = O-
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Hence, we get from ((6.12))
||ﬁn(7'2,n) - (m70) - gn,L(Tln)||H><L2([7'2,n,27'2,n]) — 0.

To complete the proof, it suffices to notice that @, and 1/7,1 coincide at time 7,
on the interval [ry ,,372,], so that at time 7o ,, they coincide on the interval
[7-2,11’27-2,71]- O

We can now easily reach a contradiction. Indeed from (2)-(3)-(4), equivalence of
energy and H x L? for L perturbation (Lemma [A.1)) and the definition of 3,,, we
have

19 (72n) = (M, 0) 3 L2 (7. 270
< CE(J(TQ,n) - (m7 0)7 T2,m5 27—2,71)

J
<O BUQu(-/Aen), 0 72, 272,0) + 0(1)

k=1

<l

Aj Aj
<038 ((Quor 720 ) o)
k=1 BnAk,n Bn)\k,n

(6.13) 0.
However, due to Proposition [2.10] we have

b, (T2,00) |5 2 (72, 00)) Z B 1bn,£(0) |1 = B(1)31.
From the definition of gn £(0), we see that

165, (0) | E7 x L2 ([ +-00)) = O

hence by monotonicity of the H,, x L? norm along cones, we get

16,2 (72,0 ) | Hx L2 (275, 400)) — O

We can then conclude:
(6.14) 18, (720 | 7122 2,1y = B(1)01 > 0.
Then (6.13) and (6.14) are in contradiction with Claim

This shows that [|b,,(0)]| z(jo,r]) — 0, and so ||gn(0)||H><L2([O,R]) — 0, as desired. O

7. PROOFS OF THE MAIN RESULTS

Proof of Theorem[I.1, We start by working under assumptions (A1)-(A2)-(A3) and
consider the global case.

Let 1/_; be a finite energy wave map such that T+ (1/_;) = 400 and let £ :=¥(c0) € V.
Then Proposition (and Proposition provides us with a scattering state CEL
and «(t) = o(t) such that:

(7.1) 19(t) = (€,0) = ()| rxL2(rza() = O-
Recall Proposition from which a weak version yields
(7.2) 6 ()l zrxz2 (0,727 = O-

On the other side, Corollary 2.3] yields a sequence t,, such that
1 tn+s t/2
sup — / / 03b(t, 7)|?rdrdt — 0 as n — 4oo.
5,0<s<tn /4 5 Jt,—s JO
Consider now the sequence of wave maps

P (t,7) = (Pt + tut, tar), tnBth(tn + tat, o),
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Then for R =1/2 and T = 1/4, the sequence Jn satisfies the conditions of Theorem
[3:5] which we can combine with Proposition Hence there exists harmonic maps
Q1,...,Qy and scales Ay, < - - < Ay, < 1 such that

Un (0 Z Q;(-/Njn) — Q;(0),0) — 0.
J=t HxL2([0,1/2])
Unscaling, and denoting p; , = A; ., /tn, we have

J
(7.3) Ut ) = D(Qi(/1i.n) = Q3(00),0) —0.
=1 HxL2([0,t,/2])
Also, for all j, as j1j., < tn, |Q;(-/ttjn) — Q5(00) || E([t,/2,00) — 0. Combining this

with (7.1), (7.2) and (7.3) yields
J
Y(tn ZQJ (+/tjm) — Qj(0),0) — ¢r(t) —0 as n— +oo.

j=1 HxL2

This concludes the proof in the global case.

We now turn to the blow-up case.

Let 1/7 be a wave map which blow-up in finite time 7' (@/7) Proposition show
that there is a regular wave map ¢(t) defined on a neighborhood of T (¢)) such
that for ¢ < T () (and ¢ near enough T (¢))) there holds

(7.4) Vr>THW) —t, Yt r) = é(t,r).
Also (t, TT({) —t) = £ € ¥ and
(7'5) H(;(t) - (f, 0)||HXL2([0,T+(J)—t]) —0 as t7 T+(1E)~

Now Corollary provides us with a sequence t, T T (7,/?) such that (we denote
On = T+(1/}) - tn)
tnts pl—t
sup / / 0w (t,7)Prdrdt — 0 as n — +oo.
5,0<s<0, S Jt,

Then sequence of wave maps
Jn (ta 7') = (¢(tn + Ont, onr)a anaﬂ/}(tn + Ont, en"")a

satisfies the conditions of Theorem with R = 1 and T = 1 which we can
combine with Prop051t10n Hence there exists harmonic maps Q1,...,Q ; and
scales A\jp, < - K A\ K 1 such that

J
P (0) = (£,0) =Y (Q;(-/Ajn) — Q(c0),0) — 0.
i=1 HxL2([0,1])
Let us unscale, and denote pj, = Aj /05, and recall to deduce
J
(7.6) Bltn) = Btn) = > _(Q;(-/1jm) — Qj(00),0) — 0.
=1 HxL2([0,0,,])
Hence combining with , this yields
J
D(tn) = Btn) = D (Q(-/1jm) = Q4(0),0) =0 as n— +oo.
i=t HxL?
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This settles the proof of Theorem in the blow-up case.

If we relax our assumptions to (A1)-(A2)-(A3’), the same argument apply, except
that we do no longer longer dispose of Proposition [6.1] and rely solely on Theorem
and Proposition (in the global case) and Proposition (in the blow-up

case). These yield the desired convergence on b,,. O

Proof of Corollary[1.j} Consider the global case. From Proposition [5.1] we have
that as t = +o0

E(§(t);0,t/2) = E@) — |6r |l mxL2-
Considering specifically the sequence ¢, — 0o provided by Theorem [I.I] we infer

J
(7.7) E@(1);0,4/2) = Y B(Qy) = 2G(6) — G((0))]-

j=1
Define, for j =1,...,J, A;(t) and v;(¢) by
vj(t) :=inf{r [ (t,r) = Q;(0)},  Aj(t) :=nf{r | ¥(t,7) = Q;(1)}.
(so that v;(t) = 0). Also let vy(t) = t/2. For all ¢ large enough, A;(t) and v;(t) are

well defined, because 1(t) is continous, 1(0) = Q5(0), ¥(t,t/2) — £ = Q1(c0) and
our hypothesis regarding the ordering of the sequence ();(0). By construction,

V] = 17. . .J, Vj(t) < )\j(t) < Vj,1(1f).

Recall that any harmonic map minimize the energy to join two consecutive points
k,0in V.
For j =2,...,J, we extend the restrictions of ¥ (¢)|[,(1),.,_, (1)) as follows

Q;(0) ifr<y(t),

Yio(t,r) == St r) ifv(t) <r<vi_q(t),
QJ(OO) lf ijl(t) < r,
Q1(0) if r < (¥),
U(t,r) if1(t) <r <t/2
Yroltir) = Wt 1)2) + zw(r —t)2) ift/2<r<t,

Y/ if 2t < 7,
and wj71(t) = atl/)(t)]l[l,j(t)7,,j71(t)]. By construction,
|E(;(t) — E((t);v5(t), ;-1 ()] = 0,
and as ¥;(0) = Q;(0) and ¢;(c0) = Q;(c0),
BE(v;(t)) > E(Q;).
It follows from this and (7.7) that for all j =1,...,J,
B(i(1) = B(Q)) = B(Qy), and ¢t A(1) = Q;(1).
(and also [[0:9)||L2([0,/2)) — 0). But Q; is the unique minimizer (up to scaling) of
the energy of functions joining Q;(0) to Q;(c0); more precisely, [4, Proposition A.1]
implies that for all j =1,...,J,
[95(8) = Qi (-/Ai(), )l xrz =0 as t— 400,
From there, we conclude that for j =1,...J, as t = +o0,

vi(t) < \j(t) < vi_a(t),



and therefore,

J
ZQJ /A;(%)),0) —0 as t— +oo.

J=1 HxL2([0,t/2])
Recalling Proposition the conclusion follows.
For blow-up wave maps, it suffices to reproduce the argument, considering in this
case 9(t) on the interval [0, T* (1) — t]. O

APPENDIX A. PROOF OF LEMMA [3.4]

Lemma A.1 (Energy and H,; norm). Let £ € ¥ such that g'(£) # 0; and let 1) be
a function of finite energy on [ri,r3], with 0 < 11 < re < 00.

(1) 2|G(¥(r2)) = G(p(r1))| < E((¥,0);71,72).
(2) There exists 6y > 0 and Cy > 0 independent of b such that if

19 — €l Lo (fry,ra]) < Do
then

*W Ny rop) < B((9,0)571,72) < Clltr — 11y 1))

(3) If ¥(r1) = £, and E(¢,0;71,79) < &) then the hypothesis and the conclusion
of (2) above hold.

Proof. These bounds are elementary, based on the Taylor expansion of g and G
around £. We refer to [4] for the first result, and to [6] for the second and third
ones. (]

Lemma A.2 (Relating H and J¢). Let £ € ¥ be such that ¢’ (¢) # 0. Then
(p—LeH) < (pe and ¢(0) = p(c0) =¥£).
Proof. First suppose ¢ — £ € H. Then ¢ — / is bounded say by M, and as g is €
with g(¢) = 0, there exists C' > 1 such that
Vpe[t— ML+ M, |g(p)] <Clp—1¢l

Then taking square and integrating, we get F(¢,0) < C||¢||% and ¢ € . Also ¢
is continuous and tends to £ at 0 and at +oo: hence ¢(0) = ¢(o0) = £.

We now prove the converse and suppose ¢ € 5 and ¢(0) = ¢(o0) = £. There exists
A > 0 large such that

E((4,0);0,1/A) <0y and  E((¢,0); A, +00) < &,
where §, appears in Lemma A.1 (3). Its conclusion gives that

1601 0,1/47) < CeE((¢,0);0,1/A)  and (@[3, 400y < CeE((6,0);0,1/A).
Now, on the interval [1/A, A], ¢ is continuous, so that
A 2
/ L(T)Z d rdr < +00.
1/A r

And of course .
| 1ocot)rar < B((6,0:1/4, ).
1/A

Therefore, |¢ — €||fv1,([1/AAD < +o0o0. Summing up, we get ||¢ — £||3, < oo and
¢—LeH. O

Our goal is now to prove Lemma [3.4] We start by a claim regarding the control of
L*> norm by H even locally 0uts1de 0 or oo.
43



Lemma A.3. There exists ¢ > 0 such that for any 0 < r < ry < +oo with
ro > 2r1, and ¢ € H([r1,r2]), then ¢ € €([r1,r2]) and

Dl oo (fr1,ra)) < Dl (r1,ra)-

Proof. We focus on the case 0 < r; and ro < oo, as the other cases are well-known
and simpler. We recall that for r > s,

T T T d
6(r) = 90| < [ 0:0(wdu < \/ / |ar¢<u>|2udu\/ [ < ol

This proves continuity.
Then let ro € [ry,72] be such that |||z ((r,ro)) = [0(r0)] I (9l Lo ([ryra)) <
|1l e ([, ,ra)> there is nothing to prove. Assume the opposite, that is ||| Lo (r,,r.]) =

||¢||H([T1,T2])'
Then if r € [rq,r] is such that

2
m < 1 < ||¢|| oo ([r1,m2])

X

o S5 S 5o

< ||¢||L°°([r1,r2])

< (we used In(4/5) > —1/4) and
2/l 5 (1 ra))

r
then ‘ln —
To

]l

lo(r)] = |o(ro)| — |o(r) — d(ro)| = |d(r0))| — ”d)”H([ThTz])WH

= ||¢||L°°([T17T2])/2'

r T r
Now as —= > 2, then Door 2 > V2. Let us assume the latter (the former would
1 To

1
be treated accordingly), that is

EEl Y SR
To 5
Then
o 9 670/5 2 670/5
) o(r) A0 45 L2 o
IBI1%r (1 ) = /m e /m w2 gl
In(6/5)
> 1 ||¢||%°°([7"177"2])' .

Lemma A.4 (Extension in H). Let ¢ be as in Lemma and 0 < r < rg < 400.
Let ¢ € H([r1,72]), then there exists y» € H that extends ¢, that is,

Vr e [7’1,7“2], ZZJ(T) = ¢(T)7

and [\ m < Dl H(pry,ra]) + 3Bl Loc (fry m]) -
If ro > 2ry, the previous Lemma ensures |[¢||g < (3¢ + D)9l & (fry o)) -

Proof. Again, we only consider here the case 0 < 1 < 12 < 400 and leave the
other simpler cases to the reader. We extend ¢ in the following way: let 7] = r1/2
and r§ = 2ry and

0 ifr<rf

¢(Tl)7::ﬁ,l if r{ <7 < rp (affine extension)
W(r) = q é(r) if rp <r <y

é(r2) :;::2 if 7o < r < rh (affine extension)

0 ifrl, <r

I
~



Then v is continuous, hence we deduce ¢ € H and

" 2.7, _ 2 i - 7”/12 _ 3 2
/Tll |0pp(r)|"rdr = ¢(r1) W = §¢(7’1) )
T e <oty [ < 2o
o = Sotr®
" y(r)?

5—rdr < (In 2)é(r2)2.

T2 r

From this, we see that

11 (10,m]) + 1N E ([r2s400)) < BlI@N Lo ([ry,ra))»

hence, if we combine it with the previous Lemma when ro > 2r;, we get

Il < Dl ar ) + 3@l Loe () < (3¢ + DD E(ry,ra]) - g

Proof of Lemma[3-J The proof relies on [4, Corollary 2.4], which we recall for the
convenience of the reader:
Lemma A.5 (|4, Corollary 2.4]). Let Q be a harmonic map with ¢'(Q(0)) # 0 and
J'(Q(o0)) #0. Let T > 0 and € > 0. There exist n > 0 such that if the wave map
1 satisfies

14(0) = (Q,0)lmx 2 <,

-,

then T+ () > T and

Ve [0,7],  ¥(t) = (Q,0)l|lmxre <e.

Let § = 1/(3c+2), where 7 is given by Lemma [A 5 and c is as in Lemmas and

A4
If we consider the restriction of ¥(0) — @ to [r1, 2], Lemma yields an initial
data ¢ such that ¢g — Q € H,

Vr € [ri,ral, do(r) =4(0,7),

and

[0(0) = Qllzr < Cll¥0(0) = Qllr(fry,rap) < (B¢ +1)0.
Define
61(0,7) = {atw(o,r) if ry <r <y,

~]o otherwise,

(observe that ||¢1]|z2 < 6). Let ¢ be the wave map with initial data (¢, ¢1): it has
finite energy, coincide with  on [rq,ro] at time ¢t = 0 and

13(0) — (@, 0)|[ x> < (3¢ +2)8 < 1.
Hence by Lemma q? is defined at least up to time 7" and if furthermore |¢t| < T,

[16(t) = (Q,0) || 2 (ra ttlraiel)) < N1E(E) = (Q,0)[|rx 2 < e

Also, by finite speed of propagation for any ¢ € (T~ (1;)7T+(1E) such that [t| <
(re —11)/2,
Vre [r+ [t — ], B(t,r) = Pt 7).
Combining the last two properties proves Lemma O
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