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ON COMPLEX LINE ARRANGEMENTS AND THEIR BOUNDARY MANIFOLDS

V. FLORENS, B. GUERVILLE, AND M.A. MARCO BUZUNARIZ

Abstract. Let A be a line arrangement in the complex projective plane P2. We consider the boundary

manifold, defined as the boundary of a close regular neighborhood of A in P2 and study the inclusion map

on the complement. We give an explicit method to compute the map induced on the fundamental groups.

This extends the work of E.Hironaka [6] on the homotopy type of the complement of (complexified) real

arrangements to any complex arrangement.

1. Introduction

Line arrangements are finite collections of complex lines in the projective space P2. The fundamental group

of their complement provides a rich invariant of their embedding, extensively studied. Rybnikov showed in

particular that it is not in general of combinatorial nature, see [2, 9]. For a given arrangement A, we consider

its boundary manifold M(A), defined as the boundary of a closed regular neighborhood in P2. Our aim is to

describe explicitely the inclusion map on the complement E(A) and the map induced on their fundamental

groups. This generalises the work of E. Hironaka [6] on the homotopy type of complements of (complexified)

real arrangements to any complex arrangement.

The fundamental group of E(A) can be computed from the Zariski-Van Kampen method, adapted by W.

Arvola, see [3]. The method involves the braid monodromy of the arrangement, determined by using braided

wiring diagrams [4]. On the other hand, the boundary manifold M(A) is a compact graph manifold, in the

sense of F. Waldhausen [10], modeled on the incidence graph ΓA. Its fundamental group can be computed

from this description, see for example [5]. E. Hironaka [6] unifies these approaches and describes the map

π1(M(A)) → π1(E(A)) from an embedding of ΓA in M(A), induced by a choice of a wiring diagram. We

extend this construction to any complex arrangement, and give an explicit algorithm to compute this map in

general. We focus our attention to a particular family of generators of π1(M(A)), coming from cycles of the

graph ΓA. For real arrangements, they span the kernel of π1(M(A)) → π1(E(A)). We show that this is no

longer the case for any complex arrangement and we describe how they retract to product of meridians of the

lines.

Let us mention that the work of E.Artal [1] on the essential coordinate components of the characteristic

varieties of an arrangement were one motivation for develloping this method, required for the computation of

special characters of the fundamental group (see in particular [1] Section 5.4).

In Section 2, we recall the basics on combinatorics of arrangements. We construct the boundary manifold

M(A) from the incidence graph ΓA and give a presentation of its fundamental group. The Section 3 is devoted

to the complement E(A) and the calculation of the fundamental group from the braided wiring diagram. In
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Section 4, we present the method to compute the map induced by the inclusion on fundamental groups. We

obtain a description of the homotopy type of the exterior where the boundary manifold appears explicitly. In

the last Section 5, we illustrate the method with the example of MacLane arrangement.

We sometimes use both projective and affine point of views on arrangements. For a given arrangement A

in P2 with n + 1 lines, the line L0 will denote the arbitrary choice of the line at infinity. The arrangement

A− L0 in P2 − L0 ≃ C2 is an affine arrangement with n lines.

Along the different sections, the notions and computations are illustrated with the didactic example de-

scribed by the following equations:

L0 = {z = 0} , L1 = {−(i+ 2)x+ (2i+ 3)y = 0} , L2 = {−x+ (i + 2)y = 0} ,

L3 = {−x+ 3y + iz = 0} , L4 = {−x+ (2i+ 2)y = 0} .

2. The boundary manifold

The boundary manifold M(A) is the boundary of a closed regular neighborhood of A, which can be

constructed as a subcomplex of a triangulation of P2 -the closed star of A in the second barycentric subdivision.

This is a compact connected, oriented graph 3-manifold, modeled on the incidence graph. In particular, it is

combinatorially determined: any isomorphism of the incidence graph induces an isomorphism of the graph

manifolds [6].

2.1. Incidence graph.

Let A be an arrangement with set of singular points Q. The incidence graph encodes the combinatorial

information on A, see [8] for details. For P ∈ Q, let us denote AP = {ℓ ∈ A | P ∈ ℓ}. The number

mP = #AP ≥ 2 is called the multiplicity of P .

Definition 2.1. The incidence graph ΓA of A is a non-oriented bipartite graph where the set of vertices

V (A) decomposes as VP (A) ∐ VL(A), where

VP (A) = {vP | P ∈ Q}, VL(A) = {vL | L ∈ A}.

The vertices of VP (A) are called point-vertices and those of VL(A) are called line-vertices. The edges of ΓA

join vL to vP if and only if L ∈ AP . They are denoted e(L, P ).

A morphism between incidence graphs is a morphism of graphs preserving the vertex labelings, which send

elements of VP (A) (resp. VL(A)) to elements of VP (A) (resp. VL(A)).

The incidence graph of the didactic example is pictured in Figure 1.

2.2. Fundamental group of M(A).

The fundamental group of M(A) is the group associated to the incidence graph, see [11], [5]. Two types of

generators naturally appear: the meridians of the lines and the cycles related to the graph.

Definition 2.2. Let L be a line in P2, and b ∈ P2 − L. A homotopy class α ∈ π1(P
2 \ L, b) is called a

meridian of L if α has a representative δ satisfying the following properties:

• there is a smooth complex analytic disc ∆ ⊂ P2 transverse to L such that ∆ ∩ L = {b′} ⊂ L;

• there is a path a in P
2 − L from b to b′ ∈ ∂∆;

• δ = a.β.a−1, where β is the closed path based in b′ given by ∂∆ (in the positive direction).
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Figure 1. Incidence graph of the didactic example

Choose arbitrarily a line L0 of the arrangement. Note that the meridian of L0 is a product of meridians of

the lines of A, in P2 −A. Let P be the set of singular points of the affine arrangement A− L0.

Definition 2.3. A cycle of the incidence graph ΓA is an element of π1(ΓA, vL0).

We construct a generating system E of cycles of ΓA as follows. Let T be the maximal tree of ΓA containing

the following edges:

• e(L, P ) for all P ∈ L0, and L ∈ A;

• e(Lν(P ), P ) for all P ∈ P and ν(P ) = min{ j | Li ∈ AP }.

The maximal tree T of the didactic example is given by bold edges in Figure 1. An edge in ΓA − T is of

the form e(Lj, P ), with P ∈ P and Lj ∈ A− L0. By definition of a maximal tree, there exists a unique path

λP,j in T joining vP and vLj
. The unique cycle of ΓA containing only the three vertices vL0 , vLν(P)

and vLj

is denoted:

ξν(P ),j = λP,j ∪ e(Lj , P ).

Let E be the set of cycles of ΓA of the form ξs,t. To each ξs,t in E will correspond an element of π1(M(A)),

that we denote εs,t.

Notation 2.4. We denote [a1, . . . , am] the equality of all the cyclic commutators

{a1 · · · am, a2 · · · ama1, · · · , ama1 . . . am−1}.

Proposition 2.5. For i = 1, . . . , n, let αi be the meridians of the lines Li, and let {εs,t} be a set indexed by

E . For any singular point P = Li1 ∩ Li2 ∩ · · · ∩ Lim with multiplicity m and i1 = ν(P ), let

RP = [α
cim
im

, · · · , α
ci2
i2

, αi1 ], where cij = εi1,ij for all j = 2, · · · ,m.

The fundamental group of the boundary manifold M(A) admits the following presentation:

π1(M(A)) =< α1, · · · , αn, εs1,t1 , · · · , εsl,tl |
⋃

P∈P

RP , > .

It is worth noticing that the εs,t are not uniquely defined (see details in the proof).

Proof. The presentation follows from a plumbing description of a tubular neighborhood of A. For every

singular point P of A, consider a 4-ball BP centered in P . Let F = A −
(

∐

P∈Q

(A ∩ BP )) be the surface
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obtained by removing discs from the BP ’s. One sees that F is a union
n
∐

k=0

Fk where each Fk corresponds to

the line Lk of A. Let Nk = Fk × S1 whose boundary is a union of disjoint tori. Then M(A) is obtained by

identifications of the SP = ∂(BP )\ (∂BP ∩ A)), with P ∈ Q, and the Nk’s.

We have the following presentations of the fundamental groups of the Nk and SP :

- If gi are generators of π1(Fk), and αk is the meridian of Lk, then, for Q∩ Lk = {Pk1 , · · · , Pkl
}:

π1(Nk) =< gk1 , · · · , gkl
, αk | ∀i ∈ {k1, · · · , kl} , α−1

k giαk = gi >

- For each singular point P = Li1 ∩ · · · ∩Lim ∈ Q of multiplicity m, if yi1 , . . . , yim are the ’local’ meridians

of the line Li in BP , then

π1(SP ) =< yk1 , · · · , ykm
| [ykm

, · · · , yk1 ] >

We apply Seifert-Van Kampen’s theorem to the union of all SP and Nk to obtain the result. Note that

if Pi ∈ Lj , then the meridian αj is identified with yj and gi with the product of the generator of π1(SP )

different of yi. The new generators εs,t appear with the gluing, in correspondence with the cycles ξs,t of the

graph ΓA. �

Example 2.6. The fundamental group of the didactic example boundary manifold is :

< α1, α2, α3, α4, ε1,2, ε1,3, ε1,4, ε2,3, ε3,4 | [α
ε1,4
4 , α

ε1,2
2 , α1], [α

ε1,3
3 , α1], [α

ε3,4
3 , α4], [α

ε2,3
3 , α2] > .

3. The complement

Let E(A) be the complement of a tubular neighborhood of A. As before, we choice arbitrarily a line L0,

and let C2 be P2 − L0.

3.1. Braided wiring diagrams.

Consider a linear projection π : C2 → C, generic in the sense that:

• For all i ∈ {1, . . . , n}, the restriction of π|Li
is a homeomorphism.

• Each multiple point lie in a different fiber of π.

We suppose that the points xi = π(Pi) have distinct real parts, and that we can order the points of π(P)

by increasing real parts, so that Re(x1) < Re(x2) · · · < Re(xk). A smooth path γ : [0, 1] → C emanating from

x0 with Re(x0) < Re(x1), passing through x1, · · · , xk in order, and horizontal in a neighborhood of each xi

is said to be admissible.

Definition 3.1. The braided wiring diagram associated to an admissible path γ is defined by :

WA = {(x, y) ∈ A | ∃t ∈ [0, 1], p(x, y) = γ(t) } .

The trace ωi = WA ∩ Li is called the wire associated to the line Li.

Note that if A is a real complexified arrangement, then γ = [x0 − η, xk + η] ⊂ R; and WA ≃ A∩R2.

Remark 3.2.

i) The braided wiring diagram depends on the path γ, and on the projection π.

ii) The set of singular points P is contained in WA.
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We re-index the lines L1, · · · , Ln such that:

Ii < Ij ⇐⇒ i < j,

where Ii = Im(Li ∩ π−1(x0)). On the representation described bellow of the braided wiring diagram, this

re-indexation implies that the lines are ordered, at the left of the diagram, from the top to bottom.

Since the x coordinates of the points of WA are parametrized by γ, the wiring diagram can be seen as a

one dimensional object inside R3 ≃ [0, 1]×C. Consider its image by a generic projection γ([0, 1])×C → R2.

If we take a plane projection of this diagram (assume, for example, that it is in the direction of the vector

(0, 0, 1) -that is, in the direction of the imaginary axis of the fibre-), we obtain a planar graph. Observe that

there are nodes corresponding to the image of actual nodes in the wiring diagram in R3 (that is, to a singular

point of the arrangement). Other nodes appear from the projection of undergoing and overgoing branches of

the wiring diagram in R3. The two types of nodes are called by Arvola actual and virtual crossing.

If we represent the virtual crossings in the same way that they are represented as in the case of braid

diagrams, we obtain a schematic representation of the wiring diagram as in Figure 3. From now on, we will

refer to this representation as the wiring diagram itself. By genericity, we assume that two crossings (actual

or virtual) do not lie on the same vertical line.

It is worth noticing that from the braided wiring diagram, one may extract the braid monodromy of A,

related to the generic projection π. The local equation of a multiple point is of the form ym − xm, where m

is the multiplicity, and the corresponding local monodromy is a full twist in the braid group with m strands.

3.2. Fundamental group of the complement.

We recall briefly the method due to Arvola [3] to obtain a presentation of the fundamental group of the

complement from a braided wiring diagram WA. The algorithm goes as follows: start from the left of the

diagram, assigning a generator αi to each strand. Then follow the diagram from the left to the right, assigning

a new word to the strands each time going through a crossing. The rules for this new assignation are given

in Figure 2, where the ai’s are words in the αi’s.

am

am−1

...

a2

a1

a1

(a2)
a1

...

(am−1)
am−2···a1 ≡ (am−1)

a−1
m

(am)am−1···a1 ≡ am

real crossing

(A)

aj

ai

ai

aai

j

positive virtual crossing

(B)

aj

ai

a
a
−1
j

i

aj

negative virtual crossing

(C)

Figure 2. Computation of Arvola’s words

The notation of Figure 2 is a
aj

i = a−1
j aiaj .

For each actual crossing P -that corresponds to a singular point of A-, suppose that the strands are labelled

with the words a1, . . . , am with respect to their order in the diagram at this point P , from top to bottom,
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where m = mP is the multiplicity of P . Then the following relations are added to the presentation

RP = [am, . . . , a1] = {am · · ·a1 = a1am · · · a2 = · · · = am−1 · · · a1am}.

They correspond to the action of a half-twist on the free group, whereas the action of a virtual crossing is

given by the corresponding braid.

1

2

3

4

α1

α2

α3

α4

αα3
4

α3
α
α

−1
3

1

α1

αα1
2

αα3
4

α
α1α

−1
3

2

α3 αα1
2

α3

α1 α3

α1

α
α1α

−1
3

2

α4

α3 α4

α3

α3

αα1
2

Figure 3. The braided wiring diagram of the affine part of the didactic example

Theorem 3.3 (Arvola [3]). For i = 0, . . . , n, let αi be the meridians of the lines Li. The fundamental group

of the exterior of A admits the following presentation

π1(E(A)) =< α1, · · · , αn |
⋃

P

RP >,

where P ranges over all the actual crossings of the wiring diagram WA.

Example 3.4. The braided wiring diagram of the didactic example is pictured in Figure 3. Its fundamental

group is :

< α1, α2, α3, α4 | [αα3
4 , α2, α1], [α3, α1], [α4, α3], [α3, α

α1
2 ] > .

4. The inclusion map

The main result of the paper is a complete description of the map induced on the fundamental groups, by

the inclusion of the boundary in the exterior of an arrangement A. The computation is done in two main

steps.

Let WA be the wiring diagram associated to the choice of a generic projection π and an admissible path γ.

We start by choosing a generating system E = {ξs,t} of cycles of the incidence graph ΓA. These cycles can

be directly seen in WA, since it contains all the singular points and the vertices of ΓA can be identified with

their corresponding wires between two singular points. Then, the first step is to "push" each cycle ξs,t from

WA to the boundary manifold M(A). The procedure is described in Section 4.1, and gives an explicit family

{εs,t} of π1(M(A)), indexed by E . This family, with the set of meridians of the lines, generates π1(M(A)).

The second step is to compute the images of these generators εs,t by the inclusion map. We use an ad hoc

Arvola’s algorithm to make the computations directly from WA, see Section 4.2. Then the map is described

in Theorem 4.4.
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In Section 4.3, we examine the kernel of the map; this provides an exact sequence involving π1(M(A)) and

π1(E(A)), see Theorem 4.5. We deduce in Section 4.4 a presentation of π1(E(A)) where the generators of

π1(M(A)) appear explicitly. This presentation provides a complex whose homotopy type is the same that

E(A), see Proposition 4.8.

4.1. Cycles of the boundary manifold.

We suppose that the admissible path γ emanates from x0 and goes through x1, . . . , xk, the images of the

singular points of A by π, ordered by their real parts. Let E = {ξs,t} be the generating set defined in Section 2

of cycles of ΓA.

Each cycle ξs,t ∈ E is sent to M(A) via WA, as follows. Let X0 = (x0, y0) be a point of N0 such that

x0 = γ(0). The vertices of ξs,t of the form vL0 or vP with P ∈ L0 and the edges of the form e(L0, P ), with

P ∈ L0, are all sent to the point X0. The edges e(Li, P ), with i 6= 0 and P ∈ L0, are sent on segments from X0

to the points Li ∩ π−1(x0). Then the remaining vertices of the form vL ∈ VL(A) are sent to L∩ π−1(x0). Let

ξs,t denotes now the cycle of WA, relative to the left endpoints, where the vertices vP ∈ VP (A) are identified

with the singular points P , and the edges with their corresponding wire of WA.

A framed cycle in M(A) is obtained as a perturbation of a cycle ξs,t. This cycle ξs,t consists of two arcs,

the parts in Ls and Lt. Each arc goes through several actual crossings of WA and can be viewed as a union

of small arcs. Each of them is projected to M(A) in the direction (0, i) and their images are glued together

as follows. For each actual crossing P , modify γ slightly so that it makes a half circle of (small) radius ηP

around x = π(P ) in the positive sense. Choose ηP so that the preimage of this half circle lies in M(A). Note

that we avoid the singular point P = Ls ∩ Lt as indicated in Figure 6. The class of the obtained cycle in

π1(M(A), X0) is εs,t (see Proposition 2.5). The following map σ is a morphism:

σ : π1(ΓA, T ) −→ π1(M(A), X0),

ξs,t 7−→ εs,t.

In order to compute the image of the framed cycles in the exterior E(A), we introduce geometric cycles,

defined as parallel copies of the ξs,t’s. Indeed, let ξ̃s,t in π1(M(A)) be the image of ξs,t by the projection in

the direction (0, i). We define an unknotting map:

δ : π1(M(A), X0) −→ π1(M(A), X0),

εs,t 7−→ δls,t εs,t δ
r
s,t,

where δls,t (resp. δrs,t) corresponds to the arc in Ls (resp. Lt) of εs,t. They are defined as the products over

all actual crossing P of the arc Ls (resp. Lt) of ξs,t, different from Ls ∩ Lt, of the following words. Suppose

that P = Li1 ∩ · · · ∩ Lim where the order of the lines corresponds to Figure 4.

- If P ∈ Ls, let h ∈ {1, · · · ,m} be such that ih = s, then P contributes to δls,t by:

ε−1
i1,ih

(

α−1
i1

(

εi1,i2α
−1
i2

ε−1
i1,i2

)

· · ·
(

εi1,ih−1
α−1
ih−1

ε−1
i1,ih−1

))

εi1,ih ,

- If P ∈ Lt, let h ∈ {1, · · · ,m} be such that ih = t, then P contributes to δrs,t by:

ε−1
i1,ih

((

εi1,ih−1
αih−1

ε−1
i1,ih−1

)

· · ·
(

εi1,i2αi2ε
−1
i1,i2

)

αi1

)

εi1,ih .

Proposition 4.1. The image of a framed cycle by the unknotting map δ is a geometric cycle. In particular,

we have

δ(εs,t) = δls,t εs,t δ
r
s,t = ξ̃s,t.
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...

...

...

...

Li1

Li2

Lih

Lim

Figure 4

Proof. The contribution of P is induced by the action of a half-twist, given by the pre-image by γ of the half

circle around each x = π(P ), in the positive sense. We obtain the description of δls,t and δrs,t above, and then

εs,t =
(

δls,t
)−1

ξ̃s,t
(

δrs,t
)−1

. �

Example 4.2. The images of the εs,t of the didactic example by the unknotting map are:

δ(ε1,2) = ε1,2, δ(ε1,4) = ε1,4,

δ(ε1,3) = ε1,3, δ(ε2,3) = (ε−1
1,2α

−1
1 ε1,2)ε2,3(ε

−1
1,3α1ε1,3),

δ(ε3,4) = (ε−1
1,3α

−1
1 ε1,3)ε3,4(ε

−1
1,4(α1ε1,2α2ε

−1
1,2)ε1,4).

•
x1

•
x2

•
x3

•
x0 = γ(0) γ

N0 ∩ π−1(x0)

•X0

L1

L2

L3

P1

P2

P3

C2

C

π

Figure 5

4.2. Inclusion map.

Geometric cycles were constructed by taking parrallel copies of cycles of ΓA, via WA, to the boundary

manifold M(A). Their image in E(A) can then be computed directly from WA.
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NP

•

•

•
P

Lt

Ls

Figure 6

Let ξs,t be a cycle of WA, relative to the left endpoints. An over arc ς is an arc of WA that goes over ξs,t

through a virtual crossing. Denote sgn(ς) ∈ {±1} the sign of the crossing. It is positive if the orientations of

ς and ξs,t (in this order) at the crossing form a positive base, and is negative otherwise.

Let Sξs,t be the set of over arcs of ξs,t, oriented from left to right. The element µs,t is defined by :

µs,t =
∏

ς∈Sξs,t

asgn(ς)ς ,

where aς is the word associate to the arc ς by the Arvola’s algorithm, and the order in the product respect

the order of the crossings in the cycle ξs,t. Note that µs,t is a product of conjugated of meridians.

Example 4.3. All the µs,t of the didactic example are equal to 1, except µ1,4 = α−1
3 .

Theorem 4.4. For i = 1, . . . , n, let αi be the meridians of the lines and {εs,t} be indexed by a generating

system E of cycles of the incidence graph ΓA. Then {α1, . . . , αn, εs1,t1 , · · · , εsl,tl} generates π1(M(A)) and

the map i∗ : π1(M(A)) → π1(E(A)) induced by the inclusion is described as follows :

i∗ :

{

αi 7−→ αi,

εs,t 7−→
(

δls,t
)−1

µs,t

(

δrs,t
)−1

,

It is worth noticing that by a recursive argument on the set of εs,t, the words
(

δls,t
)−1

µs,t

(

δrs,t
)−1

are

products of conjugated of the meridians α1, . . . , αn.

Proof. Since M(A) ⊂ E(A), then a class in π1(M(A)) can be view as a class in π1(E(A)), and the both are

denoted in the same way.

By Proposition 4.1, each class δls,tεs,tδ
r
s,t in π1(M(A)) can be represented by a geometric cycle ξ̃s,t, obtained

as a parallel copy of ξs,t from WA to M(A). Consider a 2-cell homotopic to a disc with card(Sξs,t) holes.

Then glue the boundary of the disc to ξ̃s,t and the other boundary components to the meridians of over arcs

ς ∈ Sξs,t . As the 2-cell is in E(A), then, in the exterior, ξ̃s,t can be retracted to the product µs,t of the aς ,

with ς ∈ Sξs,t . It follows that in π1(E(A)), δls,tεs,tδ
r
s,t = µs,t. �

4.3. Exact sequence.

Theorem 4.5. The following sequence is exact

0 −→ K
φ

−→ π1(M(A))
i∗−→ π1(E(A)) −→ 0,
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where K is the normal subgroup of π1(M(A)) generated by the elements of the form δls,tεs,tδ
r
s,tµ

−1
s,t .

Proof. By theorem 4.4, the map i∗ is onto and K is included in ker(i∗). It remains to show that the relations

induced by the images i∗(εs,t) are enough to determine a presentation of π1(E(A)). We compare these

relations to thoose coming from braid monodromy and Zariski-Van Kampen’s method, see [7] for example.

Let P = Li1 ∩ · · · ∩ Lim (as in Figure 4), be a singular point of A, with i1 = ν(P ). Consider a small ball

in P2 with center P and a local base point b in its boundary sphere. Let λ be a path from X0 to b, and let

yj be the (local) meridian of Lj with base b, for j = 1, . . . ,m. The path λ can be choosen in such a way that

the Zariski-Van Kampen relation associated to P are :

[yλi,im , · · · , yλi,i1 ].

We can assume that b is a point of εi1,j, for all j = i2, · · · , im. Then we write εi1,j = β−1
j βi1 where βi1 goes

from X0 to b, and β−1
j from b to X0. We get

[α
εi1 ,im

im
, · · · , α

εi1,i2

i2
, αi1 ] ⇔ [α

β
−1
im

βi1

im
, · · · , α

β
−1
i2

βi1

i2
, α

β
−1
i1

βi1

i1
],

⇔ [α
β
−1
im

im
, · · · , α

β
−1
i2

i2
, α

β
−1
i1

i1
]βi1 ,

⇔ [α
β
−1
im

im
, · · · , α

β−1
i2

i2
, α

β−1
i1

i1
],

⇔ [α
β
−1
im

im
, · · · , α

β
−1
i2

i2
, α

β
−1
i1

i1
]λ.

Note that during this computation, base point may have changed, but the first and the last relations are

based in X0. Since α
β−1
j

j = yi,j, for all j = i1, · · · , im, then:

[α
εi1 ,im

im
, · · · , α

εi1,i2

i2
, αi1 ] ⇔ [yim , · · · , yi2 , yi1 ]

λ,

⇔ [yλim , · · · , yλi2 , y
λ
i1
].

�

4.4. Homotopy type of the complement.

From Theorem 4.3, we obtain a presentation of the fundamental group of π1(E(A)).

Corollary 4.6. For i = 1, . . . , n, let αi be the meridians of the lines Li. For any singular point P =

Li1 ∩ Li2 ∩ · · · ∩ Lim with i1 = ν(P ), let

RP = [α
cim
im

, · · · , α
ci2
i2

, αi1 ], where cij =
(

δli1,ij

)−1

µi1,ij

(

δri1,ij

)−1

for all j = 2, · · · ,m.

The fundamental group of E(A) admits the following presentation:

π1(M(A)) =< α1, · · · , αn |
⋃

P∈P

RP > .

Proof. For each εs,t, let rs,t be the relation εs,t =
(

δls,t
)−1

µs,t

(

δrs,t
)−1

, and for each point P ∈ P (with

P = Li1 ∩ · · · ∩Lim and i1 = ν(P )), we define the relation R′
P : [α

εi1 ,im

im
, · · · , α

εi1,i2

i2
, αi1 ]. Then, Theorem 4.5
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imply that we have the following presentation:

π1(E(A)) = < α1, · · · , αn, εs1,t1 , · · · , εsl,tl |
⋃

P∈P

R′
P ,

l
⋃

i=1

rsi,ti > .

Consider the total order on the set {εs,t}: (εs,t < εs′,t′) ⇔ (s ≤ s′ and t < t′). By construction, δls,t and δrs,t

depend on εs′,t′ if and only if εs′,t′ < εs,t. Since µs,t is a product of meridians, then the smallest εs,t is a

product of meridians. And by induction, the relation rs,t express any εs,t as a product of αi. �

Example 4.7. The presentation of the fundamental group of the didactic example is:

< α1, α2, α3, α4 | [α
α

−1
3

4 , α2, α1], [α3, α1], [α
α1α

−1
2 α

−1
1

3 , α4], [α
α1α

−1
4

3 , α2] >

Proposition 4.8. The 2-complex modeled on the minimal presentation given in Corollary 4.6 is homotopy

equivalent to E(A).

Proof. The proof of Theorem 4.5 showes in particular that the relations of the presentation in Corollary

4.6 are equivalent to the Zariski-Van Kampen relations, based on the braid monodromy. It is shown in [7]

that the 2-complex modeled on a minimal presentation equivalent to the Zariski-Van Kampen presentation is

homotopy equivalent to E(A). �

5. The example of positive MacLane line arrangement

In this section, we illustrate Theorem 4.4 with an arrangement Q+ introduced by Mac Lane, given by the

following equations

L0 = {z = 0} ; L1 = {z − x = 0} ; L2 = {x = 0} ; L3 = {y = 0} ;

L4 =
{

z + ω2x+ ωy = 0
}

; L5 = {y − x = 0} ; L6 =
{

z − x− ω2y = 0
}

; L7 = {z + ωy = 0} ,

where ω = exp(2iπ3 ) is a primitive root of unity of order 3.

The incidence graph Γ of Q+ is given in Figure 7.

L0

P0,1,2

P0,3,4

P0,5,6

P0,7 L7

L6

L5

L4

L3

L2

L1

P1,5,7

P1,3

P1,4,6

P2,3,5

P2,4,7

P2,6

P3,6,7

P4,5

Figure 7. Incidence graph of the MacLane arrangement Q+
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It is worth mentionning that Q+ is one of the only two topological realisations of this combinatorial data

by an arrangement in P2. The other realisation Q− corresponds to ω = exp(−2iπ
3 ). These two arrangements

do not admit real equations.

Generating set of cycles of ΓQ+ .

Consider the maximal tree T in ΓQ+ indicated with thick lines in Figure 7. Let E be the generating system

of cycles induced by T (it is in one-to-one correspondance with the dotted lines in Figure 7):

E = {ξ2,3, ξ2,5, ξ2,4, ξ2,7, ξ2,6, ξ4,5, ξ3,6, ξ3,7, ξ1,5, ξ1,7, ξ1,3, ξ1,4, ξ1,6} .

Group of the boundary manifold.

By Section 4.1, the images ε of the cycles ξ by the application σ provide a family of cycles in π1(M(Q+)).

Proposition 2.5 applies to this explicit family, and π1(M(Q+)) admits a presentation with generators:

{α1, α2, α3, α4, α5, α6, α7} ∪ {ε2,3, ε2,5, ε2,4, ε2,7, ε2,6, ε4,5, ε3,6, ε3,7, ε1,5, ε1,7, ε1,3, ε1,4, ε1,6} ,

and relations:

[α
ε1,7
7 , α

ε1,5
5 , α1], [α

ε1,3
3 , α1], [α

ε1,6
6 , α

ε1,4
4 , α1], [α

ε2,5
5 , α

ε2,3
3 , α2], [α

ε2,7
7 , α

ε2,4
4 , α2], [α

ε2,6
6 , α2], [α

ε3,7
7 , α

ε3,6
6 , α3], [α

ε4,5
5 , α4].

Geometric cycles and unknotting map.

1

2

3

4

5

6

7

ς1 ς2
ς3

Figure 8. Wiring diagram of the positive MacLane arrangement

Let WQ+ be the braided wiring diagram of Q+ given in Figure 8.

Note that WQ+ differs from the wiring diagram considered in [5] by an axial symetry and a local move on

the wires corresponding to L3, L5, L7.

The diagram WQ+ is used to compute the unknotting map δ, and the images of the cycles ε in terms of

geometric cycles, see Proposition 4.1. The thick lines in Figure 8 represent the cycle ξ4,5, divided into two

arcs of L4 and L5. The first arc L4 meets the triple point vP2,4,7 . This gives δl4,5 = ε−1
2,4α

−1
2 ε2,4. The second

arc L5 meets vP2,3,5 , and δr4,5 = ε−1
2,5ε2,3α3ε

−1
2,3α2ε2,5. This implies that

(1) δ(ε4,5) = (ε−1
2,4α

−1
2 ε2,4)ε4,5(ε

−1
2,5ε2,3α3ε

−1
2,3α2ε2,5).
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Similarly, one computes:

δ(ε2,3) = ε2,3, δ(ε2,5) = ε2,5,

δ(ε2,4) = ε2,4, δ(ε2,7) = ε2,7,

δ(ε2,6) = ε2,6, δ(ε4,5) = (ε−1
2,4α

−1
2 ε2,4)ε4,5(ε

−1
2,5ε2,3α3ε

−1
2,3α2ε2,5)

δ(ε3,6) = (ε−1
2,3α

−1
2 ε2,3)ε3.6(ε

−1
2,6α

−1
2 ε2,6) δ(ε3,7) = (ε−1

2,3α2ε2,3)ε3,7(ε
−1
2,7ε2,4α4ε

−1
2,4α2ε2,7)

δ(ε1,5) = ε1,5(ε
−1
4,5α4ε4,5ε

−1
2,5ε2,3α3ε

−1
2,3α2ε2,5) δ(ε1,7) = ε1,7(ε

−1
3,7ε3,6α6ε

−1
3,6α3ε3,7ε

−1
2,7ε2,4α4ε

−1
2,4α2ε2,7)

δ(ε1,3) = ε1,3(ε
−1
2,3α2ε2,3) δ(ε1,4) = ε1,4(ε

−1
2,4α2ε2,4)

δ(ε1,6) = ε1,6(ε
−1
3,6α3ε3,6ε

−1
2,6α2ε2,6)

Retractions of geometric cycles.

We now compute the family of µs,t, required to obtain the inclusion map, see Section 4.2. The arcs of the

wiring diagram WQ+ are labelled by the algorithm of Arvola, see Section 3.2.

The case of µ4,5 is drawn in thick in Figure 8. The over arcs ς1, ς2 and ς3 are dotted in Figure 8. Arvola’s

labellings of these arcs are respectively : aς1 = α4, aς2 = α7 and aς3 = α−1
7 α4α7. Furthermore, sgn(ς1) = −1,

sgn(ς2) = 1 and sgn(ς3) = 1. We obtain µ4,5 =
(

α−1
7 α4α7

)

α7α
−1
4 , which gives

µ4,5 = α−1
7 α4α

2
7α

−1
4 .

Similarly:

µ2,3 =1, µ2,5 =1,

µ2,4 =1, µ2,7 =1,

µ2,6 =1, µ4,5 =
(

α−1
7 α4α7

)

α7α
−1
4 ,

µ3,6 = α−1
4 α5α4α

−2
7 α4α

2
7α

−1
4 α−1

5 α4α
−2
7 α−1

4 α2
7α

−1
6 , µ3,7 = α−1

4 α5α4α
−2
7 α4α

2
7α

−1
4 α−1

5 α4α
−2
7 α−1

4 α2
7,

µ1,5 = α−1
4 α−1

5 , µ1,7 =1,

µ1,3 = α−1
7 α−1

4 α2
7α

−1
6 α−2

7 α4α
−1
7 α4α

2
7α

−1
4 α−2

7 α4α
2
7α

−1
4 α−1

5 α4, µ1,4=1,

µ1,6 = α7.

Images in the group of the complement.

Following Theorem 4.4, we can compute i∗ : π1(M(Q+)) ։ π1(E(Q+)). The computations above

describe the relations induced by the images of the cycles ε in π1(E(Q+)). By the previous computa-

tions, ε2,3, ε2,5, ε2,4, ε2,7, ε2,6 are equal to 1 (i.e. they are contractible in E(A)). They are the relations

r2,3, r2,5, r2,4, r2,7 and r2,6.

The case of r4,5:

r4,5 : ε−1
2,4α

−1
2 ε2,4ε4,5ε

−1
2,5ε2,3α3ε

−1
2,3α2ε2,5 = α−1

7 α4α
2
7α

−1
4 .

Then using r2,4, r2,5 and r2,3 we obtain that:

r4,5 : ε4,5 = α2α
−1
7 α4α

2
7α

−1
4 α−1

2 α−1
3 .

The others relations are:

• r3,6 : ε3,6 = α2α
−1
4 α5α4α

−2
7 α4α

−2
7 α−1

4 α−1
5 α4α

−2
7 α−1

4 α2
7α

−1
6 α−1

7 α−1
2 α7,

• r3,7 : ε3,7 = α2α
−1
4 α5α4α

−2
7 α4α

−2
7 α−1

4 α−1
5 α4α

−2
7 α−1

4 α2
7α

−1
2 α−1

4 ,
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• r1,5 : ε1,5 = α−1
4 α−1

5 α4α
−2
7 α−1

4 α7α
−1
2 α−1

4 α2α
−1
7 α4α

2
7α

−1
4 α−1

2 α−1
3 ,

• r1,7 : ε1,7 = (α−2
7 α4α

2
7α

−1
4 α5α4α

2
7α

−1
4 α2

7α
−1
4 α−1

5 α4α
−1
2 )(α−1

3 )

(α2α
−1
4 α5α4α

−2
7 α4α

−2
7 α−1

4 α−1
5 α4α

−2
7 α−1

4 α2
7α

−1
6 α−1

7 α−1
2 α7)(α6)(α

−1
7 α2α7α6α

−1
2 α−1

4 ),

• r1,3 : ε1,3 = α−1
7 α−1

4 α2
7α

−1
6 α−2

7 α4α
−1
7 α4α

2
7α

−1
4 α−2

7 α4α
2
7α

−1
4 α−1

5 α4α
−1
2 ,

• r1,4 : ε1,4 = α−1
2 ,

• r1,6 : ε1,6 = α7α
−1
2 (α−1

7 α2α7α6α
−2
7 α4α

2
7α

−1
4 α5α4α

2
7α

−1
4 α2

7α
−1
4 α−1

5 α4α
−1
2 )α−1

3

(α2α
−1
4 α5α4α

−2
7 α4α

−2
7 α−1

4 α−1
5 α4α

−2
7 α−1

4 α2
7α

−1
6 α−1

7 α−1
2 α7).

From the proof of Corollary 4.6, we obtain the presentation of π1(E(Q+)).

π1(E(A+)) =< α1, α2, α3, α4, α5, α6, α7, ε2,3, ε2,5, ε2,4, ε2,7, ε2,6, ε4,5, ε3,6, ε3,7, ε1,5, ε1,7, ε1,3, ε1,4, ε1,6 |

r2,3, r2,5, r2,4, r2,7, r2,6, r4,5, r3,6, r3,7, r1,5, r1,7, r1,3, r1,4, r1,6,

[α
ε1,7
7 , α

ε1,5
5 , α1], [α

ε1,3
3 , α1], [α

ε1,6
6 , α

ε1,4
4 , α1], [α

ε2,5
5 , α

ε2,3
3 , α2],

[α
ε2,7
7 , α

ε2,4
4 , α2], [α

ε2,6
6 , α2], [α

ε3,7
7 , α

ε3,6
6 , α3], [α

ε4,5
5 , α4] > .
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