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Model Reduction of Chemical Reaction Systems using Elimination

There exist different schemes of model reduction for parametric ordinary differential systems arising from chemical reaction systems. In this paper, we focus on some schemes which rely on quasi-steady states approximations. We show that these schemes can be formulated by means of differential and algebraic elimination. Our formulation is simpler than the classical ones. It permitted us to obtain an approximation of the basic enzymatic reaction system which is different from those of Henri-Michaëlis-Menten and Briggs-Haldane.

Introduction

Chemical reaction systems provide a formalism to describe dynamical systems in contexts more general than the traditional chemically reacting mixtures. The dynamics of these systems is usually studied by translating them to systems of parametric ordinary differential equations by means of the mass action law. Observe that the strict setting of chemical reactions is usually not sufficient to describe many behaviours and needs to be generalized [START_REF] Horn | General mass action kinetics[END_REF]. For instance, in the process of modeling gene regulatory networks, it is common to allow unbalanced reactions, or reactions which do not conserve the mass of the reactants to describe, among other phenomenons, mRNA translation or protein degradation. See e.g. [START_REF] Vilar | Mechanisms of noise-resistance in genetic oscillators[END_REF].

The parametric ODE systems derived from these generalized chemical reaction systems are often too complicated for further analysis and need to be reduced. They are often overparameterized, which makes fitting methods to determine the parameters values heavy to carry out and unreliable. Moreover, for the important purpose of understanding which parts of the system contribute the most to some property of interest [START_REF] Kell | The Role of Modeling in Systems Biology[END_REF], it is preferable to deal with smaller systems.

For these reasons, model reduction of chemical reaction systems have become a central problem in their study, as explained in the survey [START_REF] Okino | Simplification of Mathematical Models of Chemical Reaction Systems[END_REF]. Among all the existing model reduction methods (lumping, sensitivity analysis, . . . ) this paper is only concerned by the quasi-steady state approximation, which relies on the assumption that some of the chemical reactions are much faster than the other ones.

The idea of quasi-steady state approximation is simple: study the dynamics of the slow reactions, assuming that the fast ones are at quasi-equilibrium, thereby removing from the ODE system, the differential equations which describe the evolution of the variables at quasi-equilibrium. Many authors [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF][START_REF] Okino | Simplification of Mathematical Models of Chemical Reaction Systems[END_REF][START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF] state that carrying out rigorously this approximation is far from straightforward. We would rather say that there are different ways to perform this approximation and that it is the problem of ascertaining the domain of validity of each kind of approximation which is not straightforward.

A basic quasi-steady state approximation may very well apply if one is only interested by a basic property of the model under study (e.g. the presence of a Poincaré-Andrononv-Hopf bifurcation) possibly under some extra assumptions [START_REF] Vilar | Mechanisms of noise-resistance in genetic oscillators[END_REF][START_REF] Boulier | Differential Elimination and Biological Modelling[END_REF][START_REF] Boulier | On proving the absence of oscillations in models of genetic circuits[END_REF]. A more subtle one may be needed if one is interested by the timescales over which the system equilibrates or by the period and the amplitude of the oscillations, in the case of an oscillating system [START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF]. This paper focuses on the quasi-steady state approximations considered in [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF][START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF], which are equivalent and which assume that reactions can be separated in only two categories: the "fast" ones and the "slow" ones (there are no, say, "very fast" or "medium" reactions). It shows how differential elimination methods [START_REF] Boulier | Representation for the radical of a finitely generated differential ideal[END_REF][START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF][START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF] can be used to perform the model reduction. The presented method is brute force. A more subtle use of non differential elimination methods, based on [START_REF] Lemaire | The RegularChains library in MAPLE 10[END_REF], was implemented by the third author and will be described in a future paper. Observe however that this paper is not concerned by the problem of checking some validity conditions such as conditions C3 and C4 of [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF].

We stress the fact that using automatic elimination methods makes the task of the modeller much easier. In particular, [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF][START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF] do not simplify their reduced dynamical systems by taking into account the conservation laws. Simplifying a dynamical system modulo algebraic equations is not easy to perform by hand while it is very important since it sometimes permits to decrease the number of variables of the resulting dynamical system.

As all model reduction methods, the quasi-steady state approximation permits to investigate the stability of biological systems, by symbolic methods, over a larger range of systems [START_REF] Wang | Stability Analysis of Biological Systems with Real Solution Classification[END_REF][START_REF] Niu | Qualitative Analysis of Biological Systems Using Algebraic Methods[END_REF]. The quasi-steady state approximation is however, specifically, a very interesting preparation process for further numerical integration, since it permits to avoid the presence of different timescales in ODE systems. As pointed out by Robertson in 1966, "When the equations represent the behaviour of a system containing a number of fast and slow reactions, a forward integration of these equations becomes difficult" cited in [13, 

The method over the basic enzymatic reaction system

The following classical system of chemical reactions (1) and ( 2) describes the transformation of a substrate S into a product P under the action of the enzyme E. An intermediate complex C is produced.

E + S k1 --⇀ ↽-- k-1

C

(1)

C k2 -→ E + P (2) 
There is a straightforward way to transform this chemical system into a system of four parametric ordinary differential equations. The so obtained model ( 3) is often called the initial model of the chemical system:

Ė = -k 1 E S + k -1 C + k 2 C (3a) Ṡ = -k 1 E S + k -1 C (3b) Ċ = k 1 E S -k -1 C -k 2 C (3c) Ṗ = k 2 C (3d)
The hypothesis which permits to perform all the model reductions is that the reversible reaction ( 1) is much faster than the reaction [START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF]. With other words, one assumes that

k 1 , k -1 ≫ k 2 .
Two different reductions of this chemical system were given in the early twentieth century by Henri, Michaëlis and Menten [START_REF] Henri | Lois générales de l'Action des Diastases[END_REF][START_REF] Michaelis | Die kinetik der invertinwirkung[END_REF] on the one hand, Briggs and Haldane [START_REF] Briggs | A note on the kinetics of enzyme action[END_REF] on the other hand.

The Henri-Michaëlis-Menten and Briggs-Haldane reductions

In all cases, the reduced model, which describes the evolution of the product concentration from the substrate concentration, writes:

Ṗ (t) = V m S(t) K + S(t) , Ṡ(t) = - V m S(t) K + S(t) (4) 
but with different assumptions and different values for the parameter K.

Both reductions rely on a few extra assumptions i.e. (the 0 subscript indicating initial concentrations) S 0 ≫ E 0 , P ≃ 0, C 0 = 0 [1, page 9]. In the case of the Henri-Michaëlis-Menten reduction, one assumes equation ( 1) is constantly at equilibrium (the pre-equilibrium condition), which means k 1 C ≃ k -1 E S. Thus Ṡ is assumed to be small. Performing some extra computations, one is led to V m = k 2 E 0 and K = k-1 k1 • In the case of the Briggs-Haldane reduction, one assumes that the intermediate complex does not vary much i.e. that Ċ ≃ 0 which implies k 1 E S ≃ (k -1 + k 2 ) C (the quasi-stationary state hypothesis). Doing some further computations, one is led to V m = k 2 E 0 (as in the Henri-Michaëlis-Menten case) and K = k-1+k2 k1 •

Reduction using differential elimination

The first idea that a casual reader would have for performing such reductions could consist in translating the "≃" into a "=". In the Briggs-Haldane case, the hypothesis Ċ ≃ 0 would be treated by enlarging the initial model equations with the new equation Ċ = 0. However, this equation implies that C is a constant, which implies that S is a also a constant. The reduced model so obtained can certainly be considered as useless.

The right way to proceed consists in separating the "fast" variables from the "slow" ones and in transforming the ODE defining the evolution of each fast variable ẋ = rhs by the algebraic equation 0 = rhs. But what is a "fast" variable ? An intuitive definition would be: a variable is fast if it is involved in a fast chemical reaction. Over some examples [START_REF] Vilar | Mechanisms of noise-resistance in genetic oscillators[END_REF] this definition is sufficient. However, it would clearly lead to a useless reduced model over our example since E, S and C would then be considered as fast variables and one would end up with the reduced model Ṗ = Ṡ = 0. As explained in [2, page 3502], a variable x such that ẋ depends on a mixture of slow and fast reactions should not be considered as slow. The fast and slow variables of a system are not necessarily the model variables but functions of them. They can be computed by a rigorous two timescales analysis, as shown by [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF] but, as stated by [START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF], this is not always necessary.

The reduction that we present here is equivalent to those of [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF][START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF] but differs in its presentation. As for the Henri-Michaëlis-Menten reduction, one uses the pre-equilibrium approximation on the first reaction but this is (for the moment) the only assumption we make:

k 1 E S = k -1 C (5) 
As for the initial model, one translates the two chemical reactions as parametric ordinary differential equations expressing the evolution of the concentrations of E, S, C and P . However one handles the reactions which are assumed to be at equilibrium (the fast reactions) in a different manner than the other reactions (the slow reactions): the variation of the concentration of each chemical species is the sum of the contributions of each reaction. The contribution of each slow reaction is derived from the law of mass action as usual. The contribution of each fast reaction is represented by a new variable.

The underlying idea is that the dynamic of the fast reaction is (for the moment) considered as unknown. This means that one adds a degree of freedom for each fast reaction. This freedom in fact allows the system to stay on the equilibrium conditions. Performing elimination on the extra unwanted variables, one gets a set of differential equations in the reactants only. Over the example, the contribution of the fast reaction is denoted F 1 (for fast reaction 1) and the contribution of the slow reaction is k 2 C:

Ė = -F 1 + k 2 C (6a) Ṡ = -F 1 (6b) Ċ = F 1 -k 2 C (6c) Ṗ = k 2 C (6d)
Using elimination on ( 5) and ( 6 rules := rewrite_rules( Ids [START_REF] Bellon | Biochimie Structurale: introduction à la cinétique enzymatique[END_REF] );

F 1 = k 2 k 1 E S (k 1 S + k -1 ) k -1 (k 1 S + k 1 E + k -1 ) , Ė = k 1 2 E 2 k 2 S k -1 (k 1 S + k 1 E + k -1 ) , Ṗ = k 2 k 1 E S k -1 , Ṡ = - k 2 k 1 E S (k 1 S + k -1 ) k -1 (k 1 S + k 1 E + k -1 ) , C = k 1 E S k -1
In the above system, one gets the value of F 1 . The reduced model is made of three parametric ordinary differential equations. It is exactly that obtained by [29, page 2327, (33), denoting A, B, C, D, κ for S, E, C, P, k 1 /k -1 ].

Refinements

One can simplify further the reduced model by replacing the two parameters k 1 and k -1 by a single parameter K = k -1 /k 1 . Indeed, k 1 and k -1 only appear in the equation ( 5) for which one can substitute K = k -1 /k 1 . This simplification makes sense: the values of k -1 and k 1 describe the speed of the fast reaction. Since this reaction is assumed to be constantly at the equilibrium, only the ratio of the two constants matters. Continuing the example, one gets: map (normal, subs (km1=K*k1, rules));

F1 = k2 E S (S + K) K (S + E + K) , Ė = k2 E 2 S K (S + E + K) , Ṗ = k2 E S K , Ṡ = - k2 E S (S + K) K (S + E + K) , C = E S K .
The second simplification consists in using the two conservations laws below (that one can automatically deduce from the system (6) by means of linear algebra):

E + C = E 0 + C 0 (7a) S + C + P = S 0 + C 0 + P 0 (7b)
plus the hypothesis C 0 = P 0 = 0 (as for the classical reductions). One can then eliminate E from the ODE describing the evolution of S. This can be done by means of elimination. For instance, one can rerun the above commands, enlarging the field F with the two new symbols E 0 and S 0 and the list sys with the two equations E + C = E 0 and S + C + P = S 0 . Performing the same elimination as above and denoting k 2 E 0 = V m as usual, one eventually gets:

Ṡ = - V m S (K + S) K E 0 + (K + S) 2 • (8)
As far as we know, this formula is new. If one neglects the term K E 0 in equation ( 8), one gets equation (4). Thus equation ( 8) and ( 4) are almost equal when the term K E 0 is negligible, for example when S ≫ E 0 . What happens when S and E 0 are in the same range, a phenomenon likely to occur in vivo according to [12, §2.1.1] ? Equation ( 8) turns out to be more precise, Figure 1 shows. 

The algorithm

The main algorithm DifferentialModelReduction is composed of two main steps: the transformation of the list of reactions into a dynamical system, and the elimination part. Its main interest is that it is fully automatic and performs automatic case splitting when needed.

The DifferentialModelReduction algorithm described in section 3.2 relies on a few auxiliary functions described in section 3.1. In all algorithms presented in this section, the parameter L denotes a list of chemical reactions, and X denotes a vector of all chemical species of L (i.e. all the reactants and products involved in L). Except in the function DifferentialModelReduction, the order of the elements of X is not important. As explained later in section 3.2, the order of X encodes the chemical species to be eliminated.

Each reaction is represented by a list of reactants, a list of products, a boolean flag indicating if the reaction is considered fast, a boolean flag indicating if the reaction is reversible, and one (or two) rate constant(s) (depending on whether the reaction is reversible or not). A fast reaction can be as well reversible as irreversible. Reactants and products are represented by lists with two elements: a symbol and a stoichiometric coefficient. For example, the two reactions (1) and (2) in section 2 could be coded in MAPLE, in the humanly readable format:

[ reactants=[ [E,1], [S,1] ], products=[ [C,1] ], rateConstants=[k1, km1], fast=true, reversible=true ]; [ reactants=[ [C,1] ], products=[ [E,1], [P,1] ], rateConstants=[k2], fast=false, reversible=false ]
Observe that, in our algorithm, a reversible reaction is not equivalent to two irreversible reactions. The task of indicating that a reaction is reversible is left to the user. It could be made automatic by computing the rank of a stoichiometry matrix as [29, page 2323].

A basic way to define slow and fast reactions consists in splitting the set of rate constants into two sets: the large ones and the small ones. A reaction is considered as fast if it involves at least one large rate constant.

The auxiliary functions

In this section, one denotes a reaction as

a j X j k1 -→ b j X j if R is irreversible, otherwise a j X j k1 -⇀ ↽ - k2 b j X j .
This formulation involves all the chemical species present in the list of reactions, by setting a j = 0 (resp. b j =0) when X j is not a reactant (resp. a product).

The function StoichiometricMatrix. It computes the stoichiometric matrix associated to a list of reactions L (see [START_REF] Klamt | Stoichiometric and Constraint-based Modeling[END_REF]).

Algorithm 1 StoichiometricMatrix(L, X)

Require: a list of reactions L = [l 1 , . . . , l p ], a vector X = t (X 1 , . . . , X n ) of all reactants and products involved in L Ensure: the stoichiometric matrix associated to L 1: let M = (m ji ) 1≤j≤n, 1≤i≤p, 2: for each reaction l i do 3:

denote l i as a j X j k1 -→ b j X j if R is irreversible, otherwise a j X j k1 -⇀ ↽ - k2 b j X j 4:
m ji := b j -a j for each 1 ≤ j ≤ n 5: end for 6: return M The function Equilibria. It returns a list of algebraic relations ensuring that the fast reactions are at pre-equilibrium. On our example in section 2, it simply returns [k 1 ESk -1 C], which is the equation (5).

Algorithm 2 Equilibria(L, X)

Require: a list of reactions L, a vector X = t (X 1 , . . . , X n ) of all reactants and products involved in L Ensure: the list of equilibrium relations for the fast reactions 1: let L f = [l 1 , , . . . , l p ] be the list of the fast reactions of L

2:

⊲ let us first construct the rate vector V f for the fast reactions

3: let V f = t (v 1 , . . . , v p ) 4: for each reaction l i of L f do 5: denote l i as a j X j k1 -→ b j X j if R is irreversible, otherwise a j X j k1 -⇀ ↽ - k2 b j X j 6:
if l i is irreversible then 7:

v i := k 1 X j aj 8:
else 9:

v i := k 1 X j aj -k 2 X j bj 10:
end if 11: end for ⊲ let us compute the stoichiometric matrix for the fast reactions 13: M f := StoichiometricMatrix(L f , X) 14: res := M f • V f 15: convert res into a list and remove duplicate entries 16: return res Algorithm 3 ListReactionsToODE(L, X)

Require: L = [l 1 , . . . , l p ] is a list of reactions, X = t (X 1 , . . . , X n ) is a vector of all reactants and products involved in L Ensure: a dynamical system Ẋ = H(X, Θ, F ) describing L, where Θ is the set of the rate constants, and F is the set of the fast variables F i 's.

1:

⊲ let us first construct the vector of rate V 2: let V = t (v 1 , . . . , v p ) 3: for each reaction l i do 4:

denote l i as a j X j k1 -→ b j X j if R is irreversible, otherwise a j X j k1 -⇀ ↽ - k2 b j X j 5:
if l i is a fast reaction then 6:

v i := F i 7: else 8:
if l i is irreversible then

9: v i k 1 X j aj 10:
else 11:

v i := k 1 X j aj -k 2 X j bj 12:
end if 

M := StoichiometricMatrix(L, X) 17: return Ẋ = M • V
The function ListReactionsToODE. It returns a dynamical system Ẋ = H(X, Θ, F ), where Θ denotes the set of all rate constants in the list of reactions, and F denotes the set of the extra variables F i introduced for the fast reactions. On our example in section 2, if L is the list composed of the two reactions (1) and (2) (in that order), and if X = t (E, S, C, P ), then the vector V and the matrix M computed inside ListReactionsToODE are

V = F 1 k 2 C M =     -1 1 -1 0 1 -1 0 1     Thus ListReactionsToODE returns Ẋ =     Ė Ṡ Ċ Ṗ     =     -1 1 -1 0 1 -1 0 1     F 1 k 2 C =     -F 1 + k 2 C -F 1 F 1 -k 2 C k 2 C    
which is exactly the system (6). The ConservationLaws function. It aims at finding linear combinations of the X i which are constant along solutions. To compute them, one just needs to compute a basis of the kernel of t M (i.e. a basis of the solutions of t M • Y = 0). This is a linear algebra problem over Q. The argument is straightforward: if y satisfies t M • y = 0, then t y • Ẋ = t ( t M • y) • V = 0, so t y • X is constant on any solution, which implies t y • X is a conservation law. See also [START_REF] Klamt | Stoichiometric and Constraint-based Modeling[END_REF]. On the example of section 2, a basis of the kernel of t M is for example t (-1, 1, 0, 1) and t (1, 0, 1, 0). This leads to -E + S + P = -E 0 + S 0 + P 0 and E + C = E 0 + C 0 . Although different to the two conservation laws [START_REF] Boulier | Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits[END_REF], one easily checks that they are equivalent. If instead, one takes the other basis t (0, 1, 1, 1) and t (1, 0, 1, 0), one exactly obtains the conservation laws [START_REF] Boulier | Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits[END_REF].

Algorithm 4 ConservationLaws(L, X)

Require: a list of reactions L, a vector X of all reactants and products involved in L Ensure: a list of (linear) conservation laws

1: M := StoichiometricMatrix(L, X) 2: compute a basis [y 1 , . . . , y s ] of t M • Y = 0 3: return the list [ t y 1 • X, . . . , t y s • X]

The DifferentialModelReduction algorithm

The function DifferentialModelReduction. It transforms a list of reactions into a list of dynamical systems encoding the reduced models. The chemical species to be eliminated are to be put first in the vector X. The number of chemical species that can be eliminated depends on several criteria: the more fast reactions and conservation laws there are, the more chemical species get eliminated. However, this number also depends on the form of the equations themselves, as shown in section 4.1.

Algorithm 5 DifferentialModelReduction(L, X)

Require: a list of reactions L, a vector X = t (X 1 , . . . , X n ) of all reactants and products involved in L Ensure: a list of reduced dynamical systems in the variables X 1:

Sys := ListReactionsToODE(L, X) 2: Cons := ConservationLaws(L, X) 3: Equi := Equilibria(L, X) 4: S := Sys ∪ Cons ∪ Equi 5: R the ranking [F ] ≫ [X]
where F is the set of the unknowns F i introduced for each fast reaction 6: [C 1 , . . . , C t ] := Rosenfeld-Gröbner(S, R) 7: if NormalForm(F i , C k ) is not a rational fraction in the variables X (for all F i and all 1 ≤ k ≤ t) then FAIL. 8: return the list [S 1 , . . . , S t ] 9: where each S i is equal to [ Ẋ1 = NormalForm( Ẋ1 , C i ), . . . , Ẋn = NormalForm( Ẋn , C i )] After building the system S of equations, DifferentialModelReduction builds the ranking R to be used by Rosenfeld-Gröbner over the system S. The ranking [F ] ≫ [X] means that all derivatives of F are greater than those of X, the derivatives of F are ordered w.r.t. an orderly ranking, and the derivatives of X also.

The algorithm Rosenfeld-Gröbner performs the so called differential elimination. It returns a list of systems of polynomial differential equations called characteristic sets. Each characteristic set C i defines some differential ideal A i in the differential polynomial ring R which contains the model equations. Using the set C i , one is able to perform computations (such as the normal form computation) modulo the ideal A i . The italicized words above come from the differential algebra [START_REF] Ritt | Differential Algebra[END_REF][START_REF] Kolchin | Differential Algebra and Algebraic Groups[END_REF][START_REF] Wang | Elimination Practice: Software Tools and Applications[END_REF].

Applied to any differential polynomial p and C i , the NormalForm algorithm returns a rational fraction which is a canonical representative of the residue class of p in the factor ring R/A. See [START_REF] Boulier | Computing canonical representatives of regular differential ideals[END_REF] or [10, Figure 2] for a presentation of the NormalForm algorithm1 . In our case, the goal of NormalForm is straightforward: it consists in expressing each derivative Ẋi or each unknown F j as a rational fraction in the variables X only. If this goal is reachable, the normal form function performs it, thanks to the rankings properties.

Rosenfeld-Gröbner returns a list of characteristic sets because it is a case splitting algorithm, so it may need to consider different cases (say) X j = 0 and X j = 0 for some j. Such splittings might introduce some spurious outputs, since the case X j = 0 is usually not very interesting. Indeed in section 2, the case C = P = E = S = 0 is not interesting. However, those splittings are needed when fast irreversible reactions are involved. For example, if one assumes that the reaction A + B k -→ C is fast, then the pre-equilibrium hypothesis yields kAB = 0, which implies A = 0 or B = 0. Those two cases need to be treated differently since the dynamic in each case is different.

Over our example in section 2, the function DifferentialModelReduction (up to the renaming K = k -1 /k 1 ) performs the same computations as in sections 3.2 and 2.3.

Failures

Strictly speaking, it may happen that some unknowns F i cannot be expressed as rational fractions of the variables X. In this case, our algorithm fails. Examples for which our method fails include many examples which make no sense (e.g. fast unbalanced reactions such as A → A + B). A meaningful example for which our method does not readily apply is given by the Robertson's example [13, chap. IV.1] when the fast and the very fast reactions are considered both fast.

Translating our technical condition in terms of properties of the chemical reaction systems is an interesting problem, left for a future paper. Observe that our condition plays a role equivalent to the "kinetic" linear independence condition combined to the singularity testing for algebraic equations described in [29, pages 2324-2326] but our method seems to be more straightforward: it can be directly formulated in the setting of algebraic geometry (ideal theory) instead of a matrix inversion problem over a residue class ring [29, eq. ( 27)].

Sufficient conditions for the two methods to apply are described in [29, page 2326] (e.g. case of fast reactions with pairwise disjoint sets of reactants and products).

Optimisations

First, as said in section 2, one may decrease the number of rate constants in the reduced model. Indeed, the system returned by the Equilibria can usually be simplified by replacing some constants by their ratio or their sum. This can be done automatically using symmetry technics as in [START_REF] Sedoglavic | Reduction of Algebraic Parametric Systems by Rectification of their Affine Expanded Lie Symmetries[END_REF]. As a particular case, if all the fast reactions are reversible, one can introduce a new symbol K = k 2 /k 1 for each fast reaction a j X j k1 -⇀ ↽ -k2 b j X j . To handle this algorithmically, one would need to modify the function Equilibria so that it also returns a description of the new K symbols. Second, although the differential elimination is conceptually simpler, it appears that the elimination process is mainly a linear algebra problem over some residue class ring. This can be achieved by using regular chains and regularity tests, as can be done with the RegularChains [START_REF] Lemaire | The RegularChains library in MAPLE 10[END_REF] package (and its subpackage MatrixTools) in MAPLE. Here is some insight of this claim (another paper will discuss that point).

Over the example of section 2, differentiate (5):

k 1 ĖS + k 1 E Ṡ = k -1 Ċ (9) 
Putting ( 6) and ( 9) together, one gets a system of five linear equations in F 1 , Ė, Ṡ, Ċ and Ṗ , over the residue class of K[E, S, C, P, k 1 , k -1 , k 2 ] by [START_REF] Boulier | Representation for the radical of a finitely generated differential ideal[END_REF]. This system can be solved w.r.t. F 1 . Taking conservation laws into account preserves the linearity of the problem.

Examples

In section 4.1, we carry out a basic polymer degradation system. We checked that our method applies to more complicated systems such as a polymerisation cascade or a variant of the ozone decomposition system (dropping temperature considerations) [29, page 2328].

Polymer degradation

One considers a simple dimerisation between a protein P and itself. One also assumes that the protein is degraded. The dimerisation is assumed to be fast, the degradation being slow. 

F 1 = -2 k 2 P 2 (4 KP -1) 16 KP 2 -1 , Ṗ2 = -2 k 2 P 2 (4 KP -1) 16 KP 2 -1 , P 2 = P 2 K
Computing the normal forms of Ṗ and Ṗ2 , one gets:

Ṗ = - k 2 P 2 (4 KP -1) KP (16 KP 2 -1) (12a) Ṗ2 = -2 k 2 P 2 (4 KP -1) 16 KP 2 -1 (12b) 
In this case, one could not eliminate P since it still appears in the equation (12b). However, over this simple example, one could eliminate P by using the (non algebraic) relation P = P 2/K. This would lead to: Ṗ2 = -

2k 2 P 2 4 √ KP 2 + 1 (13) 
However, this cannot be generalised easily (since an algebraic equation cannot be symbolically solved when its degree is greater than 5). If one changes the order and takes X = t (P 2 , P ), one obtains a different system:

Ṗ2 = - 2k 2 KP 2 4KP + 1 (14a) Ṗ = - k 2 P 4KP + 1 (14b)
In that case, P 2 is eliminated.

A single gene regulated by a polymer of its own protein

A model of a single gene regulated by an order n polymer of its own protein is provided in [START_REF] Boulier | On proving the absence of oscillations in models of genetic circuits[END_REF].

The model is composed of n + 3 chemical species and 2 n -5 parameters. The polymerisations are supposed to be fast. A quasi-steady state approximation was performed over this model, yielding a reduced model made of 3 parametric ODE. A result concerning the absence of oscillations was then obtained over the reduced model, by means of symbolic computations.

The algorithm presented in this paper was afterwards applied over this generic model for increasing values of n. The naive DifferentialModelReduction implementation, based on the MAPLE diffalg package, works for any n ≤ 6. The improved implementation, based on the MAPLE Regu-larChains package (see section 3.4) achieves the same task in a few seconds for each n ≤ 20. The obtained reduced model [START_REF] Boulier | Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits[END_REF] was more complicated than that of [START_REF] Boulier | On proving the absence of oscillations in models of genetic circuits[END_REF] but simple enough to be studied by means of symbolic computations: the results obtained in [START_REF] Boulier | On proving the absence of oscillations in models of genetic circuits[END_REF] still hold. The new reduced model is a more general approximation than the old one.

This example proves that the awful worst case complexity [3, chapter 9, Proposition 44] of differential elimination methods does not hold in the context addressed in this paper and that one may expect to process accurate reduced models by means of symbolic computations methods. [START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF] Our method is essentially the same as that of [START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF]. The main differences are: we do not introduce any ǫ but the unknown F i instead, we perform differential elimination instead of linear algebra and we directly handle reversible reactions instead of splitting them into two irreversible reactions (this affects the rate vector in the ListReactionsToODE function).

Equivalence of our method with

The above comments also apply to [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF] since this paper is a basis for [START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF]. The paper [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF] considers more general systems with external supply and withdrawal of species. For this reason, they do not obtain our formula (8) which is a consequence of conservation laws which do not exist in this general setting. They provide a strong theoretical basis for all methods. They transform the initial system into the so called two-time scale standard form by expliciting the true slow variables in order to apply the Tikhonov theorem. Our method (as well as that of [START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF]) is equivalent but more direct since it avoids this change of coordinates.

Our method is also essentially the same as that of [START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF]. The paper [START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF] presents an approximation scheme using the so called prefactors. Though we do not introduce this concept, our algorithm DifferentialModelReduction gives exactly the same reduced systems as [START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF] for the examples listed in [2, tables 1 and 2]. A major difference is that our method is fully algorithmic: it does not need to explicit the true slow variables and relies on elimination to perfom the computations. On the opposite, [START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF] does need to explicit the true slow variables (which might actually be computed automatically, following [START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF] for example). Computations are then performed by hand.

In order to illustrate the equivalence of our reduction method with that of [START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF], let us consider a simplified version of the example provided in [2, tables 1]: the case of the simple dimerisation given in section 4.1.

The argumentation of [START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF] introduces n P the total number of proteins P , which is simply n P = P + 2 P 2 (since a dimer P 2 contains two proteins P ). This new variable is in fact a slow variable, because this quantity does not change when the fast reaction (the dimerisation) occurs. One easily deduces the three equations:

P 2 = KP 2 (15a) 
n P = P + 2 P 2 (15b) ṅP = -k 2 P (15c) whereas our approach introduces:

P 2 = KP 2 (16a) Ṗ = -2F 1 -k 2 P (16b) Ṗ2 = F 1 (16c)
Although based on different variables, systems [START_REF] Horn | General mass action kinetics[END_REF] and ( 16) are in fact very similar since they both imply:

P 2 = KP 2 (17a) Ṗ + 2 Ṗ2 = -k 2 P (17b)
Indeed equation (17b) is obtained either by combining (16b) and (16c), or by combining (15b) and (15c). Since system [START_REF] Kell | The Role of Modeling in Systems Biology[END_REF] implies Ṗ = -k2P 4KP +1 , both systems ( 15) and ( 16) also do.

Conclusion

We have presented an algorithmic method for reducing systems of chemical reactions using elimination and we have shown the relationship between the approaches of [START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF] and ours.

The main interest of our method is that it is fully automated (once the set of fast reactions has been chosen). It is not restricted to academic examples [START_REF] Boulier | Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits[END_REF]. Moreover the setting of our algorithm could easily be integrated in software based on the SBML format since recent versions of SBML (level 2 version 3 for example) include the flags reversible and fast that we need in order to apply our method. Still in this computational context, the reduction of the number of rate constants based on symmetries [START_REF] Sedoglavic | Reduction of Algebraic Parametric Systems by Rectification of their Affine Expanded Lie Symmetries[END_REF] could also be used.

The replacement of the differential elimination step by linear algebra methods over residue class rings is left for a future paper as well as a formulation of the failure conditions in chemical terms.

The application of DifferentialModelReduction to the systems of [START_REF] Vilar | Mechanisms of noise-resistance in genetic oscillators[END_REF][START_REF] Morant | Oscillateurs génétiques simples[END_REF] and the analysis of the reduced models are also left for a future paper.

  ) with the ranking R = [F 1 ] ≫ [P, C, E, S] [19, chap. I, §8], one eliminates the unknown F 1 . Elimination is performed below using the MAPLE diffalg package. The parameters are put in the base field F of the equations to avoid discussions over their values (they are then considered as algebraically independent). An inequation is added to avoid considering the degenerate case of C(t) being the zero function. The output is pretty printed. with(diffalg): sys := [ E[t] -(-F1 + k2*C), S[t] -(-F1), C[t] -(F1 -k2*C), P[t] -k2*C, k1*E*S -km1*C ]: F := field_extension (transcendental_elements=[k2,k1,km1]): R := differential_ring (ranking=[ [F1], [C,E,P,S] ], derivations=[t], field_of_constants=F): Ineqs := [ C ]: Ids := Rosenfeld_Groebner (sys,Ineqs,R); Ids := [characterizable]
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 1 Figure 1. When the initial enzyme concentration is close to that of the substrate, the curve S(t) computed from the initial model (3) (red, coming from the top of the diagram) is better approximated by formula (8) (green) than by formula (4) (blue). The two reduced formulas were integrated for an initial value picked on the non reduced curve, after the transient step, at t = 0.005. Parameters values were borrowed from [29].

  K = k 1 /k -1 and take X = t (P, P 2 ). If L represents the two reactions (10a) and (10b), the call to DifferentialModelReduction(L, X) performs the following computations. The list Sys simply consists ofṖ = -2F 1 -k 2 P (11a) Ṗ2 = F 1 (11b)The list Cons is empty, and Equi is [KP 2 -P 2 ]. Let us detail the computations using diffalg:Sys := [ P[t] -(-2*F1 -k2*P), P2[t] -F1 ]; Cons := []; Equi := [ K*P^2-P2]; F := field_extension (transcendental_elements=[K,k2]): R := differential_ring (ranking=[ [F1], [P,P2] ], derivations=[t], field_of_constants=F): Ineqs := [ P ]: Ids := Rosenfeld_Groebner ( [op(Sys),op(Cons),op(Equi)] ,Ineqs,R); rules := rewrite_rules( Ids[1] );

  sect. IV.1, Examples of Stiff Equations].

In very rare cases, the NormalForm algorithm may split the characteristic set C i as finitely many smaller characteristic sets, refining thereby the list returned by Rosenfeld-Gröbner.