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Abstract

A modified Karhunen-Loève Decomposition/Proper Orthogonal De-

composition method, named Smooth Decomposition (SD) (also named

smooth Karhunen-Loève decomposition), was recently introduced to

analyze stationary random signal. It is based on a generalized eigen-

problem defined from the covariance matrix of the random process

and the covariance matrix of the associated time-derivative random

process. The SD appears to be an interesting tool in terms of modal

analysis. In this paper, the SD will be described in case of station-

ary random processes and extended also to stationary random fields.

The main properties will be discussed and illustrated on a randomly

excited clamped-free beam.

Keywords: Karhunen-Loève decomposition, random vibration, random fields,

modal analysis.
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1 Introduction

The Karhunen-Loève Decomposition (KLD) also known as Proper Ortho-

gional Decomposition (POD) has been extensively used as a tool for analyz-

ing random processes and random fields. The KLD reveals some coherent

structures which have been advantageously used in different domains as, for

example, the stochastic finite elements method, the simulation of random

fields, the dynamical analysis of nonlinear systems[9], and in the construc-

tion of reduced order models[7, 4, 1].

Recently, a new multivariable data analysis method originally called Smooth

Orthogonal Decomposition (SOD) has been proposed in [5]. The SOD can

be viewed as a tool to extract structures from a maximization problem asso-

ciated to a scalar time series of measurement but subject to a minimization

constraint acting on the associated time derivative of the time series. The

constraint ensures that the time variation of the component associated to the

structures is as small as possible. The SOD can be used to extract normal

modes and natural frequencies of multi-degree-of-freedom vibration systems.

Free and forced sinusoidal responses have been considered in [5] and ran-

domly excited systems have been analyzed in [6]. The Smooth Orthogonal

Decomposition has been formulated in term of a smooth Karhunen-Loève

decomposition to analyze time continuous random processes in [3]. The de-

composition was extended to the non-stationary case in [11]. The smooth

Karhunen-Loève decomposition is obtained solving a generalized eigenprob-

lem defined from the covariance matrix of the random field and the covariance

matrix of its time derivative. These two matrices are output-only data depen-

dent. In this paper, as in [11], the smooth Karhunen-Loève decomposition
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will be renamed as Smooth Decomposition (SD) since it does not have the

properties of a Karhunen-Loève decomposition.

This paper presents and discusses the SD for continuous processes in time

and for continuous processes in space and time, classically named random

fields. The techniques used so far to show the relation between the smooth

modes and the normal modes rely on the possibility to write both problems,

the covariance definition of smooth modes and the eigenvalue problem defin-

ing the normal modes, in matrix form and to reduce one form to the other

under convenient hypothesis. This technique can be applied only because the

number of degrees of freedom is finite. This technique cannot be used in the

random-field case, that is, to write in a global form the covariance operator

and the eigenvalue problem for continuous systems. The resulting SD char-

acteristics are discussed in the case of vibrating clamped-free beam subjected

to white-noise excitation, in terms of the normal modes. The results are also

compared to results obtained from a KLD analysis.

2 Smooth orthogonal decomposition of a R
n-

valued random process

Without loss of generality, we will assume that {U(t), t ∈ R} is a zero-mean

random process and that RU and RU̇ are symmetric positive definite.
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2.1 Decomposition principle

The Smooth Decomposition (SD) of {U(t), t ∈ R} aims at obtaining the

most characteristic constant vectors, or structures, Γ in the sense that they

maximize the ratio of the ensemble average of the inner product between

U(t) and Γ and the inner product between U̇(t) and Γ

max
Γ∈Rn

E(< U(t), Γ) >2)

E(< U̇(t), Γ >2)
(1)

where <,> denotes the inner product in R
n.

Due to the stationary property, the optimization problem (1) can be

rewritten as

max
Γ∈Rn

ΓTRUΓ

ΓTRU̇Γ
(2)

showing that the cost function depends on the covariance matrices of {U(t), t ∈
R} and {U̇(t), t ∈ R}. The vectors which yields local maximums are solu-

tions of the following eigenproblem

RUΓk = σkRU̇Γk (3)

involving the covariance matrices RU and RU̇. Assuming that the matrices

are positive define, it is easy to show that the set of vectors Γk constitutes a

basis which is RU and RU̇-orthogonal.

The SD of the random process {U(t), t ∈ R} is then defined for this basis

as

U(t) =
n∑

k=1

ξk(t)Γk (4)

where the scalar random processes, ξk(t), are given by

ξk(t) =
ΓT

k RUU(t)

ΓT
k RUΓk

=
ΓT

k RU̇U(t)

ΓT
k RU̇Γk

. (5)
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Note that the scalar processes {ξk(t), t ∈ R} can be defined from either RU

or RU̇, that is, they do not depend on which one of these two covariance

matrices is used in the computation.

The following notation is used: the eigenvalues σk are called the Smooth

Values (SVs) (Σ = diag(σk)), the eigenvectors Γk are called the Smooth

Modes (SMs), and the scalar random processes {ξk(t)} are called the Smooth

Components (SCs). The following ordering σ1 ≥ σ2 ≥ · · · ≥ σn will be used

to sort the SMs.

The generalized eigenproblem (3) is a statistical version (for continuous-

time random process), of the generalized eigenvalue problem introduced in

[5] to characterize the SOD. This definition constitutes a major difference.

In the definition (3) only the covariance matrices RU and RU̇ are used, no

other operator is necessary. The idea comes from [3]. The results are, of

course, similar to the ones presented in [5, 6], but now, since one relies on

the covariance matrices, one has a powerful computation tool, not available

before.

The objective function used to define the SD differs significantly from

that used to define the classical Karhunen-Loève Decomposition, [2]. Here

the denominator of the objective function takes the covariance matrix of

the time-derivative process {U̇(t), t ∈ R} into account. This term assures

that, for each mode, the time variation of the SC associated to the SM is as

small as possible. This property justifies the term smooth used to name the

decomposition.
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2.2 Some properties of the SD

2.2.1 Properties of SV, SM, and SC

Assuming that the matrices RU and RU̇ are symmetric positive definite

(which is generally the case), all the SVs (eigenvalues) νk are strictly positive

and the set of the SMs Γk constitutes a basis which is orthogonal with respect

to both covariance matrices RU and RU̇. Note that the SM are unique up

to a scaling constant.

The scalar processes {ξk(t), t ∈ R} are correlated and the following result

holds

E(ξk(t)ξl(t)) =
ΓT

k RURURUΓl

ΓT
k RUΓkΓ

T
l RUΓl

=
ΓT

k RU̇RURU̇Γl

ΓT
k RU̇ΓkΓ

T
l RU̇Γl

. (6)

The SD does not define an optimum basis in terms of energy as the KLD

approach does (see [2]). So, properly speaking, the SD is not a Karhunen-

Loève decomposition. The introduction of regularity has then its drawbacks.

2.2.2 Invariance with respect to linear transformations

Some parameters defining the SD are invariant with respect to linear trans-

formation. Consider the random process {V(t), t ∈ R} defined as a linear

transformation of {U(t), t ∈ R} by

V(t) = AU(t) (7)

where A is a square invertible matrix.

Using the relationships RV = ARUAT and RV̇ = ARU̇AT it can be

shown that the SVs of {V(t), t ∈ R} coincide with those of {U(t), t ∈ R}
and the sets of the SMs satisfy the condition

Γk(V ) = A−TΓk(U) (8)
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where Γk(U) (respectively Γk(V )) denotes a SM of {U(t), t ∈ R} (respec-

tively, of {V(t), t ∈ R}). Finally, following (5), the SCs are invariant with

respect to the linear change of variables if and only if AAT = I.

2.3 Mechanical interpretation of SD

The objective of this section is to find relationships between the parameters

of the SD (SMs and SVs) and the normal modes (in terms of mode shapes

and resonance frequencies) of a linear system with n Degrees Of Freedom

(DOF). Some relationships between the SMS and the mass matrix of the

system will also be discussed. The equation of motion is written as

MÜ(t) + CU̇(t) + KU(t) = F(t) (9)

where {F(t), t ∈ R}, is a zero-mean white-noise random excitation (i.e.,

RF (τ) = E(F(t + τ)FT (t)) = SF δ(τ), where the intensity SF is a symmetric

constant matrix). External excitation and damping terms have being con-

sidered in such a way to work with well defined covariance matrices, RU and

RU̇.

The Normal Modes (NMs) associated to (9) are defined by the eigenprob-

lem KΦk = MΦkω
2
k with the normalization conditions ΦTMΦ = I. Using

the classical modal-displacement vector Q(t) defined by U(t) = ΦQ(t) the

equation of motion (9) can be equivalently replaced by

Q̈(t) + ΘQ̇(t) + Ω2Q(t) = ΦTF(t) (10)

with Θ = ΦTCΦ.
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2.3.1 SD and modal analysis

We will discuss here relationships between the SD of the steady-state (sta-

tionary) response of (9) and the modal parameters (ω2
i , Φi).

If the damping is proportional (i.e., ΦTCΦ = diag(2τiωi) is diagonal)

and the matrix ΦTSFΦ is also diagonal (i.e., if the modal-excitation terms

ΦT
i F(t) in Eq. (10) are uncorrelated) then, as established in [3], the co-

variance matrices RQ and RQ̇ of the stationary responses {Q(t), t ∈ R}
and {Q̇(t), t ∈ R} are diagonal. Hence the SM associated to the process

{Q(t), t ∈ R} are equal to the vector of the canonical basis of R
n and the

SVs are given by the diagonal terms of the matrix R−1

Q̇
RQ which are given

by (Ω2)−1. Now using the linear relation (see Section 2.2.2), we can easily

deduce that the SVs of {U(t), t ∈ R} coincide with the SVs of {Q(t), t ∈ R}
and that the SMs of {U(t), t ∈ R} are given by Φ−T . This relationship is

determined up to a multiplicative constant.

To summarize, the SD has the following nice properties

Φ = Γ−T and Ω2 = Σ−1, (11)

the mode shapes of the normal modes are obtained by inverting the transpose

of the SM matrix and the resonance frequencies are given by the inverse of

the SVs (characteristic which is not easily to obtain from the KLD). This

last relation justifies the ordering chosen to sort the SMs which is in line with

ordering of the resonance frequencies.

It is interesting to note that, as indicated in [5], no assumption on the

mass matrix M is needed to relate the NMs to the SMs whereas the KLMs

coincide with the NMs only when the mass matrix is proportional to the
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identity matrix (M = cI, where c is any positive real number)[2]. Moreover,

if M = cI, then the SMs coincide with the KLMs, hence, they both, of course,

coincide with the LNMs.

2.3.2 Influence of the mass inhomogeneity on the SM

An interesting property of the SM is its sensitivity to the mass-inhomogeneity.

Combining the following two equations, Γ = Φ−T and ΦTMΦ = I, the

SM matrix reads as Γ = MΦ and in case of mass-inhomogeneity, that is

to say, when the mass matrix is diagonal i.e M = diag(D) where D =

(d1, · · · , dn)T then Γk = D.Φk where ”.” denotes the element-by-element

product. Each SM differs from a NM by a scaling vector factor given by the

mass-inhomogeneity.

3 Smooth decomposition of a random fields

The objective of this section is to extent the SD to continuous in time and

space random processes {u(t, x), (t, x) ∈ R×Dx}. The covariance functions

Ru(0, x, x′) and Ru̇(τ, x, x′) will play the same role as the matrices RU and

RU̇ in case of R
n-valued random processes considered in the previous section.

3.1 Definition and properties

Recalling the eigenproblem (3) used to defined the SD in the R
n-valued case,

the SD of a random field {u(t, x), (t, x) ∈ R ×Dx} is can be defined as

u(t, x) =
+∞∑
k=1

ζk(t)Γk(x) (12)
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where the deterministic functions Γk solve the generalized eigenproblem∫
Dx

Ru(0, x, x′)Γk(x
′)dx′ = νk

∫
Dx

Ru̇(0, x, x′)Γk(x
′)dx′ (13)

and the scalar random processes, ζk(t) are given by

ζk(t) =

∫
Dx

∫
Dx

ΓT
k (x)Ru(0, x, x′)u(t, x′)dxdx′

ckk

(14)

with

ckl =

∫
Dx

∫
Dx

ΓT
k (x)Ru(0, x, x′)Γl(x

′)dxdx′. (15)

The eigenproblem (13) is a ”space continuous” version of the generalized

eigenvalue problem (3) to characterize the SD of a random process. The

discussion on the existence and the properties of the solutions of this eigen-

problem is out of the scope of this paper. We will assume here that the

covariance functions Ru(0, x, x′) and Ru̇(0, x, x′) as such that the eigenprob-

lem (13) admits a countable number of eigenvalues ν1 ≥ ν2 ≥ · · · ≥ νk ≥ · · · ,
and that the set of associated normalized eigenfunctions, (Γk)k≥1, constitute

a basis of L2(Dx, R
n).

As in the discrete case (see (14)), the scalar processes {ζk(t), t ∈ R} can

be defined from either Ru(0, x, x′) or Ru̇0, x, x′), that is, they do not depend

on which one of this two covariance matrices is used.

As classical, the following notations will be used: the eigenvalues νk are

called the Smooth Values (SVs), the eigenvector functions Γk are called the

Smooth Modes (SMs), and the scalar random processes {ζk(t)} are called the

Smooth Components (SCs).

The SD differs significantly from the POD used for example in [4, 1]. The

SD are characterized from the ”space” covariance matrices Ru(0, x, x′) and

Ru̇0, x, x′) whereas POD are derived from snapshots.
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Finally, the properties of the parameters of the SD as described in Sec-

tions 2.2.1 and 2.2.2 can be extented to the random field case. All the

SVs (eigenvalues) νk are strictly positive and the set of the functions Γk

(the SMs) constitutes a basis which is orthogonal with respect to both co-

variance matrix functions Ru(0, x, x′) and Ru̇(0, x, x′). Here also, the scalar

processes {ζk(t), t ∈ R} are correlated. The SD does not satisfy the opti-

mality relationship as KLD does (see [2]). Properly speaking, the SD is not

a Karhunen-Loève decomposition. Finally, invariance with respect to linear

transformation can also be deduced.

3.2 Mechanical interpretation of SD

As in the discrete case (see Section 2.3), the parameters of the SD (SMs

and SVs) can be related to the normal modes (in terms of mode shapes and

resonance frequencies) of a linear distributed-parameter system.

We consider here a linear distributed-parameter damped mechanical struc-

ture under random white-noise excitation. We assume that the motion is

defined as

u(t,x) =
∞∑

k=1

qk(t)Φk(x) (16)

where the family of functions Φk(x) coincides with the family of eigenfunc-

tions (also named normal mode functions) of the eigenproblem associated to

the equations of motion characterizing the motion of the undamped system

(see [10]). In this case, the qk(t) are called normal coordinates. Assuming

that the system is positive-define self-adjoint, the eigenproblem admits a de-

numerable infinite set of eigenvalues βk where ωk =
√

βk are the natural
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frequencies and the eigenfunctions satisfy the orthogonality property

∫
Dx

m(x)Φk(x)T Φl(x)dx = δkl (17)

where m(x) denotes the mass distribution.

The relationships between the SD parameters and the modal character-

istics are based on the properties of the normal coordinates. If for the con-

sidered system, the normal coordinates qk satisfy uncoupled equations of

motion[8]

q̈k(t) + 2τkωkq̇k(t) + ω2

kq̈k(t) = pk(t), (18)

with uncorrelated modal excitation components pk, then the following rela-

tionships occur

νk =
1

ω2
k

, (19)

Γk(x) = m(x)Φk(x) (20)

showing that the SVs (νk) of {u(t, x), (t, x) ∈ R × Dx} are equal to the

inverse of the square of the natural frequencies ωk of the system and that the

SMs (Γk(x)) of {u(t, x), (t, x) ∈ R × Dx} are simply related to the normal

mode functions (Φk(x)) by the product with the mass distribution m(x).

Substituting Eq. (20) into Eq.(17) reduces to

∫
Dx

Γk(x)Φl(x)dx = δkl (21)

showing that the family of SMs are orthogonal to the family of the normal

modes.

The relations (19) and (21) are the space-continuous versions of the rela-

tions (11) obtained for discrete mechanical systems. These relationships are
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only valid under proportional damping assumption and uncorrelated modal

excitations.

4 Illustrative example

We consider a Euler-Bernoulli beam that is clamped at one end and free at

the other. The model is the following

ρSü(t, x) + EIuIV (t, x) = δ(x − xf )f(t)

u(t, 0) = 0,uI(t, 0) = 0 (22)

uII(t, L) = 0,uIII(t, L) = 0

with the usual parameters: L the length, S the cross-section area, E the

Young’s modulus of elasticity, I the moment of inertia, ρ the mass density.

We also assume that a space-localized (at x = xf ) excitation force, f(t), is

applied to the beam where f(t) is a scalar random process with covariance

function E(f(t + τ)fT (t)) = Sfδ(τ) (Sf > 0).

Let (ωi, Φi be the resonance frequencies and the modal functions associ-

ated to the unforced model (22). The displacement of the beam is approxi-

mated in a truncated series form

u(t, x) =

p∑
i=1

qi(t)Φi(x) (23)

where the dynamics of the modal components are given by the p equations

of motion

q̈i(t) + 2τωiq̇i(t) + ω2

i qi(t) = gi(t) (24)
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SD SD SD SD SD SD Exact

Ns = 2 Ns = 4 Ns = 6 Ns = 8 Ns = 10 Ns = 20

ω1 4.58 4.57 4.57 4.57 4.57 4.57 4.57

ω2 28.95 28.71 28.65 28.64 28.64 28.64 28.64

ω3 - 81.83 80.48 80.26 80.21 80.18 80.18

ω4 - 160.58 159.57 157.83 157.33 157.13 157.13

ω5 - - 270.37 263.34 260.86 259.80 259.75

ω6 - - 399.39 400.28 392.37 388.13 388.01

ω7 - - - 572.29 555.32 542.42 541.94

ω8 - - - 746.80 757.23 722.53 721.52

ω9 - - - - 988.56 929.23 926.75

ω10 - - - - 1199.40 1162.90 1157.60

Table 1: Resonance frequencies estimated from SD.

obtained applying a classical Galerkin procedure to (22) using the basis

(Φi)i≥1). The modal excitation component gi is related to the physical exci-

tation f by

gi(t) = Φi(xf )f(t).

Note that the modal excitation components are correlated (the cross power

spectral density function between gi and gj is given by SfΦi(xf )Φj(xf ), for

1 ≤ i, j ≤ p) showing that the SD approach can not give the exact modal

parameters. As classical, proportional damping has been added to take into

account dissipation.
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For a given p, the covariance function Ru(0, x, x′) was evaluated using the

relation

Ru(0, x, x′) =

p∑
i=1

p∑
j=1

Φi(x)Φj(x
′)E(qi(t)qj(t)) (25)

where E(qi(t)qj(t)) denotes the covariance quantities associated to the sta-

tionary response of the p (for i = 1, · · · , p) coupled equations (24). The

covariance matrix of Eqs. (24) was obtained solving numerically the associ-

ated Lyapounov equation (see [2]). A similar approach was used to evaluate

Ru̇(0, x, x′).

The SD method was then developed from a spatial sampling of the ran-

dom field {u(t, x), (t, x) ∈ R × [0, L]}.
Let xk = k∆x for k = 1, · · · , Ns with ∆x = L/Ns and Ns > 1 the

Ns sampling points. Starting from the sample functions, Ru(0, xi, xj) and

Ru̇(0, xi, xj), Equation (13) can be written for x = xi given

∫
Dx

Ru(0, xi, x
′)Γk(x

′)dx′ = νk

∫
Dx

Ru̇(0, xi, x
′)Γk(x

′)dx′. (26)

Next, applying the numerical trapezoidal quadrature method to approximate

the two integrals gives

Ns∑
j=1

αjRu(0, xi, xj)Γk(xj) = νNs

k

Ns∑
j=1

αjRu̇(0, xi, xj)Γk(xj). (27)

where αj = 1 for 1 < j < Ns − 1 and αNs
= 0.5.

Finally, collecting for i = 1 to Ns the Ns equations (27), the sample

functions, Γk(xj), written as a vectors ΓNs

k = [Γk(x1)Γk(x2) · · ·Γk(xNs
)]T

solves the eigenproblem

AΓNs

k = νNs

k BΓNs

k (28)
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where A and B are two Ns × Ns matrices which are easily obtained from

(27).

Solving the eigenproblem (28) gives access to the SMs and to the SVs.

The relation (19) can be used to approximate the resonance frequencies.

The modal functions can be estimated using (21) which does not requires

any information on the system.

Using the numerical trapezoidal quadrature method to approximate the

integrals, Eq. (21) reduces to

Ns∑
j=1

αjΓk(xj)Ψl(xj) = δkl. (29)

Introducing the following notations

Γ̃
Ns

k = [α1Γk(x1)α2Γk(x2) · · ·αNs
Γk(xNs

)]T (30)

Γ̃
Ns

= [Γ̃Ns

1 Γ̃Ns

2 · · · Γ̃Ns

Ns
] (31)

ΦNs

k = [Φk(x1)Φk(x2) · · ·Φk(xNs
)]T (32)

ΦNs = [ΦNs

1 ΦNs

2 · · ·ΦNs

Ns
] (33)

the N2
s equations (29) can then be written in the matrix form

ΦNsΓ̃
Ns

T

= I (34)

where I denotes the Ns × Ns identity matrix given the relation

ΦNs = Γ̃
Ns
−T

(35)

which has been used to estimate from the SMs the modal functions at the

sampling points.
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Figure 1: The modal functions (solid line) and the modal functions approx-

imated from the SD approach with Ns = 2 (◦), Ns = 4 (�), Ns = 6 (⋄),
Ns = 8 (⊳), Ns = 10 (⊲) and Ns = 20 (∗).

In Table 1, the exact first ten resonance frequencies of the clamped-free

beam are compared with the associated ones obtained using the SD approach

(Eq. (19)). The parameter values used are: L = 0.6, EI = 1.4, ρS = 0.1620,

τ = 0.005, xf = 0.05, Sf = 1 and p = 40. The SD approach has been
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Figure 2: The modal functions (solid line) and the KLMs with Ns = 2 (◦),
Ns = 4 (�), Ns = 6 (⋄), Ns = 8 (⊳), Ns = 10 (⊲) and Ns = 20 (∗).

developed for Ns = 2, 4, 6, 8, 10 and 20 sampling points. For Ns = 2, the

estimation of the first two resonance frequencies are not so bad. The accuracy

increases quickly with Ns. For Ns = 10, the first five frequencies are well

estimated. Twenty points are needed to estimate satisfactorily the first ten

frequencies.

19



In Fig. 1, the exact first ten modal functions of the clamped-free beam

are compared with the associated ones obtained using the SD approach (Eq.

(35)) with Ns = 2, 4, 6, 8, 10 and 20 sampling points. With Ns = 2 where

only two modes are accessible, the SD approach gives values for the first two

modal functions at the sampling points very closed to the exact one (see circle

positions on the modes 1 and 2). The same comment is also valid for Ns = 4.

For the other values of Ns (Ns = 6, 8 and 10) only the last accessible modal

function is not correctly approximated. For Ns = 20, the results illustrate

well the numerical convergence with respect of the parameter Ns.

In Fig. 2, the results obtained with the KLD approach using the same

data are reported. When the number of sampling points is small, the KLMs

show significant differences from the modal functions. Even for Ns = 20,

some differences are still present.

Finally, it is interesting to observe the SMs. They are plotted in Fig. 3

in case of Ns = 20. As expected, they are very close to the modal functions

but they show small spatial fluctuations

5 Conclusion

This paper has presented the potential of the smooth decomposition in terms

of output-only modal analysis tool when stationary random responses are

considered. The properties of the smooth decomposition when it is applied

to a discrete linear mechanical system were recalled. The smooth decomposi-

tion was extended to the class of scalar stationary random processes indexed

in time and space. It was shown that when the SD is applied to the station-
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Figure 3: The modal functions (solid line), the KLMs with Ns = 20 (dotted-

dashed line with ◦ ), the SMs with Ns = 20 (dotted line with ×) and the

modal functions approximated from the SD approach with Ns = 20 (dashed

line with ⊳).

ary response of a linear distributed-parameter damped mechanical structure

under random white-noise excitation, the same properties as in the discrete

case hold. Under uncorrelated modal forcing terms, the SD gives access to

resonance frequencies and modal functions. Simulations have shown that the

SD approach can advantageously replace the KLD approach in the context
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of the modal analysis or in terms of dynamical analysis. Important but not

analysis here is the dependency of the SMs with respect to the mass dis-

tribution which could be a tool to study the integrity of a structure and

monitoring its healthy.

Current works include the use of the SD to analysis nonlinear problem

and the develpment of a SD-based reduced order model.
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