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In this course we show how some linear properties of Banach spaces, in particular properties related to the asymptotic structure of Banach spaces, are stable under coarse-Lipschitz embedddings or uniform homeomorphisms. We will focus on the recent use of some fundamental metric graphs or trees in the subject.

Foreword.

These notes are based on a series of five lectures given at the Winter school on "Functional and Harmonic Analysis" organized in Lens (France) in December 2010. I am glad to thank S. Grivaux and D. Li

Introduction

The fundamental problem in non linear Banach space theory is to describe how the linear structure of a Banach space is (or is not) determined by its linear structure. In other words, we try to exhibit the linear properties of Banach spaces that are stable under some particular non linear maps. These non linear maps can be of very different nature: Lipschitz isomorphisms or embeddings, uniform homeomorphisms, uniform or coarse embeddings.

It is often said that the birth of the subject coincides with the famous theorem by Mazur and Ulam [START_REF] Mazur | Sur les transformations isométriques d'espaces vectoriels normés[END_REF] in 1932 who showed that any onto isometry between two normed spaces is affine. Much later, another very important event for this area was the publication in 2000 of the authoritative book by Benyamini and Lindenstrauss [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF]. Since then, there has been a lot of progress in various directions of this field.

In this series of lectures we will concentrate on uniform homeomorphisms and more generally on coarse-Lipschitz embeddings between Banach spaces (roughly speaking, a coarse-Lipschitz embedding is a map which is bi-Lipschitz for very large distances).

In section 2 we will very shortly visit the most important results on isometric embeddings. Section 3 is devoted to Lipschitz embeddings and isomorphisms. This subject is extremely vast and nicely exposed in the book by Benyamini and Lindenstrauss [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF]. We will just recall the results that will be needed for the sequel such as the differentiability properties of Lipschitz maps and the applications to the Lipschitz classification of Banach spaces. Section 4 is the heart of this course. We will study uniform homeomorphisms and coarse-Lipschitz embeddings between Banach spaces. Our approach will be based on the use of particular graph metrics on the ksubsets of N. These tools have been developed in the last few years by N.J. Kalton. We will see how to use them in order to obtain older results, such as the celebrated theorem by Johnson, Lindenstrauss and Schechtman [START_REF] Johnson | Banach spaces determined by their uniform structures[END_REF] on the uniqueness of the uniform structure of p for 1 < p < ∞. We will also show how they yield new results on the stability of the asymptotic structure of Banach spaces. In section 5, we consider a few universality problems. We recall Aharoni's theorem on the universality of c 0 for separable metric spaces and Lipschitz embeddings. We address the question of its converse and a few variants of this problem. We study the Banach spaces that are universal for locally finite metric spaces and Lipschitz embeddings. We also focus on a theorem of Kalton, asserting that a Banach space universal for separable metric spaces and coarse embeddings cannot be reflexive. Finally, in section 6, we give a few examples of linear properties that can be characterized by purely metric conditions. We detail the proof of a recent characterization, due to Johnson and Schechtman [START_REF] Johnson | Diamond graphs and super-reflexivity[END_REF], of super-reflexivity through the Lipschitz embeddability of diamond graphs.

Isometries

We begin this course with a quick review of the proof of Mazur-Ulam's theorem [START_REF] Mazur | Sur les transformations isométriques d'espaces vectoriels normés[END_REF]. This will allow us to use for the first time the notion of metric midpoints whose variants will be very useful in the sequel.

Theorem 2.1. (Mazur-Ulam 1932) Let X and Y be two real normed spaces and suppose that f : X → Y is a surjective isometry. Then f is affine.

Proof. It is clearly enough to show that for any x, y ∈ X, f ( x+y 2 ) = f (x)+f (y)

. So let us fix x, y ∈ X and define

K 0 = M id(x, y) = {u ∈ X, u -x = u -y = 1 2 x -y },
the set of the so-called metric midpoints of x and y. Then we build by induction

K n+1 = {u ∈ K n , K n ⊂ B(u, diam (K n ) 2 )},
It is then easy to show by induction that x+y 2 ∈ K n and that K n is symmetric about x+y 2 . Since diam (K n ) tends to 0, we obtain that ∩ ∞ n=0 K n = { x+y 2 }. On the other hand, starting, with F 0 = M id(f (x), f (y)), we define similarly

F n+1 = {v ∈ K n , F n ⊂ B(v, diam (F n )) 2 }.
Since the sets K n and F n are defined in purely metric terms and f is an isometry, we have that f (K n ) = F n , for all n ≥ 0. This yields our conclusion.

We finish this very short section by mentioning an important recent result by G. Godefroy and N.J. Kalton [START_REF] Godefroy | Lipschitz-free Banach spaces[END_REF] on isometries.

Theorem 2.2. [START_REF] Godefroy | Lipschitz-free Banach spaces[END_REF]) Let X and Y be separable Banach spaces and suppose that f : X → Y is an into isometry, then X is linearly isometric to a subspace of Y .

Let us just give a few indications on the scheme of the proof. Clearly, we may assume that Y is equal to the closed linear span of f (X). The first step is due to Figiel in [START_REF] Figiel | On non linear isometric embeddings of normed linear spaces[END_REF] who proved that there exists a linear quotient map Q : Y → X such that Q = 1 and Qf = I X . Then, 35 years later Godefroy and Kalton proved that if X is a separable Banach space and if Q : Y → X is a continuous linear quotient map with a Lipschitz lifting f (that is Qf = I X ), then Q admits a linear lifting L, with L = Lip(f ). The map L is the desired linear isometric embedding.

Remarks.

(a) Of course, the map f does not need to be linear. For instance

f (t) = (t, sin t) is an isometric embedding from R into 2 ∞ = (R 2 , ∞ ). (b)
The above result is false in the non separable case. It is also proved in [START_REF] Godefroy | Lipschitz-free Banach spaces[END_REF] that ∞ is isometric to a subset of the free space F( ∞ ) but not isomorphic to any subspace of F( ∞ ).

Lipschitz embeddings and isomorphisms

We start with the following Definition 3.1. Let (M, d) and (N, δ) be two metric spaces. The map f :

M → N is a Lipschitz embedding if ∃A, B > 0 ∀x, y ∈ M Ad(x, y) ≤ δ(f (x), f (y)) ≤ Bd(x, y). We denote M Lip → N . If C ≥ B/A, we shall write M C → N .
If moreover f is onto we will say that it is a Lipschitz isomorphism and denote

M Lip ∼ N .
The subject of this section is very vast. We will just summarize the classical results that we need for the sequel of this course. We refer the reader to the book [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF] for a complete exposition.

3.1. Differentiability results. The first natural idea in order to get a linear map from a Lipschitz map is to use differentiation. It is indeed well known that a Lipschitz map between finite dimensional real normed spaces is almost everywhere differentiable. It is no longer true when the target space is infinite dimensional. This justifies the following definition. Definition 3.2. A Banach space Y is said to have the Radon-Nikodỳm Property (RNP) if every Lipschitz map f : R → Y is a.e. differentiable.

Let us just mention that separable dual spaces and reflexive spaces have RNP (this is due to Gelfand [START_REF] Gelfand | Abstrakte Funktionen und lineare Operatoren[END_REF]). Notice also that the spaces c 0 and L 1 do not have (RNP). This last remak can easily be checked by considering the maps f : R → c 0 and g : R → L 1 defined by

f (t) = (e int /n) ∞ n=1 and g(t) = 1 [0,t] .
The next obstacle is the lack of a Haar measure on infinite dimensional Banach spaces. This difficulty was overcome by various authors in the seventies, by defining a suitable notion of negligible set in this setting. Let us mention one of them, without further explanation. A Borel subset A of a separable Banach space X is said to be Gauss null if µ(A) = 0, for every non degenerate Gaussian measure on X. We refer the reader to [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF] (chapter 6) for all the details. Let us just point the two main features of this notion: it is stable under countable unions and X is not Gauss-null. We can now state the following fundamental differentiability result. Theorem 3.3. (Aronszajn, Christensen, Mankiewicz 1970's) Let X be a separable Banach space, Y a Banach space with the (RNP) and f : X → Y a Lipschitz map. Then there is Gauss-null subset A of X such that f is Gâteauxdifferentiable at every point of X \ A.

We can immediately deduce Corollary 3.4. Let X be a separable Banach space and Y a Banach space with the (RNP) such that X Lip → Y . Then X is linearly isomorphic to a subspace of Y .

In particular, if X Lip → 2 and X is infinite dimensional, then X is linearly isomorphic to 2 (we denote X

2 ). By using weak * -Gâteaux differentiability and the notion of Gauss-null sets, Heinrich and Mankiewicz [START_REF] Heinrich | Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces[END_REF] were then able to prove the following. Theorem 3.5. [START_REF] Heinrich | Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces[END_REF] Let X be a separable Banach space and Z be a Banach space. Assume that X Lip → Z * , then X is linearly isomorphic to a subspace of Z * . In particular, if X Lip → Y , then X is linearly isomorphic to a subspace of Y * * .

Remark. As we will recall later, a theorem by I. Aharoni [START_REF] Aharoni | Every separable metric space is Lipschitz equivalent to a subset of c + 0[END_REF] asserts that every separable metric space Lipschitz embeds into c 0 . However, not every separable Banach space is linearly isomorphic to a subspace of c 0 .

3.2. The use of complemented subspaces. For most of the Banach spaces besides 2 , the structure of their subspaces is extremely complicated and the above differentiability results are clearly not sufficient. However, their complemented subspaces are often much simpler. Therefore, the next natural idea is to find conditions under which two Lipschitz isomorphic spaces are complemented in each other. This was initiated by Lindenstrauss in [START_REF] Lindenstrauss | On nonlinear projections in Banach spaces[END_REF] and developed by Heinrich and Mankiewicz in [START_REF] Heinrich | Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces[END_REF]. Here are the statements that we shall use. Theorem 3.6. [START_REF] Lindenstrauss | On nonlinear projections in Banach spaces[END_REF] Let Y be a closed subspace of a Banach space X. Assume that Y is complemented in Y * * and that there is a Lipschitz retraction from X onto Y . Then Y is complemented in X. 

Y . Assume that X has (RNP), Y is complemented in Y * * and that X Lip ∼ Y . Then Y 0 is isomorphic to a complemented subspace of X (we denote Y 0 ⊆ c X).
In particular (ii) Let X, Y be two separable Banach spaces with (RNP) such that

X Lip ∼ Y and Y is complemented in Y * * . Then Y ⊆ c X. and (iii) Let X, Y be two separable reflexive Banach spaces such that X Lip ∼ Y . Then Y ⊆ c X and X ⊆ c Y .
It is now quite easy to deduce the following Theorem 3.8. Let X be a Banach space and 1 < p < +∞.

(i) If X Lip ∼ p , then X p . (ii) If X Lip ∼ L p = L p ([0, 1]), then X L p .
Proof. (i) It is clear that X is infinite dimensional and it follows from the previous theorem that X ⊆ c p . Then a classical result of Pe lczyński [START_REF] Pe | Projections in certain Banach spaces[END_REF] insures that X p . (ii) It is not true that a complemented subspace of L p is isomorphic to L p . So let use that there are Banach spaces X 1 and Y 1 such that L p X ⊕X 1 and

X L p ⊕Y 1 . First notice that L p ⊕ L p L p . So L p ⊕ X L p ⊕ L p ⊕ Y 1 L p ⊕ Y 1 X. On the other hand, L p p (L p ). So L p ⊕ X p (X ⊕ X 1 ) ⊕ X X ⊕ p (X) ⊕ p (X 1 ) p (X) ⊕ p (X 1 ) L p .
The proof is finished. This last trick, is known as the "Pe lczyński" decomposition method.

Other results

and main open questions. First, we need to say that it is not true that two Lipschitz isomorphic Banach spaces are always linearly isomorphic. Indeed Theorem 3.9. (Aharoni, Lindenstrauss [START_REF] Aharoni | Uniform equivalence between Banach spaces[END_REF] 1978) There exist an uncountable set Γ and a Banach space X such that X Lip ∼ c 0 (Γ) but X is not linearly isomorphic to any subspace of c 0 (Γ). However, the following was proved in [START_REF] Godefroy | Subspaces of c0(N) and Lipschitz isomorphisms[END_REF] Theorem 3.10. Let X be a Banach space such that X Lip ∼ c 0 . Then X c 0 .

We end this section with two major open questions.

( 

M U H ∼ N ). (b) If (M, d) is unbounded, we define ∀s > 0 Lip s (f ) = sup{ δ((f (x), f (y)) d(x, y) , d(x, y) ≥ s} and Lip ∞ (f ) = inf s>0 Lip s (f ). f is said to be coarse Lipschitz if Lip ∞ (f ) < ∞. (c) f is a coarse Lipschitz embedding if there exist θ, A, B > 0 such that ∀x, y ∈ M d(x, y) ≥ θ ⇒ Ad(x, y) ≤ δ(f (x), f (y)) ≤ Bd(x, y).
We denote

M CL → N .
Remark. If M is a normed space and the following implication is satisfied:

x -y ≤ η ⇒ δ(f (x), f (y)) ≤ ε. Then x -y ≥ η ⇒ δ(f (x), f (y)) ≤ ε( x -y η + 1) ≤ 2ε η x -y .
Therefore a uniformly continuous map defined on a normed space is coarse Lipschitz and a uniform homeomorphism between normed spaces is a bi-coarse Lipschitz bijection.

In the sequel we will study the uniform classification of Banach spaces. The main question being whether

X U H ∼ Y implies X Y ?
The general answer is negative, even in the separable case, as shown by the following result. Theorem 4.2. (Ribe [START_REF] Ribe | Existence of separable uniformly homeomorphic non isomorphic Banach spaces[END_REF] 

1984) Let (p n ) ∞ n=1 in (1, +∞) be a strictly decreasing sequence such that lim p n = 1. Denote X = ( ∞ n=1 pn ) 2 . Then X U H ∼ X ⊕ 1 .
Note that X is reflexive, while X ⊕ 1 is not. Therefore reflexivity is not preserved under uniform homeomorphisms or coarse Lipschitz embeddings.

The local properties of a Banach space can be roughly described as the properties determined by its finite dimensional subspaces. The type and cotype of a Banach space or the super-reflexivity are typical examples of local properties of Banach spaces. The fact that local properties are preserved under coarse Lipschitz embeddings is essentially due to Ribe [START_REF] Ribe | On uniformly homeomorphic normed spaces[END_REF]. This is made precise in the following statement.

Theorem 4.3. Let X and Y be two Banach spaces such that X CL → Y . Then there exists a constant K ≥ 1 such that for any finite dimensional subspace E of X there is a finite dimensional subspace F of Y which is K-isomorphic to E.

Proof. Instead of Ribe's original proof, we propose the modern argument using ultra-products as in [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF]. So assume that f : X → Y is a coarse Lipschitz embedding and E is a finite dimensional subspace of X. Let U be a non principal ultrafilter on N. To a bounded sequence (x n ) ∞ n=1 in X, we associate the sequence (f (x n )/n) ∞ n=1 which is bounded in Y . This induces a Lipschitz embedding between the ultra-products Φ :

X U C → Y U .
Then by Heinrich and Mankiewicz differentiation theorem, E is C-isomorphic to a subspace of Y * * U . We conclude by using the principle of local reflexivity and the fact that Y U and Y have the same finite dimensional subspaces.

Remark. By Kwapien's theorem, a Banach space is isomorphic to a Hilbert space if and only if it is of type 2 and cotype 2. Therefore a Banach space which coarse Lipschitz embeds in 2 is either finite dimensional or isomorphic to 2 .

The next important result is the following. 

Let 1 < p < ∞ and X a Banach space such that X U H ∼ p . Then X p .
The original proof of this theorem was based on the so-called "Gorelik principle", that we shall not see in this course. However, we will show in detail how to obtain this result and improve it with other tools. The first one known as the "metric midpoints principle" is very classical and close in spirit to the proof of the Mazur-Ulam theorem. The other technique is due to N.J Kalton and based on the use of special graph metrics on the k-subsets of N. The main objective of this course is to describe these recent tools and some of their implications. The end of this section is essentially taken from a paper by N.J. Kalton and N.L. Randrianarivony [START_REF] Kalton | The coarse Lipschitz structure of p ⊕ q[END_REF].

4.2.

The approximate midpoints principle. Given a metric space X, two points x, y ∈ X, and δ > 0, the approximate metric midpoint set between x and y with error δ is the set:

M id(x, y, δ) = z ∈ X : max{d(x, z), d(y, z)} ≤ (1 + δ) d(x, y) 2 .
The use of metric midpoints in the study of nonlinear geometry is due to Enflo in an unpublished paper and has since been used elsewhere, e.g. [START_REF] Bourgain | Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms[END_REF], [START_REF] Gorelik | The uniform nonequivalence of Lp and lp[END_REF] and [START_REF] Johnson | Banach spaces determined by their uniform structures[END_REF].

The following version of the midpoint Lemma was formulated in [START_REF] Kalton | The coarse Lipschitz structure of p ⊕ q[END_REF] (see also [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF] Lemma 10.11). Proposition 4.5. Let X be a normed space and suppose M is a metric space. Let f : X → M be a coarse Lipschitz map. If Lip ∞ (f ) > 0 then for any t, ε > 0 and any 0 < δ < 1 there exist x, y ∈ X with x -y > t and

f (Mid(x, y, δ)) ⊂ Mid(f (x), f (y), (1 + ε)δ). Proof. Let ε > 0. There exist s > t such that Lip s (f ) ≤ (1 + ε )Lip ∞ (f ). Then we can find x, y ∈ X such that x-y ≥ 2s 1 -δ and f (x)-f (y) ≥ 1 1 + ε Lip ∞ (f ) x-y ≥ 1 (1 + ε ) 2 Lip s (f ) x-y . G. LANCIEN Let now u ∈ M id(x, y, δ). We have that y -u ≥ 1-δ 2 x -y ≥ s. Therefore f (y)-f (u) ≤ Lip s (f ) y-u ≤ Lip s (f ) 1 + δ 2 x-y ≤ (1+ε ) 2 1 + δ 2 f (x)-f (y) .
The same is true for f (x) -f (u) and a choice of ε small enough yields the conclusion.

In view of this proposition, it is natural to study the approximate metric midpoints in p . This is done in the next lemma, which can be found in [START_REF] Kalton | The coarse Lipschitz structure of p ⊕ q[END_REF].

Lemma 4.6. Let 1 ≤ p < ∞. We denote (e i ) ∞
i=1 the canonical basis of p and for

N ∈ N, E N is the closed linear span of {e i , i > n}. Let now x, y ∈ p , δ ∈ (0, 1), u = x+y 2 and v = x-y 2 . Then (i) There exists N ∈ N such that u + δ 1/p v B E N ⊂ M id(x, y, δ). (ii) There is a compact subset K of p such that M id(x, y, δ) ⊂ K + 2δ 1/p v B p . Proof. Fix ν > 0. Let N ∈ N such that N i=1 |v i | p ≥ (1 -ν p ) v p p . (i) We may clearly assume that p > 1. Let now z ∈ E N so that z p ≤ δ v p . Then x -(u + z) p = v -z p ≤ v p + ( z + ν v ) p ≤ (1 + δ) p v p , if ν was chosen small enough. The computation is the same for y -(u + z) = v + z . So u + z ∈ M id(x, y, δ).
(ii) Assume that u+z ∈ M id(x, y, δ) and write z = z +z" with z ∈ F N = sp{e i , i ≤ N } and z" ∈ E N . Since v-z , v+z ≤ (1+δ) v , we get, by convexity that z ≤ z ≤ (1+δ) v . Therefore, u + z belongs to the compact set

K = u + (1 + δ) v B F N . It follows also from convexity that ∀i ≥ 1 max{|v i | p , |z i | p } ≤ 1 2 (|v i -z i | p + |v i + z i | p ).
Summing over all i's yields:

(1 -ν p ) v p + z" p ≤ 1 2 ( v -z p + v + z p ). Therefore z" p ≤ [(1 + δ) p -(1 -ν p )] v p ≤ 2 p δ v p , if ν was carefully chosen small enough.
We can now combine Proposition 4.5 and Lemma 4.6 to obtain Proposition 4.7. Let 1 ≤ p < q < ∞ and f : q → p a coarse Lipschitz map. Then for any t > 0 and any ε > 0 there exist u ∈ q , τ > t, N ∈ N and K a compact subset of p such that

f (u + τ B E N ) ⊂ K + ετ B p .
Proof. If Lip ∞ (f ) = 0, the conclusion is clear. So we assume that Lip ∞ (f ) > 0. We choose a small δ > 0 (to be detailed later). Then we choose s large enough so that Lip s (f ) ≤ 2Lip ∞ (f ) (the actual choice of s will also be specified later). Then, by Proposition 4.5,

∃ x, y ∈ q x -y ≥ s and f (M id(x, y, δ)) ⊂ M id(f (x), f (y), 2δ). Denote u = x+y 2 , v = x-y
2 and τ = δ 1/q v . By Lemma 4.6, there exists N ∈ N such that u + τ B E N ⊂ M id(x, y, δ) and there exists a compact subset K of p so that M id(f

(x), f (y), 2δ) ⊂ K + (2δ) 1/p f (x) -f (y) B p . But (2δ) 1/p f (x) -f (y) ≤ 2Lip ∞ (f )(2δ) 1/p x -y = 4Lip ∞ (f )2 1/p δ 1/p-1/q τ ≤ ετ,
if δ was chosen initially chosen small enough. Then an appropriate choice of a large s will ensure that τ ≥ 1 2 δ 1/q s > t. This finishes the proof. As a simple consequence, we have

Corollary 4.8. Let 1 ≤ p < q < ∞.
Then q does not coarse Lipschitz embed into p .

Proof. Let f : q → p be a coarse Lipschitz map. With the notation of the previous Proposition, we can find a sequence (

u n ) ∞ n=1 in u + τ B E N such that u n -u m ≥ τ for n = m. Then f (u n ) = k n + ετ v n with k n ∈ K and v n ∈ B p . Since K is compact,
by extracting a subsequence, we may assume that f (u n ) -f (u m ) ≤ 3ετ. Since ε can be chosen arbitrarily small and τ arbitrarily large, it implies that f cannot be a coarse Lipschitz embedding. 4.3. Kalton-Randriarivony's graphs. Our next step will be to prove the conclusion of Corollary 4.8 for 1 ≤ q < p < ∞. This will be less elementary and require the introduction of special metric graphs. The use of these graphs in this setting is due to N.J. Kalton and N.L. Randriarivony [START_REF] Kalton | The coarse Lipschitz structure of p ⊕ q[END_REF] Let M be an infinite subset of N and k ∈ N. We denote

G k (N) = {n = (n 1 , .., n k ), n i ∈ M n 1 < .. < n k }.
Then we equip G k (M) with the distance d(n, m) = |{j, n j = m j }|. The fundamental result of the whole section is an estimate of the minimal distortion of any Lipschitz embedding of (G k (N), d) in an p -like Banach space. Assume now that M is an infinite subset of N and f :

G k (M) → Y is a Lipschitz map.
Then for any ε > 0, there exists an infinite subset M of M such that:

diam f (G k (M )) ≤ 2Lip(f )k 1/p + ε.
Proof. We will prove by induction on k the following statement (H k ): for any f : G k (M) → Y Lipschitz and any ε > 0, there exist an infinite subset M of M and u ∈ Y so that:

∀n ∈ G k (M ) f (n) -u ≤ Lip(f )k 1/p + ε.
Assume k = 1. By weak compactness, there is an infinite subset M 0 of M and u ∈ Y such that f (n) tends weakly to u, as n → ∞, n ∈ M 0 . It follows that

∀n ∈ M 0 u -f (n) ≤ lim sup m∈M 0 f (m) -f (n) ≤ Lip(f ).
We then obtain (H 1 ) by taking a further subset M of M 0 .

Assume that (H k-1 ) is true and f : G k (M) → Y is Lipschitz and let ε > 0. Using again weak compactness, we can find an infinite subset M 0 of M such that

∀n ∈ G k-1 (M 0 ) w -lim n k ∈M 0 f (n, n k ) = g(n) ∈ Y.
Clearly, the map g : G k-1 (M 0 ) → Y satisfies Lip(g) ≤ Lip(f ). Let η > 0, by the induction hypothesis we can find an infinite subset M 1 of M 0 and u ∈ Y so that

∀n ∈ G k-1 (M 1 ) g(n) -u ≤ Lip(f )(k -1) 1/p + η. Now, lim sup n k ∈M 1 u -f (n, n k ) p ≤ u -g(n) p + lim sup n k ∈M 1 g(n) -f (n, n k ) p ≤ (Lip(f )(k -1) 1/p + η) p + Lip(f ) p .

It follows that lim sup

n k ∈M 1 u -f (n, n k ) ≤ Lip(f )k 1/p + ε 2 ,
if η was chosen small enough. Finally we can use Ramsey's Theorem to obtain an infinite subset

M of M 1 such that ∀n, m ∈ G k (M ) u -f (n) -u -f (m) ≤ ε 2 .
This concludes the inductive proof of (H k ).

Remarks.

(1) Y = ( ∞ n=1 F n ) p , where the F n 's are finite dimensional is a typical example of a space satisfying the assumptions of Theorem 4.9.

(2) Reflexivity is an important assumption. Indeed, c 0 fulfills the other condition (actually for any p finite), but it is not difficult to check that all (G k (N), d) Lipschitz embed into c 0 with a constant independent of k. This last fact can also be deduced from Aharoni's theorem (see [START_REF] Aharoni | Every separable metric space is Lipschitz equivalent to a subset of c + 0[END_REF]).

We are now in position to deduce the following.

Corollary 4.10. Let 1 ≤ q < p < ∞.
Then q does not coarse Lipschitz embed into p .

Proof. Suppose that q CL → p . Then, using homogeneity, we get the existence of f : q → p and C ≥ 1 such that

∀x, y ∈ q x -y q ≥ 1 ⇒ x -y q ≤ f (x) -f (y) p ≤ C x -y p ( * )
Denote (e n ) ∞ n=1 the canonical basis of q . Consider the map ϕ :

G k (N) → q defined by ϕ(n) = e n 1 + .. + e n k . It is clear that Lip(ϕ) ≤ 2. Besides, ϕ(n) -ϕ(m) q ≥ 1 whenever n = m, so Lip(f • ϕ) ≤ 2C. Then, by Theorem 4.9, there is an infinite subset M of N such that diam (f • ϕ)(G k (M)) ≤ 6Ck 1/p . But diam (ϕ(G k (M)) = (2k) 1/q .
This is in contradiction with ( * ), when k is large enough.

Let us now indicate how to finish the proof of Theorem 4.4 on the uniqueness of the uniform structure of p , for 1 < p < ∞. We shall just reproduce the linear argument of [START_REF] Johnson | Banach spaces determined by their uniform structures[END_REF].

Proof. Suppose that X U H ∼ p , with 1 < p < ∞. We may assume that p = 2. Then the ultra-products X U and ( p ) U are Lipschitz isomorphic. In fact, ( p ) U is isometric to some huge L p (µ) space. since X is separable and L p (µ) has (RNP), X is isomorphic to a subspace of L p (µ) and therefore reflexive. Thus X is complemented in X U and Theorem 3.7 implies that X is isomorphic to a complemented subspace of L p (µ). Since X is separable, a classical argument yields that X is isomorphic to a complemented subspace of L p = L p ([0, 1]). Now, it follows from corollaries 4.8 and 4.10 that X does not contain any isomorphic copy of 2 . Then we can conclude with a classical result of Johnson and Odell [START_REF] Johnson | Subspaces of Lp which embed into p[END_REF] which asserts that any infinite dimensional complemented subspace of L p that does not contain any isomorphic copy of 2 is isomorphic to p .

In fact, a lot more can be deduced from Theorem 4.9. The aim of the paper [START_REF] Kalton | The coarse Lipschitz structure of p ⊕ q[END_REF] was to prove the uniqueness of the uniform structure of p ⊕ p . We will now try to explain this result. We start with the following improvement of corollaries 4.8 and 4.10.

Corollary 4.11. Let 1 ≤ p < q < ∞. and r ≥ 1 such that r / ∈ {p, q}. Then r does not coarse Lipschitz embed into p ⊕ q .

Proof. When r > q, the argument is based on a midpoint technique like in the proof of Corollary 4.8. If r < p, we mimic the proof of Corollary 4.10. So we assume that 1 ≤ p < r < q < ∞. This is the situation where the graph technique will provide the answer that the Gorelik principle did not. So assume that f : r → p ⊕ ∞ q is a map such that there exists C ≥ 1 satisfying

∀x, y ∈ r x -y r ≥ 1 ⇒ x -y r ≤ f (x) -f (y) ≤ C x -y r ( * * )
The map f has two components: f = (g, h). Fix k ∈ N and ε > 0. Denote (e n ) n the canonical basis of r . We start by applying the midpoint technique to the coarse Lipschitz map g and deduce from Proposition 4.7 that there exist τ > k, u ∈ r , N ∈ N and K a compact subset of p such that g(u

+ τ B E N ) ⊂ K + ετ B p . Let M = {n ∈ N, n > N } and define ϕ(n) = u+τ k -1/r (e n 1 +..+e n k ) for n ∈ G k (M).
Then we have that (g • ϕ)(G k (M)) ⊂ K + ετ B p . Thus, by Ramsey's theorem, there is an infinite subset M of M such that diam (g

• ϕ)(G k (M )) ≤ 3ετ.
We now turn to the graph technique in order to deal with the map h. We have that ϕ

(n) -ϕ(m) q ≥ τ k -1/r ≥ 1 whenever n = m. So Lip(h • ϕ) ≤ Lip(f • ϕ) ≤ 2k -1/r τ C.
Then, by Theorem 4.9, there exists an infinite subset

M of M such that diam (h • ϕ)(G k (M )) ≤ 6Ck 1/q-1/r τ ≤ ετ, if k is big enough. Finally we have that diam (f • ϕ)(G k (M )) ≤ 3ετ , while diam ϕ(G k (M )) ≥ τ. This in contradiction with ( * * ) if ε < 1/3.
We can now state and prove the main result of [START_REF] Kalton | The coarse Lipschitz structure of p ⊕ q[END_REF].

Theorem 4.12. Let 1 < p < q < ∞ such that 2 / ∈ {p, q}.

Assume that X is Banach space such that X U H ∼ p ⊕ q . Then X p ⊕ q .

Proof. The key point is to show that X does not contain any isomorphic copy of 2 . This follows clearly from the above corollary. To conclude the proof, we need to use a few deep linear results. The cases 1 < p < q < 2 and 2 < p < q, were actually settled in [START_REF] Johnson | Banach spaces determined by their uniform structures[END_REF], which is not a surprise after the remark made at the beginning of the proof of the previous corollary. So let us only explain the case 1 < p < 2 < q.

Assume that

X U H ∼ p ⊕ q = E. Then X U Lip ∼ E U = L p (µ) ⊕ L q (µ).
As in the proof of Theorem 4.4, we obtain that X ⊆ c L p ⊕ L q . Since 2 X and q > 2, a theorem of W.B Johnson [START_REF] Johnson | Operators into Lp which factor through p[END_REF] insures that any bounded operator from X into L q factors through q . Then, it is not difficult to see that X ⊆ c L p ⊕ q . Then we notice that L p and q are totally incomparable, which means that they have no isomorphic infinite dimensional subspaces. We can now use a theorem of Èdelšteȋn and Wojtaszczyk [START_REF] Èdelšteȋn | On projections and unconditional bases in direct sums of Banach spaces[END_REF] to obtain that X F ⊕ G, with F ⊆ c L p and G ⊆ c q . First it follows from [START_REF] Pe | Projections in certain Banach spaces[END_REF] that G is isomorphic to q or is finite dimensional. On the other hand, we know that 2 F , and by the Johnson-Odell theorem [START_REF] Johnson | Subspaces of Lp which embed into p[END_REF] F is isomorphic to p or finite dimensional. Summarizing, we have that X is isomorphic to p , q or p ⊕ q . But we already know that p and q have unique uniform structure. Therefore X is isomorphic to p ⊕ q .

Remarks.

(1) This result extends to finite sums of p spaces. More precisely, if 1 < p 1 < .. < p n < ∞ are all different from 2, then p 1 ⊕ ... ⊕ pn has a unique uniform structure.

(2) Let 1 < p < ∞ and p = 2. It is unknown whether L p or even p ⊕ 2 has a unique uniform structure.

In [START_REF] Kalton | The coarse Lipschitz structure of p ⊕ q[END_REF], other applications of Theorem 4.9 yield interesting partial results in this direction. Let us just state them without proof. Theorem 4.13. Let 1 < p < ∞ and p = 2.

Then p ( 2 ) and therefore L p do not coarse Lipschitz embed into p ⊕ 2 .

4.4. Asymptotic stucture of Banach spaces. In this last paragraph of our central section, we will further explore the ideas and implications of Theorem 4.9. Our main purpose, will be to give an abstract version of it that will show some stability properties of the asymptotic structure of Banach spaces under coarse Lipschitz embeddings. First, we need a few definitions.

Definition 4.14. Let (X, ) be a Banach space and t > 0. We denote by B X the closed unit ball of X and by S X its unit sphere. For x ∈ S X and Y a closed linear subspace of X, we define

ρ(t, x, Y ) = sup y∈S Y x + ty -1 and δ(t, x, Y ) = inf y∈S Y x + ty -1.
Then

ρ X (t) = sup x∈S X inf dim(X/Y )<∞ ρ(t, x, Y ) and δ X (t) = inf x∈S X sup dim(X/Y )<∞ δ(t, x, Y ).
The norm is said to be asymptotically uniformly smooth

(in short AUS) if lim t→0 ρ X (t) t = 0.
It is said to be asymptotically uniformly convex (in short AUC) if

∀t > 0 δ X (t) > 0.
These moduli have been first introduced by V. Milman in [START_REF] Milman | Geometric theory of Banach spaces. II. Geometry of the unit ball (Russian)[END_REF].

Remarks.

(

) If X = ( ∞ n=1 F n ) p , 1 ≤ p < ∞ and the F n 's are finite dimensional, then ρ X (t) = δ X (t) = (1 + t p ) 1/p -1. 1 
(2) For all t ∈ (0, 1), ρ c 0 (t) = 0.

(3) The following consequence of the definition of ρ X (t) will be useful: for any x ∈ X \ {0} and any weakly null sequence in X

lim sup x + x n ≤ x 1 + ρ X lim sup x n x .
This is clearly a general version of the assumption of Theorem 4.9.

We will start with a positive result on the stability of reflexivity under coarse Lipschitz embeddings. One should remember that Ribe's counterexample implies that this is not true in general. The following result appeared in [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF].

Theorem 4.15. Let X be a Banach space and Y be a reflexive Banach space with an equivalent AUS norm. Assume that X coarse Lipschitz embeds into Y . Then X is reflexive.

Proof. We can clearly assume that X and Y are separable. Then it follows from the work of Odell and Schlumprecht (see [START_REF] Odell | Embeddings into Banach spaces with finite dimensional decompositions[END_REF]) that Y can be renormed in such a way that there exists p ∈ (1, +∞) so that (4.1) lim sup y + y n p ≤ y p + lim sup y n p , whenever y ∈ Y and (y n ) is a weakly null sequence in Y . Suppose now that X is a non reflexive Banach space and fix θ ∈ (0, 1). Then, James' Theorem [START_REF] Johnson | Operators into Lp which factor through p[END_REF] insures the existence of a sequence (x n ) ∞ n=1 in S X and a sequence

(x * n ) ∞ n=1 in S X * such that x * n (x i ) = θ if n ≤ i and x * n (x i ) = 0 if n > i. In particular (4.2) x n 1 + .. + x n k -(x m 1 + .. + x m k ) ≥ θk, n 1 < .. < n k < m 1 < .. < m k .
Assume finally that f : X → Y is a map so that

(4.3) ∀x, x ∈ X x -x ≥ θ ⇒ x -x ≤ f (x) -f (x ) ≤ C x -x .
For k ∈ N we consider h : G k (M) → X defined by h(n) = x n 1 + .. + x n k . We have that h(n)-h(m) ≥ θ, whenever n = m. Thus Lip(f •h) ≤ 2C. Then Theorem 4.9 insures the existence of an infinite subset M of N such that diam (f • h)(G k (M)) ≤ 6Ck 1/p . This in contradiction with (4.2) and (4.3). Therefore X cannot coarse Lipschitz embed into Y .

It is proved in [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF] that the condition "having an equivalent AUS norm" is stable under uniform homeomorphisms. So we immediately deduce.

Corollary 4.16. The class of all reflexive Banach spaces with an equivalent AUS norm is stable under uniform homeomorphisms.

We shall now give a more abstract version of Theorem 4.9 as it is done in the last section of [START_REF] Kalton | The coarse Lipschitz structure of p ⊕ q[END_REF]. So let us consider a reflexive Banach space Y and denote by ρ Y its modulus of asymptotic uniform smoothness. It is easily checked that ρ Y is an Orlicz function. Then we define the Orlicz sequence space:

ρ Y = {x ∈ R N , ∃r > 0 ∞ n=1 ρ Y ( |x n | r ) < ∞},
equipped with the norm

x ρ Y = inf{r > 0, ∞ n=1 ρ Y ( |x n | r ) ≤ 1}.
Fix now a = (a 1 , .., a k ) a sequence of non zero real numbers and define the following distance on G k (M), for M infinite subset of N:

∀n, m ∈ G k (M), d a (n, m) = j, n j =m j |a j |.
At this stage, we should point out something that we have so far carefully hidden. The fact that the elements of G k (M) are ordered k-subsets of M has been totally useless until now. Indeed, the very same proof would work if we just consider the k-subsets of M with the distance d (A, B) = 1 2 |A∆B|. Now, with the definition of d a we clearly need to work with ordered k-subsets and we shall prove the following generalization of Theorem 4.9. 

diam f (G k (M )) ≤ 2eLip(f ) a ρ Y + ε. Proof. Define the following norm on R 2 : N (ξ, η) = |η| if ξ = 0 and N 2 (ξ, η) = |ξ|(1 + ρ Y ( |η| |ξ| ) if ξ = 0. Then define by induction N k (ξ 1 , .., ξ k ) = N 2 (N k-1 (ξ 1 , .., ξ k-1 ), ξ k ) on R k .
(a) The first step is to prove that for any ε > 0, there exist an infinite subset M of M and u ∈ Y so that:

∀n ∈ G k (M ) f (n) -u ≤ N k (a 1 , .., a k )Lip(f ) + ε.
For the argument just notice that for any y ∈ Y and any weakly null sequence (y n ) in Y : lim sup y + y n ≤ N 2 ( y , lim sup y n ). Then just mimic the proof of Theorem 4.9.

(b) The conclusion then follows from the inequality: N k (a) ≤ e a ρ Y . Indeed, let a so that a ρ Y ≤ 1 and assume as we may that N k (a) > 1. Denote r the smallest integer in {1, .., k} such that N r (a 1 , .., a r ) > 1. Then

∀j > r N j (a 1 , .., a j ) ≤ N j-1 (a 1 , .., a j-1 )(1 + ρ Y (|a j |)). If r > 1, N r (a 1 , .., a r ) ≤ N 2 (1, a r ) = 1 + ρ Y (|a r |) and if r = 1, N 1 (a 1 ) = |a 1 | ≤ 1 + ρ Y (|a 1 |). In both cases N k (a) ≤ k i=1 (1 + ρ Y (|a i |),
which yields the conclusion.

As it is described in [START_REF] Kalton | Uniform homeomorphisms of Banach spaces and asymptotic structure[END_REF] we can now derive the following. Corollary 4.18. Let X be a Banach space and Y be a reflexive Banach space. Assume that X coarse Lipschitz embeds into Y . Then there exists C > 0 such that for any normalized weakly null sequence (x n ) ∞ n=1 in X and any sequence a = (a 1 , .., a k ) of non zero real numbers, there is an infinite subset M of N such that:

∀n ∈ G k (M) k i=1 a i x n i ≤ C a ρ Y . Proof. Let f : X → Y so that (4.4) ∀x, x ∈ X x -x ≥ 1 ⇒ x -x ≤ f (x) -f (x ) ≤ C x -x .
For λ > 0, we consider h : (G k (N), d a ) → X defined by h(n) = λ k i=1 a i x n i . We clearly have that Lip(h) ≤ 2λ. Notice that we may assume, by passing to a subsequence, that (x n ) is a basic sequence with basis constant at most 2. In particular

, if n = m, h(n) -h( m ) ≥ λ 4 min{|a i |, 1 ≤ i ≤ k}. So we can choose λ > 0 so that h(n)-h( m ) ≥ 1, whenever n = m. Then, F = f •h is 2Cλ-Lipschitz.
Then it follows from Theorem 4.17 that there is an infinite subset M of N such that

∀n, m ∈ M, with n 1 < .. < n k < m 1 < .. < m k F (n) -F (m) ≤ 4Ceλ a ρ Y + 1.
The left hand side of (4.4) yields

∀n, m ∈ M st n 1 < .. < n k < m 1 < .. < m k ∞ i=1 a i x n i - ∞ i=1 a i x m i ≤ 4Ce a ρ Y + 1 λ .
Letting m k ,..,m 1 and then λ tend to ∞ we obtain

∀n 1 < .. < n k ∈ M ∞ i=1 a i x n i ≤ 4Ce a ρ Y .
The above result can be rephrased in a more abstract way, by using the notion of spreading models. We shall not detail this generalization, but just mention this other statement (see [START_REF] Kalton | Uniform homeomorphisms of Banach spaces and asymptotic structure[END_REF] for details).

Corollary 4.19. Let X be a Banach space and Y be a reflexive Banach space. Assume that X coarse Lipschitz embeds into Y . Then there exists C > 0 such that for any spreading model (e i ) of a normalized weakly null sequence in X and any finitely supported sequence a = (a i ) in R:

a i e i S ≤ K a ρ Y .
Remarks. In a recent preprint, N.J. Kalton [START_REF] Kalton | Uniform homeomorphisms of Banach spaces and asymptotic structure[END_REF] made a real breakthrough by proving some permanence properties of the asymptotic uniform convexity under coarse Lipschitz embeddings. It will be impossible for us to give in this course a fair idea of the proofs. Let us just mention the main result. 

∀k ∈ N k i=1 e i δ Y ≤ K k i=1 e i S .
In the same paper [START_REF] Kalton | Uniform homeomorphisms of Banach spaces and asymptotic structure[END_REF], this is used, together with new deep linear results to show the stability of the class of subspaces of p (1 < p < ∞) under coarse Lipschitz embeddings, or of the class of quotients of p (1 < p < ∞) under uniform homeomorphisms. It is also proved that for 1 < p, r < ∞, the Banach space ( ∞ n=1 n r ) p has a unique uniform structure.

Universality questions

The general question addressed in this section is the following: given a class M of metric spaces and a type (E) of embedding, try to describe the Banach spaces X such that for any M in M, there exists an embedding of type (E) from M into X. The classes of metric spaces that we shall consider are: S the class of all separable metric spaces, K the class of all compact metric spaces, P the class of all proper metric spaces (i.e. with relatively compact balls) and LF the class of all locally finite metric spaces (i.e. with finite balls). Concerning the embeddings, we will look at isometric, Lipschitz and coarse embeddings. We now need to define this last notion.

Definition 5.1. Let (M, d) and (N, δ) be two unbounded metric spaces. A map f : M → N is said to be a coarse embedding if there exist two increasing functions

ρ 1 , ρ 2 : [0, ∞) → [0, ∞) such that lim ∞ ρ 1 = +∞ and ∀x, y ∈ M ρ 1 (d(x, y)) ≤ δ(f (x), f (y)) ≤ ρ 2 (d(x, y)).
We denote M co → N . 5.1. Isometric embeddings. This section will be very short. We first recall the fundamental result by S. Banach and S. Mazur.

Theorem 5.2. (Banach -Mazur 1933) Any separable Banach space is linearly isometric to a subspace of C([0, 1]). As a consequence, any separable metric space is isometric to a subset of C([0, 1]).

Let us also mention, that using the tools developed by G. Godefroy and N.J. Kalton in [START_REF] Godefroy | Lipschitz-free Banach spaces[END_REF], Y. Dutrieux and the author ( [START_REF] Dutrieux | Isometric embeddings of compact spaces into Banach spaces[END_REF]) were able to show the following.

Theorem 5.3. There exists a compact metric space K such that any Banach space containing an isometric copy of K has a subspace which is linearly isometric to C([0, 1]).

Remarks.

(a) In [START_REF] Szankowski | An example of a universal Banach space[END_REF], A. Szankowski constructed a separable reflexive Banach space containing an isometric copy of every finite dimensional normed space. We thank V. Zizler for pointing out this result to us.

(b) Assume that a Banach space contains an isometric copy of any locally finite metric space. We do not know if it necessarily contains an isometric copy of C([0, 1]).

Lipschitz embeddings.

We start with the most important result of this subsection, due to Aharoni [START_REF] Aharoni | Every separable metric space is Lipschitz equivalent to a subset of c + 0[END_REF], which states that c 0 is universal for separable metric spaces and Lipschitz embeddings. More precisely: Theorem 5.4. [START_REF] Aharoni | Every separable metric space is Lipschitz equivalent to a subset of c + 0[END_REF]) There exists a universal constant K ≥ 1 such that for any separable metric space K, we have

M K → c 0 .
In fact, Aharoni proved that K can be taken such that K ≤ 6 + ε, for any ε > 0. He also showed that K cannot be taken less than 2 for M = 1 . The optimal quantitative result was obtained by N.J. Kalton and the author in [START_REF] Kalton | Best constants for Lipschitz embeddings of metric spaces into c0[END_REF] who proved the following. Theorem 5.5. Let (M, d) be a separable metric space. Then there exists f :

M → c 0 such that ∀x = y ∈ M d(x, y) ≤ f (x) -f (y) ∞ < 2d(x, y).
Open questions.

(a) Is the converse of Aharoni's theorem true? Namely if c 0 Lipschitz embeds into a Banach space X, does X admit a subspace linearly isomorphic to c 0 ? (b) Similarly, if a Banach space is universal for Lipschitz embeddings and compact metric spaces (or proper metric spaces) does it admit a subspace linearly isomorphic to c 0 ?

We finish this paragraph on Lipschitz embeddings with a recent characterization, due to F. Baudier and the author [START_REF] Baudier | Embeddings of locally finite metric spaces into Banach spaces[END_REF] and G. Schechtman [41] of the Banach spaces that are universal for locally finite metric spaces.

Theorem 5.6. Let X be a Banach space. The the following assertions are equivalent. (i) X has a trivial cotype. (ii) There is a universal constant K ≥ 1 such that for any locally finite metric space

M : M K → X.
Proof. We will only sketch the proof, and use the following characterization of Banach spaces without cotype due to B. Maurey and G. Pisier [START_REF] Maurey | Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach[END_REF]: there is a constant K ≥ 1 (which can actually always be taken less than 1 + ε, for any ε > 0) such that for any n ∈ N there is a n-dimensional subspace X n of X and an isomorphism

T n : n ∞ → X n with T n T -1 n ≤ K. (i)⇒(ii).
Let M be a locally finite metric space. Fix x 0 in M and denote

B n = B(x 0 , 2 n ) for n ∈ N. Then B n is finite and the map Φ n : B n → |Bn| ∞ defined by ∀x ∈ B n Φ n (x) = (d(x, y) -d(x 0 , y)) y∈Bn is an isometric embedding of B n into |Bn| ∞ .
It is a classical embedding known as the Fréchet-embedding. Then we use the assumption (i) and a classical gliding hump argument to build a subspace Z of X with a finite dimensional Schauder decomposition: Z = Z 1 ⊕ .. ⊕ Z n ⊕ .... so that for any n ≥ 1 there is an isomorphism T n :

|Bn| ∞ → Z n , with T n ≤ 2 and T -1 n ≤ 1. Denote ψ n = T n • Φ n . We finally define Φ : M → Z by embedding each set B n \ B n-1 in Z n ⊕ Z n+1 as follows: ∀x ∈ B n \ B n-1 , Φ(x) = λ(x)ψ n (x) + (1 -λ(x))ψ n+1 where λ(x) = 2 n+1 -d(x, x 0 ) 2 n .
(ii)⇒(i). The proof of this converse relies on an argument due to G. Schechtman [41]. Let us fix n ∈ N. Then for any k ∈ N, there exists a map

f k : ( 1 k Z n , ∞ ) → X such that f k (0) = 0 and ∀x, y ∈ 1 k Z n x -y ∞ ≤ f k (x) -f k (y) ≤ K x -y ∞ .
Then we can define a map

λ k : n ∞ → 1 k Z n such that for all x ∈ n ∞ : λ k (x) -x ∞ = d(x, 1 k Z n ). We can now set ϕ k = f k • λ k . Let U be a non trivial ultrafilter. We define ϕ : n ∞ → X U ⊆ X * * U by ϕ(x) = (ϕ k (x)) U .
It is easy to check that ϕ is a Lipschitz embedding. Then it follows from Theorem 3.7 that n ∞ is K-isomorphic to a linear subspace of X * * U . Finally, using the local reflexivity principle and properties of the ultra-product, we get that n ∞ is (K + 1)isomorphic to a linear subspace of X.

Coarse embeddings.

Very little is known about the coarse embeddings of metric spaces into Banach spaces. We will start by mentioning without proof a result of F. Baudier [START_REF] Baudier | Embedding of proper metric spaces into Banach spaces[END_REF].

Theorem 5.7. Let X be a Banach space without cotype. Then every proper metric space embeds coarsely and uniformly into X.

For some time it was not known if a reflexive Banach space could be universal for separable metric spaces and coarse embeddings. This section will be essentially devoted to explaining Kalton's solution for this question. This will enable us to introduce a new graph distance on G k (N). This is taken from the article [START_REF] Kalton | Coarse and uniform embeddings into reflexive spaces[END_REF] by N.J. Kalton.

Theorem 5.8. [START_REF] Kalton | Coarse and uniform embeddings into reflexive spaces[END_REF]) Let X be a separable Banach space. Assume that c 0 coarsely embeds into X. Then one of the iterated duals of X has to be non separable. In particular, X cannot be reflexive.

Before to proceed with the proof of this theorem, we need to introduce a new graph metric on G k (M), for M infinite subset of N. We will say that n = m ∈ G k (M) are adjacent (or d(n, m) = 1) if they interlace or more precisely if

m 1 ≤ n 1 ≤ .. ≤ m k ≤ n k or n 1 ≤ m 1 ≤ .. ≤ n k ≤ m k .
For simplicity we will only show that X cannot be reflexive. So let us assume that X is a reflexive Banach space and fix a non principal ultrafilter U on N. For a bounded function f :

G k (N) → X we define ∂f : G k-1 (N) → X by ∀n ∈ G k-1 (N) ∂f (n) = w -lim n k ∈U f (n 1 , .., n k-1 , n k ).
Note that for 1 ≤ i ≤ k, ∂ i f is a bounded map from G k-i (N) into X and that ∂ k f is an element of X. We first need to prove a series of simple lemmas about the operation ∂. Lemma 5.9. Let h : G k (N) → R be a bounded map and ε > 0. Then there is an infinite subset M of N such that

∀n ∈ G k (M) |h(n) -∂ k h| < ε.
Proof. The set M = {m 1 , .., m i , ..} is built by induction on i so that for any subset n of{m 1 , .., m i } with 1 ≤ |n| ≤ min(i, k), we have

|∂ k-|n| h(n) -∂ k h| < ε. For i, we easily pick m 1 such that |∂ k-1 h(m 1 ) -∂ k h| < ε.
Assume now that m 1 , .., m i have been constructed. Then for every n ⊂ {m 1 , ..,

m i } with |n| ≤ k -1, there is M n ∈ U such that ∀n ∈ M n m > m i and |∂ k-|n|-1 h(n, m) -∂ k h| < ε.
Then pick m i+1 ∈ M = n M n , where n runs through the subsets of {m 1 , .., m i } satisfying |n| ≤ k -1.

The proof of the next Lemma is clear. Lemma 5.10. Let f : G k (N) → X and g : G k (M) → X * be two bounded maps. Define f ⊗ g : G 2k (N) → R by (f ⊗ g)(n 1 , .., n 2k ) = f (n 2 , n 4 , .., n 2k ), g(n 1 , .., n 2k-1 ) .

Then ∂ 2 (f ⊗ g) = ∂f ⊗ ∂g.
Lemma 5.11. Let f : G k (N) → X be a bounded map and ε > 0. Then there is an infinite subset M of N such that

∀n ∈ G k (M) f (n) ≤ ∂ k f + ω f (1) + ε,
where ω f is the modulus of continuity of f . Proof. For all n ∈ G k (N), we can find g(n) ∈ S X * such that f (n), g(n) = f (n) . By an iterated application of the previous lemma we get that

|∂ 2k (f ⊗ g)| = | ∂ k f, ∂ k g | ≤ ∂ k f .
Then, by Lemma 5.9, there is an infinite subset M 0 of N such that for all p ∈ G 2k (M 0 ):

|(f ⊗ g)(p)| ≤ ∂ k f + ε. Then write M 0 = {n 1 < m 1 < .. < n i < m i < ..} and set M = {n 1 < n 2 < .. < n i < ..}. Thus for all n = (n 1 , .., n k ) ∈ G k (M), f (n) = f (n), g(n) ≤ | f (m 1 , .., m k ), g(n 1 , .., n k ) | + ω f (1) ≤ ∂ k f + ε + ω f (1).
The last preparatory lemma is the following. Lemma 5.12. Let ε > 0, X be a separable reflexive Banach space and I be an uncountable set. Assume that for each i ∈ I, f i : G k (N) → X is a bounded map. Then there exist i = j ∈ I and an infinite subset M of N such that

∀n ∈ G k (M) f i (n) -f j (n) ≤ ω f i (1) + ω f j (1) + ε.
Proof. Since X is separable and I uncountable, there exist i = j ∈ I such that ∂ k f i -∂ k f j < ε/2. Then we can apply Lemma 5.11 to (f i -f j ) to conclude.

We are now ready for the proof of the theorem. As we will see, the proof relies on the fact that c 0 contains uncountably many isometric copies of the G k (N)'s with too many points far away from each other (which will be in contradiction with Lemma 5.12).

Proof of Theorem 5.8. Assume X is reflexive and let h : c 0 → X be a map which is bounded on bounded subsets of c 0 . Let (e k ) ∞ k=1 be the canonical basis of c 0 . For an infinite subset A of N we now define

∀n ∈ N s A (n) = k≤n, k∈A e k and ∀n = (n 1 , .., n k ) ∈ G k (N) f A (n) = k i=1 s A (n i ).
Then the h • f A 's form an uncountable family of bounded maps from G k (N) to X. It therefore follows from Lemma 5.12 that there are two distinct infinite subsets A and B of N and another infinite subset M of N so that:

∀n ∈ G k (M) h • f A (n) -h • f B (n) ≤ ω h•f A (1) + ω h•f B (1) + 1 ≤ 2ω h (1) + 1. But, since A = B, there is n ∈ G k (M) with f A (n) -f B (n) = k.
By taking arbitrarily large values of k we deduce that h cannot be a coarse embedding.

Remarks.

(a) Similarly, one can show that h cannot be a uniform embedding, by composing h with the maps tf A and letting t tend to zero.

(b) It is now easy to adapt this proof in order to obtain the stronger result stated in Theorem 5.8. Indeed, one just has to change the definition of the operator ∂ as follows

. If f : G k (N) → X is bounded, define ∂f : G k-1 (N) → X * * by ∀n ∈ G k-1 (N) ∂f (n) = w * -lim n k ∈U f (n 1 , .., n k-1 , n k ).
We leave it to the reader to rewrite the argument.

(c) On the other hand, N.J. Kalton proved in [START_REF] Kalton | Spaces of Lipschitz and Hölder functions and their applications[END_REF] that c 0 embeds uniformly and coarsely in a Banach space X with the Schur property. In particular, X does not contain any subspace linearly isomorphic to c 0 .

(d) We conclude by mentioning that N.J. Kalton recently used the same graph distance on G k (ω 1 ), where ω 1 is the first uncountable ordinal (see [START_REF] Kalton | Lipschitz and uniform embeddings into ∞[END_REF]). As a consequence he showed that the unit balls of ∞ /c 0 or C([0, ω 1 ]) do not uniformly embed into ∞ . He also built a (non separable) Banach space X such that there is no uniform retract from X * * onto X.

Metric invariants

In this last section, we will try to characterize some linear classes of Banach spaces by a purely metric condition. The conditions we will consider will be of the following type. Given a metric space M , what are the Banach spaces X so that M Lip → X. Or, given a family M of metric spaces, what are the Banach spaces X for which there is a constant C ≥ 1 so that for all M in M, M C → N . If the linear class of Banach spaces that can be characterized in such a way is already known to be stable under Lipschitz or coarse-Lipschitz embeddings, this can be seen as an improvement of this previous result. We will also show one situation where this process yields new results about such stabilities.

We will only consider two examples. First we shall review (without proof) the results about hyperbolic trees. Then we will prove in detail a recent characterization of super-reflexivity through the embedding of "diamond graphs". 6.1. Trees. We start with J. Bourgain's metric characterization of super-reflexivity given in [START_REF] Bourgain | The metrical interpretation of superreflexivity in Banach spaces[END_REF]. The metric invariant discovered by Bourgain is the collection of the hyperbolic dyadic trees of arbitrarily large height N . If we denote ∆ 0 = {∅}, the root of the tree. Let Ω

i = {-1, 1} i , ∆ N = N i=0 Ω i and ∆ ∞ = ∞ i=0 Ω i .
Then we equip ∆ ∞ , and by restriction every ∆ N , with the hyperbolic distance ρ, which is defined as follows. Let s and s be two elements of ∆ ∞ and let u ∈ ∆ ∞ be their greatest common ancestor. We set

ρ(s, s ) = |s| + |s | -2|u| = ρ(s, u) + ρ(s , u).
Bourgain's characterization is the following: Theorem 6.1. [START_REF] Bourgain | The metrical interpretation of superreflexivity in Banach spaces[END_REF]) Let X be a Banach space. Then X is not superreflexive if and only if there exists a constant C ≥ 1 such that for all N ∈ N,

(∆ N , ρ) C → X.
Remarks. It has been proved in [START_REF] Baudier | Metrical characterization of super-reflexivity and linear type of Banach spaces[END_REF] that this is also equivalent to the metric embeddability of the infinite hyperbolic dyadic tree (∆ ∞ , ρ). It should also be noted that in [START_REF] Bourgain | The metrical interpretation of superreflexivity in Banach spaces[END_REF] and [START_REF] Baudier | Metrical characterization of super-reflexivity and linear type of Banach spaces[END_REF], the embedding constants are bounded above by a universal constant. We also recall that it follows from the Enflo-Pisier renorming theorem ( [START_REF] Enflo | Banach spaces which can be given an equivalent uniformly convex norm[END_REF] and [START_REF] Pisier | Martingales with values in uniformly convex spaces[END_REF]) that super-reflexivity is equivalent to the existence of an equivalent uniformly convex and (or) uniformly smooth norm.

Similarly , one can define for a positive integer N , T N = N i=0 N i , where N 0 := {∅}. Then T ∞ = ∞ N =1 T N is the set of all finite sequences of positive integers. Then the hyperbolic distance ρ is defined on T ∞ as previously. The following asymptotic analogue of Bourgain's theorem has been obtained by F. Baudier, N.J. Kalton and the author in [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF]. Theorem 6.2. Let X be a reflexive Banach space. The following assertions are equivalent.

(i) There exists C ≥ 1 such that T ∞ C → X.

(ii) There exists C ≥ 1 such that for any N in N, T N C → X. (iii) X does not admit any equivalent asymptotically uniformly smooth norm or X does not admit any equivalent asymptotically uniformly convex norm.

We will only mention one application of this result. Corollary 6.3. The class of all reflexive Banach spaces that admit an equivalent AUS norm and an equivalent AUC norm is stable under coarse Lipschitz embeddings.

Proof. Assume that X coarse Lipschitz embeds in a space Y which is reflexive, AUS renormable and AUC renormable. First, it follows from Theorem 4.15 that X is reflexive. Assume now that X is not AUS renormable or not AUC renormable. Then, we know from Theorem 6.2 ((iii) ⇒ (i)) that T ∞ Lipschitz embeds into X and therefore into Y . This is in contradiction with (i) ⇒ (iii) in Theorem 6.2.

Open questions.

(a) We do not know if the class of all reflexive and AUS renormable Banach spaces is stable under coarse Lipschitz embeddings.

(b) We do not know if the class of all Banach spaces that AUS renormable and AUC renormable is stable under coarse Lipschitz embeddings or uniform homeomorphisms. 6.2. Diamonds. in this very last paragraph we will detail a nice result By W.B Johnson and G. Schechtman [START_REF] Johnson | Diamond graphs and super-reflexivity[END_REF] who recently characterized the super-reflexivity through the non embeddability of the so-called "diamond graphs". Let us start with an intuitive description of these graphs. D 0 is made of two connected vertices (therefore at distance 1), that we shall call T (top) and B (bottom). The result is the following Theorem 6.4. Let X be a Banach space. Then X is not super-reflexive if and only if there is a constant C ≥ 1 such that for all N ∈ N, (D N , d)

C → X.
Proof. (⇐) : Suppose that X is super-reflexive. Then we may assume that its norm is uniformly convex. Namely, for any ε > 0 there exists δ(ε) > 0 so that (x + y)/2 ≤ 1 -δ(ε) whenever x , y ≤ 1 and x -y ≥ ε. We start with the following simple Lemma. Lemma 6.5. Let f : D 1 → X be an injective map such that Lip(f ) ≤ M and Lip(f -1 ) ≤ 1. Then

f (T ) -f (B) ≤ 2M 1 -δ( 2 M 
) .

Proof. Without loss of generality, we may assume that f (B) = 0. We have that

f (L) M - f (R) M ≥ 2 M .
On the other hand

f (L) M , f (R) M , f (T ) -f (R) M , f (T ) -f (L) M ≤ 1.
Therefore, by uniform convexity

f (L) + f (R) 2M , f (T ) M - f (L) + f (R) 2M ≤ 1 -δ( 2 
M
).

Hence

f (T ) ≤ 2M 1 -δ( 2 
M
) .

We now denote by M N = inf{M ≥ 1, D N M → X}. So, for any M > M N there is f : D N → X with Lip(f ) ≤ M and Lip(f -1 ) ≤ 1. By the previous Lemma, the distance between the images of the top and bottom points of a sub-diamond D 1 of D N is at most 2M 1 -δ( 2M ) . By construction, the set of all the top and bottom points of the the copies of D 1 in D N make a doubled copy of D N -1 . Therefore

∀M > M N 2M N -1 ≤ 2M 1 -δ( 2 M ) , thus M N -1 ≤ M N 1 -δ( 2 M N ) .
Assume now that the increasing sequence (M N ) N is bounded and denote µ its limit. We get that µ ≤ µ 1 -δ( 2 µ ) , which is impossible. This finishes the proof of the first implication.

(⇒) : Our first step will be to describe how to build inductively an isometric copy of D N in 1 . More precisely, we shall see it as a subset of ({0, 1} 2 N , 1 ). This could actually be taken as our definition of D N . So D 0 is simply {0, 1}. Assume that D N -1 is constructed as a subset of ({0, 1} 2 N -1 , 1 ). Then we define an operation δ : D N -1 → {0, 1} 2 N , by δ(a 1 , .., a 2 N -1 ) = (a 1 , a 1 , a 2 , a 2 , .., a 2 N -1 , a 2 N -1 ). By applying δ, we are just "'doubling" D N -1 and constructing the top and bottom points of the copies of D 1 in D N . Now we have to introduce the left and right points of those D 1 's. This will be done by noting that for any a, a in D N -1 with a -a 1 = 1 there are exactly two points in {0, 1} 2 N that are at distance 1 from δ(a) and δ(a ). We add those points to δ(D N -1 ) to finish the construction of D N . Let us make some remarks on the D N 's. Let 1 ≤ i ≤ N . If a and a are adjacent in D i , then x = δ N -i (a) and x = δ N -i (a ) belong to D N and differ exactly on one interval of the form I =](j -1)2 N -i , j2 N -i ], on which x is constantly 0 and x is constantly 1 (for instance). The set of vertices between x and x (or equal to x and x outside I) is an isometric copy of D N -i , that will be called a sub-diamond D of level i of D N . Let us now denote I 0 =](j -1)2 N -i , (j -1)2 N -i + 2 N -i-1 ] and I 1 =](j -1)2 N -i + 2 N -i-1 , j2 N -i ]. We denote v T = x and v B = x the top and bottom vertices of D (remember that v B = 0 on I, v T = 1 on I and v B = v T elsewhere). Similarly, we denote v L and v R the left and right vertices of D. They can be described by v L = 0 on I 0 , v L = 1 on I 1 , v R = 1 on I 0 , v R = 0 on I 1 and v R = v L = v T = v B elsewhere. Let y ∈ D. We will say that y is below the diagonal of D if d(y, v B ) ≤ d(y, v T ). We will say that y is on the left of D if d(y, v L ) ≤ d(y, v R ).

Assume now that X is not super-reflexive. Fix N ∈ N and θ ∈ (0, 1). James' criterion insures the existence of (x i ) 2 N i=1 in S X and (x * i ) 2 N i=1 in S X * such that x * n (x i ) = θ, i ≥ n and x * n (x i ) = 0, i < n. Note that it follows from the above that (i) For any subset I of {1, .., 2 N }, i∈I x i ≥ θ|I|.

(ii) for any sub-interval I of {1, .., 2 N } and any (a i ) i∈I ⊂ {0, 1},

2 N i=1 a i x i ≥ θ 2 i∈I a i .
Let now f : D N → X defined by f (a) = 2 N i=1 a i x i . We will show that this is a C-embedding, with C being a universal constant. Notice, that we have just replaced the canonical basis of 2 N 1 by the sequence (x i ) 2 N i=1 . So fix u and v in D N . Case 1. If there exists a geodesic path joining B = (0, 0, .., 0) and T = (1, 1, .., 1) and passing through u and v, then f (u) -f (v) = i∈I x i for some subset I of {1, .., 2 N } such that |I| = d(u, v). So we have that θd(u, v) ≤ f (u) -f (v) ≤ d(u, v). 

f (u) -f (v) = i∈I 1 u i x i - i∈I 0 v i x i ≤ i∈I 1 u i x i + i∈I 0 v i x i ≤ i∈I 1 u i + i∈I 0 v i = d(u, v B ) + d(v, v B ) = d(u, v).
On the other hand,

f (u) -f (v) ≥ θ 2 max( i∈I 1 u i , i∈I 0 v i ) ≥ θ 4 d(u, v).
Case 2.2. Assume (for instance) that u is above and v below the diagonal of D. Then 2 k-1 ≤ d(u, v) ≤ 2 k . We also have that

f (u) -f (v) ≤ 2 k ≤ 2d(u, v)
and, since u is above the diagonal of D, u = 1 on I 1 and

f (u) -f (v) ≥ θ 2 i∈I 1 |u i | = θ2 k-2 ≥ θ 4 d(u, v).

Theorem 3 . 7 .

 37 [START_REF] Heinrich | Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces[END_REF]) (i) Let X and Y two Banach spaces and Y 0 be a separable complemented subspace of

Theorem 4 .

 4 4. (Johnson, Lindenstrauss and Schechtman [22] 1996)

Theorem 4 .

 4 9. (Kalton-Randriarivony 2008) Let Y be a reflexive Banach space so that there exists p ∈ (1, ∞) with the following property. If y ∈ Y and (y n ) ∞ n=1 is a weakly null sequence in Y , then lim sup y + y n p ≤ y p + lim sup y n p .

Theorem 4 .

 4 17. (Kalton-Randriarivony 2008) Let Y be a reflexive Banach space, M an infinite subset of N and f : (G k (M), d a ) → Y a Lipschitz map. Then for any ε > 0, there exists an infinite subset M of M such that:

Theorem 4 .

 4 [START_REF] James | Uniformly non-square Banach spaces[END_REF].[START_REF] Baudier | A new metric invariant for Banach spaces[END_REF]) Let X and Y be Banach spaces such that X coarse Lipschitz embeds into Y . Then there exists C > 0 such that for any spreading model (e i ) of a normalized weakly null sequence in X:

  D 1 is a diamond, therefore made of four vertices T , B, L (left) and R (right) and four edges : [B, L], [L, T ], [T, R] and [R, B]. Assume D N is constructed, then D N +1 is obtained by replacing each edge of D N by a diamond D 1 . The distance on D N +1 is the path metric of this new discrete graph. Throughout this section the graph distance on a diamond D N will be denoted by d.

Case 2 .

 2 Otherwise, there is a sub-diamond D of D N (say of level k) such that (for instance) u is on the left of D and v is on the right of D. Let I be the sub-interval of size 2 N -k corresponding to D in our previous description. Write I = I 0 ∪ I 1 as above. We denote again v T , v B , v L and v R the top, bottom, left and right vertices of D. Case 2.1. Assume that u and v are below (for instance) the diagonal of D. Then d(u, v) = d(u, v B ) + d(v, v B ). Moreover u = 0 on I 0 and v = 0 on I 1 . So we have

  1) Assume that X, Y are two separable Banach spaces such that X
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