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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS

EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

In the memory of Dieter Happel

Abstract. Let T be a tilting object in a triangulated category which is equivalent to the bounded
derived category of a finite-dimensional hereditary algebra. The text investigages the strong global
dimension, in the sense of Ringel, of the opposite algebra A of the endomorphism algebra of T . This
invariant is expressed in terms of the lengths of the sequences T0, . . . , Tℓ of tilting objects such that Tℓ =

T , each term arises from the preceding one by a tilting mutation, and the opposite of the endomorphism
algebra of T0 is a tilted algebra. It is also expressed in terms on the hereditary abelian subcategories of
the triangulated category.
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Introduction

In homological algebra and representation theory of associative algebras, the global dimension is an
important invariant, particularly to measure how difficult to understand the representation theory of a
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2 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

given algebra is. For instance: a noetherian local commutative algebra is regular if and only if its global
dimension is finite. Also in the bounded derived category Db(modH) of finitely generated modules over
a hereditary algebra (that is, with global dimension at most 1), any object is isomorphic to a direct sum
of stalk complexes, and this is also true if one replaces modH by a hereditary abelian category. And the
global dimension of a given finite-dimensional algebra A is finite if and only if Db(modA) is equivalent
to the homotopy category of bounded complexes of finitely generated projective A-modules. This is also
equivalent to the existence of a Serre duality (equivalently, an Auslander-Reiten structure) on Db(modA).

Recall that a finite-dimensional algebra A over an algebraically closed field k is called piecewise hered-
itary if Db(modA) is equivalent, as a triangulated category, to Db(H) where H is a hereditary abelian
(k-)category with split idempotents and finite-dimensional Hom-spaces, and which has a tilting object.
Happel and Reiten proved [22, 23] that such a hereditary abelian category is equivalent to modH for
some finite-dimensional hereditary k-algebra, or to the category of coherent sheaves over a weighted pro-
jective line [19]. Among the piecewise hereditary algebras, the quasi-tilted algebras are those isomorphic
to some EndH(T )op where T ∈ H is a tilting object, and this algebra is called tilted when H arises from
a hereditary algebra.

The study of quasi-tilted algebras has had a strong impact in representation theory and geometry.
Indeed, the trivial extensions of quasi-tilted algebras have been used intensively in the classification of
self-injective algebras [8, 9, 13, 14, 15, 17, 29, 33, 34, 35, 39, 40, 41]. They also are used to describe
and study cluster-tilted algebras [2]. The canonical algebras (which are fundamental examples of quasi-
tilted algebras) have been useful to understand module varieties [10, 11, 12] and singularities (see [31]).
The description made by Happel of Db(H) [20] plays an essential role in the use of cluster categories to
categorify cluster algebras [16]. This successful use of piecewise hereditary algebras is partly due to a
good knowledge of their homological properties and Auslander-Reiten structure. This is illustrated by
the homological characterisation of quasi-tilted algebras [24] or the Liu-Skowroński criterium for tilted
algebras (see [3]). These characterisations confirm the intuitive idea that the quasi-tilted algebras are
the closest piecewise hereditary algebras to hereditary ones, and it is the main objective of this text to
give theoretical or numerical criteria to determine how far a piecewise hereditary algebra is from being
hereditary.

One of the milestone results on piecewise hereditary algebras is the above-mentionned description of
Db(H): Happel proved that it is the additive closure

Db(H) ≃
∨

i∈Z

H[i]

of all the possible suspensions of objects in H, and that for given X [i] ∈ H[i] and Y [j] ∈ H[j] (where [1]
denotes the suspension functor), the space of morphisms Hom(X [i], Y [j]) in Db(H) equals HomH(X,Y )
if j = i, it equals Ext1H(X,Y ) if j = i + 1, and it equals 0 otherwise. If Db(modA) ≃ Db(H) then there
exists a tilting object T ∈ Db(H) (that is, an object such that Hom(T, T [i]) = 0 for i ∈ Z\{0}, and such
that Db(H) is the smallest full triangulated subcategory of Db(H) containing T and stable under taking
direct summands) such that A ≃ End(T )op as k-algebras. Following the above description of Db(H)

there exists s ∈ Z and ℓ ∈ N such that T ∈
∨ℓ

i=0 H[s + i]. The intuition tells that when ℓ is large, then
A should be more difficult to handle. However this might not be the case. The reader is referred to an
example in [21] where End(T )op is a hereditary algebra, T ∈ H ∨H[1], T 6∈ H and T 6∈ H[1].

This phenomenon is illustrated through another milestone result on piecewise hereditary algebras
proved by Happel, Rickard and Schofield [25]. It asserts that if A and H are finite-dimensional k-
algebras such that H is hereditary and Db(modA) ≃ Db(modH) as triangulated categories, then there
exists a sequence of algebras A0 = H, . . . , Aℓ+1 = A where each Ai is the (opposite of the) endomorphisms
algebra of a tilting Ai−1-module. In such case the global dimension of A does not exceed ℓ + 2, and the
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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 3

intuition tells that if ℓ is large then A should be more complex to understand. However, in many non
trivial examples where ℓ is large, A appears to have global dimension quite small.

In the two previous situations the integer ℓ fails to give a precise measure of how far is a piecewise
hereditary algebra from being quasi-tilted. The main reason for this is the non-uniqueness of the pair

(H, ℓ) such that T ∈
∨ℓ

i=0 H[s+i] in the first case, and the non-uniqueness of the sequence (A0, . . . , Aℓ+1)
in the second case. Recently a new invariant for piecewise hereditary algebras has emerged and the present
text aims at giving some evidence of its relevance to give such a measure. This invariant is the strong global
dimension. Let k be an algebraically closed field and A be a finite-dimensional k-algebra. The strong
global dimension, s.gl.dim. A ∈ N∪{+∞}, was defined by Ringel as follows. Let X be an indecomposable
object in the homotopy category of bounded complexes of finitely generated projective A-modules. Let

P : · · · → 0 → 0 → P r → P r+1 → · · · → P s−1 → P s → 0 → 0 → · · · ,

be a minimal projective resolution of X , where P r 6= 0 and P s 6= 0. Then define the length of X as

ℓ(X) = s− r .

The strong global dimension is

s.gl.dim. A = sup
X

ℓ(X)

where X runs through all such indecomposable objects. It follows from the definition that s.gl.dim. A = 1
if and only if A is hereditary and not semi-simple. Ringel conjectured that A is piecewise hereditary if
and only if the strong global dimension of A is finite. This has been studied by several authors. The case
of radical square-zero algebras was treated in [30]. This work also proves an alternative characterisation
for A to be piecewise hereditary when it is tame, that is, the push-down (or extension-of-scalars) functor

mod Â → modT (A) is dense. Here T (A) = A⋉Homk(A, k) is the trivial extension and Â is the repetitive
algebra. Note that a general study of Db(modA) is made in [5, 6] when A has a square-zero radical.
The equivalence conjectured by Ringel was proved in the general case by Happel and Zacharia [27]. As
a consequence of their techniques, they prove that s.gl.dim. A = 2 if and only if A is quasi-tilted and not
hereditary.

Let T be a triangulated category which is triangle equivalent to the bounded derived category of a
hereditary algebra. Let T ∈ T be a tilting object and let A be the piecewise hereditary algebra End(T )op.
The purpose of this text is therefore to answer the following questions

• to what extend does s.gl.dim. A measure how far A is from being quasi-tilted?
• Is it possible to compute the strong global dimension or to characterise it?

These questions are investigated from the point of view of the two milestone results recalled above. The
first main result of this text gives an answer to these questions in terms of the first one of these milestone
results. The first assertion of the theorem is just a reformulation of it.

Theorem 1. Let T be a triangulated category which is triangle equivalent to the bounded derived category
of a finite-dimensional hereditary k-algebra. Let T ∈ T be a tilting object. Assume that End(T )op is not
a hereditary algebra. There exists a full and additive subcategory H ⊆ T which is hereditary and abelian,
such that the embedding H →֒ T extends to a triangle equivalence Db(H) ≃ T , and such that

T ∈
ℓ∨

i=0

H[i]

for some integer ℓ > 0. Moreover

(1) s.gl.dim.End(T )op 6 ℓ+ 2 for any such pair (H, ℓ), and
(2) there exists such a pair (H, ℓ) verifying s.gl.dim.End(T )op = ℓ+ 2.
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4 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

The second main result of this text is related to the second above-mentionned milestone result. It
is expressed in terms of tilting mutations in triangulated categories. This operation appeared with the
reflection functors in the representation theory of quivers [7] and with APR (Auslander-Platzeck-Reiten)
tilting modules [4], and then formalised in the study of the combinatorial properties of tilting modules
(see [26, 36]). Let T ∈ T be a tilting object; let T = T1 ⊕ T2 be a direct sum decomposition such that
Hom(T2, T1) = 0; then there exists a triangle

T ′
2 → M → T2 → T ′

2[1]

where M → T2 is a minimal right addT1-approximation; the object T ′ = T1⊕T ′
2 is then tilting (see 2.1.1

below). In this text, T ′ is called obtained from T by tilting mutation. The second main result of this
text is the following.

Theorem 2. Let T be a triangulated category which is triangle equivalent to the bounded derived category
of a finite-dimensional hereditary k-algebra. Let T ∈ T be a tilting object. Assume that End(T )op is not
hereditary. Then there exists an integer ℓ > 0 and a sequence T (0), T (1), . . . , T (ℓ) of tilting objects in T
such that

• End(T (0))op is a tilted algebra, T (ℓ) = T , and
• for every i the object T (i) is obtained from T (i−1) by a tilting mutation.

For any such sequence, s.gl.dim.End(T )op 6 ℓ+2. Moreover, there exists such a sequence which satisfies
the following

(1) s.gl.dim.End(T (i))op = 2 + i for every i,
(2) s.gl.dim.End(T )op = 2 + ℓ.

This theorem is related to the second milestone result recalled above in the following way. Let A and H

be algebras such that H is hereditary and Db(modA) ≃ Db(modH). Assume that A0 = H, . . . , Aℓ+1 = A

is a sequence of algebras such that Ai = EndAi−1
(M (i−1))op for a tilting Ai−1-module M (i−1) for every i.

Then there exist tilting objects T (0), . . . , T (ℓ) in Db(modH) such that Ai ≃ End(T (i−1))op for every i, and
which correspond to the tilting modules M (0), . . . ,M (ℓ) under suitable triangle equivalences Db(modH) ≃
Db(modAi). Then End(T (0))op is tilted, and it follows from [28, Thm. 4.2] that s.gl.dim.End(T (i−1))op 6

i+ 2 for every i. When H is of finite representation type the sequence A0, . . . , Aℓ+1 may be chosen such
that M (i) is an APR tilting module for every i. In such a situation T (i) is obtained from T (i−1) by
a tilting mutation. From this point of view, Theorem 2 expresses the strong global dimension as the
supremum of the number ℓ+ 2 of terms in all possible sequences A0, . . . , Aℓ+1.

The proof of Theorem 1 and Theorem 2 is based on the description of s.gl.dim.End(T )op in terms
of the connected components of the Auslander-Reiten quiver (or, Auslander-Reiten components) of T
in which some specific direct summands of T lie. Recall that the Auslander-Reiten structure of T is
described in [20].

The text is therefore organised as follows. Section 1 is devoted to preliminaries. There, an equivalent
definition of s.gl.dim.End(T )op is given in terms of the triangulated structure of T (and without using
complexes or their lengths). This reformulation appeared first in [1]. It permits to give lower and upper
bounds on the strong global dimension. Section 2 investigates the behaviour of strong global dimension
under two classical operations. On the one hand the section compares the strong global dimensions of
End(T )op and End(T ′)op when T ′ is obtained from T by tilting mutation. On the other hand it relates
the strong global dimension arising from tilting objects in T to that arising from tilting objects in T ′

provided that T and T ′ are related by a pair of bi-adjoint functors. This is used to prove that the strong
global dimension is unchanged when the algebra is replaced by a finite Galois covering with group whose
order is non-zero in k. Section 3 is devoted to describing s.gl.dim.End(T )op when T ∈ T is a tilting

ha
l-0

08
25

03
1,

 v
er

si
on

 1
 - 

22
 M

ay
 2

01
3



THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 5

object, according to the Auslander-Reiten components in which T has indecomposable direct summands.
Finally, Section 4 is devoted to the proof of Theorem 1 and Theorem 2.

Throughout the text k is an algebraically closed field, and T is a triangulated k-category which is
triangle equivalent to the bounded derived category of a finite-dimensional hereditary algebra. Given
X,Y ∈ T , the space HomT (X,Y ) is denoted by Hom(X,Y ), and Exti(X,Y ) stands for Hom(X,Y [i])
for every i ∈ Z. Given an additive category A, the class of indecomposable objects in A is denoted by
indA. The standard duality functor Hom(−, k) is denoted by D. By an Auslander-Reiten component of
T is meant a connected component of the Auslander-Reiten quiver of T . By a transjective component is
meant an Auslander-Reiten component which has only finitely many τ -orbits.

The reader is referred to [38, Chap. XIII] and [3, Chap. XVII] for a general account on the Auslander-
Reiten structure (tubes, quasi-simples, components of shape ZA∞) of hereditary algebras of tame and
wild representation type, respectively.

1. Preliminaries

This section gives a caracterisation of the strong global dimension using only the triangulated struc-
ture of T . This is applied to give, for a fixed tilting object T ∈ T , upper and lower bounds on
s.gl.dim.End(T )op.

1.1. The definition of the strong global dimension revisited. The following was proved in [1, Lem.
5.6]. This is a description of the strong global dimension in terms of the morphisms in T .

Let T ∈ T . Let X ∈ T . Define ℓ+T (X), ℓ−T (X) ∈ Z ∪ {−∞,+∞} as follows
{

ℓ+T (X) = sup {n ∈ Z | Hom(X,T [n]) 6= 0} ,
ℓ−T (X) = inf {n ∈ Z | Hom(T [n], X) 6= 0} .

Proposition. Let T ∈ T be a tilting object. Let A = End(T )op. Then −∞ < ℓ−T (X) 6 ℓ+T (X) < +∞ for
every X ∈ T indecomposable, and

s.gl.dim. A = sup {ℓ+T (X)− ℓ−T (X) | X ∈ T ∈ ind T } .

In the sequel, if T is a tilting object in a hereditary triangulated category T , and if X ∈ ind T , then
ℓT (X) denotes ℓ+T (X)− ℓ−T (X). Also, s.gl.dim. T denotes s.gl.dim.End(T )op.

1.2. An upper bound on the strong global dimension.

Proposition. Let H ⊆ T be a full and additive subcategory which is hereditary and abelian, and such
that the embedding H →֒ T extends to a triangle equivalence Db(H) ≃ T . Let T ∈ T be a tilting object.
Assume that ℓ > 0 is an integer such that

T ∈
ℓ∨

i=0

H[i].

Then s.gl.dim. T 6 ℓ+ 2.

Proof. Let X ∈ T be indecomposable. Up to a shift, there is no loss of generality in assuming that
ℓ−T (X) = 0. Let d = ℓ+T (X) = ℓT (X). Therefore there exist indecomposable direct summands T1, T2 of T
such that

Hom(T1, X) 6= 0 and Hom(X,T2[d]) 6= 0 .

Besides there exist integers i ∈ Z and j, k ∈ {0, . . . , ℓ} such that

X ∈ H[i] , T1 ∈ H[j] , and T2 ∈ H[k] .
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6 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

Therefore 0 6 i − j 6 1 and 0 6 (d+ k)− i 6 1, and hence

d 6 1 + i− k = 1 + (i − j)
︸ ︷︷ ︸

61

+ (j − k)
︸ ︷︷ ︸

6ℓ

6 ℓ+ 2 .

�

1.3. Lower bounds on the strong global dimension.

1.3.1. Let H ⊆ T be an additive and full subcategory which is hereditary and abelian, and such that the
embedding H →֒ T extends to a triangle equivalence Db(H) ≃ T . Let T ∈ T be a tilting object, and let
ℓ > 0 be an integer such that there exists indecomposable direct summands M0,M1 of T satisfying the
following

• M0 ∈ H, and
• M1 ∈ H[ℓ] lies in a non-transjective Auslander-Reiten component of H[ℓ].

Since T is triangle equivalent to the derived category of a hereditary abelian category with tilting object,
the non-transjective Auslander-Reiten components are either tubes or of the shape ZA∞.

Let X = τ−1M0[ℓ+1] and Y = τM1[1]. Let Z → M1 be a minimal right almost split morphism in T .
In particular, Z is indecomposable if and only if M1 is quasi-simple.

Lemma. Under the setting described previously, the following holds true.

(1) If Hom(X,Y ) 6= 0, then ℓT (τ
−1M0) > ℓ+ 2. In particular s.gl.dim. T > ℓ+ 2.

(2) If Ext1(Y,X) 6= 0, then ℓT (τZ) > ℓ + 2 or ℓT (τ
2M1) > ℓ + 2, according to whether M1 is

quasi-simple or is not. In particular, s.gl.dim. T > ℓ+ 2.
(3) If Hom(X,Y ) = 0 and Hom(Y,X) 6= 0, then ℓT (τZ) > ℓ + 1 or ℓT (τ

2M1) > ℓ + 1, according to
whether M1 is quasi-simple or is not. In particular s.gl.dim. T > ℓ+ 1.

(4) If Ext1(X,Y ) 6= 0, then ℓT (τM1) > ℓ+ 1. In particular s.gl.dim. T > ℓ+ 1.

Proof. (1) Serre duality gives
{

0 6= Hom(X,Y ) = Hom(τ−1M0[ℓ+ 1], τM1[1]) = DHom(M1, τ
−1M0[ℓ+ 1]) ,

0 6= Hom(τ−1M0[ℓ+ 1], τ−1M0[ℓ+ 1]) = DHom(τ−1M0[ℓ+ 1],M0[ℓ+ 2]) .

Thus ℓT (τ
−1M0[ℓ+ 1]) > ℓ+ 2.

(2) The hypothesis imply that 0 6= Ext1(Y,X) = Hom(τ2M1,M0[ℓ+1]), and hence ℓ+T (τ
2M1) > ℓ+1.

Assume first that M1 is not quasi-simple. Therefore Hom(τM1,M1) 6= 0. Serre duality then implies
Hom(M1[−1], τ2M1). Hence ℓ−T (τ

2M1) 6 −1, and thus ℓT (τ
2M1) > ℓ+ 2.

Assume now that M1 is quasi-simple. Since M1 lies in an Auslander-Reiten component of H[ℓ] which
is a tube or of the shape ZA∞, there exists an almost split triangle τ2M1 → τZ → τM1 → τ2M1[1].
Since M0[ℓ+ 1] ∈ H[ℓ+ 1] and τ2M1 ∈ H[ℓ], the hypothesis 0 6= Ext1(Y,X) entails (see above):

0 6= Ext1(Y,X) = Hom(τ2M1,M0[ℓ+ 1]) ⊆ rad(τ2M1,M0[ℓ+ 1]) .

In particular there exists a non-zero morphism τ2M1 → M0[ℓ + 1] which factors through τ2M1 → τZ.
Hence Hom(τZ,M0[ℓ+ 1]) 6= 0, and therefore

ℓ+T (τZ) > ℓ+ 1 .

Moreover, using Serre duality yields

0 6= Hom(τZ, τM1) = DHom(M1[−1], τZ) .

Hence ℓ−T (τZ) 6 −1, and thus ℓT (τZ) > ℓ+ 2.

(3) The hypotheses imply that 0 6= Hom(Y,X) = Hom(τ2M1,M0[ℓ]). Hence ℓ+T (τ
2M1) > ℓ.
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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 7

Assume first that M1 is not quasi-simple. The argument used in (2) also applies here and shows that
ℓ−T (τ

2M1) 6 −1. Thus ℓT (τ
2M1) > ℓ+ 1.

Assume now that M1 is quasi-simple. It follows from the hypotheses that

0 = Hom(X,Y ) = Hom(τ−1M0[ℓ + 1], τM1[1]) = Hom(M0[ℓ], τ
2M1) .

In particular M0[ℓ] 6≃ τ2M1, and therefore (see above)

0 6= Hom(Y,X) = Hom(τ2M1,M0[ℓ]) ⊆ rad(τ2M1,M0[ℓ]) .

Hence there exists a non-zero morphism τ2M1 → M0[ℓ] which factors through τ2M1 → τZ. Therefore
Hom(τZ,M0[ℓ]) 6= 0, and thus

ℓ+T (τZ) > ℓ .

The arguments used in (2) to prove that ℓ−T (τZ) 6 −1 also apply here. Thus ℓT (τZ) > ℓ+ 1.

(4) Serre duality gives
{

0 6= Ext1(X,Y ) = Hom(τ−1M0[ℓ+ 1], τM1[2]) = DHom(τM1,M0[ℓ]) ,
0 6= Hom(M1,M1) = DHom(M1[−1], τM1) .

Thus ℓT (τM1) > ℓ+ 1. �

1.3.2. The following lemma is fundamental in the description of s.gl.dim. T using the Auslander-Reiten
structure of T .

Lemma. Under the setting described in 1.3.1, assume that both M0 and M1 lie in non-transjective
Auslander-Reiten components of T .

(1) Then s.gl.dim. T > ℓ+ 1.
(2) If M0 lies in a tube of the Auslander-Reiten quiver of T , and if M1 lies in the ℓ-th suspension of

this tube, then s.gl.dim. T > ℓ+ 2.
(3) If both M0 and M1 lie in Auslander-Reiten components of the form ZA∞, then s.gl.dim. T > ℓ+2.

Proof. (1) Let C be the Auslander-Reiten component of T such that M0[ℓ+ 1] ∈ C. Let Γ be the unique
tranjective Auslander-Reiten component of T such that

(∀V ∈ C) (∃U ∈ Γ) Hom(U, V ) 6= 0 .

Let R be the disjoint union of the non-transjective Auslander-Reiten components of T such that

(∀V ∈ R) (∃U ∈ Γ) Hom(U, V ) 6= 0 .

Therefore

• C ⊆ R,
• R is the family of regular Auslander-Reiten components of H[ℓ+ 1], and
• R[−1] is the family of regular Auslander-Reiten components of H[ℓ]; in particular M1 ∈ R[−1].

In view of proving that s.gl.dim. T > ℓ+ 1, it is useful to prove the existence of S0 ∈ Γ such that

Hom(M1, S0) 6= 0 and Hom(S0,M0[ℓ+ 1]) 6= 0 .

First there exists a slice Σ un Γ such that

(∀S ∈ Σ) Hom(S,M0[ℓ+ 1]) 6= 0 .

Next define the full subcategory H′ ⊆ T as H′ = {V ∈ T | Exti(V, S) = 0 , (∀i 6= 0) (∀S ∈ Σ)}. Then

• H′ is hereditary and abelian,
• the indecomposable injectives of H′ are the objects in Σ, up to isomorphism, and
• R[−1] is the family of regular Auslander-Reiten components of H′; in particular M1 ∈ H′.
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8 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

Thus there exists S0 ∈ Σ such that Hom(M1, S0) 6= 0, and, by hypothesis, Hom(S0,M0[ℓ+ 1]) 6= 0.

(2) It follows from the hypothesis that there exists a tube C of the Auslander-Reiten quiver of T such
that Y = τM1[1] ∈ C and X = τ−1M0[ℓ+ 1] ∈ C. Moreover there exist infinite sectional paths in C

X → • → • → · · · and · · · → • → • → Y .

Since C is a tube, the two paths intersect. Hence there exist S ∈ C and sectional paths in C

τ−1M0[ℓ+ 1] → · · · → S and S → · · · → τM1[1] .

Since the composition of morphisms along a sectional path does not vanish, there exist non-zero mor-
phisms τ−1M0[ℓ+1] → S and S → τM1[1]. Using Serre duality, this implies that Hom(S,M0[ℓ+2]) 6= 0
and Hom(M1, S) 6= 0. Thus ℓT (S) > ℓ+ 2.

(3) By hypothesis, X = τ−1M0[ℓ + 1] and Y = τM1[1] both lie in H[ℓ + 1]. Let CX and CY be the
Auslander-Reiten components of H[ℓ + 1] such that X ∈ CX and Y ∈ CY . Then CX and CY are of the
shape ZA∞. In particular, H is equivalent to the module category of a finite-dimensional hereditary
algebra of wild type. In the rest of the proof, H is considered as a full subcategory of T . However, it is
useful to mention when a morphism between objects in H is epimorphic (or monomorphic) as a morphism
in the abelian category H.

There exist quasi-simples SX ∈ CX and SY ∈ CY , together with sectional paths in CX and CY ,
respectively:

{
X → · · · → SX made of irreducible epimorphisms in H,
SY → · · · → Y made of irreducible monomorphisms in H.

Taking the composite morphisms yields non-zero morphisms X → SX and SY → Y which are epimorphic
and monomorphic, respectively, as morphisms in H. Let S be any quasi-simple regular object in H (e.g.
S = SY ). Since S, SY and SX lie in Auslander-Reiten components of H of the form ZA∞, there exist
integers n1, n2 > 0 such that

{
(∀n > n1) Hom(SX , τnS) 6= 0 and
(∀n > n2) Hom(S, τnSY ) 6= 0 .

Let n = max(n1, n2). There are infinite sectional paths

τnS → X2 → X3 → · · · and · · · → Y3 → Y2 → τ−nS

such that Xn = Yn, and such that the former (or, the latter) is made of irreducible monomorphisms (or,
epimorphisms, respectively) in H. Taking the composite morphisms yields non-zero morphisms

τnS → Xn and Xn → τ−nS which are monomorpic and epimorphic, respectively, as morphisms in H.
Since Hom(SX , τnS) 6= 0 and Hom(τ−nS, SY ) 6= 0, there are non-zero composite morphisms in H

X ։ SX
6=0
−−→ τnS →֒ Xn and Xn ։ τ−nS

6=0
−−→ SY →֒ Y .

Hence Hom(X,Xn) 6= 0 and Hom(Xn, Y ) 6= 0, and thus (using Serre duality) Hom(M1, Xn) 6= 0 and
Hom(Xn,M0[ℓ+ 2]) 6= 0. This proves that ℓT (Xn) > ℓ+ 2. �

1.3.3. Let Γ be a transjective Auslander-Reiten component of T . Let Σ be a slice of Γ. Let H ⊆ T be
the full subcategory

H = {X ∈ T | (∀S ∈ Σ) (∀i 6= 0) Hom(S,X) = 0} .

Let T ∈ T be a tilting object and let ℓ > 1 be an integer such that

• the sources S1, . . . , Sn of the full subquiver Σ of Γ are all indecomposable summands of T ,
• there exists an indecomposable summand L of T lying in H[ℓ].
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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 9

Lemma. Under the previous setting, there exists M ∈ τ−1Σ[ℓ + 1], and there exist non-zero morphisms

L → M and M →
n⊕

i=1

Si[ℓ+ 2]. Hence ℓT (M) > ℓ+ 2. In particular, s.gl.dim. T > ℓ+ 2.

Proof. It is usefull to prove first that L ∈ τ−2H[ℓ]. For this purpose note that

(indH[ℓ]) \
(
ind τ−2H[ℓ]

)
= Σ[ℓ] ∪ τ−1Σ[ℓ] ,

as sets of indecomposable objects. Since L ∈ H[ℓ], the claim therefore deals with proving that L 6∈ Σ[ℓ]
and L 6∈ τ−1Σ[ℓ]. Using Hom(T [ℓ], T ) = 0, Hom(T, T [ℓ+ 1]) = 0 and Serre duality implies that

Hom

(
n⊕

i=1

Si[ℓ], L

)

= 0 and Hom

(
n⊕

i=1

τ−1Si[ℓ], L

)

= 0 .

Since S1[ℓ], . . . , Sn[ℓ] (or τ−1S1[ℓ], . . . , τ
−1Sn[ℓ]) are the sources of the slice Σ[ℓ] (or τ−1Σ[ℓ], respectively),

this entails that L 6∈ Σ[ℓ] and L 6∈ τ−1Σ[ℓ]. This proves the claim: L ∈ τ−2H[ℓ].
The category τ−2H[ℓ] is abelian and its indecomposable injectives are the objects in τ−1Σ[ℓ + 1], up

to isomorphism. Hence

(∃M ∈ τ−1Σ[ℓ + 1]) Hom(L,M) 6= 0 .

Besides Hom(⊕n
i=1τ

−1Si[ℓ + 1],M) 6= 0 for τ−1Si[ℓ + 1], . . . , τ−1Sn[ℓ + 1] are the sources of the slice

τ−1Σ[ℓ+ 1] of Γ[ℓ+ 1]. Using Serre duality this implies that Hom

(

M,
n⊕

i=1

Si[ℓ+ 2]

)

6= 0. �

2. The strong global dimension and some classical operations of representation theory

2.1. Behaviour under tilting mutation.

2.1.1. Setting. The following setting is used throughout the subsection. Let T ∈ T be a tilting object.
Suppose that there is a decomposition

T = T1 ⊕ T2

such that Hom(T2, T1) = 0. Let M → T2 be a minimal right addT1-approximation. It fits into a triangle

(∆) T ′
2 → M → T2 → T ′

2[1] .

Let T ′ = T1 ⊕ T ′
2.

Proposition. Under the previous setting, T ′ is a tilting object in T .

Proof. Because of (∆), the smallest triangulated subcategory of T containing T ′ and stable under direct
summands is T . Hence is suffices to prove that Hom(T ′, T ′[i]) = 0 for every i 6= 0.

First, Hom(T1, T1[i]) = 0 for every i 6= 0 because T is tilting. Next there is an exact sequence obtained
by applying Hom(T1,−) to (∆), for every i

Hom(T1,M [i− 1]) → Hom(T1, T2[i− 1]) → Hom(T1, T
′
2[i]) → Hom(T1,M [i]) .

Since T is tilting and M → T2 is an addT1-approximation it follows that

(∀i 6= 0) Hom(T1, T
′
2[i]) = 0 .

Next there is an exact sequence obtained by applying Hom(−, T1[i]) to (∆) for every i

Hom(M,T1[i]) → Hom(T ′
2, T1[i]) → Hom(T2, T1[i+ 1]) .

Since T is tilting and Hom(T2, T1) = 0 it follows that

(∀i 6= 0) Hom(T ′
2, T1[i]) = 0 .
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10 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

Next there is an exact sequence obtained by applying Hom(−, T2[i]) to (∆) for every i

Hom(M,T2[i]) → Hom(T ′
2, T2[i]) → Hom(T2, T2[i+ 1]) .

Hence Hom(T ′
2, T2[i]) = 0 for every i 6= 0,−1 because T is tilting. Finally there is an exact sequence

obtained by applying Hom(T ′
2,−) to (∆) for every i

Hom(T ′
2,M [i− 1]) → Hom(T ′

2, T2[i− 1]) → Hom(T ′
2, T

′
2[i]) → Hom(T ′

2,M [i]) .

In this exact sequence,

(i) Hom(T ′
2,M [i]) = 0 for every i 6= 0 as observed earlier and because M ∈ add(T1);

(ii) Hom(T ′
2, T2[i]) = 0 for every i 6= 0,−1 as explained earlier;

(iii) The leftmost arrow is an epimorphism if i = 1. Indeed let u ∈ Hom(T ′
2, T2). Consider the following

diagram where the top horizontal row is the suspension of (∆)

T2[−1]
a // T ′

2
b //

u

��

M
c //

v

~~
w

��

T2

T2 M .
c

oo

Then ua = 0 because T is tilting. Hence there exists v ∈ Hom(M,T2) such that u = vb. Besides
there exists w ∈ Hom(M,M) such that v = cw because M → T2 is an addT1-approximation. In
other words u = cwb lies in the image of the mapping Hom(c,−) : Hom(T ′

2,M) → Hom(T ′
2, T2).

It follows from (i), (ii) and (iii) that

(∀i 6= 0) Hom(T ′
2, T

′
2[i]) = 0 .

These considerations prove that T ′ is tilting. �

The following paragraphs deal with the comparison of s.gl.dimT and s.gl.dimT ′ under the above
setting.

2.1.2. Let Z be an indecomposable direct summand of T2. Let N → Z be a minimal right addT1-
approximation. Then there exists a triangle

X → N → Z → X [1] .

The following result relates the two triangles T ′
2 → M → T2 → T ′

2[1] and X → N → Z → X [1].

Lemma. Under the previous setting the following assertions hold true

(1) X is indecomposable;
(2) X is a direct summand of T ′

2;
(3) if Hom(T1, Z) = 0 then X = Z[−1];
(4) if Hom(T1, Z) 6= 0 then Hom(X,N) 6= 0 and Hom(Z[−1], X) 6= 0.

Proof. (1) Let e ∈ End(X) be an idempotent. Since T is tilting and N,Z ∈ addT it follows that
Hom(Z[−1], N) = 0. Hence there exists f ∈ End(N) such that the following diagram (whose rows are
triangles) is commutative

Z[−1] // X //

e

��

N //

f

��

Z

Z[−1] // X // N // Z .
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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 11

Therefore there exists g ∈ End(Z) such that the following diagram commutes

Z[−1] //

g[−1]

��

X //

e

��

N //

f

��

Z

g

��
Z[−1] // X // N // Z .

Since Z is indecomposable then g is either invertible or nilpotent. If g is invertible then so is f , for N → Z

is a minimal right addT1-approximation, and thus so is e; since e2 = e this implies that e = 1 ∈ End(X).
If g is nilpotent then there exists an integer n > 0 such that gn = 0, and therefore the following diagram
commutes

Z[−1] // X //

1−en

��

N //

1−fn

��

Z

Z[−1] // X // N // Z .

Note that 1 − en = 1 − e. The above argument where g is invertible still applies here, and entails that
1− e = 1, that is e = 0. This proves that X is indecomposable.

(2) Let Z → T2 be a section and T2 → Z be its retraction. Since N → Z and M → T2 are addT1-
approximations there is a commutative diagram whose arrows are triangles

X //

��

N //

��

Z //

��

X [1]

��
T ′
2

//

��

M //

��

T2
//

��

T ′
2[1]

��
X // N // Z // X [1]

Since N → Z is right minimal and the composite morphism Z → T2 → Z is identity, it follows that
the composite morphism N → M → N is an isomorphism, and hence so is the composite morphism
X → T ′

2 → X . Therefore T ′
2 → X is a retraction, and thus X is a direct summand of T ′

2.

(3) If Hom(T1, Z) = 0 then N = 0, and thus X = Z[−1].

(4) Assume that Hom(T1, Z) 6= 0. Therefore N 6= 0. Since X and Z[−1] are indecomposable then
Z[−1] 6≃ X ⊕ N [−1]; moreover N [−1] 6≃ Z[−1] ⊕ X [−1], for Hom(T2, T1) = 0, and Z ∈ addT2 and
N ∈ addT1. Therefore, in the following triangles

N [−1] → Z[−1] → X → N , and
X [−1] → N [−1] → Z[−1] → X ,

the morphisms X → N and Z[−1] → X are non-zero. �

2.1.3. The respective positions of T ′
2 and M in T .

Lemma. (1) If X is an indecomposable direct summand of T ′
2 then X ∈ addM if Hom(T2[−1], X) =

0; if Hom(X,M) = 0 then X ∈ add(T2[−1]).
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12 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

(2) Let H ⊆ T be an additive and full subcategory which is hereditary abelian and such that the
embedding H →֒ T extends to a triangle equivalence Db(H) ≃ T . Let ℓ > 1 be an integer such
that

T1 ∈
ℓ−1∨

i=0

H[i] and T2 ∈ H[ℓ] .

Then M ∈ H[ℓ− 1] and T ′
2 ∈ H[ℓ− 1].

Proof. (1) Let X →֒ T ′
2 be a section and T ′

2 ։ X be a retraction. In the following diagram the row is a
triangle

X� _

��
T2[−1] // T ′

2
//

����

M // T2

X .

Therefore if Hom(X,M) = 0 then the section factors through T2[−1] → T ′
2; this gives a section X →

T2[−1]; thus X ∈ add(T2[−1]). If Hom(T2[−1], X) = 0 then the retration factors through T ′
2 → M ; this

gives a retraction M → X ; thus X ∈ addM .

(2) Let Y be an indecomposable direct summand of M . Then Hom(Y, T2) 6= 0 for M → T2 is right

minimal. Since T2 ∈ H[ℓ] and M ∈
∨ℓ−1

i=0 H[i] it follows that Y ∈ H[ℓ− 1]. Thus M ∈ H[ℓ− 1].
Let X ∈ addT ′

2 be indecomposable. Note that M,T2[−1] ∈ H[ℓ− 1]. Hence, if X ∈ add(M ⊕ T2[−1]),
then X ∈ H[ℓ − 1]. Otherwise, it follows from (1) that Hom(X,M) 6= 0 and Hom(T2[−1], X) 6= 0. This
implies that X ∈ H[ℓ− 1]. Thus T ′

2 ∈ H[ℓ− 1]. �

2.1.4. The length with respect to T ′ expressed using the length with respect to T .

Lemma. Let X ∈ T . Assume (up to a suspension) that ℓ−T ′(X) = 0. Let ℓT ′(X) = ℓ. Then ℓT (X) is
given by the table below.

Ext1(T2,X) 6= 0 Ext1(T2,X) = 0

Hom(X,T1[ℓ]) 6= 0 ℓ
−

T
(X) = −1, ℓ

+

T
(X) = ℓ − 1, and

ℓT (X) = ℓ

ℓ
−

T
(X) = 0, ℓ

+

T
(X) = ℓ − 1, and

ℓT (X) = ℓ − 1

Hom(X,T1[ℓ]) = 0 ℓ
−

T
(X) = −1, ℓ

+

T
(X) = ℓ, and

ℓT (X) = ℓ + 1

ℓ
−

T
(X) = 0, ℓ

+

T
(X) = ℓ, and ℓT (X) = ℓ

Proof. All the exact sequences in this proof are obtained applying either Hom(X,−) or Hom(−, X) to
(∆). First note that Hom(T1[i], X) = Hom(M [i], X) = 0 if i < 0, for T1,M ∈ addT ′ and ℓ−T ′(X) = 0.
From the exact sequence

Hom(T ′
2[i+ 1], X)

︸ ︷︷ ︸

= 0 if i < −1

→ Hom(T2[i], X) → Hom(M [i], X)
︸ ︷︷ ︸

= 0 if i < 0

it follows that Hom(T2[i], X) = 0 if i < −1, and therefore ℓ−T (X) > −1. In particular

Hom(T2[−1], X) 6= 0 ⇒ ℓ−T (X) = −1 .
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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 13

Assume that Hom(T2[−1], X) = 0. Then Hom(T1, X) 6= 0. Indeed, by absurd, if Hom(T1, X) = 0 then
Hom(T ′

2, X) 6= 0 because ℓ−T ′(X) = 0; this contradicts the exactness of the sequence

Hom(M,X)
︸ ︷︷ ︸

=0

→ Hom(T ′
2, X) → Hom(T2[−1], X)

︸ ︷︷ ︸

=0

.

Therefore Hom(T1, X) 6= 0, and thus

Hom(T2[−1], X) = 0 ⇒ ℓ−T (X) = 0 .

Next note that Hom(X,T1[i]) = Hom(X,M [i]) = Hom(X,T ′
2[i]) = 0 if i > ℓ, for T1,M, T ′

2 ∈ addT ′

and ℓ+T ′(X) = ℓ. From the exact sequence

Hom(X,M [i])
︸ ︷︷ ︸

= 0 if i > ℓ

→ Hom(X,T2[i]) → Hom(X,T ′
2[i+ 1])

︸ ︷︷ ︸

= 0 if i > ℓ − 1

it follows that Hom(X,T2[i]) = 0 if i > ℓ, and therefore ℓ+T (X) 6 ℓ. In particular

Hom(X,T1[ℓ]) 6= 0 ⇒ ℓ+T (X) = ℓ .

Assume that Hom(X,T1[ℓ]) = 0. Then Hom(X,T ′
2[ℓ]) 6= 0 because ℓ+T ′(X) = ℓ. Therefore the exact

sequence

Hom(X,T2[ℓ− 1]) → Hom(X,T ′
2[ℓ])

︸ ︷︷ ︸

6=0

→ Hom(X,M [ℓ])
︸ ︷︷ ︸

= 0 (M ∈ addT1)

entails that Hom(X,T2[ℓ − 1]) 6= 0. Thus

Hom(X,T1[ℓ]) = 0 ⇒ ℓ+T (X) = ℓ− 1 .

�

2.1.5. Comparison of s.gl.dim. T and s.gl.dim. T ′. Using the previous lemma, the following is immediate.

Proposition. Under the setting presented at the beginning of 2.1.1:

|s.gl.dim. T − s.gl.dim. T ′| 6 1 .

Besides, s.gl.dim. T = 1 + s.gl.dim. T ′ if and only if the following conditions are satisfied:

(a) for every indecomposable X ∈ T such that ℓ−T (X) = 0 and ℓT (X) = s.gl.dim. T , the mapping
αX,ℓT (X) : Hom(X,M [ℓT (X)]) → Hom(X,T2[ℓT (X)]) is an epimorphism and Hom(T1, X) = 0,

(b) for every indecomposable X ∈ T such that ℓ−T (X) = 0 and ℓT (X) = −1s.gl.dim. T , the mapping
αX,ℓT (X) : Hom(X,M [ℓT (X)]) → Hom(X,T2[ℓT (X)]) is an epimorphism or else Hom(T1, X) = 0.

2.2. Behaviour under split bi-adjunction and under taking finite Galois coverings.

2.2.1. Behaviour under split bi-adjunction. Let T and T ′ be Krull-Schmidt Hom-finite triangulated cat-
egories. Assume that there exists a bi-adjoint pair (F,G) of triangle functors

T ′

F

��
T

G

VV

such that

• X is a direct summand of GFX , for every X ∈ T ′, and
• M is a direct summand of FGM , for every M ∈ T .
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14 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

Proposition. Let T ∈ T be an object such that addT = addFGT . The following conditions are
equivalent for every indecomposable objects M ∈ T and X ∈ T ′

(i) −∞ < ℓ−T (M) 6 ℓ+T (M) < +∞;

(ii) −∞ < ℓ−GT (X) 6 ℓ+GT (X) < +∞.

When these two conditions are satisfied then s.gl.dim. T = s.gl.dim. GT .

Proof. If X ∈ T ′ (or M ∈ T ) is indecomposable, then X (or M) is a direct summand of GFX (or FGM);
hence there exists an indecomposable direct summand MX ∈ T of FX (or XM ∈ T ′ of GM) such that
X (or M) is a direct summand of FMX (or GXM , respectively). In order to prove the result it is useful
to first prove the following facts

(1) ℓ−GT (X) = ℓ−T (FX) and ℓ+GT (X) = ℓ+T (FX);

(2) ℓ−T (M) = ℓ−GT (GM) and ℓ+T (M) = ℓ+GT (GM);

(3) ℓ−T (MX) = ℓ−GT (X) and ℓ+T (MX) = ℓ+GT (X);

(4) ℓ−T (M) = ℓ−GT (XM ) and ℓ+T (M) = ℓ+GT (XM ).

Indeed,

(1) if i ∈ Z then Hom(GT [i], X) = Hom(T [i], FX), and hence ℓ−GT (X) = ℓ−T (FX) (the equality

ℓ+GT (X) = ℓ+T (FX) follows from a dual argument);
(2) If i ∈ Z then, using the hypothesis asserting that addT = addFGT gives

Hom(T [i],M) = 0 ⇔ Hom(FGT [i],M) = 0 ⇔ Hom(GT [i], GM) = 0 ,

and hence ℓ−T (M) = ℓ−GT (GM) (the equality ℓ+T (M) = ℓ+GT (GM) follows from a dual argument);
(3) It follows from (1) and (2) that

ℓ−T (FX) 6
(MX∈addFX)

ℓ−T (MX) =
(2)

ℓ−GT (GMX) 6
(X∈addGMX)

ℓ−GT (X) =
(1)

ℓ−T (FX) ,

and hence ℓ−GT (X) = ℓ−T (MX) (the equality ℓ+GT (X) = ℓ+T (MX) follows from a dual argument);
(4) Using a similar argument gives

ℓ−T (FXX) 6
(M∈addFXM )

ℓ−T (M) =
(2)

ℓ−GT (GM) 6
(XM∈addGM)

ℓ−GT (XM ) =
(1)

ℓ−T (FXM ) ,

and hence ℓ−GT (XM ) = ℓ−T (M) (the equality ℓ+GT (XM ) = ℓ+T (M) follows from a dual argument);

The equivalence (i) ⇔ (ii), and the equality s.gl.dim. T = s.gl.dim.GT follows from (3) and (4). �

2.2.2. Application to Galois coverings. The previous proposition applies to compare the strong global
dimensions of two algebras the first of which is a Galois covering of second. In [32, Thm. C] it was proved
that if the latter is derived equivalent to a hereditary algebra then so is the former. When the group of
the Galois covering is finite the following corollary generalises this result and makes it more precise in
terms of the strong global dimension.

Corollary. Let A and A′ be finite-dimensional algebras. Let G be a finite group such that CardG ∈ k×.
Assume that A and A′ are basic and that there exists a Galois covering A′ → A with group G (in the
sense of [18, 3]). Then A is piecewise hereditary if and only if so is A′. When this is the case then
s.gl.dim. A = s.gl.dim. A′.
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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 15

Proof. Let T = Db(modA) and T ′ = Db(modA′). Let T = A ∈ T . Following [18, 3.2], the restriction-
of-scalars and the extension-of-scalars functors form a bi-adjoint pair of exact functors

modA′

A⊗
A′

−

��
modA

res

VV

such that there exists a functorial isomorphism res

(

A ⊗
A′

X

)

≃ ⊕γ∈Γ
γX for every X ∈ modA′, and

such that res(A) = ⊕γ∈Γ
γA′ and A ⊗

A′

res(A) ≃ ACard(Γ). Here (γ,X) 7→ γX denotes the action of Γ on

modA′. Since Card(Γ) ∈ k× there also exists a functorial section M → A⊗
A′

res(M) for every M ∈ modA

([18, 3.4]).
The algebras A and A′ have the same global dimension hence there is no loss of generality in assuming

that these are finite. Then the exact functors res and A ⊗
A′

− induce triangle functors F : T ′ → T and

G : T → T ′ forming a bi-adjoint pair ([32, Prop. 2.1])

T ′

F

��
T .

G

VV

Besides the above properties of (A ⊗
A′

−, res) entail that (F,G) fulfills the hypothesis in 2.2.1. The

conclusion thus follows from 2.2.1 and 1.1 �

3. The strong global dimension through Auslander-Reiten theory

Let Γ be a transjective component. If Σ is a slice in Γ then the full and additive subcategory H ⊆ T
defined by

H = {X ∈ T | (∀S ∈ Σ) (∀i 6= 0) Hom(S,X [i]) 6= 0}

is equivalent to the module category of the finite-dimensional hereditary algebra End(⊕X∈ΣX)op. The
indecomposable projective (or injective) objects of H are the objects in Σ (or in τΣ[1], respectively) up
to isomorphism. Also, the embedding H ⊆ T extends to triangle equivalence Db(H) ≃ T .

3.1. Setting: where does T start and end in the triangulated category? Let Γ be a transjective
Auslander-Reiten component of T . Then,

• either Γ is the whole Auslander-Reiten quiver of T , in which case T is equivalent to the bounded
derived category of a finite-dimensional hereditary algebra of finite representation type,

• or else the Auslander-Reiten quiver of T is the disjoint union

· · · ∪ Γ[−1] ∪R[−1] ∪ Γ ∪R ∪ Γ[1] ∪R[1] ∪ · · ·

where R is a disjoint union of non-transjective Auslander-Reiten components (that are either all
stable tubes, or all of the shape ZA∞), and characterised as follows, for every indecomposable
X ∈ T lying in none of Γ[i], i ∈ Z, then

X ∈ R ⇔ (∃Y ∈ Γ) Hom(Y,X) 6= 0 .

Let T ∈ T be a tilting object. In view of describing s.gl.dim. T in terms of the Auslander-Reiten quiver
of T , it may be assumed that one of the two following conditions is satisfied, up to a shift and using the
duality over k:
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16 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

(1) T ∈ add (Γ ∪R ∪ Γ[1] ∪R[1] ∪ · · · ) and T has an indecomposable direct summand in Γ (it is here
implicitely assumed that when Γ is the whole Auslander-Reiten quiver of T , then R = ∅ and
T ∈ addΓ),

(2) there exists an integer ℓ > 0 such that

T ∈ add (R∪ Γ[1] ∪R[1] ∪ · · · ∪ Γ[ℓ] ∪R[ℓ])

and T has an indecomposable direct summand in R and in R[ℓ].

For simplicity, in the first (or second) case, T is said to start in Γ (or, to start in R, and to end in R[ℓ]
of non-transjective Auslander-Reiten components, respectively). The aim of this section is to describe
s.gl.dim. T in these two cases.

3.2. The strong global dimension when T starts in a transjective component.

Proposition. Let T ∈ T be a tilting object. Assume that T starts in the transjective Auslander-Reiten
component Γ. Then

(1) there exists a slice Σ in Γ such that every source of Σ is an indecomposable direct summand of
T , and for every indecomposable direct summand Y of T lying in Γ there exists a path in Γ with
source in Σ and target Y ;

(2) Let H = {X ∈ T | (∀S ∈ Σ) (∀i 6= 0) Hom(S,X [i]) = 0}. Then H is a hereditary abelian
category such that the embedding H →֒ T extends to a triangle equivalence Db(H) ≃ T . Moreover
there exists an integer ℓ > 0 such that

T ∈
ℓ∨

i=0

H[i] ,

and such that T has an indecomposable summand in H and in H[ℓ];
(3) If End(T )op is not a hereditary algebra then s.gl.dim. T = ℓ+ 2.

Proof. (1) Let S1, . . . , Sn be the indecomposable direct summands of T such that Hom(⊕n
i=1Si, X) 6= 0

for every indecomposable direct summand X of T lying in Γ, and such that Hom(Si, Sj) = 0 if i 6= j. Let
Σ be the full subquiver of Γ the vertices of which are those X ∈ Γ such that X is the successor in Γ of
at least one of S1, . . . , Sn, and such that any path in Γ from any of S1, . . . , Sn to X is sectional.

It follows from its definition that Σ is a convex subquiver of Γ such that there is no X ∈ Γ verifying
X, τX ∈ Σ. Let X ∈ Γ. Since Γ is the repetitive quiver of some quiver without oriented cycles there
exists n ∈ Z such that τnX is a successor in Γ of one of the vertices in Σ, and τn+1X is the successor in
Γ of none of the vertices in Σ. Let

(γ) Si → L1 → L2 → · · · → Lr = τnX

be any path in Γ from one of S1, . . . , Sn to τnX . If (γ) were not sectional there would exist some hook

Lt−1 → Lt → Lt+1 = τ−1Lt−1 ,

and hence a path in Γ

Si → L1 → L2 → · · · → Lt−1 = τLt+1 → τLt+2 → · · · → τLr = τn+1X

which would contradict the definition of n. The path (γ) is therefore sectional. This proves that Σ is a
slice in Γ fitting the requirements of (1).

(2) The first assertion follows from the fact that Σ is a section of Γ. In particular T =
∨

i∈Z
H[i], and

the indecomposable objects in H are, up to isomorphism, the objects X ∈ Γ which are successors in Γ
of some Si ∈ Σ; the objects X ∈ R; and the objects X ∈ Γ[1] which are predecessors in Γ[1] of some

ha
l-0

08
25

03
1,

 v
er

si
on

 1
 - 

22
 M

ay
 2

01
3



THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 17

τSi[1] ∈ τΣ[1]. The second assertion therefore follows from these considerations and from the fact that
T starts in Γ and from the definition of Σ.

(3) If ℓ = 0 then T ∈ H. Therefore End(T )op is a tilted algebra which is not hereditary, and thus
s.gl.dim. T = 2 ([27, Prop. 3.3]). If ℓ > 1 then the conclusion follows from 1.2 and 1.3.3. �

3.3. The strong global dimension when T starts and ends in family of tubes.

3.3.1. Setting. Throughout this subsection, it is assumed that T is triangle equivalent to the bounded
derived category of a finite-dimensional hereditary algebra of tame representation type. Hence R is a
disjoint union of tubes which are pairwise orthogonal in T .

Let T ∈ T be a tilting object. Let ℓ > 0 be an integer. In this subsection it is assumed that T starts
in R and ends in R[ℓ]; the objective is to determine s.gl.dim. T . For this purpose a major issue is to
determine the tubes in R and R[ℓ] containing an indecomposable direct summand of T . Therefore it is
convenient to use the following notation: let ST (or ET ) be the set of tubes in R (or in R[ℓ], respectively)
containing an indecomposable direct summand of T .

Following [37] there is no regular tilting module over a finite-dimensional hereditary algebra of tame
representation type. Therefore ℓ > 1.

3.3.2. The strong global dimension when T starts in a tube and ends in a shift of this tube.

Lemma. Let C be a tube in R. Assume that ST = {C} and ET = {C[ℓ]}. Then s.gl.dim. T = ℓ+ 2.

Proof. If follows from 1.3.2 (part (2)) that s.gl.dim. T > ℓ+ 2. Let Σ be any slice in Γ. Let

H = {X ∈ T | (∀S ∈ Σ) (∀i 6= 0) Hom(S,X [i]) 6= 0} .

Therefore R is the family of regular Auslander-Reiten components of the hereditary abelian category H.

Since T starts in R and ends in R[ℓ] it follows that T ∈
∨ℓ

i=0 H[ℓ]. Hence s.gl.dim. T 6 ℓ+2 (1.2). Thus
s.gl.dim. T = ℓ+ 2. �

The rest of the subsection proves that the hypotheses of the previous lemma actually hold true, that
is, there exists a tube C ⊆ R such that ST = {C} and ET = {C[ℓ]}. This is done in several steps for some
of them are used later.

3.3.3. The particular case where ℓ = 1.

Lemma. Under the setting described in 3.3.1, assume that ℓ = 1. Then

(1) s.gl.dim. T = 3 and there exists a tube C ⊆ R such that C ∈ ST and C[1] ∈ ET ;
(2) ST = {C} and ET = {C[1]}.

Proof. (1) Note that if H′ ⊆ T is a full and additive subcategory which is hereditary and abelian, and
such that the embedding H′ ⊆ T extends to a triangle equivalence Db(H′) ≃ T , then there exists a
unique i ∈ Z such that R[i] is the regular part of the Auslander-Reiten quiver of H′. In particular
H′ ∩R[j] = ∅ if i 6= j. Therefore T lies in no such H′, and thus End(T )op is not quasi-tilted. This proves
that s.gl.dim. T > 3 [27, Prop. 3.3].

Let Σ be a slice in Γ. Let H ⊆ T be the full subcategory such that

H = {X ∈ T | (∀S ∈ Σ) (∀i 6= 0) Hom(S,X [i]) = 0} .

Hence H is hereditary abelian, and the embedding H →֒ T extends to a triangle equivalence Db(H) ≃ T .
Since T starts in R and ends in R[1], it follows that T ∈ H ∨ H[1]. Therefore s.gl.dim. T 6 3 (1.2), and
thus s.gl.dim. T = 3.

Let X ∈ T be indecomposable such that ℓ−T (X) = 0 and ℓ+T (X) = 3. Let

T = T0 ⊕ Tt ⊕ T1
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18 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

be a decomposition such that T0 ∈ addR, Tt ∈ add(Γ[1]) and T1 ∈ add(R[1]). Since Hom(T,X) 6= 0 and
Hom(X,T [3]) 6= 0 then

X ∈ R ∪ Γ[1] ∪R[1] ∪ Γ[2] ∪R[2] and X ∈ R[2] ∪ Γ[3] ∪R[3] ∪ Γ[4] ∪R[4] .

Hence X ∈ R[2], and therefore Hom(T0 ⊕ Tt, X) = Hom(X,Tt[3]⊕ T1[3]) = 0. In other words

Hom(T1, X) 6= 0 and Hom(X,T0[3]) 6= 0 .

Let M0,M1 be indecomposable direct summands of T0 and T1, respectively, such that Hom(M1, X) 6= 0
and Hom(X,M0[3]) 6= 0. Therefore

• τM1[1], X, τ−1M0[2] ∈ R[2],
• Hom(X, τM1[1]) 6= 0, and
• Hom(τ−1M0[2], X) 6= 0.

Since R is a disjoint union of tubes which are pairwise orthogonal in T , this entails that τM1[1], X and
τ−1M0[2] all lie in a same tube from R[2]. Therefore there exists a tube C ⊆ R such that M0 ∈ C and
M1 ∈ C[1]. Thus C ∈ S(T ) and C[1] ∈ E(T ).

(2) The proof proceeds by contradiction. Assume first that T has at least one indecomposable direct
summand lying in R[1]\C[1]. Let

T = T1 ⊕ T2

be another decomposition such that T2 ∈ add(C[1]) and T1 has no indecomposable direct summand
lying in C[1]. The tubes in R[1] are pairwise orthogonal in T , and Hom(R[1],Γ) = Hom(R[1],R) = 0.
Therefore

Hom(T2, T1) = 0 .

Let M → T2 be a minimal right addT1-approximation. It fits into a triangle

T ′
2 → M → T2 → T ′

2[1] .

Thus T ′ := T1 ⊕ T ′
2 is a tilting object in T (2.1.1).

Let X be an indecomposable direct summand of T ′
2. If X is a direct summand of T2[−1] then X ∈ C. If

X is a direct summand of M then so is it one of T1, and hence X ∈ R∪Γ[1]∪R[1] and X 6∈ C[1]. Otherwise
Hom(T2[−1], X) 6= 0 and Hom(X,M) 6= 0 (2.1.3); Therefore Hom(X, τT2) 6= 0 and Hom(X,M) 6= 0,
which prevents X from lying in R[1] (indeed an object Y ∈ R[1] such that Hom(Y, τT2) 6= 0 must lie in
C[1], for τT2 ∈ add(C[1]) and the tubes in R[1] are pairwise orthogonal, on the other hand there is no
non-zero morphism from an object in C[1] to M , for M lies in add (R∪ Γ[1] ∪R[1]\C[1])); in particular
if X ∈ R then the property Hom(T2[−1], X) 6= 0 forces X to lie in C; thus X ∈ C ∪ Γ[1].

By hypothesis, T1 ∈ add(R∪ Γ[1] ∪R[1]), also T1 has an indecomposable summand lying in R[1] and
none of them lie in C[1]. Thus T ′ starts in R; it ends in R[1]; and it is such that S(T ′) = S(T ) and
E(T ′) = E(T )\{C[1]}.

All this procedure (or its dual version) starting with T and ending with T ′ may be repeated as long
as there exists a tube C′ in R such that C′ ∈ S(T ′) and C′[1] ∈ E(T ′). Eventually the procedure ends up
with a tilting object T ′′ which starts in R, which ends in R[1], and such that there is no tube C′ ⊆ R such
that C′ ∈ S(T ′′) and C′[1] ∈ E(T ′′). This contradicts (1). Thus every indecomposable direct summand of
T lying in R[1] does lie in C[1]. A dual arguments shows that every indecomposable direct summand of
T lying in R does lie in C. �
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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 19

3.3.4. The behaviour of ST and ET under the modification of T using approximations. Note that, by
definition, if T ′ is a tilting object which starts in R and ends in R[ℓ − 1] then ET ′ is the set of tubes
C ⊆ R[ℓ − 1] containing an indecomposable direct summand of T ′.

Lemma. Assume that ℓ > 2. Let T = T1 ⊕ T2 be the decomposition such that T2 ∈ add(Γ[ℓ] ∪R[ℓ]) and
T1 has no indecomposable direct summand in Γ[ℓ] ∪R[ℓ]. Let

T ′
2 → M → T2 → T ′

2[1]

be a triangle where M → T2 is a minimal right addT1-approximation. Then T ′ := T1 ⊕ T ′
2 is a tilting

object in T such that: T ′ starts in R and ends in R[ℓ− 1]; and ST ′ = ST and {C[−1] | C ∈ ET } ⊆ ET ′ .

Proof. There is non non-zero morphism from an object in Γ[ℓ− 1]∪R[ℓ− 1] to an object in Γ[i]∪R[i] if
i < ℓ− 1. Therefore Hom(T2, T1) = 0. Using 2.1.1 it follows that T ′ is tilting.

Note that T1 ∈ add(R∪Γ[1]∪· · · ∪Γ[ℓ− 1]∪R[ℓ− 1]), and T1 has an indecomposable direct summand
in R. This and the right minimality of M → T2 imply that M ∈ add(Γ[ℓ − 1] ∪ R[ℓ − 1]). Let
X ∈ addT ′

2 be indecomposable. If X ∈ add (T2[−1] ⊕ M) then X ∈ Γ[ℓ − 1] ∪ R[ℓ − 1]. Otherwise
Hom(T2[−1], X) 6= 0 and Hom(X,M) 6= 0 (2.1.3, part (2)); this entails X ∈ Γ[ℓ − 1] ∪ R[ℓ − 1] because
M,T2[−1] ∈ add(Γ[ℓ− 1] ∪R[ℓ − 1]). Thus X ∈ Γ[ℓ− 1] ∪R[ℓ − 1] in all cases.

Therefore there only remains to prove that if C ⊆ R[ℓ] is a tube containing an indecomposable direct
summand of T then C[−1] contains an indecomposable direct summand of T ′. Let Z ∈ addT be inde-
composable such that Z ∈ C. Hence Z ∈ addT2. If Hom(T1xs, Z) = 0 then Z[−1] ∈ addT ′

2 (2.1.2, part
(3)), and thus C[−1] ∈ ET ′ . Otherwise Hom(T1, Z) 6= 0, and hence Hom(M,Z) 6= 0 because M → T2 is
an addT1-approximation; moreover Hom(Z,M) = 0 because Hom(T2, T1) = 0; therefore, in the diagram
below where the row is a triangle and Z[−1] →֒ T2[−1] is a section,

Z[−1]
� _

��
M [−1] // T2[−1] // T ′

2
// M

the section does not factor through M [−1] → T2[−1]; this entails that the composite morphism Z[−1] →
T2[−1] → T ′

2 is non-zero; hence Hom(M,Z) 6= 0 and Hom(Z[−1], T ′
2) 6= 0 with Z[−1] ∈ C[−1] ⊆

R[ℓ− 1] and M,T ′
2 ∈ add(Γ[ℓ− 1] ∪R[ℓ− 1]); thus there exists Z ′xs ∈ addT ′

2 indecomposable such that
Hom(Z[−1], Z ′) 6= 0 and Z ′ ∈ R[ℓ − 1]; in particular Z ′ ∈ C[−1] because R[ℓ − 1] is a disjoint union
of tubes which are orthogonal in T . This proves that C[−1] ∈ ET ′ . Therefore T ′ ends in R[ℓ − 1] and
{C[−1] | C ∈ ET } ⊆ ET ′ . �

3.3.5. The uniqueness of the tube in which T starts and ends (up to a shift). Summarising 3.3.3, 3.3.4
and 3.3.5 gives the following structure result on tilting objects which start and end in non-transjective
Auslander-Reiten components.

Proposition. Assume that T is a triangulated category triangle equivalent to the bounded derived category
of a finite-dimensional k-algebra of tame representation type. Let T ∈ T be a tilting object. Assume that
ℓ > 0 is an integer and R is a family of non-transjective Auslander-Reiten components such that T starts
in R and ends in R[ℓ]. Then ℓ > 1 and there exists a tube C ⊆ R such that the indecomposable direct
summands of T lying in R (or in R[ℓ]) all lie in C (or in C[ℓ], respectively).

Proof. As explained in 3.3.1, it is necessary that ℓ > 1. The proof of the lemma is an induction on ℓ > 1.
If ℓ = 1 the result follows from 3.3.3.

Assume that ℓ > 2 and that the conclusion of the lemma holds true for every tilting object in T
which starts in R and ends in R[ℓ − 1]. Applying 3.3.4 to T gives rise to the tilting object T ′. The
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20 EDSON RIBEIRO ALVARES, PATRICK LE MEUR, AND EDUARDO N. MARCOS

induction hypothesis therefore applies to T ′: Hence there exists a tube C ⊆ R such that ST ′ = {C} and
ET ′ = {C[ℓ− 1]}. The conclusion of 3.3.4 then implies that ST = {C} and ET = {C[ℓ]}. �

3.3.6. The following proposition follows directely from 3.3.2 and 3.3.5

Proposition. Assume that T is triangle equivalent to the bounded derived category of a finite-dimensional
hereditary algebra of tame representation type. Let T ∈ T be a tilting object. Assume that there exists a
family R of non-trasnjective Auslander-Reiten components, and an integer ℓ > 0 such that T starts in R
and ends in R[ℓ]. Then s.gl.dim. T = ℓ+ 2.

3.4. The strong global dimension when T starts and ends in a family of ZA∞ components.

Proposition. Assume that T is triangle equivalent to the bounded derived category of a finite-dimensional
hereditary algebra of wild representation type. Let T ∈ T be a tilting object. Assume that there exists a
family R of non-transjective Auslander-Reiten components, and an integer ℓ > 0 such that T starts in R
and ends in R[ℓ]. Then s.gl.dim. T = ℓ+ 2.

Proof. Let Σ be a slice in Γ. Let H ⊆ T be the additive and full subcategory such that

H = {X ∈ T | (∀S ∈ Σ) (∀i 6= 0) Hom(S,X [i]) = 0} .

Therefore R is the family of regular Auslander-Reiten components of the hereditary abelian category H.

Therefore T ∈
∨ℓ

i=0 H[i], and thus s.gl.dim. T 6 2 + ℓ (1.2). On the other hand 1.3.2, part (3), implies
that s.gl.dim. T > ℓ+ 2. Thus s.gl.dim. T = ℓ+ 2. �

4. Proof of the main theorems

4.1. Proof of Theorem 1.

Proof. The assertion (1) follows from 1.2.

The proof of the existence of a pair (H, ℓ) satisfying (2) distinguishes two cases according to whether T
starts (or ends) in a transjective Auslander-Reiten component, or T starts in a family of non-transjective
Auslander-Reiten components and ends in a family of non-transjective Auslander-Reiten components.

Assume first that T starts in a transjective Auslander-Reiten component Γ. Let (H, ℓ) be like in
3.2. Then (H, ℓ) satisfies (2). If T ends in a transjective Auslander-Reiten component then the same
conclusion follows from dual arguments.

Assume next that there exists an integer ℓ > 0 and a family R of non-transjective Auslander-Reiten
components, such that T starts in R and ends in R[ℓ]. Let Γ be the transjective Auslander-Reiten
component such that

(∀X ∈ R) (∃Y ∈ Γ) Hom(Y,X) 6= 0 .

Let Σ be any slice in Γ. Let H ⊆ T be the full and additive subcategory

H = {X ∈ T | (∀S ∈ Σ) (∀i 6= 0) Hom(S,X [i]) = 0}.

Then H is hereditary and abelian, and the embedding H →֒ T extends to a triangle equivalence Db(H) ≃
T . Moreover, R[i] is the family of regular Auslander-Reiten components of the abelian category H[i].

Therefore T ∈
∨ℓ

i=0 H[i] since T starts in R and ends in R[ℓ]. Finally it follows from 3.3.6 and 3.4 that
s.gl.dim. T = ℓ+ 2. �
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THE STRONG GLOBAL DIMENSION OF PIECEWISE HEREDITARY ALGEBRAS 21

4.2. Proof of Theorem 2.

Proof. Let T (0), . . . , T (ℓ) be such a sequence. Then |s.gl.dim. T (i)−s.gl.dim. T (i+1)| 6 1 for every i (2.1.5).
Thus s.gl.dim. T 6 ℓ+ 2. This proves (1).

Let d = s.gl.dim. T . Then d > 2 for End(T )op is not hereditary. The existence of a sequence
T (0), . . . , T (ℓ) verifying (2) is proved by induction on d. If d = 2 then End(T )op is a tilted algebra,
and thus taking ℓ = 0 and T (0) = T does the trick.

Assume now that d > 2 and that part (2) of the theorem holds true for any tilting object T ′ such that
s.gl.dim. T ′ = d−1. In order to prove the same for T it suffices to prove the following claim: There exists
a decomposition

T = T1 ⊕ T2

such that Hom(T2, T1) = 0 and the tilting object T ′ = T1 ⊕ T ′
2 (2.1.1) has strong global dimension equal

to d− 1, where T ′
2 is the first term of a triangle

T ′
2 → M → T2 → T ′

2[1]

where M → T2 is a minimal right addT1-approximation. This claim is proved distinguishing two cases
according to whether T starts (or ends) in a transjective Auslander-Reiten component, or T starts
in a family of non-transjective Auslander-Reiten components and ends in a family of non-transjective
Auslander-Reiten components.

Assume first that T starts in a transjective Auslander-Reiten component Γ (the case where T ends
in Γ is dealt with using dual arguments). Let Σ, H and ℓ be like in 3.2 applied to T . In particular
ℓ = d− 2 > 0. Let

T = T1 ⊕ T2

be a decomposition such that T1 ∈
∨ℓ−1

i=0 H[i] and T2 ∈ H[ℓ]. In particular Hom(T2, T1) = 0. Let M → T2

be a minimal right addT1-approximation. Let

T ′
2 → M → T2 → T ′

2[1]

be a triangle. Let T ′ = T1 ⊕ T ′
2. Therefore T ′ is tilting, and T ′

2 ∈ H[ℓ − 1] (2.1.3). Since ℓ > 1 it follows
that any indecomposable direct summand of T in Γ is a direct summand of T ′. Hence if Σ′, H′ and ℓ′

are like in 3.2 applied to T ′ then

Σ′ = Σ , H′ = H , ℓ′ = ℓ− 1 , and s.gl.dim. T ′ = ℓ′ + 2 = ℓ + 1 = d− 1 .

This proves the claim when T starts in Γ.
Assume now that there exists an integer ℓ > 0 and a family R of non-transjective Auslander-Reiten

components such that T starts in R and ends in R[ℓ]. Then s.gl.dim. T = ℓ + 2 (3.3.6, 3.4). Let Γ and
H be like in the proof in 4.1 in the correspnding situation. Then

T ∈ add(R∪ Γ[1] ∪ · · · ∪ Γ[ℓ] ∪R[ℓ]) .

Let
T = T1 ⊕ T2

be a decomposition such that T1 ∈ add(R∪Γ[1]∪ · · · ∪R[ℓ− 1]) and T2 ∈ add(Γ[ℓ]∪R[ℓ]). In particular
Hom(T2, T1) = 0. Let M → T2 be a minimal right addT1-approximation. Let

T ′
2 → M → T2 → T ′

2[1]

be a triangle. Let T ′ = T1 ⊕ T ′
2. Then T ′ is tilting. Note that the choice made for the decomposition

T = T1 ⊕ T2 and the fact that M → T2 is right minimal entail that M ∈ add(Γ[ℓ − 1] ∪ R[ℓ − 1]). It
appears that T ′ starts in R and ends in R[ℓ− 1]. Indeed, first

T1 ∈ add(R∪ Γ[1] ∪ · · · ∪ R[ℓ− 1]) and (addT1) ∩R 6= ∅ .
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Next, if X is an indecomposable direct summand of T ′
2 then (2.1.3) at least one of the following assertions

is true

• X ∈ add(T2[−1]), in which case X ∈ Γ[ℓ− 1] ∪R[ℓ − 1],
• X ∈ addM , in which case X ∈ Γ[ℓ− 1] ∪R[ℓ− 1],
• Hom(X,M) 6= 0 and Hom(T2[−1], X) 6= 0, which imply that

X ∈ Γ[ℓ− 2] ∪R[ℓ − 2] ∪ Γ[ℓ− 1] ∪R[ℓ − 1] , and X ∈ Γ[ℓ− 1] ∪R[ℓ− 1] ∪ Γ[ℓ] ∪R[ℓ] ,

that is, X ∈ Γ[ℓ− 1] ∪R[ℓ− 1].

Therefore

T ′
2 ∈ add(Γ[ℓ− 1] ∪R[ℓ− 1]) .

Hence there only remains to prove that T ′ has an indecomposable direct summand lying in R[ℓ − 1].
Let Z ∈ R[ℓ] be an indecomposable direct summand of T . Let X → N → Z → X [1] be a triangle
like in 2.1.2. Therefore X is an indecomposable direct summand of T ′. Note that N ∈ add(R[ℓ − 1])
because N → Z is a minimal right addT1-approximation and Z ∈ R[ℓ]. If Hom(T1, Z) = 0 then
X = Z[−1] ∈ R[ℓ − 1]. Otherwise Hom(X,N) 6= 0 and Hom(Z[−1], X) 6= 0. The former implies that
X ∈ R[ℓ − 2] ∪ Γ[ℓ − 1] ∪R[ℓ − 1]. The latter implies that X ∈ R[ℓ − 1] ∪ Γ[ℓ] ∪R[ℓ] because Z ∈ R[ℓ].
Thus X ∈ R[ℓ− 1]. This proves that T ′ starts in R and ends in R[ℓ− 1]. The claim is therefore proved,
and so is the theorem. �
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