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ON QUANTITATIVE BOUNDS ON EIGENVALUES OF A COMPLEX

PERTURBATION OF A DIRAC OPERATOR

CLÉMENT DUBUISSON

ABSTRACT. We prove a Lieb-Thirring type inequality for a complex pertur-

bation of a d-dimensional massive Dirac operator Dm,m ≥ 0, d ≥ 1 whose

spectrum is ] − ∞,−m] ∪ [m,+∞[. The difficulty of the study is that the un-

perturbed operator is not bounded from below in this case, and, to overcome it,

we use the methods of complex function theory. The methods of the article also

give similar results for complex perturbations of the Klein-Gordon operator.

1. INTRODUCTION

In the Dirac formalism (e.g., [Th, section 1]) the properties of a relativistic par-

ticles with spin-1/2 (for instance electrons in the massive case and neutrinos in the

non-massive case) is described with the help of the Dirac operator. Because of spin

structure, the configuration space of the particle takes values in C
n, where n = 2ν

with ν ≥ 1. The movement of the free particle of mass m is given by the Dirac

equation,

i~
∂ϕ

∂t
= Dmϕ,

where ϕ ∈ L2(Rd;Cn) with d ∈ {1, . . . , n − 1}, if m > 0 and d ∈ {1, . . . , n}
otherwise. The Dirac operator is defined as

(1.1) Dm := −ic~α · ∇+mc2β = −ic~

d
∑

k=1

αk
∂

∂xk
+mc2β.

Here c is the speed of light, and ~ is the reduced Planck constant. We renormalize

and consider ~ = c = 1. Here we set α := (α1, . . . , αd) and β := αd+1. The

matrices αi are d + 1 linearly independent self-adjoint linear maps, acting in C
n,

satisfying the following anti-commutation relations

αiαj + αjαi = 2δi,jId ,

where i, j = 1, . . . , d + 1. For instance, on R
3, one can choose the Pauli-Dirac

representation

αi =

(

0 σi
σi 0

)

, β =

(

IdC2 0
0 −IdC2

)

,

where i = 1, 2, 3, and

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.
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2 CLÉMENT DUBUISSON

In the general case, the n × n-matrices αj are constructed as special elements of

the so-called Clifford algebra (see [Ob, Chapter 1]). Without any loss of generality

we take

β :=

(

Id
Cn/2 0
0 −Id

Cn/2

)

.

Mimicking the proofs of section 1.1 to section 1.4 of [Th, section 1] it is easy

to check that the operator Dm is essentially self-adjoint on C∞
c (Rd;Cn) and the

domain of its closure is H 1(Rd;Cn), the Sobolev space of order 1 with values in

C
n. The closure of the operator is denoted with the same symbol Dm. With the

help of the Fourrier transform, it is easy to prove that Dm is unitarily equivalent to

(1.2)

(
√

−∆Rd +m2 × Id
Cn/2 0

0 −
√

−∆Rd +m2 × Id
Cn/2

)

.

Therefore the spectrum of Dm is purely absolutely continuous and is given by

]−∞,−m] ∪ [m,+∞[.
Another object of interest for us is the so-called Klein-Gordon operator, given

by

(1.3) Km =
√

−∆Rd +m2 × IdCl

with m ≥ 0 and l ≥ 1. This time, the index l is not related to d. It is well known

that it describes a massive relativistic particle without spin; naturally enough, this

is just “a half” of the Dirac operator (1.1). One can readily see that, as above, it is

essentially self-adjoint on C∞
c (Rd;Cl), the domain of its closure is H 1(Rd;Cl).

The closure of the operator being denoted by the same symbol, its spectrum is

absolutely continuous and equals [m,+∞[.
The purpose of this article is to obtain a Lieb-Thirring type inequality for the

discrete spectrum of a complex perturbation of (1.1) and (1.3). We actually con-

centrate on the Dirac operator, and the case of Klein-Gordon operator will follow

easily from the obtained results. We would like to mention that the problems of this

kind (for perturbations of various self-adjoint operators) were rather intensively

studied over the last years. We refer to papers by Bruneau and Ouhabaz ([BrOu]),

Borichev, Golinskii, and Kupin ([BoGoKu]), Demuth, Hansmann, and Katriel

([DeHaKa, DeHaKa1, DeHaKa2]), Golinskii and Kupin ([GoKu1, GoKu2]), Hans-

mann and Katriel ([HaKa]) and Hansmann ([Ha1, Ha2]). An appropriate modifi-

cation of some methods of the above papers was applied by Sambou ([Sa]) to the

study of a complex perturbation of a magnetic Schrödinger operator. For instance,

an interesting recent paper by Cuenin, Laptev, and Tretter [CuLaTr] studies not

only the distribution, but also the localization of the discrete spectrum of a com-

plex perturbation of one-dimensional Dirac operator Dm, m ≥ 0.

In the present case, the unperturbed operator Dm is not bounded from below,

and so one cannot reduce the problems to the self-adjoint situation, for instance,

as it is done in ([FrLaLiSe]). The latter paper also contains the discussion of the

properties of complex perturbations of self-adjoint operators and exhaustive list of

references on it. Differently, we use the machinery of complex function theory:

appropriate conformal maps, distortion theorems and, in particular, Theorem 0.3

from [BoGoKu]. Some of our arguments are rather close to ([DeHaKa]).

To formulate our results, we introduce some notations. For a (possibly un-

bounded) operator A on a separable Hilbert space, we denote the spectrum, the es-

sential and the discrete spectrum of A by σ(A), σess(A), and σd(A), respectively.
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We put Sp, p ≥ 1 to be the Schatten-von Neumann class of compact operators, see

section 2.1 for the definition and discussion of the object.

Let Mn,n(C) denote the space of n × n complex-valued matrices. For p ≥ 1,

consider the space of Mn,n(C)-valued measurable functions on R
d defined as

Lp(Rd;Mn,n(C)) =

{

V : ‖V ‖pLp =

∫

Rd

‖V (x)‖pF dx
}

,(1.4)

where ‖ · ‖F is the Froebenius norm,

(1.5) ‖V (x)‖pF =





∑

i,j=1,...,n

|(V (x))i,j |2




1/2

.

The function V is often identified with the operator of multiplication by itself.

Assuming that V ∈ Lp(Rd;Mn,n(C)) and p > d, we prove (see Proposition 4.1)

that the multiplication by V is relatively Schatten-von Neumann perturbation of

Dm, i.e., dom(Dm) ⊂ dom(V ), and

(1.6) V (λ−Dm)−1 ∈ Sp,

for one λ ∈ C\σ(Dm) (and hence for all these λ’s). Consider the perturbed opera-

tor

(1.7) D = Dm + V.

Recall that by Weyl’s theorem on essential spectrum (see [ReSi4, Theorem XIII.14])

σess(D) = σess(Dm) = σ(Dm) =]−∞,−m] ∪ [m,+∞].

Our main results are the following theorems.

Theorem 1.1 (case m > 0). Let D be the Dirac operator defined in (1.7) and

V ∈ Lp(Rd;Mn,n(C)), p > d. Then its discrete spectrum σd(D) admits the

following Lieb-Thirring type bound: for all 0 < τ < min{p− d, 1},

(1.8)
∑

λ∈σd(D)

d(λ, σ(Dm))p+τ

|λ−m| · |λ+m|(1 + |λ|)2p−2+2τ
≤ C‖V ‖pLp ,

where the constant C depends on n, d, p,m, and τ .

The version of the above theorem for m = 0 reads as follows.

Theorem 1.2 (case m = 0). Let D be the Dirac operator defined in (1.7) with

m = 0 and V ∈ Lp(Rd;Mn,n(C)), p > d. Then

(1.9)
∑

λ∈σd(D)

d(λ, σ(D0))
p+τ

(1 + |λ|)2(p+τ)
≤ C‖V ‖pLp ,

where 0 < τ < min{p− d, 1} and C depends on n, d, p,m, and τ .

Now, consider the perturbed Klein-Gordon operator

K = Km + V.

Using the computations for the perturbed Dirac operator we obtain the following

results.
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Theorem 1.3 (case m > 0). Let K be the Klein-Gordon operator defined above

and V ∈ Lp(Rd;Ml,l(C)), p > d. Then, for 0 < τ small enough, we have

∑

λ∈σd(K)

d(λ, σ(Km))p+τ

|λ−m| (1 + |λ|)p+max{p/2,d}+2τ−1
≤ C‖V ‖pLp ,

where the constant C depends on l, d, p, and τ .

We observe that, for m = 0, a non-trivial degeneration of a bound on the re-

solvent of K0 takes place and the inequality of Theorem 1.3 can be refined in the

following way.

Theorem 1.4 (case m = 0). Let K be the Klein-Gordon operator defined above

with m = 0 and V ∈ Lp(Rd;Ml,l(C)), p > d. Then, for 0 < τ small enough, we

have

∑

λ∈σd(K)

d(λ, σ(K0))
p+τ

|λ|min{(p+τ)/2,d}(1 + |λ|) p
2
+max{p,2d}−d+2τ

≤ C‖V ‖pLp ,

where the constant C depends on l, d, p, and τ .

Before going to the discussion of these results, we say a couple more words on

the notations. Constants will be generic, i.e., changing from one relation to another.

Usually, they will be denoted by C or “const”. For two strictly positive functions

f, g defined on a domain Ω of the complex plane C, we write f(λ) ≈ g(λ) if the

functions are comparable in the sense of the two-sided inequality, i.e. there are

constants C1, C2 > 0 so that C1f(λ) ≤ g(λ) ≤ C2f(λ) for all λ ∈ Ω. The choice

of the domain Ω will be clear from the context.

Theorems 1.1 and 1.2 provide quantitative estimates for the convergence of se-

quences of eigenvalues (λn) ⊂ σd(D) to σess(D). To illustrate, we fix m > 0 and

consider sequences (λn) ⊂ σd(D) converging to a point λ chosen in three different

ways. Suppose that Imλn > 0.

(1) Let λ = ±m and there is a constant C > 0 such that |Re(λn ∓ m)| ≤
C |Imλn|. Then

d(λn, σ(Dm)) ≈ |λn ∓m|, |λn ±m| ≈ const, 1 + |λn| ≈ const,

and relation (1.8) implies that

∞
∑

n=1

|λn −m|p+τ−1 < +∞.

(2) Let λ = ∞ and |Im(λn)| ≤ C . Then

d(λn, σ(Dm)) ≈ |Im(λn)|, |λn +m‖λn −m| ≈ |λn|2, 1 + |λn| ≈ |λn|,
and relation (1.8) implies that

∞
∑

n=1

|Im(λn)|p+τ

|λn|2p+2τ
< +∞.

(3) If λ ∈]m;∞[, then

d(λn, σ(Dm)) ≈ |Im(λn)|, |λn +m‖λn −m| ≈ const, 1 + |λn| ≈ const,
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and relation (1.8) implies that

∞
∑

n=1

|Im(λn)|p+τ < +∞.

We conclude the introduction with few words on the structure of the paper. The

preliminary results are presented in section 2. Section 3 contains the discussion

of certain conformal maps appearing in the proofs. Section 4 deals with a special

perturbation determinant and corresponding bounds. Theorems 1.1 and 1.2 are

proved in sections 5 and 6, respectively. Since the proofs of Theorems 1.3 and 1.4

go exactly along the lines of Theorems 1.1 and 1.2 respectively, there are omitted.

Acknowledgments: I would like to thank Stanislas Kupin and Sylvain Golénia

for turning my attention to the problem and helpful discussions. I also thank Vin-

cent Bruneau for useful comments on the manuscript. This research is partially

supported by Franco-Ukrainian programm “Dnipro 2013-14”.

2. PRELIMINARIES

2.1. Schatten classes and determinants. The contents of this subsection closely

follows the monographs by Gohberg-Krein [GoKr] and Simon [Si1].

For a separable Hilbert space H, let L(H) denote the space of bounded linear

operators on H. We denote the class of compact operators on H by S∞. The

Schatten-von Neumann classes Sp, p ≥ 1, of compact operators are defined by

Sp := {A ∈ S∞, ‖A‖pSp
:=

+∞
∑

n=1

sn(A)
p < +∞},

where sn(A) is the n-th singular value of A.

For A ∈ Sn, n ∈ N
∗, one can define the regularized determinant

detn(Id−A) :=

+∞
∏

k=1



(1− λk) exp





n−1
∑

j=1

λjk
j







 ,

where (λk)k is the sequence of eigenvalues of A. This determinant has the follow-

ing well-known properties (see [GoKr, Chap. IV] or [Si1]):

(1) detn(Id) = 1.

(2) Id−A is invertible if and only if detn(Id−A) 6= 0.

(3) For any A,B ∈ L(H) with AB,BA ∈ Sn,detn(Id − AB) = detn(Id −
BA).

(4) If A(.) is a holomorphic operator-valued function on a domain Ω, then

detn(Id−A(.)) is also holomorphic on Ω.

(5) Let A ∈ Sp for some real p ≥ 1. Obviously, A ∈ S⌈p⌉, where ⌈p⌉ :=
min{n ∈ N, n ≥ p}, and the following inequality holds

|det⌈p⌉(Id−A)| ≤ exp
(

Γp‖A‖pSp

)

,

where Γp is a positive constant [Si2, Theorem 9.2].

For A,B ∈ L(H) with B −A ∈ Sp, we define the ⌈p⌉-regularized perturbation

determinant of B with respect to A by

d(λ) := det⌈p⌉
(

(λ−A)−1(λ−B)
)

= det⌈p⌉(Id− (λ−A)−1(B −A)).
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This is a well defined holomorphic function on ρ(A) := C\σ(A).
Furthermore, λ ∈ ρ(A) is an eigenvalue of B of multiplicity k if and only if λ

is a zero of λ 7→ d(λ) of the same multiplicity.

2.2. Theorem of Borichev-Golinskii-Kupin. The following theorem, proved in

[BoGoKu, Theorem 0.2], gives a bound on the zeros of a holomorphic function

on the unit disc D = {|z| < 1} in terms of its growth towards the boundary

{|z| = 1}. An important feature of this theorem is that it enables to take into

account the existence of ’special’ points (ζj) on the boundary of the unit disc,

where the function grows faster than at generic points.

Theorem 2.1. Let h be a holomorphic function on D with h(0) = 1. Assume that

h satisfies a bound of the form

|h(z)| ≤ exp





K

(1− |z|)α
N
∏

j=1

1

|z − ζj |βj



 ,

where |ζj | = 1 and α, βj ≥ 0, j = 1, . . . , N .

Then for any τ > 0 the zeros of h satisfy the inequality

∑

h(z)=0

(1− |z|)α+1+τ
N
∏

j=1

|z − ζj|(βj−1+τ)+ ≤ C ·K,

where C depends on α, βj , ζj and τ .

Above, x+ = max{x, 0}. An other useful version of the above result is given

in Hansmann-Katriel ([HaKa, Theorem 4]).

3. CONFORMAL MAPPINGS

The idea is to send the resolvent set of Dm, ρ(Dm) = C\{] − ∞,−m] ∪
[m,+∞[} on the unit disc D via a conformal map and to obtain a comparison

between the distance to the spectrum of Dm and the one to the unit circle: this kind

of comparison is called distortion. We note by d(z,A) := inf
w∈A

|z−w| the distance

between z and A.

The map we are interested in is constructed as a composition of four “elemen-

tary” conformal maps which are as follows:

(1) z1 =
λ−m

λ+m
: C\σ(Dm) → C\[0,+∞[. The inverse mapping is λ =

m
1 + z1
1− z1

.

(2) z2 =
√
z1 : C\[0,+∞[→ {Im(z) > 0}. The inverse mapping is z1 = z22 .

(3) z3 =
z2 − i

z2 + i
: {Im(z) > 0} → D. The inverse map is z2 = i

1 + z3
1− z3

.

(4) The normalization is operated by

u = eiθ
z3 − zb
1− zbz3

: Dz3 → Du,

where zb = −ib/(|m + ib| +m) is the image of ib by the three first con-

formal mappings. As above, we sometime label the unit disk D by the

corresponding variable to avoid misunderstanding. We put furthermore

um,+ := u(1), um,− := u(−1).
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The inverse map is z3 =
u+ eiθzb
eiθ + uzb

.

Notice that the conformal map u will serve to match the normalization h(0) = 1
from Theorem 2.1. The following conformal maps

ψ = (z3 ◦ z2 ◦ z1)−1 : Dz3 → C\σ(Dm),(3.1)

ϕ = (u ◦ z3 ◦ z2 ◦ z1)−1 : Du → C\σ(Dm)

will be important for the sequel.

The map ψ is easy to compute,

(3.2) λ = ψ(z3) = −2m
z3

1 + z23
.

The following technical propositions are essentially application of Koebe distortion

theorem [Po, Corollary 1.4] to the map ψ.

Lemma 3.1. With the above notation, we have

(1) d(u,T) ≈ d(z3,T).
(2) |z3 − a| ≈ |u− u(a)|, where a ∈ {1,−1, i,−i}.

The proof of the lemma is obvious and hence is omitted.

Proposition 3.2 (From C\σ(Dm) to D). We have

d(λ, σ(Dm)) ≈ |u− um,+‖u− um,−|
|u− u(i)|2|u− u(−i)|2 d(u,T).

Proof. Since ψ′(z) = −2m
1− z2

(1 + z2)2
, we obtain by Koebe distortion theorem

m

2

|1− z23 |
|1 + z23 |2

(1 + |z3|)d(z3,T) ≤ d(λ, σ(Dm))(3.3)

≤ 2m
|1− z23 |
|1 + z23 |2

(1 + |z3|)d(z3,T).

That is,

d(λ, σ(Dm)) ≈ |1− z23 |
|1 + z23 |2

(1 + |z3|)d(z3,T)

Now,

|1− z23 | = |1− z3‖1 + z3|, |1 + z23 | = |z3 − i‖z3 + i|, 1 ≤ 1 + |z3| ≤ 2,

and we use the previous lemma to conclude the proof. �

Proposition 3.3 (From D to C\σ(Dm)). The following relation holds true

d(u,T) ≈ d(λ, σ(Dm))

(|λ+m‖λ−m|)
1
2 (1 + |λ|)

.

Proof. From (3.3), we have

d(λ, σ(Dm))|1 + z23 |2
2m|1− z23 |(1 + |z3|)

≤ 1− |z3| ≤
2d(λ, σ(Dm))|1 + z23 |2
m|1− z23 |(1 + |z3|)

,

and

d(z3,T) ≈ d(λ, σ(Dm))
1

1 + |z3|
|1 + z23 |2
|1− z23 |
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since 1/2 ≤ (1 + |z3|)−1 ≤ 1.

The definitions of the maps zi, i = 1, 2, 3 easily imply that

1− z23 =
4i
√
z1

(
√
z1 + i)2

, 1 + z23 =
2z1 − 2

(
√
z1 + i)2

, |√z1 + i|2 ≈ 1 + |z1|,

where Im(
√
z1) = Im(z2) > 0. Furthermore,

|z1 − 1| = 2m

|λ+m| , |
√
z1| =

∣

∣

∣

∣

λ−m

λ+m

∣

∣

∣

∣

1
2
,

1

1 + |z1|
=

|λ+m|
|λ+m|+ |λ−m| .

Putting all this together, we obtain

d(z3,T) ≈ d(λ, σ(Dm))
|z1 − 1|2

|√z1|(1 + |z1|)

≈ d(λ, σ(Dm))

(|λ+m‖λ−m|)
1
2 (|λ+m|+ |λ−m|)

≈ d(λ, σ(Dm))

(|λ+m‖λ−m|)
1
2 (1 + |λ|)

,

and Lemma 3.1 finishes the proof. �

4. PERTURBATION DETERMINANT

4.1. A special perturbation determinant. This subsection closely follows [DeHaKa,

Section 3.1.1]; the holomorphic on C\σ(Dm) function f is defined by a relation

similar to the formula preceding [DeHaKa, formula (22)]. For the sake of com-

pleteness, we give a short list of analytic properties of this function f relating it

to the properties of the operator D; more details on these connections (and proofs)

are in the quoted section of [DeHaKa].

Let b be large enough to guarantee that (−ib+D) is invertible (see Lemma 5.1).

We require that V ∈ Lp(Rd,Mn,n(C)), p ≥ 1, and, as we will see in section 4.2,

this condition implies that V (λ −Dm)−1 ∈ Sp for certain p and λ ∈ ρ(Dm). We

consider the operator

(4.1) F (λ) := (λ− ib)(−ib+D)−1V (λ−Dm)−1,

and the holomorphic function

(4.2) f(λ) := det⌈p⌉(Id− F (λ)).

It is not difficult to see that:

(1) The operator-valued function F is well-defined and F (λ) ∈ Sp, p ≥ 1.

Consequently, f is well-defined and holomorphic on ρ(Dm) as well.

(2) Recording an alternative representation

Id− F (λ) =
[

Id− (λ− ib)(−ib+D)−1
] [

Id− (λ− ib)(ib+Dm)−1
]−1

,

we deduce that Id − F (λ) is not invertible if and only if λ ∈ σd(D).
Moreover, the multiplicity of the zero λ0 of f exactly coincides with the

algebraic multiplicity of the eigenvalue λ0 of the operator D, λ0 ∈ σd(D).
(3) The above relation also yields that F (ib) = 0, and f(ib) = 1.
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4.2. Schatten bounds on the operator V (λ−Dm)−1. The choice of the Froebe-

nius norm in definition (1.5) will prove crucial for the next proposition, where the

constants are precise and do not depend on dimension n.

Proposition 4.1. Let V ∈ Lp(Rd;Mn,n(C)), p > d, and λ ∈ ρ(Dm). Set µm :

R
d → C

n by µm(x) :=
√

|x|2 +m2 × IdCn . Then V (λ−Dm)−1 ∈ Sp, and

‖V (λ−Dm)−1‖p
Sp

≤ (2π)−d‖V ‖pLp · ‖(λ− µm(·))−1‖pLp

if Re(λ) ≥ 0 and

‖V (λ−Dm)−1‖p
Sp

≤ (2π)−d‖V ‖pLp · ‖(λ+ µm(·))−1‖pLp

if Re(λ) ≤ 0.

Proof. We adapt [Si2, Theorem 4.1] paying a special attention to the norms. We

denote by f(x)g(−i∇) the integral operator associated to the kernel

(2π)−d/2f(x)ǧ(x− y),

where ǧ is the inverse Fourier transform of g.

Suppose that f and g are in L2. Recalling (1.5) and that the Froebenius norm is

a matrix-norm, i.e., it is submultiplicative, we obtain that the integral operator lies

in S2 (i.e., it is Hilbert-Schmidt). This entails the bound

‖f(x)g(−i∇)‖2S2
= (2π)−d

∫

Rd

∫

Rd

‖f(x)ǧ(x− y)‖2F dxdy

≤ (2π)−d‖f‖2L2 · ‖g‖2L2 .

In particular f(x)g(−i∇) is a compact operator.

Suppose now that f and g are in L∞, i.e. the space endowed with the norm

‖f‖L∞ := ess-supx∈Rd‖f(x)‖F .
For a bounded operator A, denote by rad(A) = supλ∈σ(A) |λ| its spectral radius.

Now since rad(M∗M) = ||M∗M || ≤ ‖M‖2F , for all M ∈ Mn,n(C), we infer

‖f(x)g(−i∇)‖S∞
≤ ‖f‖L∞ · ‖g‖L∞ ,

for all f and g in L2 ∩ L∞. Then the standard complex interpolation argument

yeilds

‖f(x)g(−i∇)‖pSp
≤ (2π)−d‖f‖pLp · ‖g‖pLp ,

for all 2 ≤ p <∞. The same result for indices 1 ≤ p ≤ 2 follows by duality. �

4.3. Bound on the resolvent. In this subsection, we explicitely bound expressions

‖(λ± µm(·))−1‖Lp appearing in Proposition 4.1.

Proposition 4.2. Let λ = λ0 + iλ1 and p > d. Then

‖(λ− µm(·))−1‖pLp ≤ K1

d(λ, σ(Dm))p−1
(1 + |λ−m|d−1)

for λ0 ≥ 0, and

‖(λ+ µm(·))−1‖pLp ≤ K2

d(λ, σ(Dm))p−1
(1 + |λ+m|d−1),

for λ0 ≤ 0. Above, the constants K1 and K2 depend on n, d, p,m.
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Proof. First of all, recall that (λ − µm(·))−1 = (λ − µm(·))−1 × IdCn , hence

‖(λ− µm(·))−1‖p
Lp(Rd,Mn,n(C))

= n‖(λ− µm(·))−1‖p
Lp(Rd,C)

.

The cases ±λ0 ≥ 0 being similar, we give the proof for λ0 ≥ 0 only. After a

change of variable, we are reduced to bound

I =

∫ +∞

0

rd−1

|
√
r2 +m2 − λ|p

dr.

We write |
√
r2 +m2 − λ|p =

(

(
√
r2 +m2 − λ0)

2 + λ21

)

p
2

and make the change

of variable s =
√
r2 +m2 −m. Hence,

(4.3) I =

∫ +∞

0

((s +m)2 −m2)
d−2
2 (s+m)

((s+m− λ0)2 + λ21)
p
2

ds.

We now distinguish the cases m ≤ λ0 and 0 ≤ λ0 < m. For m ≤ λ0,

observe that d(λ, σ(Dm)) = |λ1|. We let β = λ0 −m ≥ 0 and use the inequality
√

(s+m)2 −m2 ≤ s+m, so

I ≤
∫ +∞

0

(s+m)d−1

((s − β)2 + λ21)
p
2

ds.

Since m ≤ λ0 and λ /∈ σ(Dm), we have |λ1| > 0, and

∫ +∞

0

(s+m)d−1

((s − β)2 + λ21)
p
2

=
1

|λ1|p
∫ β

0

(s+m)d−1

(

(

s− β

λ1

)2

+ 1

)

p
2

ds

+
1

|λ1|p
∫ +∞

β

(s+m)d−1

(

(

s− β

λ1

)2

+ 1

)

p
2

ds.(4.4)

In the right hand-side of (4.4), we make the change of variable t =
β − s

λ1
in the

first integral and t =
s− β

λ1
in the second one. Then we apply the inequality

(a+ b)d−1 ≤ Cd(a
d−1 + bd−1) for a, b ≥ 0. This leads to the bounds

I ≤ Cd

|λ1|p−1





∫

β
λ1

0

(β − λ1t)
d−1dt

(t2 + 1)
p
2

+

∫

β
λ1

0

md−1dt

(t2 + 1)
p
2

+

∫ +∞

0

(β + λ1t)
d−1dt

(t2 + 1)
p
2

+

∫ +∞

0

md−1dt

(t2 + 1)
p
2

)

.

Recalling p > d, we continue as

I ≤ Cd

|λ1|p−1

(

2(βd−1 +md−1)

∫ +∞

0

dt

(t2 + 1)
p
2

+ 2|λ1|d−1

∫ +∞

0

td−1 dt

(t2 + 1)
p
2

)

.
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Using (βd−1 + |λ1|d−1) ≈ |λ−m|d−1, we get to

(4.5) I ≤ 1

d(λ, σ(Dm))p−1

(

K1|λ−m|d−1 +K2

)

for m ≤ λ0.

We now turn to the case 0 ≤ λ0 < m. We see d(λ, σ(Dm)) = |λ −m|; going

back to (4.3), we use the inequality (s+m− λ0)
2 + λ21 ≥ s2 + |λ−m|2. Hence

I ≤ 1

|λ−m|p
∫ +∞

0

(s+m)d−1

(

(

s

|λ−m|

)2

+ 1

)

p
2

ds.

Doing the change of variable t =
s

|λ−m| and bounding as in the first part of the

computation, we come to

(4.6) I ≤ 1

d(λ, σ(Dm))p−1

(

K̃1|λ−m|d−1 + K̃2

)

for 0 ≤ λ0 < m.

The proposition is proved. �

5. PROOF OF THE MAIN RESULT

Let us start with the following lemma.

Lemma 5.1. For p > d and b large enough, we have ‖(−ib+D)−1‖ ≤ 1.

Proof. First, notice that the inequality ‖V (ib−Dm)−1)‖ < 1 yields that the oper-

ator (−ib+D) is invertible.

Indeed, the inequality ‖V (ib −Dm)−1)‖ < 1 implies that Id− V (ib−Dm)−1

is invertible, and we have

Id− V (ib−Dm)−1 = (ib−Dm)(ib−Dm)−1 − V (ib−Dm)−1

= (ib−Dm − V )(ib −Dm)−1

= −(−ib+D)(ib−Dm)−1.

Second, we show that we have ‖V (ib−Dm)−1)‖ < 1 for b large enough. Since

‖A‖ ≤ ‖A‖Sp for any operator A, Propositions 4.1 and 4.2 entail

‖V (ib−Dm)−1)‖ ≤ ‖V (ib−Dm)−1)‖Sp

≤ K‖V ‖Lp
(1 + |ib−m|d−1)

|ib−m|p−1
,(5.1)

where the constant K does not depend on b. It is convenient to put

C(b) = K‖V ‖Lp
(1 + |ib−m|d−1)

|ib−m|p−1
.

The right-hand side of ineqality (5.1) trivially goes to zero when b goes to infinity,

and so ‖V (ib−Dm)−1)‖ ≤ C(b) < 1 for b large enough.
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Now we prove that ‖(−ib+D)−1‖ ≤ 1 for b large enough. Using the resolvent

identity, we get

‖(−ib+D)−1‖ ≤ ‖(−ib+Dm)−1‖+ ‖(−ib+D)−1‖ · ‖V (−ib+Dm)−1‖
≤ ‖(−ib+Dm)−1‖+ ‖(−ib+D)−1‖ · ‖V (−ib+Dm)−1‖Sp .

Consequently,

‖(−ib+Dm)−1‖ =
1

d(ib, σ(Dm))
=

1

|ib−m| ,

and, as above, we obtain

‖(−ib+D)−1‖ ≤ 1

|ib−m| + C(b) ‖(−ib+D)−1‖

Resolving this inequality with respect to ‖(−ib +D)−1‖, we get the claim of the

lemma. �

Proof of Theorem 1.1: Recall from (4.2) that f(λ) = det⌈p⌉(Id− F (λ)), with

F (λ) := (λ− ib)(−ib+D)−1V (λ−Dm)−1 ∈ Sp.

We have by the property of the regularized determinant

|f(λ)| ≤ exp
(

Γp‖(λ− ib)(D − ib)−1V (λ−Dm)−1‖pSp

)

.(5.2)

Applying Propositions 4.1 and 4.2 to (5.2), we get to

log |f(λ)| ≤ K‖V ‖pLp‖(−ib+D)−1‖p |λ− ib|p(1 + |λ−m|d−1)

d(λ, σ(Dm))p−1
.

for Re(λ) ≥ 0. Up to obvious changes, a similar expression is obtained for

Re(λ) ≤ 0.

We continue as

|λ− ib| ≤ C(1 + |λ|), (1 + |λ−m|) ≤ C(1 + |λ|),
and the factor ‖(−ib + D)−1‖p is bounded from above with the help of Lemma

5.1. So,

(5.3) log |f(λ)| ≤ K‖V ‖pLp

(1 + |λ|)p+d−1

d(λ, σ(Dm))p−1
.

We now have to go in D in order to apply Theorem 2.1. That is, recalling defi-

nitions (3.1), we consider the function g(u) = f ◦ϕ(u); it is trivially holomorphic

on Du. The considerations of section 3 and relation (3.2) entail

1 + |λ| ≈ |1− z3|2 + |1 + z3|2
|z3 − i‖z3 + i| ≈ 1 + |z3|2

|z3 − i‖z3 + i| .

In particular, we have by Lemma 3.1

1 + |λ| ≈ 1

|u− u(i)‖u − u(−i)| .

By the previous relation, (5.3), and Proposition 3.2, we obtain

log |g(u)| ≤ K · ‖V ‖pLp

|u− u(i)|p−d−1|u− u(−i)|p−d−1

d(u,T)p−1|u− um,+|p−1|u− um,−|p−1

By assumptions of the theorem, we always have p > d. Consider first the case

p− d ≥ 1, or, equivalently, p− d− 1 ≥ 0. Obviously, the factors |u− u(i)|p−d−1
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and |u − u(−i)|p−d−1 are then bounded, and applying Theorem 2.1, we find for

0 < τ < 1

(5.4)
∑

g(u)=0

(1− |u|)p+τ |u− um,+|p−2+τ |u− um,−|p−2+τ ≤ C · ‖V ‖pLp ,

where C depends on n, d, p,m, b and τ .

In the second case, we have 0 < p − d < 1 or −1 < p − d − 1 < 0. We use

Theorem 2.1 with if 0 < τ < 1− (p − d) and so

(5.5)
∑

g(u)=0

(1− |u|)p+τ |u− um,+|p−2+τ |u− um,−|p−2+τ ≤ C1 · ‖V ‖pLp ,

where C1 depends on n, d, p,m, b and τ .

The las step of the proof consists in transferring relations (5.4), (5.5) back to

ρ(Dm) = C\σ(Dm). Remind that we have by Lemma 3.1 and Proposition 3.3

1− |u| = d(u,T) ≈ d(λ, σ(Dm))

(|λ+m‖λ−m|)1/2(1 + |λ|) ,

|u− um,+| |u− um,−| ≈ (|λ−m‖λ+m|)1/2
1 + |λ| .

Thus, we come to

(1− |u|)p+τ (|u− um,+‖u− um,−|)p−2+τ ≥ C d(λ, σ(Dm))p+τ

|λ+m‖λ−m|(1 + |λ|)2(p+τ−1)
.

The claim of the theorem follows. �

Of course, one can wonder what happens if we choose τ ≥ 1 − (p − d) in the

case of relation (5.5). It is easy to see that Theorem 2.1 still applies, but, rather

expectedly, the inequality obtained in this way is weaker than (5.5), so we do not

pursue this direction.

6. THE CASE OF m = 0

The method is the same but the spectrum of D0 is the whole R, σ(D0) = R.

The slight differences as compared to the case m > 0 come from the study of the

conformal mappings and the computation of the Schatten norm of the resolvent

V (λ −D0)
−1, λ ∈ ρ(D0). Since the techniques and computations are extremely

similar (not to say almost identical) to the case of Theorem 1.1, we give only a fast

sketch of Theorem 1.2.

As the conformal map concerns, notice that ρ(D0) = C
+ ∪ C

−, where C
± =

{λ : ±Im(λ) > 0}. So we can compute the contributions of the discrete spectrum

σd(D)∩C
± to (1.9) and then add them up. That is why, without loss of generality,

we discuss the case of λ ∈ σd(D) ∩ C
+, and the case of σd(D) ∩ C

− is treated

similarly. The conformal map ϕ we are interested in, is particularly simple

λ = ϕ(u) = ib
1 + u

1− u
: Du → C

+
λ,

u = ϕ−1(λ) =
λ− ib

λ+ ib
: C+

λ → Du.

For instance, the distortions become

d(λ, σ(D0)) ≈
d(u,T)

|u− 1|2 , d(u,T) ≈ d(λ, σ(D0))

(1 + |λ|)2 .
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Let, as before, p > d. For λ ∈ C
+, the bound on the resolvent reads as

‖V (λ−D0)‖pSp
≤ C‖V ‖pLp ‖(λ− µ0(x))

−1‖pLp ,

where µ0(x) = |x|, and we need to bound the integral

I =

∫ +∞

0

rd−1

|r − λ|p dr.

Similarly to the computation of section 4.3, we get

(6.1) I ≤ K

d(λ, σ(D0))p−1
· |λ|d−1

and then

‖V (λ−D0)‖pSp
≤ C‖V ‖pLp

|λ|d−1

d(λ, σ(D0))p−1
.

Sketch of the proof of Theorem 1.2. By property of the perturbation determinant

in Sp, we have

log |f(λ)| ≤ K‖V ‖pLp

|λ− ib|p|λ|d−1

d(λ;σ(D0))p−1
,

where f is defined in (4.2) and F is the same as in (4.1) with m = 0. Writing

λ = ϕ(u) and g = f ◦ ϕ, we see

log |g(u)| ≤ K‖V ‖pLp

|u|p|1 + u|d−1

|1− u|d+p−1
· |1− u|2(p−1)

d(u,T)p−1

≤ K‖V ‖pLp

|u|p|1 + u|d−1

|1− u|d−p+1d(u,T)p−1
.

We apply Theorem 2.1 to the function g to obtain
∑

g(u)=0

d(u,T)p+τ |u− 1|(d−p+τ)+ ≤ K‖V ‖pLp

for τ > 0 small enough. Using the properties of the maps ϕ,ϕ−1 discussed at the

beginning of this subsection, we conclude the proof of the theorem. �
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