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ABSTRACT. In this paper we study an optimal control problem (OCP) asso-
ciated to a linear elliptic equation on a bounded domain . The matrix-
valued coefficients A of such systems is our control in Q and will be taken in
LQ(Q; RNXN) which in particular may comprise som cases of unboundedness.
Concerning the boundary value problems associated to the equations of this
type, one may face non-uniqueness of weak solutions— namely, approximable
solutions as well as another type of weak solutions that can not be obtained
through the L°°-approximation of matrix A. Following the direct method in
the calculus of variations, we show that the given OCP is well-posed in the
sense that it admits at least one solution. At the same time, optimal solutions
to such problem may have a singular character in the above sense. In view
of this, we indicate two types of optimal solutions to the above problem: the
so-called variational and non-variational solutions, and show that some of that
optimal solutions can be attainable by solutions of special optimal boundary
control problems.

In this paper we deal with the following optimal control problem (OCP) in coef-
ficients for a linear elliptic equation

Minimize I(4,y) = ||y — deig(Q) —|—/ (Vy, AV Vy)pn da
Q

subject to the constraints
(1) —div (AsymVy + ASke“’Vy) =f inQQ,
y=0 on 00
Ae Q[ada

where (A%Y™ Askew) ¢ [2°(Q; RNXN) x L2(Q; RN*N) are respectively the sym-
metric and antisymmetric part of the control A4, yg € L?(2) and f € H~1(Q) are
given distributions, and 2 44 denotes the class of admissible controls which will be
precised later.

The characteristic feature of this problem is the fact that the skew-symmetric
part of matrix A(x) = [a;;(x)]; j=1,.. n belongs to L?-space (rather than L>°). The
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gence, fictitious control.
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existence, uniqueness, and variational properties of a weak solution to (1) are usu-
ally drastically different from the corresponding properties of solutions to the elliptic
equations with L°°-matrices in coefficients. In most of the cases, the situation can
deeply change for the matrices A with unremovable singularity. Typically, in such
cases, the above boundary value problem may admit infinitely many weak solu-
tions which can be divided into two classes: approximable and non-approximable
solutions [12, 30, 32]. A function y = y(A) is called an approximable solution to
the boundary value problem in (1) if it can be attained by weak solutions to the
similar boundary value problems with L°°-approximated matrix A. However, this
type does not exhaust all weak solutions to the above problem. There is another
type of weak solutions, which cannot be approximated by weak solutions of such
regularized problems. Usually, these are called non-variational [30, 32|, singular
[2, 18, 19, 29], pathological [23, 26] and others.

It may seem puzzling to consider, for an optimal control problem, a state equa-
tion with singular matrix involved in the coefficients. Despite this offhand abstract
aspect of the problem, one should be aware that singular equations appear natu-
rally when considering optimal control problems with a nonlinear state equation
(see, for instance, [3] for quasi-linear elliptic equations). Moreover, formal analysis
in optimization are well-known to state that optimal control problems and their
adjoints are completely dual from each other through saddle points consideration
which also justifies the fact that one may be interested in dealing with optimization
of linear singular equations.

The aim of this work is to study the existence of optimal controls to the problem
(1), propose a scheme of their approximations, and discuss the optimality conditions
of this problem. Using the direct method in the Calculus of Variations, we show in
Section 2 that the original OCP admits in general a non-unique solution even if the
corresponding boundary value problem is ill-possed. This problem is thus another
example of the difference between well-posedness of optimal control problems for
systems with distributed parameters and ill-posedness of boundary value problems
for partial differential equations.

In Section 3 we show that there are two types of optimal solutions: the so-
called variational and non-variational solutions. By the first type we mean those
optimal solutions which can be attained through the sequence of optimal solutions
to regularized OCP for boundary value problem (1) with skew-symmetric parts
of admissible controls A% € L>(;SV) such that AjFew — Askew strongly in
L2(2;SN). We give the sufficient conditions which guarantee that the solutions
to OCP (1) have a variational character. The second type of optimal solutions
is related to those which cannot be attained by the above procedure. We discuss
in Section 5 the example of an optimal control problem in coefficients with non-
variational optimal solution. This stimulates us to develop another approach of
approximation for the considered optimal control problems.

In Section 4 we discuss optimality conditions for OCP (1). In spite of the fact that
the corresponding Lagrange functional is, in general, not Gateaux differentiable, we
show that the optimality conditions can be derived using the notion of quasi-adjoint
state to the original problem [27]. As for a result, this leads to an optimality system
which contains the so-called extended values of bilinear forms generated by L2-skew-
symmetric matrices.

In section 6 we give a precise description of the class of admissible controls
Aq C L? (Q; RN N ) which guarantee that non-variational solutions can be attained
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through the sequence of optimal solutions to OCPs in special perforated domains
with fictitious boundary controls on the boundary of holes. Namely, we consider
the following family of regularized OCPs

Minimize I.(A,v,y) :== ||y — de%z(Qs) +/ (Vy, A%Y"Vy)pn do
Q

€

1 2
el

(2) subject to the constraints
—div (AsymVy + ASkE“’Vy) =f in Q.
y=0o0n 9, 9Jy/O0va=wvonTl,,
/S H(% (Q2e;09),

where 2. is the subset of €2 such that 02 C 9Q., ¢ > 0, and [|A(z)|gv =
max; j=1,..n~ |ai;(x)| < e 1 ae. in Q.. Here, v stands for the fictitious control.

We show that OCP (2) has a nonempty set of solutions (A%, v2,y?) for every
e > 0. Moreover, as follows from (2);, the cost functional I. seems to be rather
sensitive with respect to the fictitious controls. Due to this fact, we prove that the
sequence {(A2,y2)}__ gives in the limit an optimal solution (A°,4°) to the original
problem.

The main technical difficulty, which is related with the study of the asymp-
totic behaviour of OCPs (2) as ¢ — 0, deals with the identification of the limit

lim, g {<vg’y‘g>H’%(I‘s);H%(FE)}E>o of two weakly convergent sequences. Due to

e>0

the special properties of the skew-symmetric parts of admissible controls A € 2,4 C
2 (Q; sV ), we show that this limit can be recovered in an explicit form. We also
show in this section that the energy equalities to the regularized boundary value
problems can be specified by two extra terms which characterize the presence of
the-called hidden singular energy coming from L2Z-properties of skew-symmetric
components A%*¢® of admissible controls.

In conclusion, in Section 7, we derive the optimality conditions for regularized
OCPs (2) and show that the limit passage in optimality system for the regularized
problems (2) as e — 0 leads to the optimality system for the original OCP (1).

Let us point out that situations where the non uniqueness of some problems oc-
curs can lead to serious numerical difficulties. A good numerical scheme is assumed
to construct a desired solution. At a basic stage, the proof of the Cauchy-Peano
theorem for O.D.E is relevant of this situation: though the construction of the solu-
tion may seem explicit, the fact the convergence is obtained only for a subsequence
is a brake to finding the desired solution see [8]. In the context of this paper, due
to limited capacities of computers, any kind of representation of matrices with L2-
coeflicients will lead to a truncated version of it. Naturally, thus, any attempt to
treat numerically some problem of the type (1), will probably force the algorithm to
obtain an optimal variational solution. Thus, in order to produce numerically non-
variational optimal solutions of the problem (1), the method of perforated domain
can be used. But in this case, one has to face the fact that fictitious controls are
distributions, which, of course, have a quite bad numeric representation. One may
thus think that those fictitious controls could be taken in spaces of higher regularity
(e.g. L?(09.)), but basic examples of non-variational solutions (see [30, 32] ) shows
that it is probably in general possible to have non variational solutions with such
properties.
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Of course, one may wonder if situations of non uniqueness and moreover of
lack of procedure to obtain some uniqueness are relevant from the point of view
of applications. Nematic liquid crystals, as modeled by harmonic maps between
manifolds, can be, throughout this model, represented by minimizing harmonic
maps or stationary harmonic maps, for which, both of them satisfy formally the
same equation, but mathematically not. We refer to [9] for descriptions of this
topic.

For our particular equations, there may be some physical situations where the
ill-posed problem in (1) has also a mere sense in itself, notwithstanding the optimal
control problem. In deed, it is a common old principle to assume that the stress
Cauchy tensor ¢ in mechanics is symmetric and leads to the classical relations

—div (oe(u)) = f

where e(u) is given by

1 8uz a’LLj
see [4].
On the contrary to this equation which can be stated in the form

—div (AVu) = f

for some symmetric matrix A, the Cosserats brothers have introduced a non sym-
metric form for this equation, [7]. Of course at a gross scale, the symmetric part
of the stress behavior dominates the behavior, but some micro-rotation may be ob-
served in material according to strain actions, for example in bones or some specific
materials [22]. In that sense the assumption on A%*** may be reflecting some par-
ticular fragile point of a material, fragile meaning with respect to some local ability
of the surrounding matricant to degenerate in torsion, while remaining stable in
elongation.

In the spirit of the OCP, (1) can be thought as a way of realizing some specific
material with objective yq (for example a desired deformation) according to some
prescribed set of singular behaviours (the points where A%*% is singular), that is
the material has a micro-rotative behavior at only some prescribed set. Of course,
according to the previous analysis, designing such a material may be difficult to
realize as a result of the following analysis.

1. NOTATION AND PRELIMINARIES

Let Q be a bounded open connected subset of RY (N > 2) with Lipschitz bound-
ary 0Q. The spaces D'(Q) of distributions in €2 is the dual of the space C§°(Q).
As usual by H}(Q) we denote the closure of C§°(€2)-functions in the Sobolev space
HY(Q), while H=1(Q) denotes the dual of HE (), any of its element can be repre-
sented, in the sense of distribution, as f = fo—i-zj 0 f;, with fo, f1,..., fn € L3(9).
The usual norm in H}(Q) will be replaced by the equivalent one defined by

1/2
sy = ( [ 19l dx) |

Let " be a part of the boundary 092 with positive (N — 1)-dimensional measures.
We consider

CRY;T) ={peCPMRY) : p=00nT},
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and denote Hg(%;T) its closure with respect to the norm

1/2
o= [ 19wlas)
Q

For any vector field v € L2(Q; RY), the divergence of v is an element div v of the
space H~1(Q) defined by the formula

(3) <diVUa‘P>H—1(Q);Hé(Q) = _/Q(UaV(P)RN dz, V€ Co(),

where (-,-) ;-1 (q)2(o) denotes the duality pairing between H=1(Q) and H}(Q),

and (-, -)g~y stands for the scalar product in RV,

Symmetric and skew-symmetric matrices. Let MV be the set of all N x N real

matrices. We denote by S the set of all skew-symmetric matrices C' = [c;]

N
skew i,7=17

i.e., C' is a square matrix whose transpose is also its opposite. Thus, if C' € S?Lew

then ¢;; = —cj; and, hence, ¢;; = 0. Therefore, the set S _ = can be identified with
the Euclidean space RS, Let Sé\;m be the set of all N x N symmetric matrices,

which are obviously determined by N (N + 1)/2 scalars. Since MY =SV 4+ SN

sym skew
and S NSN_, =0, it follows that MY = S =~ & SN, Moreover, for each

sym skew"
matrix B € MY, we have a unique representation

(4) B = BsYym 4}Bskew7

where B%¥™ := 1 (B+ B') € SY,., and Bskew .= 1 (B — B") € Sy, In the sequel,

we will always identify each matrix B € MV with its decomposition in the form (4).
Let LQ(Q)N(I;A) = L2(%SY,..,,) be the normed space of measurable square-

integrable functions whose values are skew-symmetric matrices with the norm

2
IAl@e. = | [ (rnx |az-j<x>|> s

Jj>i

1/2

By analogy, we can define the spaces

L2 7 = L2(Q;8Y,) and LA(QN*N = £2(;MN).
Let A(x) and B(z) be given matrices such that A, B € L?(Q;SN_.). We say

that these matrices are related by the binary relation < on the set L*(Q;SY _,) (in
symbols, A(z) < B(x) a.e. in ), if

N N
(5) Nl U fzeq s fay@)] > by (@)} =0
i=1j=i+1
Here, LY (E) denotes the N-dimensional Lebesgue measure of E C RY defined on
the completed borelian o-algebra.
We define the divergence div A of a matrix A € L? (Q; MY ) as a vector-valued
distribution d € H~1(Q;RY) by the following rule

(6) <di’@>H’1(Q);H&(Q) = _/Q(ai,V(IO)RN dl‘, VQD S CSO(Q), Vie {1, .. .7]\[}7

where a; stands for the i-th row of the matrix A.
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For fixed two constants a and 3 such that 0 < o < 8 < +00, we define 95 (Q2)
as a set of all matrices A = [a;;] in L>®(€;S],,) such that
(7) al < A(x) < BI, a.e. in .
Here, [ is the identity matrix in MY, and (7) should be considered in the sense of
quadratic forms defined by (AE,&)pn for £ € RY.

Unbounded bilinear forms on H} (). Let A € L*(Q; M") be an arbitrary matrix.
In view of the representation A = A%Y™ 4 Ask°" we can associate with A the form
(-, )a s HE(Q) x HY(Q) — R following the rule

oy, v)a = / (Vo, AR (2)Vy) oy dz, Yy, v € Hy(Q).
Q

It is easy to see that, in general, this form is unbounded on H{ (£2), however, it is
expected some kind of alternating and antisymmetric properties of it. In order to
deal with these concepts, we introduce of the following set.

Definition 1.1. Let A = AsY™ 4 Askew ¢ [2 (Q;MN) be a given matrix. We say
that an element y € HJ (Q2) belongs to the set D(A) if

1/2
® < c(y, AR ( | 17tz dx) Ve e CE(®)

with some constant ¢ depending only of y and As*ew,

/Q (Ve, ASke“’Vy)RN dx

Consequently, having set
[y, pla = /Q (Vip, A7 (2)Vy) uw dz, Yy € D(A), Vo € C5o(Q),

we see that the bilinear form [y, ¢]4 can be defined for all ¢ € Hg(£2) using (8) and
the standard rule

(9) [yv QO}A = g% [yv @E}Av

where {¢:}.. C C3°(Q) and ¢, — ¢ strongly in Hj(2). In this case the value
[v,v]4 is finite for every v € D(A), although the ”integrand” (VU,AS'“””VU)RN
need not be integrable, in general.

Functions with bounded variations. Let f : Q@ — R be a function of L(£2). Define

TV(f) = /Q Df| = sup { /Q f (V. Qg da

©=(¢1,---,0N) € Cé(Q;RN), lp(z)] <1 for z € Q},

where (V, p)pn = S | 221,
According to the Radon-Nikodym theorem, if TV (f) < +oo then the distribution
Df is a measure and there exist a vector-valued function Vf € [L'(Q)]V and a

measure D, f, singular with respect to the N-dimensional Lebesgue measure £V |
restricted to Q, such that Df = VLN |Q+ D, f.

Definition 1.2. A function f € L}(€) is said to have a bounded variation in
if TV(f) < +o0. By BV() we denote the space of all functions in L'(Q2) with
bounded variation, i.e.

BV(Q)={feL'(Q) : TV(f) < +oo}.
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Under the norm || f||gv () = | fllz1) + TV (f), BV(Q) is a Banach space. For
our further analysis, we need the following properties of BV -functions (see [11]):

Proposition 1. (1) Let {frx}?2, be a sequence in BV (Q) strongly converging
to some f in L' () and satisfying condition supyen TV (fi) < +00. Then

feBV(Q) and TV(f) < likrr_1>infTV(fk);

(2) forevery f € BV(Q)NL" (L), r € [1,+00), there exists a sequence { fr}72, C
C(Q) such that

lim / If — fe|"de =0 and lim TV(fi)=TV(f);

k—oo Jq k—o0

(3) for every bounded sequence {fi}5>, C BV(Q) there exists a subsequence,
still denoted by fi, and a function f € BV (Q) such that fi — f in L*(9).

Variational convergence of optimal control problems. Throughout the paper e de-
notes a small parameter which varies within a strictly decreasing sequence of positive
numbers converging to 0. When we write € > 0, we consider only the elements of
this sequence, in the case € > 0 we also consider its limit e = 0. Let I : U, xY, = R
be a cost functional, Y. be a space of states, and U, be a space of controls. Let
min {7 (u,y) : (u,y) € Ec} be a parameterized OCP, where

Ze C{(ue,ye) € Uo x Yo @ ue € Ue, I(ug,ye) < +oot

is a set of all admissible pairs linked by some state equation. Hereinafter we always
associate to such OCP the corresponding constrained minimization problem:

(10) (CMP,) : < inf I (u, y)> )

(u,y)€ Ee
Since the sequence of constrained minimization problems (10) lives in variable spaces
U, x Y., we assume that there exists a Banach space U x Y with respect to which
a convergence in the scale of spaces {U. x Yc}__ is defined (for the details, we
refer to [17, 31]). In the sequel, we use the following notation for this convergence
(te,ye) == (u,y) in Uz x Y..

In order to study the asymptotic behavior of a family of (CMP.), the passage
to the limit in (10) as the small parameter e tends to zero has to be realized. The
expression “passing to the limit” means that we have to find a kind of “limit cost
functional” I and “limit set of constraints” = with a clearly defined structure such
that the limit object <inf(u7y)63 I(u, y)> may be interpreted as some OCP.

Following the scheme of the direct variational convergence [17], we adopt the
following definition for the convergence of minimization problems in variable spaces.

Definition 1.3. A problem (inf(, ez I(u,y)) is the variational limit of the se-
quence (10) ase — 0

. . Var .
bols, f  I.(u, — f _ I(u,
(m symbols <(u7;r)1E - (u y)> — <(u,11141)€E (u y)> )

if and only if the following conditions are satisfied:

(d) The space U x Y possesses the weak u-approximation property with respect

to the scale of spaces {U: x Y.}, , that is, for every § > 0 and every
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pair (u,y) € U x Y, there exist a pair (v*,y*) € U x Y and a sequence
{(ue,y:) € Uc x Y.}, such that

(1) flu—wfo+lly—y v <6 and (ue,y.) == (w,y") in U x Y.

(dd) If sequences {e},cy and {(ur,yx)},cn are such that e — 0 as k — oo,
(up,yx) € Ee, Yk €N, and (ug, yx) = (u,y) in Ue, x Y., , then

(12) (,y) €E5 I(u,y) < liminf Lo, (up, yr)-
— 00

(ddd) For every (u,y) € = C U x Y and any § > 0, there are a constant * > 0
and a sequence {(ue,yc)}.<o (called a (T, §)-realizing sequence) such that

e>0
(13) (te,ye) €2, Ve <% (ue,vye) LN (u,y) in Ug x Y,
(14) v —ully + [ly = ylly <4,
(15) I(u,y) > limsup I (ue, ye) — 65,
e—0

with some constant C > 0 independent of 4.
Then the following result takes place [17].

Theorem 1.4. Assume that the constrained minimization problem
(16) ( inf_ Iouy))
(u,y)EEg

is the wvariational limit of sequence (10) in the sense of Definition 1.3 and this
problem has a nonempty set of solutions

Egpt = {(uo,yo) €Zy : In(u®,y°) = inf _ Io(u, y)}
(u7y)E:.0

For every e > 0, let (u2,90) € Z. be a minimizer of I. on the corresponding set =..
If the sequence {(u,y9)}eso is relatively compact with respect to the u-convergence
in variable spaces U, x Y., then there exists a pair (u°,y") € E(o)pt such that

(17) (ug,yg) L> (uO,yO) in U x Y,
: _ 0,0\ _ 1 0 0y _ 1 .
(18) (u,gl;r)léEo Io(u,y) = Io (u’,y") = lim I (ug, y2) = lim (ue’;r:)fegs I (ue, ye)-

2. SETTING OF THE OPTIMAL CONTROL PROBLEM

Let f € H~Y(Q) be a given distribution. The optimal control problem we con-
sider in this paper is to minimize the discrepancy (tracking error) between a given
distribution y4 € L?(Q) and a solution y of the Dirichlet boundary value problem
for the linear elliptic equation

(19) —div (A(z)Vy) = f in Q,
(20) y =0 on 90

by choosing an appropriate control A € L2(Q; MY).
More precisely, we are concerned with the following OCP

(21) Minimize I(4,y) = |ly — yd”iz(g) + /Q (Vy, AV Vy)pn dx

(22) subject to the constraints (19)-(20) with A € A,q C L*(Q;MY).
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In order to make a precise meaning of the OCP setting and indicate of its char-
acteristic properties, we begin with the definition of the class of admissible controls
Aad-

Let A* € L?(%SY._,) be a given nonzero matrix, let ¢ be a given positive

constant, and let ) be a nonempty convex compact subset of L?(€;S% _ ) such

that the null matrix A = [0] belongs to Q. To define possible classes of admissible
controls, we introduce the following sets

(23)  Usa={A=lai;] € L"(%SL,,,) | TV(ay) <c, 1<i<j< N},

sym
(

24)
(25)  Uso={A=]a;;] € L*(©Sh.n) | Alz) = A*(2) ae. in Q},
(26)

Upo = {A=a;;] € L*(%SN.,) | A€Q}.
Remark 1. It is worth to note that

skew
Aagn :=Uag NUp1 #0  and  Aggo := U2 NUpo # 0.

Indeed, the validity of these relations immediately follows from (23)—(24), definition
of the binary relation =<, and properties of the matrix A*. In order to describe a
possible way for the choice of the set @), we may use the following result [24]: An
arbitrary closed bounded subset C' C L?(Q2) is compact if and only if, for any
orthonormal basis {g} ey in L*(€2), there exists a compact ellipsoid

Up1 ={A=[a;;] € L®(%SY,,) |AeMi(Q)},

' Msym

o o ‘Oék|2

with €, — 0 as k — oo, such that C C C..
As a result, we adopt the following concept.

Definition 2.1. We say that a matrix A = A%Y™ + A%*°% is an admissible control to
the Dirichlet boundary value problem (19)—(20) (in symbols, A € A,q C L($; MY))
if ASY™ € Apqq1 and ARV € Ay o.

For our further analysis, we use of the following results.

Proposition 2. If {4;""}, . C Waq1 and AZP™ — AFY™ in L'(Q;SL,,) as k —
00, then AgY™ € Wqa1 and

(27) AP =A™ i LP(SY ), Yp € [1, +00).

sym
Proof. Since the sequence {A;™}, . converges strongly to Ag"™ in L'(Q;S}),,)
and A" € ME(Q) for every k € N, it follows that ol < AgY™ < BI a.e. in Q.
Hence, A" € Up1. At the same time, following assertion (i) of Proposition 1,
we have TV (a;j) < ¢ for each entry of matrix AjY™. As a result, we conclude
AY™ € U,a, and, therefore, AgY™ € aq1. Concerning the property (27), it
immediately follows from the following estimate

p
E K 3 k
||Azym — AS?Jm”iP(Q;SN ) = /Q <i)jrr{axN ‘aij(x) — a?j(a:)|> dx

sym/ [~ \ ©J=1,...,

|(ai;(2) = a) = (af; () — a)l) max afi(x) — ay(2)| da

I
S~
N

o

v“g

TN
z

IN

27N (B = )P A = A sy, ), YD € [1,+00).

sym
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O

Proposition 3. .41 s a sequentially compact subset of L”(Q;Si\;m) for every
p € [1,+00).

Proof. Let {Azym}keN be a sequence of A,q41. In view of definition of the set U, 1,
we see that {A;"}, _ is a bounded sequence in BV (€;SY ). Hence, to conclude

the proof, it is enough to apply Proposition 2 and assertion (iii) of Proposition 1. [
Taking these observations into account, we prove the following results.

Proposition 4. The set A,q is nonempty, convex, and sequentially compact with
respect to the strong topology of L*(£;MM).

Proof. Let {Ap = A;"™ + Azke“’}k on C qa be an arbitrary sequence of admissible
controls. Since

Qlad = Q[ad,l S Q[ad,Qa i)lad,l C BV(Q7SN )7

sym

Apa2 C Upa, and Uy is a compact in L*(Q;SN...),

we may suppose that there exist matrices AyY" € BV (€;SN )N L2 (SN ) (see

Propositions 2-3) and Agke® € Uy, » C L*(;SY,.,,) such thzjtmwithin a subssyeZuence
(28) AT — A™in LP(;SE,,,), Vp € [1,+00),

(29) AP SCAY™ i L2(S),),

(30) AgFew — Ak in L2(Q:SNew)s

(31) and AFw — Agkev almost everywhere in Q.

Combining these facts with (25) and the definition of the binary relation < (see
(5)), we arrive at the conclusion: Agke¥ € U, 2, and hence

Ag 1= ASY™ 4 Aghew _y ASU™ 4 Askew — Ay in L2(Q; MN).

Thus, Ay € 2A,q. Since the convexity of 2,4 is obviously valid, this concludes the
proof. O

The distinguishing feature of optimal control problem (21)—(22) is the fact that
the matrix-valued control A € 2,4 is merely measurable and belongs to the space
L? (Q; MN) (rather than the space of bounded matrices L™ (Q; MN)) As we will see
later, this entails a number of pathologies with respect to the standard properties
of optimal control problems for the classical elliptic equations, even with ’a good’
right-hand f. In particular, the unboundedness of the skew-symmetric part of
matrix A € A, can have a reflection in non-uniqueness of weak solutions to the
corresponding boundary value problem.

Definition 2.2. We say that a function y = y(A4, f) is a weak solution to boundary
value problem (19)-(20) for a fixed control A = ASYy™ 4 Askew ¢ 9 ; and a given
distribution f € H=Y(Q), if y € H}(Q) and the integral identity

(32) /Q (Vep, Ay + AFUVY) L da = (f,0) -1 @y o)

holds true for any ¢ € C§°(Q).

Note that by Holder’s inequality this definition makes sense for any matrix A €
L2 (Q; MY ) At the same time, in view of Definition 1.1, the following result gives
another motivation to introduce the set D(A).
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Proposition 5. Let y € H}(Q) be a weak solution to the boundary value problem
(19)~(20) for a given control A = AsY™+ Askew € A4 in the sense of Definition 2.2.
Then y € D(A).

Proof. In order to verify the validity of this assertion it is enough to rewrite the
integral identity (32) in the form

(33) [y, ¢la = —/Q (A% VY, Vo) an dz + (f, ) -1 (0ym1 @)

and apply Hoélder’s inequality to the right-hand side of (33). As a result, we have

19, 01a| < (14" | @y, ) 190l 20y + 1F 109 ) el

sym
< (Bl + 1110 ) 19l o)
g

Remark 2. Due to Proposition 5, Definition 2.2 can be reformulated as follows: y
is a weak solution to the problem (19)—(20) for a given control A = AsY™ + Askew ¢
a4, if and only if y € D(A) and

3 [ (A9 ot nbla = ooy Yo € HHO),

Moreover, as immediately follows from (9) and (34), every weak solution y € D(A)
to the problem (19)—(20) satisfies the energy equality

(35) [ (A0 9y da vl = o o

It is well known that boundary value problem (19)—(20) is ill-posed, in general
(see, for instance, [12, 23, 26, 30, 32]). It means that there exists a matrix A €
L? (Q; I\\/JIN) such that the corresponding state y € Hg () may be not unique. It is
clear that in this case, it would not be correct to write down y = y(A4, f). To avoid
this situation, we adopt the following notion.

Definition 2.3. We say that (A,y) is an admissible pair to the OCP (21)—(22) if
A€ Upq € L2([MY), y € D(A) C H}(Q), and the pair (A,y) is related by the
integral identity (34).

We denote by = the set of all admissible pairs for the OCP (21)—-(22). We say
that a pair (A°,y°) € L?(Q;M") x D(A°) is optimal for problem (21)—(22) if

(A%y°) € 2 and I(A%y°) = inf I(Ay).
(Ay)e=

As follows from the definition of the bilinear form [y, ¢]a, the value [y, y]4 may
not of constant sign for all y € D(A). Hence, the energy equality (35) does not allow
us to derive a reasonable a priory estimate in H}-norm for the weak solutions. In
spite of this, we show that the OCP (21)—(22) is well-posed. This problem is, thus,
yet another example for the difference between well-posedness for optimal control
problems for systems with distributed parameters and partial differential equations
(see [17] for a discussion and further examples).

Let 7 be the topology on the set of admissible pairs £ C L*(Q;M") x Hg ()
which we define as the product of the strong topology of L? (Q; MY ) and the weak
topology of HE(Q).
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Theorem 2.4. Assume that OCP (21)—(22) is regular, i.e. = # (. Then, for each
f e H Q) and yg € L*(Q), this problem admits at least one solution.

Proof. Since the original problem is regular and the cost functional for the given
problem is bounded below on Z, it follows that there exists a minimizing sequence
{(Ar,yr)}ren C E such that

I(Ag,yx) —— Imin = inf T(Ay)>0.
k—o0 (Ayy)e=

Hence, supycy I(Ak, yr) < C, where the constant C' is independent of k. Since
sup Hyk”ﬁé(ﬂ) <ot sup/ (Vyr, A" Vi) pn da < a tsup I(Ag, ) < a™'C,
keN keNJo keN

in view of Proposition 4, it follows that passing to a subsequence if necessary, we
may assume that there exists a pair (Ag,yo) € Aaq X H(Q) such that

36 Ay = ASY™ o Askew _y pSUmy pskew —. A0 in L2(Q: MV),
k k 0 0

(37) AT A in LP(SY,), Vp € (1, +00),
(38) Agkew — Askewin L2(Q; SN ),
(39) yr —yo in H3(Q), I(Ag,yo) < +oo.

Since (A, yx) € = for every k € N, it follows that the integral identity

(40) ﬁ (V@a A}iymVyk)RN dx + /Q (V(,O, Azkewak)RN dx = <fa (p>H—1(Q);Hé(Q)
¢
holds true for all ¢ € C§°().
In order to pass to the limit in (40), we note that

/Q (Vgp, A‘Zkewak)RN dx = — /Q ((Azkew — Agke“’)Vgo, Vyk)RN dx

- / (A5 Ve, V) gy d2 = Iy g + Lo g
Q

by the skew-symmetry property of A% and AgF*. Hence, in view of (38)—(39),
we have

. . k k
A [kl < lellere) sup VYKl L2 @y lim || AgFer — AF epr(Q;gN , =0,

skew

. b 39 skew skew
lim Io v ) —/ (A5F Vo, Vo) g d$:/ (Ve, A5 Vo) g da
k— o0 Q Q
since Agkengo € L2 (;RYN) Vype Co° ().

Having applied the same arguments to the first term in (40), as a result of the
limit passage in (40), we finally obtain: the pair (Ay,yo) is related by identity (32).
Hence, yo € D(Ap) by Proposition 5. Thus, (Ao, yo) is an admissible pair to problem
(21)~(22).

It remains to show that (Ag,yo) is an optimal pair. Indeed, in view of the
compactness of the embedding H}(Q) < L?(f), one gets

. . 2 sym
Lin = lim T(Ag, yy) = lim {Ilyk —Ydlz2 (o) +/Q(Vyk,Ak” Vyr)py dz

2
_ _ 2 ; symy1/2
=l = vl + Jim [ (a2 a.
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At the same time, due to (37), we obviously have (4;Y™)Y/2 — (AY™)Y/? in
L2(;SY,,,). Hence, taking into account the condition (39), we get (A;Y™)'/2Vy,;, —
(AV™1/2Vyy in L2(Q;RY). So, using the lower semicontinuity of the norm || -

| L2 (@~ With respect to the the weak topology of L2(Q;RY), we finally obtain

2 2
. symy1/2 symy1/2
lim /QH(Ak ) VkaRN dx 2/9 H(AO ) VyOHRN dx

k—o0

(41) _ / (Vyio, AV Vo) g dz.
Q

Imin Z ||y0 - yd||2L2(Q) + /Q (Vy07 AgymVyo)RN dx = I(A07y0)7

and hence, the pair (Ag, yo) is optimal for problem (21)—(22). The proof is complete.
0

3. ON VARIATIONAL SOLUTIONS TO OCP (21)—(22) AND THEIR APPROXIMATION

The question we are going to discuss in this section is about some pathological
properties that can be inherited by optimal pair to the problem (21)—(22) and other
unexpected surprises concerning the approximation of the original OCP and its
solutions.

To begin with, we show that the main assumption on the regularity property
of OCP (21)—(22) in Theorem 2.4 can be eliminated due to the approximation
approach. It is clear that the condition A* € L?(Q;SYN ) ensures the existence

skew

of the sequence of skew-symmetric matrices {A;}, v C L>(€;S2,,,,) such that

Af — A* strongly in L2(Q; SY ). This leads us to the idea to consider the following

skew
sequence of constrained minimization problems associated with matrices A}

@ {( e, ntwn). £oo).

Here,
(43) I(u,y) i= I(u,y) Y (u,y) € L2(Q;MY) x HL(Q), VkeN,
(44)
—div (A%™"Vy + AsFevVy) = f in Q,
y =0 on 09,
Er =1 (u,9) A= Asvm 4 Askew e 9k =00 @ Ql’;dyz, y € H}(Q),

Aryo = U2 N Uy,
UF, = {B=[b;;] € L*(SN,,) | Blz) < Aj(x) ae. in Q}.

skew

Before we will provide an accurate analysis of the optimal control problems (42),
we make use of the following auxiliary result.

Lemma 3.1. The sequence of sets {Ufz}k . converges to Uy o as k — oo in the
) ke

sense of Kuratowski with respect to the strong topology of L?(Q; SN, ).

skew

Proof. We recall here that a sequence {Ué‘é} of the subsets of L%(Q;SN_,) is
2 ) keN
said to be convergent to a closed set S in the sense of Kuratowski with respect to

the strong topology of L2(;SY, . ), if the following two properties hold:

skew
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K1) for every B € S, there exists a sequence of matrices { By € U/ such
b2f,
“) keN
that By — B in L2(;SN_. ) as k — oo;

skew
(K2) if {kn}, cn is a sequence of indices converging to 400, { By, },, ¢y is a sequence
of skew-symmetric matrices such that B, € Ulﬁ 5 for each n € N, and

{By}, ey strongly converges in L2(€;SY),,,) to some matrix B, then B € S.

skew
For the details we refer to [17].
In order to show that S = Uy 2, we begin with the verification of (K2)-item. Let

{kn}neN be a given sequence of indices such that k, — oo, and let {Bn c Uf’g }nEN

be a sequence satisfying the property B,, — B in L?(Q;SY ) and, hence, B, (z) —

skew
B(x) almost everywhere in £ as n — co. By definition of Ulﬁz, we have

(45) By(z) 2 Af, () ae. in

where A} — A* strongly in L2(Q;S%..,). Taking into account the fact that the
binary relation = is reflexive and transitive, we can pass to the limit in relation
(45) as n — oo (in the sense of almost everywhere) and get B(x) < A*(x) almost
everywhere in €2, hence, B € U 5.

It remains to verify the (K7)-item. To this end, we fix an arbitrary skew-
symmetric matrix B € U2 and make use of the concept of the Lebesgue set
20(B). We say that € Q is of the Lebesgue set 20(B) for the matrix B € Uy 5 C
L2(Q;SN ), if z is a Lebesgue point of B. In other words, at this point matrix
B(x) must be approximately continuous and, hence, it does not oscillate too much,
in an average sense. It is well known that almost each point in €2 is a Lebesgue
point for an absolutely locally integrable function [11]. Hence, LN (2\ 23(B)) = 0.
Moreover, since A5 € L>°(Q;SY ), it follows that any point of approximate conti-
nuity of Aj is its Lebesgue point [11]. As a result, we construct a strong convergent
sequence {Bk € U&}keN to B € Uy as follows: By(z) = [bfj(w)]f\fj:l, where

by(@), i Jby(@)] < |ai(0)| and @ € W(B),
(46) bij(a) = a;;’-k(x), if [bi;(x)| > a;k(m) and z € 2(B), -
0, otherwise,
forall i,5 € {1,...,N} and k € N.
N

Since the strong convergence Af — A* in L?(Q;SY._,) implies (up to a sub-
sequence) the pointwise convergence a.e. in , and B < A*, it follows that the

sequence {Bk. € UfQ}k " given by (46), satisfies all properties of (K7)-item. This
2 ke

concludes the proof. O

We are now in a position to study the optimal control problems (42).

Theorem 3.2. Let yq € L?(Q) and f € H=1(Q) be given distributions. Then for
every k € N there exists a minimizer (AL, yy) € Ei to the corresponding minimiza-
tion problems (42) such that the sequence of pairs {(A%,yg) € Ek}keN is relatively
compact with respect to the T-topology on L*(Q;MY) x HY(Q) and each of its T-
cluster pairs (2, y) possesses the properties:

(47) (A,9) €5, [3.7]5>0.
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Proof. To begin with, we show that the sequence of minimal values for the problems
(42) is uniformly bounded, i.e.

(48) sup inf TIp(u,y) <C for some C > 0.
keN (u,y)EEy
Indeed, for each k& € N, we obviously have Ql’;dg # 0 and Ql’;d,Q C L®(Q;SN )

Hence, for any admissible control A, = A;Y™ + AfFew € A* . we can claim that

Agkew e L>(Q; SN ) and, therefore, the corresponding bilinear form

[y7 (p]Ak = /Q (Vgp’ Aikewvy)RN dx

is bounded on H{ () and satisfies the identity

/Q (Vo, AU Vy) pn do = — /Q (Vy, A Vo) oy da.

Therefore,
(49) / (Vo, Aikew(x)Vv)RN dr =0 Yve Hj(Q)
Q

and, hence, the boundary value problem (44) has a unique solution y; € Hg () for
each Ay € Q[’;d C L>=(Q; M) by the Lax-Milgram lemma. As obvious consequence
of this observation and the property of 7-lower semicontinuity of the cost functional
I, we conclude (see for comparison Theorem 2.4): the corresponding minimization
problem (42) admits at least one solution [20]

Ik(Agayg) = inf Ik(A7y)a (Agvylg) € E’k

(A,y)EEk

Moreover, having fixed a control Ay € ¥, condition (49) implies the fulfilment of
the following identities for every k € N

(50) /Q (Veo, A3V, + ANy ) gn de = (f, Pl u-1(qyuie) Ve € G50 (Q),

(51) /Q (Vykn Aiymvyk:)]RN de = <f7 yk>H—1(Q);Hé(Q) s

where yr = yr(Ag, f) € HF(Q) are the corresponding solutions to the boundary
value problems (44). Hence, the sequence {yi},cy is bounded in H(2) and due to
the a priori estimate

(52) vkl @) < flefHHfl(Q)y
we arrive at the relation

Ik(Ag?ylg) = inf Ik(A,y) < Ik?<Ak7yk:)

(A,y)EE
(53) < 2l|yallFz(ay + 29l 22 () + Blykl @)
(54) < 2l|yallZe) + (201 + Ba | fIF-10) < C Yk eN.

Thus, (48) holds true and it implies that sup,cy ||y2||%11(9) < 4o00. So, we can
0

suppose that the sequence of optimal states {yg} pen 18 weakly convergent: y9 — 7

in H}(). At the same time, due to the definition of the sets ¥, it is easy to see
that the corresponding sequence of optimal controls {Ag}keN belongs to Uy, 1 @ Uy 2.
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Hence, applying the arguments of the proof of Proposition 4, we get: there exists a
matrix A € Ug,1 @ Uy 2 such that

(55) A = AV 4 A%Skew — A%V Atkew — A in L2(Q; M),
(56) APy A5 in LP(Q;SY,), Vp € [1,+00),
(57) AP I A L(; S L),

(58) AR — Ashewin L2(;SN,,,).

Therefore, in view of Lemma 3.1, we can conclude: Ae Aqq- As a result, summing
up the above properties of the sequences {yg}k N and {Ag} e e obtain:
(A 5) > (A7) and (A4,7) €=
It remains to prove the properties (47). To do so, we note that due to the strong
convergence A — A in L2(Q;MY), we get

/Q (Vgp, A\V@\— AgVy,(g)RN dx

IN

142 = Al 1981 ¥l o+ | [ (396,97 -948) o
Q Q R

IN

el 9P 18 g el 45 — Allxaae

/Q (ﬁw,vg)w dz — /Q (ﬁw,vyg)w dz

for every ¢ € C5°(12). Hence, AVVy) = AV in L! (;RY). It means that we can
pass to the limit in integral identity (50) with A = A?. As a result, we have: the

+ —0 ask — o0

pair (/T, ¥ ) is related by the integral identity (32), therefore, ¥ is a weak solution to
the original boundary value problem (19)—(20) under A = A. Thus, j € D(;l\) and,
hence, (121\,37) €.

In order to proof the property (47)2, we pass to the limit in the energy equality
(51) using the lower semicontinuity of the norm || - || g1(q) with respect to the weak
convergence Vy? — V7 in L2(;RY) and the property (57). To do so, we note
that due to the inclusion AV™ € Aap1, we have A € MA(Q). Hence, the norms

N 1/2
Yl e and [[[y]]] == (fﬂ (Vy,AsymVyg)RN dz) are equivalent in Hg (). As
a result, we obtain

~ T 0 0,sym Asym 0
<f7y>H—1(Q);H(}(Q) _kli{l;o o (Vym (A — AY )Vyk>RN dx

: 0 Asym 0
+ klingo ; (Vyk,A Vyk>RN dx
(59) by (56) —~
Y27 lim (Vy,g, Asvm Vy2> dx
Q RN

k—o0

by (7) -
> Viy, A" Vy dx.
> /Q (vs 7)., do

Thus, the desired inequality (47)s obviously follows from (35) and (59). The proof
is complete. O



OCP FOR LINEAR ELLIPTIC EQUATIONS 17

Remark 3. As Theorem 3.2 proves, for any approximation {Az}keN of the matrix
A* e L? (Q; Si\,’ww) with properties { Ay}, .y C L°(8; SN ..,) and A; — A* strongly

in L2(Q;SY_.,), optimal solutions to the regularized OCPs (42)—(44) always lead

skew

us in the limit to some admissible (but not optimal in general) solution (A,7) of
the original OCP (21)—-(22). Moreover, this limit pair can depend on the choice of
the approximative sequence {Aj}} wen- 1t 1s reasonably to call such pairs attainable
admissible solutions to OCP. However, the entire structure of the set of all attainable
solutions remain unclear; for instance, it is not known whether this set is convex
and closed in E. It is also unknown whether the optimal solution to OCP (21)—(22)
is attainable. At the end of this section we give the conditions on the matrix A*
which ensures the attainability of optimal solutions to the original OCP.

Taking these observations into account, we make use of the following notion.

Definition 3.3. We say that a pair (4,7) € L2(; M) x H}(Q) is a variational so-
lution to OCP (21)~(22) if there exists an approximation {A}}, . C L>(Q;S].,)
of the matrix A* € L*(Q;SY,.,,) with property A; — A* strongly in L*(;SY_.)
such that

(60) I(A5)= inf I(Ay), (A7)€E, and
(Ay)eE
(61)
< inf Ik(A,y)> &)< inf I(A,y)> in the sense of Definition 1.3,
(A)E =, koo \(Ay)es

where the minimization problems <(A iI)lf I (A, y)> are defined by (43)—(44).
Y)E Bk

As a direct consequence of Definition 3.3, Theorem 3.2, and properties of the
variational limits of constrained minimization problems (see Theorem 1.4), we have
the following result.

Proposition 6. Let (A,7) € L2(Q;MY) x H}(Q) be a variational solution to OCP
(21)~(22). Then [y,y]z = 0 and the pair (A,y) can be attained by optimal solutions
(AQ,y?) to the regularized OCPs (42)~(44) as follows

A9 — A strongly in  L?(;MYN),
(62) Y — g weakly in H(Q) as k — oo,

tim | (Vyg,Ag’symVy,‘g)RN da = /Q (vg, Esymvy)w da.

k—o0

Proof. Indeed, in view of a priori estimates (52)—(54) and properties (55)—(58),
within a subsequence, we have

(63) yp — 9§ in Hy(Q),
(64) AV . Ag,sym + Ag,skew N A\sym + A\skew —. A\ in L2(Q;MN),
(65) APV A i LRy SN ), Vp € [1, +00).

On the other hand, following main properties of the variational convergence (see
Theorem 1.4), we can claim that there exists an optimal pair (A4°%,y°) € = for the
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problem (21)—(22) such that

: 2
L TCA) T (A0) = = il + [ (T4 A

. . . _ . 0 0
B klggo (Ak,21:§e Sk Te(Aws ) = klggo Te(As i)

: 0 2 0 20,symyy, 0
(66) = lim [Hyk — 9all}2 0 + /Q (Vg AVl dx] :
However, because of condition (63)—(65), it turns out that (see the estimate (41))

) by (66) .. 0 2 0 40, 0
B0 0 [0l (50

oo
> 7= vl + [ (V5.A7795),, do.

Since the pair (A4,7) is admissible for the problem (21)-(22) (see Theorem 3.2), it
follows that (A,y) is an optimal pair, that is, in view of (66), it gives
. . e\ 2 ~ Tsymye
it _1(A9) =1 (A.3) 1= 17 = el ooy + [ (V5.47795), da
= li inf  I,(A = lim I (A},
Jm i Te(Akyk) = lim T( Ay vk)
_ 13 0 _ 2 0 0,sym 0
(67) = lim Hyk a2y + /Q (Vop Az dx} .
Hence, (62) is a direct consequence of properties (63)—(67). As a result, we get
(4

) . 0,0
=~ lim
s [Z/zwyk]Ag

0 by byé’)l)

— lim (Vyg, Az’symVy2> dx
Q

k— o0 RN

. 0 by (62) and (67) - ~ TFsym A)
+ Hm (90 5 @m0 = /Q(W’A VU)o @

~ by (35) <
+<f7y>H*1(Q),Hé(Q) y: [yvy}ﬁ

O

Remark 4. Since for some matrices A € L? (Q;MN) the weak solutions to the
boundary value problem (19)—(20) are not unique in general, it follows from Remark
3 and Proposition 6 that even if the OCP (21)—(22) has a unique solution (A°,y°)
and this solution possesses the property [y°,4°] > 0, it does not ensure that the
pair (A% y%) is the variational solution to the above problem. Let A € A4 be a
fixed matrix and let L(A) be a subspace of HJ(2) such that

(68)  L(A)= {h € D(A) : / (Vo, AVh) v dz =0V € CgO(RN)} :
Q
i.e., L(A) is the set of all weak solutions of the homogeneous problem
—div (AVy) =0 in Q,
y =0 on 9.

Since L(A) can contain non-trivial elements in general, it follows that the set

A= {(A% 4" +h) Vh e L(A%)}

(69)

is not a singleton in =.
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Let {(AY, yg)}keN be optimal solutions to the regularized OCPs (42)—(44). Let
A% be a strong limit in L2(;MY) of {Ag}keN‘ Then Theorem 3.2 implies that
yY — y* in H}(Q) and (A% y*) € =. However, it means that (A%, y*) € A rather
than y* = y°. Moreover, the existence of (T, §)-realizing sequence (see Definition
1.3) for the pair (A% y") € = is an open problem. In other words, the existence
at least one approximation {A;}, v € L>®(;S].,,) in (42)-(44) leading to the
pair (A%, 4°) in the sense of conditions (13)—(14) is not established. As follows from
our further analysis (see Section 6), such solutions can be attained through other
structures of regularized OCPs than in (42)—(44).

We are now in a position to discuss the existence of variational solutions to the
OCP (21)—(22).

Theorem 3.4. Assume that for every matriz A € Apq C L? (Q;MN), we have
(70) [y,yla=0 Vye D(A).

Then the OCP (21)—(22) has variational solutions.

Proof. Let us consider {A}}, . C L>®(€%;SY,,,,) and A* € L*(Q;S]},,,) such that

' Mskew skew

Ay — A* strongly in L*(Q;SY.,,). With each matrix A} we associate the con-

' Nskew
strained minimization problem

inf  Iy(A4,y) ),
<<Af;;eak kl y>>

where the cost functional I;, and the set Zj are defined by (43)—(44).
Let {(Ak,yr)}pen be a sequence in L?(; M) x Hg () with the following prop-
erties:

(a) (Ak,yr) € B, for every k € N, where {ny}ren is a subsequence converging
to oo as k tends to oo;
(aa) yp — y in H}(Q) and A — A in L?(Q;MY) with additional properties as
in (56)—(57).
Then proceeding as in the proof of Theorem 3.2, it can be shown that the limit pair
(A,y) is admissible to the original OCP (21)—(22). Hence, this problem is regular
and, therefore, it is solvable by Theorem 2.4. Our aim is to show that this problem
can be interpreted as the variational limit of the sequence of constrained minimiza-
tion problems (42). To do so, we have to verify the fulfilment of all conditions of
Definition 1.3.
Indeed, it is easy to see that in the case of space L?(€2; M™) x Hg (©2), the condition
(d) is obviously true with 6 = 0. As for the property (dd), it immediately follows
from the following relation

e e 2 sym
liminf i (Ag, yx) = liminf |:||Z/k —Yallz2(q) + /Q (Vyr, A" V) da

by (41)
= = vl + [ (F9 ATV do = 1(A,y),

which holds true for any sequence {(Ag,yk)}pen C faa X H§(Q) with properties
(a)~(aa).

We focus now on the verification of condition (ddd) of Definition 1.3. Let (A, y*)
be an arbitrary admissible pair to the original problem. Since Absk¢® < A* we
make use of the hint of Lemma 3.1 in order to construct a sequence of admissible
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controls {A;c eAr, C LZ(Q;MN)}kGN. Namely, we proceed as follows. Let Af =

[a;;’-k(m)]f\”jzl and Afskew — [agj (x)]fvjzl Then we set:
(71) A = ABSV™ | € N for the symmetric parts of Ay,

and for the skew symmetric parts AjF"(z) = [af;(x)]);—,, we put
agj (x), if agj ()| < afjk(m) and x € Q(Ahskew),
k _ * . *
(72) agj(x) = aij’-k(aj), if agj ()| > a”k(x) and z € QW(Abskew)
0, otherwise,
forall i,5 € {1,...,N} and k € N.
Since the strong convergence A — A* in L2(Q;SY ) implies (up to a subse-
quence) the pointwise convergence of this sequence a.e. in €, and A#sFew < A* it
follows that conditions (71)—(??) lead us to the following conclusion:

(73) Ap o= AP™ 4 Agkew y Absym o phskew — Ab iy L2(Q;MY),

(74) AT ABSYm i LP(Q;S),), Vp € [1,+00),
(75) Agkew _y ARskew4n 2SN .

Let {yr = y(Ar, f)} ey be the corresponding solutions to the regularized boundary
value problems (44). Then by applying the arguments of the proof of Theorem 3.2,
it can be shown that the sequence {yx},cy is uniformly bounded in H(€2) and
there exists an element 3 € D(A*) such that (A%, %) € Z and, within a subsequence,
yr — 7 in H}(2). Our aim is to show that § = y* and that the following identity

(76) I(A*,y*) = Timsup I (A, yk)
k— oo
holds true.
Indeed, since (A% y*) € Z and (A% 7)) € Z, it follows that y = y* — 7 is a
solution of the homogeneous problem (69). Following our initial assumptions, we

have [y,y]a = 0 Vy € D(A) and for each matrix A € A,q C L?(Q;MY). Hence,
the problem (69) has only trivial solution, since for this solution we have

/Q (Vy, APy da = —[y, y]a: = 0.

Thus, y* = 7. To prove the equality (76), we use of the idea of D.Cioranescu
and F.Murat (see [6]). Taking into account the property (73), compactness of the
embedding H{ (2) < L?(Q), and the energy identities (51) and (35), we get

. . 2 sym
i T (A, i) = lim [yk ~Yallz2o) + /Q (Vyr, A" Vyi)gn dx}

2 M sym
= ||yﬁ *deLz(Q) Jrkli)n;o/Q (Vuyr, A" Vyr ) pn da

by (51) and (73) 2 . ~
= 9 = vall 2 + Jim. [(f, yk>H—1(Q);Hg(Q)}

by (70) 2
= Hyﬁ - deLz(Q) + <fa yu>H71(Q);Hé(Q) - [yﬁayu]Aﬁ
YLl — gl +/Q (Vyf, ARV TyF) L do = T(AF yF).

This concludes the proof. O
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Our next observation shows that variational solutions do not exhaust the entire
set of all possible solutions to the original OCP (21)—(22).

Lemma 3.5. Assume that there exists a matrix Ag € Aqq and an element v €
D(Ag) with property [v,v]a, < 0. Then there are distributions f € H~1(Q) and
ya € L*(Q) such that the optimal control problem

(77) Minimize I1(A,y) = ||y — yd”iz(g) + /Q (Vy — Vya, AY™(Vy — Vya) g~ dz

(78) subject to the constraints (19)—(20) and A € Ayq C L*(Q;MY)
has a non-variational solution in the sense of Definition 5.5.
Proof. We consider the OCP (77)—(78) with

yg=v and f=—divAyVo.

Since v € D(Ay), it follows that v € H}(Q2) and f € H~1(Q). It is easy to see that
ya is a solution to the boundary value problem (19)—(20) under A = Ay. Moreover,
since I(Ag,yq) = 0. it follows that (Ag,yq) is the optimal pair to the above OCP.
By contradiction, we assume that (Ag,y4) is the variational solution. As follows
from Theorem 3.2 (see also Remark 3), each attainable solution (Af,y#) to this
OCP satisfies the inequality [y¥, y#] 4« > 0. Since [ya, ya]a, := [v,v]4, < 0, it means
that the pair (Ap,yq) is not attainable and we come into conflict with Definition
3.3. The proof is complete. ]

Taking this result into account, we adopt the following concept.
Definition 3.6. We say that a pair (A%,¢°) € = is a non-variational solution to
OCP (21)-(22) if
(79)  1(A%y") = Lt I(4.y), (A%y°) €

’ and [y07 yO]AO # 0.
A,y)EE

[1]

Remark 5. As follows from Theorem3.2, Proposition 6, and Lemma 3.5 none of
non-variational solutions can be attainable through the limit of optimal solutions
to the regularized problem (42)—(44).

4. OPTIMALITY CONDITIONS

We consider the extremal problem (21)—(22), where, as above, the set of admis-
sible pairs = is defined by relation

= ={(4,9) € Uaa x D(A) € LAQMY) x HY(Q) + [(A,y) < +oc,

/Q (V, ATy + ASkewa)RN de = (f, )y (qpui), V¥E CSO(Q)}
As usual, we determine a solution (Ag,yo) € E to the problem (21)-(22) as follows

I(Ao,90) = (A, y)-

To derive the optimality conditions for optimal control problem (21)—(22), we set
F(A,y) = —div (A(z)Vy) and consider the Lagrange functional

(80) L(A’y7 )‘7 (P) = )‘I(Avy) + <F(Aay)7 @>H*1(Q),Hé(§2) - <fv (p>H_1(Q);Hé(Q)7
where A € Ry, p € C5°(£2), and

<F(A7y)a<p>H—1(Q);Hé(Q) = /Q (V‘PaAsymVy)RN d$+/Q (V%ASkewa)RN dx.

inf T
(Ay)eE
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Remark 6. It is worth to note that, in view of Remark 2, the Lagrange functional
L(A,y,\, ), given by (80), can be extended over all ¢ € H}(Q) by continuity
provided we apply the rule (9). As a result, for each A € 2,4, the extended
functional L : g x D(A) x Ry x HE(Q) — R takes the form

(81)

E(Aaya Aap) = )‘I(A>y) + /Q (vpa Asymvy)RN dr + [yap]A - <f7p>H*1(Q);Hé(Q)'

Hence, because of unboundedness of the bilinear form [;, (Vp, A% (2)Vy) v d,
the extended Lagrangian Z(A,y, A, p) is not Gateaux differentiable, in general.

Moreover, we cannot even assert that the mapping y — E(A,y7/\,p) has a ’right
hand’ directional derivative [25]

D L(Ay Apoh) = lim 2O AD) = LAy A p)
0—+40 0

Indeed, for given h € H}(Q) and 6 € [0,1], since the structure of the set D(A) is
unknown, we cannot claim that y + 6h is still an element of D(A) even if 6 is small
enough. Hence, the term [y + 6h, p]4 can be undefined, in general.

Remark 7. In view of Remark 6, the characteristic feature of extremal problem
(21)—(22) is the fact that the set of admissible solutions Z can contain pairs (A4, y) €
= such that Askew & Lo(Q; SN ), Askew € L2(Q; SN ., and, hence, the mapping
y — F(A,y) is not continuously differentiable in any neighbourhood of y. As
a result, in order to deduce an optimality system for the problem (21)-(22), we

cannot apply the well-known results of Ioffe and Tikhomirov (see [13, 14]).
In order to avoid this option, we make use of the following concepts.

Definition 4.1. We say that the mapping y — Z(A, Y, A, p) has a generalized 'right
hand’ directional derivative at the point (A,y, \,p) € Aqq x D(A) x Ry x HH(Q)
with respect to y in the direction h € Hg () if the 'right hand’ directional derivative
D L(A,y, A\, p,¢) in a smooth direction ¢ € C§°(R2) can be extended by continuity
for ¢ = h € H}(Q), that is,

Dj L(A,y. A\, p, h) = lim D} L(A, y,\, p, ¢.)
e—0
whatever {¢:}..o C C5°(R) such that . — h strongly in Hg ().

We are now in a position to implement this concept to the study of differential
properties of the Lagrangian L(A,y, A, p).

Lemma 4.2. If a given tuple (A,y,\,p) € Aua x D(A) x Ry x H(Q) is such
that p € D(A), then for each direction h € H(SQ), the generalized ’right hand’
directional derivative ’D;‘ L(A,y, A\, p, h) exists and takes the form

D; E(Aa Y, /\apa h) = 2/ (y - Z/d) hdzx + 2/ (Vha AsymVy)RN dzx
Q Q

(82) +/ (Vh, A"/ p)pn dx — [p,h]a.
Q
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Proof. For a given tuple (A,y, A, p), let {o:},o o C C5°(2) be a sequence such that
e — h strongly in H{(£2). Then the direct computations show that

D) L(A,y,\,p,¢:) = lim (A, y +0pc, A p) — L(A, y, A, p)
6—40 0

o / (v — ya) - da + 2\ / (Vo AV ) da
Q Q

+ / (Vipe, AV™p) o da + J,
Q

where
(83) J= lim lims o[y + 0, Vs]a — [y,p]A7
0—+0 0
(34 -+ Opetsla= [ (V05 A (T + 09 o do
Q
(85) [y,pla = %1_{% i (vd)é:ASkewvy)RN de

for any {15}s., C C3°(€2) such that 15 — p strongly in H(£2).
Since y € D(A) and

/Q (Vs AFUV ) d

< lleellor@ 1A 2 ) 15l ),

skew

it follows that
hm [y + 9@5’ wé]A = [y7p]A —|— 9/ (vp7 ASkewV(pg)RN d.’E
6—0 Q

= [y7p]A _0/5;! (vgpavASkeva)RN dz.

Summing up the previous transformations, we get

Df DAy A prp) =2 [ (5= va) peda+ 20 | (Voo A0y
+ /Q (Vipe, AV Vp)pn da
(86) - /Q (Voo AFNp) Ly dx, Voo — h in Hj(Q).
Since p € D(A) by the initial assumptions, it follows that

(87) |[p, elal ==

/Q (V%yASkewVp)RN dz| < c(p, A)llee 1y o) -

Hence, the 'right hand’ directional derivative ’D;r E(A,y, A, D, pe) admits an exten-
sion by continuity for ¢ € H}(Q). Therefore, the limit passage in (86) as e — 0
immediately leads us to the representation (82). O

Corollary 1. The representation (82) for the generalized ’right hand’ directional
derivative D;j L(A,y,\,p, h) remains valid even if y ¢ D(A) but rather y € HJ ().
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Proof. Indeed, in this case we have
Z(A,y,)\,p) = M(4,y) —|—/ (Vp7 AsymVy)RN dx
Q
<f7 > -1(Q) Hl( ) — hm/ (V’(/JE7ASkeva)RN dx
e—=0 Jo

— M(Ay) + / (Vp, A9y d — {f, ) sr-s amyerraien — [ 8)a-

for any {¢5}s5. C C§°(2) such that 15 — y strongly in Hj(2). It remains to
observe further that formulae (83)—(85) should be read in this case as follows

J— im lims_,o[ths + O0pe, p]a + [P, yla

6—+0 0 ’
(88) (s + 0, pla = / (Vp, AFe(Vips + 0V @) pu da
Q
(89) = — / (Vibs + 0V g, AF<UVp)  da,
Q
(90) [P, yla = lim [ (Vips, AF“Vp) v da

6—0 O

for any {t5}s., C C5°(€2) such that 15 — y strongly in Hg(Q).
Since p € D(A), it follows that

lim s + Bpe.pla = —[p,yla — 8 / (Vipe, A4 Tp) da.
5—0 Q

In the rest, we have to follows the arguments of the proof of Lemma 4.2. O

As an evident consequence of these results, we can give the following specification
of formula (82).

Corollary 2. Let (A,y,\,p) € Aaq x HH(Q) x Ry x HE(Q) be a given tuple. As-
sume that Vp € L™ () RN) so that p € D(A). Then the generalized ’right hand’
L(

directional derivative D L(A,y, \,p,h) exists for each direction h € Hy(Q) and
takes the form

D; E(A7y,)\7p, h) = 2)\/ (y — ya) hdz + 2)\/ (Vh, A" Vy)gn dx
Q Q

(91) + / (Vh, A*Y™Vp)pn do — / (Vh, AFVp),  da.
Q Q

Proof. Since Vp € L*>(2;RY), it follows that the estimate (87) can be justified as
follows

’[p Ve A| = ’/ V@E,Askeva)RN

Hence, p € D(A) and therefore, the existence of the generalized ’right hand’ direc-
tional derivative D+ (A Y, A\, p, h) follows from Lemma 4.2. It remains to observe
that, for such a given p, we have A**¢“Vp ¢ L2(Q;RY). Hence, the passage to the
limit in the last term of (86) reads

[p, ] = lim /Q (Vepe, AFUNp) Ly do = /Q (Vh, A% Vp) . dx

<NV [l @) 1A 2 sy ylleell -

skew
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Corollary 3. Assume that instead of the condition Vp € L>(Q; RN) in Corollary 2,
we have

(92)  Askew ¢ L2+%(Q;Sg€ew) and Vp € L*T7(RY) for some v € (0, o).

Then the assertion of Corollary 2 remains true.

Proof. In order to preserve the correctness of the statement of Corollary 2, it is
enough to show that assumptions (92) imply inclusion p € D(A). Indeed, since

Hp, cpg]A| = ‘/Q (V<p57ASkeva)RN d

1/2
<lloclmor ([ IVpIRIA" 1y do)

it remains to apply the Holder’s inequality with conjugates r = (2 + ~)/2 and
q=1+2/7, (r'+¢ ' =1). We finally get

e 2
i 944 4 4
/Q ||vp ||]§N HASkewnéé\Lew dx g (/Q ||A‘Sk€wHSi\;c:u; dm) </Q va ||D2§;7 dx)

< Askew 2
_” ||L2+%(Q;SN )

skew

VD[ 7247 (q) < +o0.
Hence, p € D(A) and this concludes the proof. O

As obvious consequence of these assertions, we have the following result.

Lemma 4.3. Let A € Ayq, y € HY(Q), A € Ry, and p € HL(Q) be given distribu-
tions. If

skew

(93) Vp e L¥(LRY) or [Askew e L2 (;sN..) and Vpe LQH(Q;RN)}

for some v € (0,00], then the mapping H}(Q) > v E(A,v,)\,p) € R is Gateaur
differentiable and its Gateaux differential takes the form

<Dy L(A,y,\p), h> — D} L(A,y, A\ p,h), Vhe HL(Q).

H=1(Q);:Hg ()

Proof. Let (A,y,\,p) € Auax Hi (Q) xRy x HE(Q) be a given tuple. Since p € D(A)
by Corollaries 2-3, it follows from Lemma 4.2 that the value [y + 0h,p]a is well
defined for each h € H} (). Moreover, the properties (93) imply the validity of the
representation (91) which, of course, implies

D; E(Aaya /\7pa h) = 7D;r E(AvyaA’pa 7h)7 Vh S H(}(Q)a

and thus ascertains the Gateaux differentiability. O

In what follows, we need the following auxiliary result.

Lemma 4.4. Let A € Ayq, v € HYH(Q), y € HY(Q), A € Ry, and p € HY(Q) be
given distributions. Assume that the property (93) holds true. Then there exists a
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positive value € € [0,1] such that

E(A7’U7 Aap)_E(A7y7 )\ap) = <Dy E(A’y + €(U - y)7 )‘,p)av - y>H*1(Q)~H1(Q)
g

= 2A/Q(erE(v—y) —ya) (v —y)dx
2 / (V0 — ), AV (Vy + (Vo — Vy)))gw de
Q

(94) - / (V0 — ), A0V, da.
Q
Proof. For given A, A, p,y, and v, let us consider the scalar function

(p(t) = Z(Avy + t(U - y)7 Aap)'

Since by Lemma 4.3 and Corollary 1, the mapping Hg(Q2) > £ E(Zx{,{,)\,p) is
Gateaux differentiable at each point of the segment

y,v] == {y +a(v—y) : Yae[0,1]} C Hy(9),
it follows that the function ¢ = ¢(¢) is differentiable on [0, 1] and

#'(t)= (D, LA,y +tlv ). A p)v—y)

To conclude the proof, it remains to take into account the representation (91) and
apply the Rolle’s Theorem:

, Ytelo,1].
H=1(Q);Hg ()

©(1) —p(0) = p'(e) for some ¢ € [0,1].

In what follows, we make use of the following concept.

Definition 4.5. Let Ay € Ay (0 € [0,1]) be an admissible control, let y(Ap) be
a weak solution of the problem (19)-(20), and let 9 € [0, 1] be a given value. Let
(Ao, yo) € E be an optimal pair to the problem (21)—(22). We say that a distribution
1y is the quasi-adjoint state to yo € H(Q) for fixed 0 € [0,1] and ¢ € [0, 1], if g
satisfies the following integral identity:

(95) / (Vp, AV Vipg — Ag’“ewvwg)RN dr = —2)\/ (Yo — ya) @ dx
Q Q

2 [ (Vo AP V) da, Vo € H(),
Q

where yp = yo — c0(y(Ag) — o).
By analogy with Proposition 5, we can give the following conclusion.

Proposition 7. Let (Ao, y0) € E be an optimal pair for problem (21)—(22), and let
(Ag,y(Ap)) be an admissible pair to this problem. Then, for given 6 € [0,1] and
gg € 0,1], V. is the quasi-adjoint state to yo € HE(Q) if g € D(Ap) C HE(Q) is a
weak solution to the boundary value problem

(96) —div (A§Vehp) = 2X div (A4Y"Vye) — 2X (Yo —ya) in Q,
(97) g = 0 on ON.
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As for the proof of this assertion, it is enough to observe that A = Ap¥"™ — Askew
and D(Ap) = D(A}) by Definition 1.1, and then repeat the arguments of the proof
of Proposition 5. In particular, as a consequence of this result, we have the following
equalities for the quasi-adjoint state y:

/Q (Vio, A7) . d — [, 0] 2y = —2 /Q (o — ya) @ da

(98) —2)\/ (Vo, A" Vyo)pn dz V€ Hi(Q),
Q
/Q (AgY" g, Vibg) g dz — [tho, o] a, = —2>\/Q (Yo — ya) Yo dx

(99) *2)\/ (ng,AgymVyg)RN dx.
Q

Let us assume the fulfilment of the following hypotheses:

(H1) If A € 2,4 is an admissible matrix-valued control, then D(A) D D(A*),
where the skew symmetric matrix A* € L2(Q; SN ) is given in (25).

(H2) There exists an optimal pair (Ao, yo) € E to the problem (21)—(22) such
that yo € D(A*).

(H3) Let (Ao,y0) € E be an optimal pair to the problem (21)—(22) such that
yo € D(A*). Let A € Ayy be an arbitrary admissible control, and let
Ag = Ag + 0(A — Ap) for each 6 € [0,1]. Then there exists a sequence of
corresponding solutions to the boundary value problem problem (19)-(20)

{yg =y (4g) =y (AO + 9(121\— AO)) }9 . such that yp — y(Ag) in H}(Q)
as  — 0, and yg € D(A*) for 6 small eHough.
(H4) Let (Ao,y0) € E be an optimal pair to the problem (21)—(22) such that
Yo € D(A*). Let = A,q be an arbitrary admissible control, and let
Ag = Ag + 0(A — Ap) for each 6 € [0,1]. Then, for each 6 € [0,1] and
g9 € [0, 1], there exists v € (0, 00] such that
(100) Vg € L°(QRYN) or [A* € L2F5(Q;SN,.,) and Viyy € L2V (Q; RY)

skew

and the sequence of quasi-adjoint states {¢g},_,, is relatively compact with
respect to the strong topology of Hi ().

Remark 8. It is worth to note that due to the condition (25) and Definition 1.1,
Hypothesis (H1) sounds realistic. Indeed, in view of estimate (8), it is reasonably
to suppose that the set D(A*) C H}(Q) strictly depends on the location of "un-
boundedness zones’ of matrix A*. Since A%%¢% < A* for all A € g, it follows that
each of matrices A € 2,4 inherits the integration properties of A* in spite of the
fact that, as was mentioned earlier, the structure of the set D(A) is still unknown
for the time being.

Remark 9. Hypothesis (H3) can be reformulated in other form. Namely, instead
of the given variant of (H3), we assume that yo is a unique solution of the boundary
value problem (19)-(20) under A = Ay, yo € D(A*), and yg € D(A*) for 0 small
enough, where the sequence {ys :=y(Ag)},_, is defined as in (H3). Let us show
that the remaining conditions of Hypothesis (H2) is carried out in this case. Indeed,
since the boundary value problem (19)-(20) is ill-posed, in general, it means that for
a fixed 6 € [0, 1] this problem can admit non-unique solution yy := y (Ap). In view
of Remark 3, we can take yp as a weak limit in H}(Q) of approximated solutions
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to (19)-(20). With that in mind, it is enough to apply an arbitrary approximation
{AZ’fgw}kEN of the matrix Ag’“w € L? (Q'SN ) with properties {Ai’f;w}

1 Mskew keN

L>(Q;8h,,,) and A5 — AgFe strongly in L*(;S],,,) for each 6 € [0,1]. As a

' Mskew ' Mskew
result, the sequence {yg}, ., is uniformly bounded in H(2) by Theorem 3.2 (see
estimate (52)). Therefore, within a subsequence, we can suppose that there exists a

function y* € H(Q) such that (Ag,ye) — (Ag,y*) as § — 0. Moreover, the limit
passage in the integral identity

/Q (V%AGV?Ja)RN dz = (f, 80>H—1(Q);H3(Q) , Ve elgr(Q)

as 0 — 0, immediately leads us to the conclusion that (A4g, y*) is an admissible pair
for optimal control problem (21)—(22). Since boundary value problem (19)-(20) has
a unique solution under A = Ay, we get yo = y* (see Remark 10). Hence, we obtain

the required property: (Ag,ys) — (Ao, o).

Remark 10. The assumption in Remark 9 that yg has to be a unique solution of
the boundary value problem (19)-(20) under A = Ap, can be omitted if, instead of
this, we assume that a given optimal pair (A, yo) can be attained through 7-limit
of the sequence

{(0,30) i= (A0 + (A ~ A0),y (A0 +0(4 - 40)) )}

6—0 ’

where A € A,q is an arbitrary matrix.

We are now in a position to derive the optimality conditions for the optimal
control problem (21)—(22).

Theorem 4.6. Let f € H=Y(Q) and yq € L*(Q) be given distributions. Let (Ao, yo)
be an optimal pair to the problem (21)—(22) satisfying Hypothesis (H2). Then the
fulfilment of the Hypotheses (H1), (H3)-(H/) implies the existence of elements \ €
Ry and ¢ € H} () such that X and v are non-zero simultaneously, and

(101) /Q (V%AOVZ/O)RN dz = (f, (p>H—1(Q);H5(Q) , Vo € Cg°(Q),
/ (Vo, AGVY) gy do = — 2A/ (Yo — ya) pdz
Q Q

(102) —2>\/ (Vo, A" Vyo)gn dz, Yo € CFP(Q),
Q

/Q (Vyo, (A%V™ — AZ™) (AVyo + V) ) da

(103> > [y()»,(/}]Ao - [y()?,(/J]A’ VA € Q[ad-

Proof. Let (A,7) € = be an admissible pair. We set Ag = Ag + (A — Ap), where
6 € [0,1]. By Proposition 4, we have Ay € 4 for all § € [0,1]. Moreover, it is easy
to see that Ag — Ag in the sense (28)—(30). Let yg :=y (4p) =y (AO + 9(21\ - AO))

be a solution of the boundary value problem problem (19)-(20). Then Hypothesis
(H3) ensures that

(104) (Ao, y0) - (Ao,yo ) as 6 — 0.



OCP FOR LINEAR ELLIPTIC EQUATIONS 29

It is clear that
AZ = E(A97y97 Avp) - E(A()vyOa )‘ap) = Z(AOa Yo, Avp) - E(A97y07 Aap)
+ E(Aﬁa Yo, Aap) - z("4()’ Yo, Avp)
= Ay E(A97y0a Aap) + AA E(A()ay()a Aap) 2 07
(105) Vo e[0,1], V(\p)€Ry x H(Q).
Taking into account the representations (80)-(81), we obtain
AA Z(1407 Yo, )\717) = E(A(% Yo, )\717) - E(A-(]v Yo, Aap)
= }% I:L(Aev Yo, )‘7 906) - L(A07 Yo, )‘7 @6)]

= 9)\/Q (Vyo, (gsym - Agym) VyO)RN dx
+ 9/ (Vp, (ﬁsym - Agym) Vo) gn dz
Q
: Askew _ pgskew
(106) +0lim | (Vg (A4 = A5 ) Tyo) o dr
for any sequence {ps}5-, C C5°(£2) such that @5 — p in Hg ().

It is worth to notice that due to the property yo € D(A*), Hypothesis (H1)
implies that, in general, for an arbitrary p € H}(Q2), the last term in (106) can be
written 0 ([yo, 5 — [yo, 2] 4,)-

As for the term Ay L(Ag, %0, A, p) in (105), we temporary assume that the dis-
tribution p € H{ () satisfies the property (93) with A = A*. Then by Lemma 4.4,
there exists a positive value g9 € [0, 1] such that

(107) Ay E(14O7y0a )‘ap) = E(Aeayev)‘ap) - E(A97y07 )‘ap)

=(D EA, - 7)\7 ) - > .
< y L(Ag,y0 +€0(yo — ¥0), A, P), Yo — Yo H- (@) HA)

As a result, combining (106) and (107), and taking into account property (93) with
A = A* and Lemma 4.4, we can represent inequality (105) as follows

AL =L(Ag,y0, M\ p) — L(Ao, 50, \,p) = 2)\/ (yo +€0(yo — yo) — ya) (Yo — yo) dx
Q
+ 2)\/ (V(yo —y0), Ag"™ (Vyo +e0(Vys — Vo)) )pn da
Q
+/Q(V(yo —90), Ag"""Vp )gn dx — /Q (V(yo = 10), A Vp ) pn da
+ 0 / (Vyo, (A7 = AF™) Vyo) g d
Q
+ 9/ (Vyo7 (A\sym — Agym) Vp)RN dx
Q

(108) —9/ (Vyo, (Xskew _Agkew) Vp)RN dr.
Q

In view of the property (100), let us define the element p in (108) as the quasi-
adjoint state to yo € HE(Q), that is, we set p = 10, where 1)y satisfies the following
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integral identity:

/S 2 (Veo, A" Vg ) o di — /Q (Vo AFF“N1g) o d

= —2>\/ (Yo +€0(ye — Yo) — ya) pdz
Q

(109) o / (Y, AS™ (Vo + £6(Vp — Vo)) der, Voo € HA(SY).
Q

As a result, we can justify relation (51) to the form

g — Z(140’y97)\7’(/}9) — E(AanO,)Hw@)
0 0

= )\/Q (Vyo, (Asym — Agym) Vyo)RN dx

] s

(110) +/ (Vb (ﬁskew - AS’W) Vyo) gy dz >0, VA € Ay,
Q

where the last term has a sense by property (100) and Hypotheses (H1)-(H2).
It remains to pass to the limit in (109)—(110) as 8 — +0. To this end, we note
that (see (104))

(A1) Ag — Ap in the sense of (28)—(31) as § — 0;

(A2) yo — yo in HY(Q) as § — 0 by Hypothesis (H3);

(A3) there exists an element 1) € H}(Q2) such that (within a subsequence) s — ¥
in Hi(Q) as # — 0 by Hypothesis (H4).

Then, taking into account the fact that (ﬁsym — A'™) € L (;SY,,,), the limit
passage in (110) gives

. AL by (A1) (A3) Saym s
Y e e

+ / (Tyo, (A4 = 4™ ) V) g di
Q

(111) + lim § (Vo ( Askew _ Agkew) Vo) o da > 0.

For each ¢ € [0, 1], we define a sequence {s0}s_,, C C5°(£2) such that 59 — 1y
in H}(Q) as § — 0. Further, we note that

/Q (V(vo — ©s0), (gmw - ASkew) Vo) g d

by (H1) and (8)
< c(yo, A%) o — @s.0llm1) — 0as 6 — 0.
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Hence, there exists a monotonically decreasing to 0 sequence {§()},_,, such that
©s(6),0 — Yo — 0 in H}(Q) as  — 0, and, therefore,

;E% i (v@/}e, (A\sk:ew . Agkew) vyO)RN dx

= hm (VQD(S(G),G; (A\skew - Agkew) Vyo)RN dLC

0—0 Q

= ;g% (Iyo, ws(0),0] 1 — W0, ©s(6),040)

(by continuity) = [yo, w]g — [yo, Y] 4,-

Combining this result with (111), we immediately arrive at the inequality (103).
As for the limit passage in (109) as 8 — 0, we see that the numerical sequence
{€9}y_,( is bounded and

A™ — A and Agkew — Askew  strongly in L2(Q; M) by (Aj)-condition,
(yo +eo(ye —y0)) — o strongly in L?(Q) by (Az)-condition,
(Vyo +€0(Vyg — Vyo) — Vo weakly in L?(Q) by (As)-condition.

As a result, the limit passage in (109) as # — 0 leads us to integral identity (102).
This concludes the proof. O

Remark 11. As follows from Remark 4, the optimality system given by Theo-
rem 4.6 admits the existence of zero Lagrange multiplier A = 0. Indeed, the set of
all weak solutions of the adjoint problem under A = 0

—div (AkV) =0 in Q,
(112) iv (70 1/1) in
1 =0 on 0.

may contain non-trivial elements, and, hence, the inequality
/ (VyOa (Agym - Agym)va)RN dx > [yOaa]Ao - [yOaa]A
Q

can remain valid for all A € A,q. At the same time, following Zhikov (see [32]),
it can be easily shown that the boundary value problem (112) has a unique trivial
solution if only

: —1)| gske _
(113) Tim 5 A4S sy ) = O
It is east to see that this condition can be interpreted as some extension of the case
of L>(%;SY. . )-matrices because the fulfilment of property (113) is obvious for the

skew
skew-symmetric matrices with entries like e.g. Inln ||z||gx~.

Taking this remark into account, we can precise Theorem 4.6 as follows.

Theorem 4.7. Let f € H=1(Q) and yq € L*(Q) be given distributions. Let (Ao, yo)
be an optimal pair to the problem (21)—(22) satisfying Hypothesis (H2) and property
(113). Then the fulfilment of the Hypotheses (H1), (H3)-(H4) implies the existence
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of an element 1 € H(Q) such that
/Q (V. AoVyo) gn dz = (f.0) -1y () V9 € C5°(Q),
/Q (Veo, AgVY) y dz = — 2/9 (yo — ya) p da
— 2/Q (Vo, A" Vyo)gn dz, Yo e CFP(R),

[ (o (4 = 437) (T30 + 99) ) g o
Z [yOa@]Ao - [yOaJ]Av VA € Q'lad~

5. EXAMPLE OF A NON-VARIATIONAL OPTIMAL SOLUTION

Let Q be the unit ball in R, Q@ = {z € R® : ||z|gs <1}. Let us consider the
following OCP:

(114)

Minimize 1(A,y) == ||y = yal 120 + /Q (Vy = Vya, A" (Vy — Vya))pn dx
(115) subject to the constraints (19)(20) and A € Auq C L*(Q;MY),
where the distributions A* € L*(Q,S3,.,), f € H Y(Q), and yq € H}(Q) will be

' Mskew
defined later on. Our intention is to show that in this case the above problem admits
a non-variational solution, i.e. there exists an admissible pair (A%, %) € Ay x HE ()
such that
(116) I(A° %) =0= inf I(Ay) and [y°4°a= —g

<0,
(A,y)€E

where ( is a given positive value.
We divide our analysis into several steps. At the first step we define a skew-
symmetric matrix A* as follows

0 a(x) 0
(117) A*(z)=| —a(z) 0 —=b(z) |,
0 b(x) 0
T I3 .
where a(x) = ———5— and b(xz) = ——5—. Since
2l|I5s 2]z

2
2 T
a = —_— dx
o = [, (3757 )
27
// / preo <psm wPQSIH<ﬂd¢d<pdp<+oo,

it follows that a € L?(Q2). By analogy, it can be shown that b € L*(Q2). Moreover,
it is easy to see that the skew-symmetric matrix A*, define by (117), satisfies the
property A* € H(Q,div;S?), ie. A* € L*(S3,,) and divA* € LY(Q;R3).

' Mskew
Indeed, in view of the definition of the divergence div A* of a skew-symmetric
b Tix
matrix, we have divA* = | dp |, where d; = diva} = — 42 and a} is i-th

ds ||xHR3
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column of A*. As a result, we get

1 27 ™
[diva; ||z (o) =/ / /
o Jo Jo

for the corresponding f; = f;(p,v) (i = 1,2,3). Therefore, divA* € L'({;R3).
Step 2 deals with the choice of the function yq € H} (). We define it by the rule

(118) Yq = % (1—z|I2s) \/47r—atan2 ( 2 , - > in Q,

2 .
14 fl 71/} .
(v 2)4 P sin @ dip dp dp < +oo0,

[ /lrs [l
where the two-argument function atan2(y, x) is defined as follows

arctan( )—|—7T x <0,
arctang )—|—27r y<0,z>0,
Yy

arctan >0,z >0,
atan2 (y, ) =4 o 2 g>0x=0
3w /2, y<0,xz=0,
07 y:07x:0.

It is easy to see that the range of atan2(y, x) is [0, 2] and

vg( x ): ¢ <47r atan2( 2 , e >>_7f2(47r—g0), Y € [0, 2]

lallws /" w2 [elles " (1]l

with respect to the spherical coordinates. Hence, vg € C*°(99), and, as immediately
follows from (118), it provides that

ya € L*(Q) and 34 =0 on 0.

By direct computations, we get

. 1 %Z‘j (lzlgs — 23) - %xm
19 Veo(ir—) = | 52 (lallfs —o3) — S2ams |, Va0,

I/l 1l gzommg - %xgm
Hence, there exists a constant C* > 0 such that
O*
ol <15
lzllrs /lgs ~ llzllws
Thus,
IVgallzs < oo (== )| IV (1 = ll2ll3s) |
] s o
x CQ
- helte) oo ()| s
( %) [zllra / ||gs [E4i8

As a result, we infer that Vy, € L2(;R?), i.e. we finally have y4 € H}(Q).
Step 3. We show that the function yg4, which was introduced before, belongs to
the set D(A*). To do so, we have to prove the estimate

(120)

/ (Ve A*(2) V) o
Q

Cn ([ |W|Rs) Vi € CR(RY).
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To this end, we make use of the following transformations

/Q (Vi AV)  do = ~(div (A™V) . 9) 1 1o

(o | (v
= (div as)'Vy | e
(a3)1V >H*1<9);H5(9>
- 2
dival, ¢ > / ( a; > pdx
; < 03 [ =203 (2 2; 0z iz

=0
i * 2 .g3
since A*cL (Q’Eskew)

(due to the fact that div A* € L>°(Q;R?))
Q

which are obviously true for all i, ¢ € C§°(£2). Since

< OA |2z 1Y 1 @)

skew

/(dlvA VP gs pda| =
Q

‘ / (Vep, A*V), d

it follows that, using the continuation principle, we can extend the previous equality
with respect to ¢ to the following one

(121) / (Vo, A*Vyq)gs do = / @ (div A%, Vyg)gs de Vo € C5°(Q).
Q Q

Let us show that (div A*, Vyq)ps € L>(2). In this case, relation (121) implies
the estimate

/ (V, A*Vyq)gs dx
Q

< (v A" V) [ Il

B 1/2
<C(ya) ( / |w|]%w) Vo e CPRY),

which means that the element y, belongs to the set D(A*).
Indeed, as follows from (119), we have the equality

(122) (V (e ) “;ﬁ) -

Thus, the gradient of the function Vvo(ﬁ) is orthogonal to the vector field
zllp

Q = z/||z||3s outside the origin. Therefore,

T v ) = (9 | (0= 1) wo( ) | o o).

el | Tellgs Telles
x x )
— (V (1= |l2)2s) ) vo( =)
(TO-118) ) o () o
T T To
(12 + (1= el (Voo (=), L+l
(= lellzo) { Voo (i) Toles ) o Tl

where I, = 0 by (122). Since V (1 — [|z]|3s) = —5||z|3s, ”;ﬁ = sin psiny with

respect to the spherical coordinates, and function vg is smooth, it follows that there



OCP FOR LINEAR ELLIPTIC EQUATIONS 35

exists a constant Cy > 0 such that |(Vyg, div A*)gs| < Cy almost everywhere in 2.
Thus, (div A*, Vyq)gs € L>(2) and we have obtained the required property.

Step 4. Using results of the previous steps, we show that the function y4 satisfies
the condition [yq,y4]a- = —5 < 0. Indeed, let {p.}__,, C C°(Q2) be a sequence
such that ¢, — y4 strongly in HO (©2). Then by continuity, we have

W, yalax = lim/ (Vipe, A*Vya)ps dx
e—0 Q

RGN @e (div A", Vygq)gs da
e=0 Jo

Since (div A%, Vyq)gs € L>®(Q2) and . — yq strongly in H} (), we can pass to the
limit in the right-hand side of this relation. As a result, we get

s 1 o
(124) [Ya, ya] ax = / ya (div A", Vyq)ps dz = 5/ (leA 7vy§)R3 da
@ Q

Let Q. = {z €R3 | e < |z|lgs <1} and let I'. = {||z||gs =&} be the sphere of
radius € centered at the origin. Then

/ (div A%, Vy3) g da "¢ VL0 / (div A", v)gs y3 dH?
Q. r

=

(div A%, v)gs (1 — ||x||%3)2v§(||xﬁ 3) dH?

)d”H,2+o()

e

(div A*,v)gs vo(” T
r. R3

x To of T 5
v dH + o(1)
/ra <$|| ||$|R3)>Rs ]| s O(Hl“HRs)

:—572/ R dH? + o(1
et () @)
—/bo(x)vg(m) dH? + o(1),
T

where by = sin psiny and and v3 = % (47 — ). Since

2 ™
/ bovgd"HZZ%/ sin p (47 — ) d(p/ sin? ¢ dip = ¢ > 0,
o0 ™ Jo 0
it remains to combine this result with (124) and relation

/ (div A*, Vy3)gs do = lim [ (div A", Vy7),s d.
Q =0 Ja.
As a result, we infer [yq, yala- = —(/2 < 0.
Step 5. This is the last step in our analysis of OCP (114)—(115). Let us define
the distribution f € H~(2) as follows

(125) f=—div (A*Vys + A*Vya),

where Af is an arbitrary symmetric matrix such that Af € A, 1-

Assume that a compact set @ of L?(;S%, ) contains matrix A*. Then it is
obvious that the matrix A° = A* + A* is admissible for OCP (114)—(115), i.e
A% € Aod-

Since yq € D(A*), it follows that f € H~1(Q). Hence, (A% y4) is an admissible
pair to the problem (114)—(115). Taking into account that I(A°, y4) = 0, we finally
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conclude: the pair (A% y%) := (A* + A* y,) is a non-variational solution to OCP
(114)—(115).

6. ON APPROXIMATION OF NON-VARIATIONAL SOLUTIONS TO OCP (21)—(22)

We begin this section with some auxiliary results and notions. Let € be a small
parameter. Assume that the parameter e varies within a strictly decreasing sequence
of positive real numbers which converge to 0. Hereinafter in this section, for any
subset E C €2, we denote by |E| its N-dimensional Lebesgue measure £V (E).

For every € > 0, let T, : R — R be the truncation function defined by

(126) T.(s) = max {min {s,e"'},—e"'}.

The following property of Ty is well known (see [16]). Let g € L?(£2) be an arbitrary
function. Then we have:

(127) T.(9) € L®(Q) Ve >0 and T.(g) — g strongly in L*(Q).

Let A* € L? (Q;SN ) be a matrix mentioned in the control constraints (25).

skew
For a given sequence {¢ > 0}, we define the cut-off operators T : Sivk ow = Sé\i ow 35

follows T.(A*) = [Tg(ajj)]jvjzl for every € > 0. We associate with such operators

the following set of subdomains {€.},_., of Q
(128) Q. =0\ Q., Ve>0,

where

(129) Q- = closure {:17 e [JAY(z)||sn

= max
skew 1<i<j<N

a2, (2)] > }

Definition 6.1. We say that a matrix A* € L? (Q; Sé\fcew) is of the §-type, if there
exists a strictly decreasing sequence of positive real numbers {¢} converging to 0
such that the corresponding collection of sets {Q.} defined by (128), possesses

the following properties:

e>07

(i) Q. are open connected subsets of €2 with Lipschitz boundaries for which
there exists a positive value § > 0 such that

0N C 0. and dist(I';,00) >4, Ve>0,

where T'; = 99, \ 09.
(ii) The surface measure of the boundaries of holes Q. = 2\ €. is small enough
in the following sense:

(130) HYNHT.) =o(e) Ve>0.

(iii) For each matrix A € L2(Q; M) such that A%*** < A* a.e. in Q, and for
each element h € D(A), there is a constant ¢ = ¢(h) depending on h and

independent of € such that
a0 1/2
< o(pyy /10 (/ |V<P|fwd$>
€ O\Q.

(131)

/ (Vp, A*Vh) Ly da
O\Q.

for all ¢ € C§°(RY).
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Thus, if A* is of the §-type, each of the sets (). is locally located on one side
of its Lipschitz boundary 99.. Moreover, in this case the boundary 90f). can be
divided into two parts 992, = 9Q UT'.. Observe also that if A* € L (Q;Si\,{ww)

then the estimate (131) is obviously true for all matrices A € L?(Q; M) such that
Askew < A*.

Remark 12. As immediately follows from Definition 6.1, the sequence of perforated
domains {Q.},., is monotonically expanding, i.e., Q., C Q, ., for all g > ex1,
and perimeters of Q). tend to zero as € — 0. Moreover, because of the structure of
subdomains Q. (see (129)) and L?-property of the matrix A*, we have

€2\ €|

2

* 2 : * _
g/Q A @y, dr Ve >0 and A g, e, ) =0
This entails the property: |Q\ Q.| = o(?) and, hence, lim._,o || = |Q2]. Besides,
in view of the condition (ii) of Definition 6.1, we have

eHN ! (I'z)

(132) o]

=0(1).

Remark 13. As follows from [5], §-property of the skew-symmetric matrix A*
implies the so-called strong connectedness of the sets {{.} ., which means the
existence of extension operators P. from H}(Q.;0) to H}(Q) such that, for some
positive constant C' independent of &,

(133) v (Pey)ll2rmy < ClIVYl L2 myy, VY€ Hy(9e;09).

Remark 14. It is easy to see that in view of the conditions (1)—(ii) of Definition 6.1
and the Sobolev Trace Theorem [1], for all € > 0 small enough, the inequality

(134) lellLzr.) < el .00): Ve € C7(R)

HN-1(T,)
holds true with a constant C = C(£2) independent of .
As a direct consequence of Definition 6.1, we have the following result.

Proposition 8. Assume that A* € L?(;SY,,,) is of the F-type. Let {Q:}..,
be a sequence of perforated domains of 2 given by (129), and let {xa.}.s, be the

corresponding sequence of characteristic functions. Then
(135) xa. = xa strongly in L*(Q) and weakly-+ in L>(Q).

Proof. As immediately follows from Definition 6.1, the sequence {xq. }, is mono-
tonically increasing, i.e., xo., < X%, almost everywhere in Q2 provided e, > €j41.
Taking into account the following representation for the cut-off operators

IT=(A™(@)llsx, ., = xa. (@)[|A™(@)llsy

skew skew

+(1—xq.(2)e™t, Ve>0.

and the condition (127)s, we may suppose, within a subsequence, that

(xa. @114 @)y, + (1= xa.()=")

skew
= (xo. @14 @lsy,, +xor0. (@)e71) = [4°@)]sy,, ae. in @ as 0,

by Remark 12

and |\ Q| =LY (Q\Q.) 0(e?) -0 as € —0.
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Hence, in view of the monotonicity property of {xq.} we finally obtain (see

[10])

e>0

Xa. — xo ae. in Q, and, hence, yq. — xq strongly in L'(Q).

Since the strong convergence of characteristic functions in L' () implies their strong
convergence in L2(§)), this concludes the proof. O

Definition 6.2. We say that a sequence {y6 € H (9 69)}6>0 is weakly conver-
gent in variable spaces H{ (Q.;09) if there exists an element y € H}(Q) such that
lim (Vye, Vo)pn dx z/ (Vy,Vo)pn dz, Ve C5(Q)

€20 Jq, Q

Remark 15. Let y* € H(2) be a weak limit in HE () of the extended functions
{Pye € H3(Q)}__,. Since

/ (Vy,Vo)pn dz = 1im/ (Vye, V)pn do = lim/ (V(P-ye) , Vo)gn Xa. dx
Q e—0 o e—0 Q

by (135) and (133) / (V" Vo)gn dz, Vo € C5°(Q),
Q

it follows that
lim (Vye, Vo) dz = Eh_r>n (V(P.ye) , V)pn dx

e—0 Q. 0Jq

and, hence, the weak limit in the sense of Definition 6.2 does not depend on the
choice of extension operators P : H}(Q.;0Q) — H}(Q) with the properties (133).

Let us consider the following sequence of regularized OCPs associated with per-
forated domains .

(136) { < inf IE(A,v7y)>, s—)()},
(Av,y)e=e

where

(137) LA ) = o= vl + | (V0 A"V ot ol
—div (AVy) = fe in €,
y=0o0n0Q, 0y/Ovs=wvonT,,
ve H3(T), y € Hy(Q:;00),
(138) Z. =< (4,v,y) A= Asym 4 Askew,
Ae U, =Aaa1 ®UL o, ALyo = U2 NUp,,

a

Ub€,2 = {ASkew = [aij] S LQ(Q;SN ) :

skew

Askew (z) < A*(z) ae. in Q).

Here, yq € L*(Q) and f. € L?(f2) are given functions, v is the outward normal unit
vector at I': to Q., v € H’%(I‘s) is considered as a fictitious control, and o is a
positive number such that

(139) e HNTHT.) -0 as € —» 0 (see (130)).

Using the fact that A € L>°(Q.;MY) for every e > 0 and each A € A ,, and
proceeding as in the proof of Theorem 3.2, we arrive at the following obvious result.
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€

Theorem 6.3. For every € > 0 the problem <inf(A’v7y)€5 IE(A,v,y)> admits at

least one minimizer (A%, v2,y?) € =..

In order to study the asymptotic behavior of the sequences of admissible solu-
tions {(A@vg,yg) €E.CA,x H3(T,) x H&(QE;Z?Q)} . in the scale of vari-
£>

able spaces, we adopt the following concept.

Definition 6.4. We say that a sequence {(A.,v.,¥:) € Ec},., weakly converges
to a pair (A,y) € Auq X H(Q) in the scale of spaces

(140) {L2(Q;MN) x H 3 (I'.) x H&(QE;BQ)} :
e>0

(shortly, (Ac,ve,y:) = (A,y)), if
(141) Ao =A™ 4 Askew o Asum g gskew = A in LA(Q;MY),
(142) A — A™in LP(Q3SY ), Vp € [1,400),
(143) Az SoAv™ i L2 (QSE,,),
(144) Askew . gskew iy L2(Q; SN L),
(145) Ye =y in HO(QE;aQ),

1 2
146) and SUPW H €||H_§(F ) < +00.

We are now in a position to state the main result of this section.

Theorem 6.5. Assume that the matriz A* € L? (Q SN ) is of the §-type and

skew
such that
(147) the equality  [y,yla =0  does not hold in D(A)
for all A € Ayuq with A%V = A* q.e. in Q.
Let {Q.},., be a sequence of perforated subdomains of 1 associated with matriz

A*. Let f € HY(Q) and yq € L*(Q) be given distributions. Then the original
optimal control problem <inf(A,y)€5 I(A,y)>, where the sequence {fa € LQ(Q)}€>O
is such that xq_f- — [ strongly in H=Y(Q), is variational limit of the sequence

(136)—(138) as the parameter € tends to zero.

Remark 16. As follows from Theorem 3.4, if there exists a matrix A € 2,4 and
an element § € D(A) such that [g,7]a # 0, then OCP (21)—(22) may admit a non-
variational solution. So, (147) can be interpreted as a necessary (but not sufficient)
condition of the existence of non-variational solutions to OCP (21)—(22). On the
other hand, condition (147) may imply the existence of at least one pair (A, h*) €
A,q X D(A) such that h* ¢ L°°() and h* is a solution to homogeneous problem
(69). It means that in this case the linear form

[h*, @] = / (V, A% (2)Vh*) o dz, Vo € C5°(RY)
Q

has a non-trivial extension onto the entire set D(A) following the rule (9).

Proof of Theorem 6.5. Since each of the optlmlzatlon problems <1nf(A vez. Le(Av y)>
lives in the corresponding space 2Z ; x H— 2 (T.) x HY(Q.; 09), we have to show that

in this case all conditions of Definition 1.3 hold true. To do so, we divide this proof
into three steps.
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Step 1. We show that the space 2,q X H () possesses the weak approximation
property with respect to the weak convergence in the scale of spaces (140). Indeed,
let 6 = 0 and let (A4,y) € Auq x HE(Q) be an arbitrary pair. We define h as an
element of C§°(€2) such that

(148) div (A*¥"Vh 4+ A*Vh) € L*(Q).
Hence, h € D(A). As a result, we construct the sequence

{(Acsvesye) € L@ MY) x HOH (L) x HY(©:500) |

e>0
as follows
oh
A.=A, ve=—— on I's;, and y. =y, Ve>D0.
(9VA
Here, 8‘97}1 = Zﬁfj:l (aij (I>>§TZ cos(v, x;), cos(n,x;) is the i-th directing cosine of

v, and v is the outward unit normal vector at I';s to (..
In view of (135), we have yo. — xq in L>(Q). Hence,

lim (Vo, Vye)gn dz = lim/ (Ve, VY)pn X0, dz
e—=0 Jo

e—0 Q.

- / (Vo Vy)gn dr Vi € C5(Q),
Q

ie., ye = yin H}(Q;00) as e — 0.
It remains to show that the sequence {vE cH = (FE)} is bounded in the sense
0

e>

of Definition 6.4. Following Green’s identity, for an arbitrary ¢ € C§° (), we get

oh
_— : sym skew
‘<8VA 7¢>H*%(I‘s);H%(F5) = '/QE v (A (=)Vh+4 (x)Vh) pde

+ ‘/ (Vp, AY™(2)Vh + A‘gke“’(x)Vh)RN dx

1/2
< ( / |div (A*V™(2)Vh 4 A% (2)Vh) |2dm> lellze o,y

€

+ BIVAll 2. 2M) IVl L2(@. r™)

1/2
by (131) O\ Q.
Y + c(h) 12\ 2| (/ IVlan da:)
€ O\Q.

< (It 4 I + Is) el g oo

Since |2\ Q.| = 0(¢?) by the F-type properties of A*, it follows that there exists a
suitable change of variables and a constant C' > 0 independent of € such that

1/2
Q\ Q.
I, = BV h]| 2oy = B ((J'\ [ 1wk, dy>
€ O\

by (132)
(149) < CiyHYHT) (1Rl o)

Following the similar arguments, in view of (148), we get

< Oy (h)\JHN-L(T,).

I = ’ <
12(Q.)

div (Vh + A(z)Vh) |
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As a result, summing up the previous inequalities, we come to the following con-
clusion: there exists a constant C' = C'(h) independent of € such that

1 < Oh >
e ) <CM)lellar@a.) Yo € Co(Q).
HN=I(T.) \Ova "/ g roymd () "
Hence,
1 oh
150 sup | ————— (|| <C
e o (S 1) <

Thus, the weak approximation property is proved.

Step 2. We show on this step that condition (ddd) of Definition 1.3 holds true
with 6 = 0. Let (A,y) € E be an arbitrary admissible pair to the original OCP
(21)—(22). We will indicate two cases.

Case 1. The set L(A), defined in (68), is a singleton. It means that h = 0 is a
unique solution of homogeneous problem (69);

Case 2. The set L(A) is not a singleton. So, we suppose that the set L(A) is a
linear subspace of H{(£2) and it contains at least one non-trivial element of
D(A) C HL(Q).

We start with the Case 2. Let h € D(A) be a element of the set L(A) such that
h is a non-trivial solution of homogeneous problem (69). In the sequel, the choice of
element h € L(A) will be specified (see (167)). Then we construct a (T", 0)-realizing
sequence {(Ac,v:,y:) € Ec}.o, in the following way:

(j) Ac = A for all € > 0. In view of definition of the set 2 ,, we obviously
have that {A. € A, C L*(Q;M"Y)}___ is a sequence of admissible controls
to the problems (136).

e>0

Remark 17. Note that in this case the properties (141)—(144) are obviously

true for the sequence {A.}, ..

(jj) Fictitious controls {vg cH = (I‘E)} , are defined as follows
£>

Oh
(151) Ve 1= w5+a v€>0,

€

where distributions w, are such that

1
- - , <
. §§%< HVI(T,) ”wanwra) =¢

with some constant C independent of «.
Gii) {ya € H}(Qy; BQ)}E>O is the sequence of weak solutions to the correspond-
ing boundary value problems

(153) —div (AVy.) = —div (A" Vy, + A*Vy.) = f. in Q.,
(154) ye =0o0n 9N, 0Oy./0vy =v. onT..
Since A = T.(A) whenever z € Q. for every £ > 0, it means that A € L (Q.; M),

Hence, due to the Lax-Milgram lemma and the superposition principle, the sequence
{y6 € HY(Q.; 89)}E>0 is defined in a unique way and for every € > 0 we have the
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following decomposition y. = y¢ 1 +¥e,2, where y. 1 and y. o are elements of HYQ.)
such that

/ (Vi ATy s + ARy, 1) xe, d = / fexo.pde
Q Q
(155) H(Wes 0) oy rymb ) V9 € Co (8:09),

/ (VQO, ASymV@/s,z + ASkewae,z)RN XQ. dx
Q

(156) - <8"¢> Ve O (:00).
Wa " [ gty

Remark 18. Hereinafter, we suppose that the functions y. of H}(Qe,08) are
extended by operators P. outside of €)..

By the skew-symmetry property of A**¢" ¢ L>(Q.; SN _ ), we have

& Yskew
/Q (Ve iy AFVye g xo. dz =0, i=1,2.
Then (155)—(156) lead us to the energy equalities
/Q(Vye,lyAsymv:'Js,l)RNXQg do = /Qststs,l dx

(157) + (Wes Ye,1) 3

oh
sym ={( —
(158) /Q (Vy5,27 A Vys,Q)]RNXQE dx <8VA s y5,2>

(Co)HZ(T.)

rdmomdr.)
By the initial assumptions, we have h € L(A). Then the condition (iii) of Defini-
tion 6.1 implies that (for the details we refer to (149))

<5h SD>
Ova’" [yt amd .

0\ Q.
<! \8 (1) + o)) Il ooy

by (130) T )
< Ch)HNHT) el ey, Yo € Hp(Q)

with some constant C'(h) independent of €. Hence,

/Q “ (Vp, A h + AFUV D) da

(159) sup (HN~!(

<C(h) < .
>0 HGVAHH 3(T.) (h) < o0

Thus, using the continuity of the embedding Hz(I'.) < L2(I'.) and Sobolev Trace
Theorem, we get

rz) 1
[ weven) s | S Cllveallizn (YT
by (134)
(160) < Orllye, 1||H1(QE;BQ)a
[(Grvvee) | < Cllgeallia, (1)
A H™%(T.);H?(T.)
by (134)

(161) < Cillye2llma o.i00)-
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As a result, we arrive at the following the a priori estimates
) 1/2
(162) </ ||VyE,1||]RNXQE dl') < a71 (HstQe”H*l(Q) + C) ;
Q

1/2
(163) (/ Hvyi,QH;NXQE dw) <Ca™ !
Q

Hence, the sequences

{ys,l € H&(QE,(?Q)} and {ye,Q € Hé (staﬁ)}

e>0 e>0

are weakly compact with respect to the weak convergence in variable spaces [31],
i.e., we may assume that there exists a couple of functions ; and 7> in H}(Q) such
that

(164) lim A (Veo, Ve i) g X0 dz = /Q (V. Vi) gpw - dz, Yo € C5°(Q)
fori=1,2.

Now we can pass to the limit in the integral identities (155)—(156) as & — 0.
Using (152), (164), (159), L?-property of A € 2,4, and the fact that xq_f- — f
strongly in H~1(Q2), we finally obtain

(165) /Q (Vop, AV + ARV ) oy da = (f, @) H-1(Q);HL(Q)

(166) / (Vp, ANy + ARV ) pn doz =0
Q

for every ¢ € C3°(£2). Hence, 71 and g2 are weak solutions to the boundary value
problem (19)-(20) and (69), respectively. Hence, 7o € L(A) and 73 € D(A) by
Proposition 5. As a result, we arrive at the conclusion: the pair (4,%; + h) belongs
to the set =, for every h € L(A). Since by the initial assumptions (4,y) € Z, it
follows that having set in (151)

(167) h=y-1,
we obtain
(168) heL(A) and y. =ye1 +ye2 —y in Hy(Q;00) as € — 0.

Therefore, in view of (168), (159), (152), and Remark 17, we see that
(Ac,ve,y) = (A,y) in the sense of Definition 6.4.

Thus, the properties (13)—(14) hold true.

Remark 19. It is worth to notice that in the Case 1, we can give the same con-
clusion, because we originally have h = 0. Hence, the solutions to boundary value
problems (165)—(165) are unique and, therefore, we can claim that y = 71, 2 = 0,
and h = 0.
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It remains to prove the inequality (15). To do so, it is enough to show that
2 i
I(Ay) =y - deLZ(Q) +/ (Vy, A¥"Vy)pn dx
Q
= lim Ie(usa Ve, ye)
e—0
2
(169) = 1im [ 1y — val32 0,

(170) +/ (Vye, A" Vye)gn dr + — || ve)?
Q

=

o)

where the sequence {(ue,ve,y:) € Ec}, is defined by (151) and (167).
In view of this, we make use the following relations

T 71 |
Ioel?, g < 2l g )+ 2 [y, < o0
by (L) ) N-1
hm—H s||2 _1 < ChmHi() =0,
(171) e o o
w L[ O E  HC
e—0 €7 aVA H77(F5) - e—0 5 ’
by (135) and (168) 2
gg%llye *yd”Lz(QE) = v = vallz2(q) -

In order to obtain the convergence

(172) lim (Vye, A" Vy, )gn dx :/ (Vy, AY"Vy)pn dz,
e—0 Q. Q

we apply the energy equality which comes from the condition (A,y) € 2

(173) /Q(Vy,AsymVy)RN de = =[y,yla +{f, ¥ r-1(a) ) HE () 0

and make use of the following trick. It is easy to see that the integral identity for
the weak solutions y. to boundary value problems (138) can be represented in the
so-called extended form

/ (VQO, AsymVys + ASkewas)RNXQE dr = / stQEQde
Q Q

+ (e, o
Yol y=bromien "\ o, ¥ H-d b,
(174) _ / (Voh, A TR) o do — (05,04, Vet € CF(),
Q

where h* is an arbitrary element of L. Indeed, because of the equality

/Q (T, AV™R) _ da + [ 0]

U0, vy e o),
we have an equivalent identity to the classical definition of the weak solutions of
boundary value problem (138).

As follows from (159), (168), and the Sobolev Trace Theorem, the numerical
sequences

oh
1 1 d P —
{<“’5’y€>H*7<ra>;H§<re>}s>o o {<8VA’yE>Hé<ra> i, >}
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are bounded. Therefore, we can assume, passing to a subsequence if necessary, that
there exists a value £&; € R such that

oh
(175) <w57y€>H*%(FE);H%(FE) +<8VA,y€

Since y. — y weakly in H}(Q.;09Q) and y € D(A), it follows that there exists
a sequence of smooth functions {¢). € C§°(Q)},., such that 1. — y strongly in
H}(©Q). Therefore, following the extension rule (9), we have

> — & as € —0.
H_%(FE)§H%(FE)

(176) lim [ (Vipo, AVVR), da = / (Vy, A" VR*),, da,
Q Q

e—0

(177) g%[h*aws]A = [h*ay]A'

Because of the initial supposition (147) (see Remark 16), we can assume that the
element h* € L(A) is such that

[h*,y]a +/ (Vy,Asyth*)RN dz # 0.
Q

Otherwise, we come into conflict with (147). So, due to this observation, we specify
the choice of element h* € L(A) as follows

B — &+ [y, y)a h*, where & ::/ (Vy,Asyth*)RN dx, & = [h",y]a,
§2+&s Q

or, in other words, we aim to ensure the condition & — & — &5 + [y,y]a = 0. As a
result, we have: h* is an element of L(A) such that

. ~, S twyla e Gty yla
(178) ;I_)I% o (szyvh )RN dx =& & + &5 , ;l_l)%[h a7/)s] =¢&3 € + &5

Having put ¢ = y. and h* = h* in (174) and using the fact that

/{; (VyE’ ASkewaE)RN XQE dl‘ = Oa

we arrive at the following energy equality for the boundary value problem (138)

/ (vysaAsymvys)RNXQE dxr = / stQEys dx + <w€’y€>H7%(I‘ )-H%
Q Q €)1

oh _ ~
(179) +<,y5> = (A g do -
wa™™ [ u-baomir,)  Jo

As a result, taking into account the properties (135), (168), (178), we can pass
to the limit as ¢ — 0 in (179). This yields

(Te)

lim (Vye, AsymVyE)RN xq. dr = lim / fexa.ye dx
Q e—0 Q

e—0
+ lim ( ) tim ( 2
S \Wer¥e) =3 o ymd oy T 2N ayA’yE a3 b T,

<ty [ (Ve V) e g 0]

by (173) sum
(180) =W rrum — Wl = /Q(Vy,Ay Vy)rw dx.
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Hence, turning back to (170), we see that this relation is a direct consequence of
(171) and (180). Thus, the sequence {(ue,ve,¥e) € Ec},-(, Which is defined by
(151) and (167), is (T, 0)-realizing. The property (ddd) is established.

Step 3. We prove the property (dd) of Definition 1.3. Let {(Ag, vk, Yx)} ey be @
sequence such that (Ag, vk, yx) € Ee, for some g, — 0 as k — oo,

Ak — Azym+AZkew _)Asym_i_Askew — A in LQ(Q,MN),
AP — Av™in LP(Q;SY ), Vp € [1, +00),

1y Psym,
s A L)
Azkew%ASkew in L2(Q§Sé\;cew)7

Y — Yy in Hol(QEk;(?Q),

and the sequence of fictitious controls {vk eH _%(ng)}kEN satisfies inequality
(146). In view of Definition 6.4 it means that
(Ap, vk, yr) — (A,y) as k — oo
Our aim is to show that
(182) (A,y) e 2 and I(A,y) < liknig}f—rsk(Ak,”k,yk)-
Following the arguments of the proof of Theorem 3.2, it is easy to show that the

limit matrix A is an admissible control to OCP (21)—(22), i.e. A € Ayq.
Since the integral identity

(183) /Q (Ve, A3 Vi, + AV ) pu X, da = /Q fenxa., pdx

eyt b,y TPECTE)

holds true for every k € N, we can pass to the limit in (183) as k — oo using
Definition 6.4 and the estimate

O 3oty | S OO el (Y T4)F, Ve e G (@)

coming from inequality (146). Then proceeding as on the Step 2, it can easily
be shown that the limit pair (A,y) is admissible to OCP (21)-(22). Hence, the
condition (182); is valid.

As for the inequality (182)3, we see that

2
= [ly — deLZ(Q)

2
. 2 . _
(184) (e = yalzacq, ) = lm H(y’“ ya)Xo., L2(Q)

by (135) and compactness of the embedding H}(Q) < L2*(Q). In view of the
properties (181) and (7), the sequence {(Azym)l/ 2}k , is obviously bounded in
€

L2 Sﬁ/m). Moreover, taking into account the norm convergence property

klin;o I (A}iym)lﬂ f”iQ(Q;RN) - kh—>nolo/g (& Azymf)RN dx

- /Q (& AV dr = || (A™) 2 ¢l qmmy,  VEERY,
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we can conclude that the sequence {(Azym)l/ 2}14; strongly converges to (A%¥m)Y/?
EN

in L2(Q;SY ). Hence, combining this fact with (181)5 and (135), we finally obtain

sym
X, (Azym)l/z Vyr — xa (Asym)l/2 Vy in L*(Q; RN).

As a result, the lower semicontinuity of L?-norm with respect to the weak conver-
gence, immediately leads us to the inequality

k—o0

lim inf /Q (Vyr, A" Vyr)pn do = liminf [|Ixo., (A2 Tyl gz
€k

(185) > |lx (A¥™) 2 V|2 qmy) = /Q (Vy, AV Vy)pn da.

Thus, in order to prove the inequality (182)s, it remains to combine relations
(184), (185), and take into account the following estimate

1 ) HNU(T,)
— 7C7k
(ex) lorlly-3 i, 2 (ek)®

The proof is complete. O

(186) —0 as k— oo.

In conclusion of this section, we consider the variational properties of OCPs
(136)—(138). To this end, we apply Theorem 1.4.

Theorem 6.6. Let A* € L2 (Q SN

skew

) be a matrixz of the §-type such that
(187) the equality  [y,yla =0  does not hold in D(A).

Let yq € L*(Q) and f € H™(2) be given distributions. Let {(A2,v?,y?) € Es}8>0
be a sequence of optimal solutions to reqularized problems (136)—-(138), where xq, fe —
f strongly in H=(Q)). Then there exists an optimal pair (A%, y°) € Aaq to the orig-
inal OCP (21)—(22), which is attainable in the following sense

(188) (A2,20,49) B (A% 4°) as e =0
in variable space L?(;MY) x Hié(Fs) x H} (Q2;09),
: _ 0,0\ _ 1 0,0 0y_ 1 :
(189) (A,l,v?)feEHA’y) =1 (A Y ) = ;1_%[5(1457%»?45) = 21_13% (A,;,I@}feEE I.(A,v,y).

Proof. In order to show that this result is a direct consequence of Theorem 1.4, it is
enough to establish the compactness property for the sequence of optimal solutions
{(A2,02,4?) € Ec}__, in the sense of Definition 6.4.

Let h € C§°(R2) be a non-zero function such that div (A%¥"™Vh+ A*Vh) €
L?(Q)), where we assume that A = A%Y™ + A* is an admissible control, A € Ayq.

We set v, = 6?7};‘ € H™2(T'.). In view of the initial assumptions and estimate
r

(150), there is a constant C' > 0 independent of ¢ such that

H Ova HH*E(F < OHFTHY),

Let y. = y.(Ac,ve, f) € HE(:;09Q) be a corresponding solution to boundary
value problem (138). Then following (162), we come to the estimate

el . 00) < €
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where the constant C is also independent of €. As a result, we get
2 X
IE(A27U27:US) = Hyg - deL2(Qs) + ‘/Q (vyg’ (A(E))éy"LVyS)RN dx

7%(1‘5) < Is(Asavaye)
HNU(T)

E-O'

1
+ 57””2”2
<(201 + B)C + 2|lyallZ2q) + C

Since e HN"YT.) — 0 as e — 0, it follows that the minimal values of the cost
functional (137) bounded above uniformly with respect to e. Thus, the sequence of
optimal solutions {(A2,v?, yg)}6>0 to the problems (136)—(138) uniformly bounded
in L2(Q;MN) x H-2(T'.) x H}(Q.) and, hence, in view of Proposition 4 , it is
relatively compact with respect to the weak convergence in the sense of Definition
6.4. For the rest of proof, it remains to apply Theorem 1.4. O

Remark 20. We note that variational properties of optimal solutions, given by
Theorem 6.6, do not allows to say that the convergence of optimal states P-(y°) to
y is strong in H}(Q). Indeed, the convergence

(190) /Q (Vy2, (A" Vy?) pn do =9 / (Vy°, (A" Vy°) o x d,

€ €

which comes from (188)—(189), does not implies the norm convergence in HE ().
At the same time, combining relation (190) with energy identities

[ @)™ ) = [ e ) e

=

and
/Q (Vyo, (A% VyO)RN dz =~y 4"1a0 + (£:9°) s pem @)

rewritten for optimal solutions of the problems (153)—(154) and (19)—(20), respec-
tively, we get

. 0,0 — 1,0 ,0
(191) g% <U87yE>H7%(FE);H%(FE) - [y Y ]AO-

It gives us another example of the product of two weakly convergent sequences that
can be recovered in the limit in an explicit form. Moreover, this limit does not
coincide with the product of their weak limits.

Our next remark deals with a motivation to put forward another concept of the
weak solutions to the approximated boundary value problems (138) and (44) which
can be viewed as a refinement of the integral identities (155) and (50), respectively.

Definition 6.7. Let {Q2.}__, be a sequence of perforated subdomains of € as-
sociated with matrix A by the rule (128)—(129). We say that a function y. =
ye(A, f,v) € HE(Qe) is a weak solution to the boundary value problem (138) for
given A € Aqg, f- € L2(Q), and v € H~2(T.), if the relation

(192) / (V@,AVyE)RNxQE da:—|—/ (V1/J,AVh)RN dx
Q Q

- /Q Jepxac de = (0, 0) oy b oy =0
holds true for all h € L(A), ¢ € C§°(R2), and ¢ € C§°(Q).
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Definition 6.8. Let A, := T.(A) € L=(Q;M") be a truncation of a given matrix
A € Auq. We say that a function y. = y.(Ae, f) € HZ(2) is a weak solution to the
boundary value problem (50) for given f € H~1(Q), if the relation

(198) [ (Vo AT do+ [ (T0,ATR) g do = (0w ymgir =0

holds true for all h € L(A), ¢ € C§°(Q), and ¢ € C5°(0).

Since for every A € Ayq and h € D(A) the bilinear form [h, ¢]4 can be extended
by continuity (see (9)) onto the entire space H3(), it follows that the integral
identities (192)—(193) can be rewritten as follows

/ (V%AsymVye + ASkewaa)RN xq. dz
Q

+/ (V’(/J,Asyth) dl‘—l— A—/ fa‘ﬂXQ dx

Q

(194) 0 by =0 Vet € HY(Q), VA€ L(4)
and

/ (Vgp,ASymVy6 + Agke“’(x)VyE)RN dx
Q

+/Q (Y4, AV™ VR, da + [h, 9] a

respectively.
Hence, using the skew-symmetry property of the matrix Ak ¢ L2 (Q,Si\,’cew)

and the fact that the set L(A) is closed with respect to the strong topology of
H} (), we conclude: for every € > 0 there exist elements hl, h2 in L(A) such that
the relations (194)—(195) can be reduced to the following energy equalities

(196) /Q (Vyge, Ay ) en X, dz + / (Vye, AVhY),  da + [hl,y:)a

(197) = [ fevxa o+ (o) et
(198) /Q(VyE,ASymyE)RN dx Jr/Q (Vys,Asythg)RN dx + [h?,y.)a
(199) =(f yJHﬂ(Q);H&(Q)

for the problems (138) and (44), respectively.

Thus, in contrast to the ”typical” energy equalities to the boundary value prob-
lems (138) and (44), relations (197)—(199) include some extra terms which coming
from the singular energy of the boundary value problem (19)—(20) that was orig-
inally hidden in approximated problems (138) and (44). However, in contrast to
the similar functional effect for Hardy inequalities in bounded domains (see [28]),
the terms [, (Vye, Asythé)RN dx +[ht, y:] a are additive to the total energy, and,
hence, their influence may correspond to the increasing or decreasing of the total
energy and may even constitute the main part of it.
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7. OPTIMALITY SYSTEM FOR REGULARIZED OCPs ASSOCIATED WITH
PERFORATED DOMAINS ). AND ITS ASYMPTOTIC ANALYSIS

As follows from Theorem 6.3, for each € > 0 small enough, the optimal control
problem <inf(A,U7y)€EE IE(Am,y)), where the cost functional I, : Z. — R and its
domain 2, C A, x H~2(T.) x HL(Q;09Q) are defined by (137)-(138), is a well-
posed controllable system. Hence, to deduce an optimality system for this problem,
we make use of the following well-know result.

Theorem 7.1 (Ioffe and Tikhomirov [14, 13]). Let Y, U, and V be Banach spaces,
let J:Y xU — R be a cost functional, let F: Y xU — V be a mapping, and let Uy
be a convex subset of the space U containing more than one point. Let (u,y) € UXY
be a solution to the problem

J(u,y) — inf,
F(u,y) =0, ue€Us.
For each u € Uy, let the mapping y — J(u,y) and y — F(u,y) be continuously
differentiable for y € O(y), where O(Y) is some neighbourhood of the point y, and
let Im F)(u,y) be closed and it has a finite codimension in V. In addition, for
y € O(y), let the function u — J(u,y) be convex, the functional J is Gateaus-
differentiable with respect to u at the point (u,y), and the mapping v — F(u,y) is
continuous from U to'Y and affine, i.e.,
Flyur + (1 =7)uz, y) = vF(ur,y) + (1 =) F(ug,y), Vur,uz €U,y €R.

Then there exists a pair (A\,p) € (Ry x V*)\ {0} such that

(200) (Ly(@.5. M) By =0, VheY,
(201) (LA p), e > 0, YueUs—7,
where the Lagrange functional L is defined by equality

(202) L(u,y, A\, p) = N (u,y) + (0, F(u,9)) ey -

If Im F) (u,y) =V, then it can be assumed that A\ =1 in (200)—(201).

For our further analysis, we set

(203) Y = H)(Q::09), V=L*Q)x H 2 (I.),
(204) U= (L*(8Y,,) & L2(8h,,) x H™3(I.),
(205) Up = Uag x H 2(T2) i= (Uga1 & Waa2) x H 2 (L),

J=1I.(Av,y) = |y — yd||2Lg(QE) +/Q (Vy, A¥™Vy)pn dx

1
206 —ol® _y
(206) L T
(207) F(A,v,y) = —div (AVy) — f. Oy _ v
) ) (58] aVA M

Since for each (g, w) € L2(Q.) x H~2(I'.) the boundary value problem
(208) —div(AVy) =g in 9,
(209) y=0o0n09Q, 0Jy/0vy=wonT,
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has a unique solution y € H(Qc;09) [21], we have Im F (4,7) = V. Thus, the
assumptions of Theorem 7.1 are obviously satisfied. It means that the Lagrange
functional £, to the optimal control problem <inf(A,v7y)65£ IE(A,v,y)> can be de-
fined by formula (with A =1 in (200)—(201))

LA vg) = o=l + [ (A" Ty)en do

1
+€7H’U

0
(210) Hgmopn)
Gva H™2(T.);H2 (T.)

where p = (p1,p2) € V* := L2(Q.) x H2(T,).
Let 79 : Hy(Qe;00) — H3(T.) be the trace operator, i.e. P, is the extension
by continuity of the restriction operator 7 (u) = u|FE given for all u € C§°(RY).
We are now in a position to prove the following result.

||Z_%(FE) + (= div (AVy) - f57p1>L2(525)

Theorem 7.2. For a given € > 0, let
(A2 00, y2) € (LX(S,,) ® LA (2 SN,,)) x H™#(I2) x Hy(Qe;00)

s Msym skew

be an optimal solution to the regularized problems (136)—(138). Assume that the
following condition holds true

(211) div ((AQ)Skew vy‘g) e L2(Q.).
Then there exists an element p. € H}(Qe; 0Q) such that the tuple

(A2, 02,42, pe, 7P (pe))
satisfies the following system of relations
212 —div (A2Vy?) = f. in Q.
213 =0 onodQ,
214 Byg/(’“)VAg =00 onT,,

(212)
(213)
(214) :
(215)  div (42" Up.) = —2div ((A)™" V4l) +2 (42~ va) , ace. in D,
(216) p-=0 on0Q,

(217) Op2/Oviany =0 on T,

(218)

60

0
218 A L (Pe)s

oo

(%

(219) /Q (Vy? + Vpe, (A% — (A2)5™) Vyg)RN dx
+/ (Vps7 (Askew _ (Ag)Skew) vyg)]RN dx Z 0, VAEe mad,
Q.

where A is the canonical isomorphism of Hz(T.) onto H™%(T.).

HZ(T.)

Remark 21. It is worth to notice that, in contrast to (212), relation (215) should
be interpreted as an equality of L?-functions. It means that the description of
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boundary value problem (215)—(217) in the sense of distributions takes other form,
namely,

div (42" Vpr) =2 (£ + div ((A)™" V) + (1~ ) ), in
pe =0 on 09,
6p2/8V(Ag)t = (Q)yg/(?V(Ag)skew on I,

where the component 9y°/ Iy AQyskew 18 unknown a priori. Here, we have used the
fact that
(220) — div ((Ag)sym vyg) = f. + div ((Ag)s’“““ vy‘g) in Q.

by equation (212).

Proof. By Theorem 7.1, there exists a pair p = (p1,p2) € V* := L?(Q.) x H%(FE)
such that the Lagrange functional £ satisfies relations (200)—(201). The direct
computations show that, in view of (210), the condition (200) takes the form

(221) <Dy EE(Aga Ugaygvplvp2)a h>Y*'Y = 2/( (Vh, (Ag)sym Vyg)RN du

oh
+2/ (ygyd)hd:z:+<a ,p2>
2 vag H™%(D.)H3 ()

- / div (A2Vh)pydz =0, Vhe H?*(Q.)N H(Qe;00)
Qe

(here we have used the fact that Im F; (u,y) = V). As follows from (221) and (211),
for h € C§° (), we have

(222) 2 / (Vh, (AQ)™™ vyg) dx + 2 / (v2 = ya) hdx
Q RN Q

€ =

_/QE div ((Ag)tvpl) hdx = —2/95 div ((Ag)sym vyg) hdax

+2/ (yg—yd)hdx—/ div ((42)" p1 ) b = 0.
Qe Qe
Due to equality (220) and the initial assumptions (211), relation (222) implies that
div ((Ag)t Vp1> € L?(€.). Hence, (Ag)t Vp1 € H(S; div ), where

H(Q; div) = {¢] £ € L*(QRY), divé € L*(Q.)}.

Thanks to Lipschitz properties of 9Q., we can conclude that (see, for instance,
21, 5]) Op1/Ov(a0y: € H~2(89.) and the map

op
Ov(agyr

(A9 Vpi € H(Q; div) — € H 2 (99.)
is linear and continuous. Moreover, if (Ag)t Vp1 € H(Qe; div) and h € H?(.) N
H}(Qc;09), then the Green formula
_/ div (A°Vh)py d = _/ div ( (A%)' Vp; )hdz
Q.

Qe

@) ()

(91/,42

G
nboamt@y  NVAOT gt
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is valid. Then, combining this relation with (221)—(222), we arrive at the following
identity

_Op
Ov(agy:’
oh
9 yD2 . 1
H™ 5 (Q.):H3 (Q0) vag H™2(De);H2 (Te)

(224) <Dy Zs(AgaUgvygvplvp2)vh>Y*.Y = <

—< On 7%(9)95 (P1)>

8VA2

>H5(Fs);H%<Fs>

:O’

which is valid for all h € H2(2.) N H}(Q;09) and all p = (p1,p2) such that
p1 satisfies (222),

(p1,p2) € LX) x H3(T.) and (A9)' Vp, € H(Q., div).

As follows from (224), for each

(225)

h e CERY;T.) N Cy(RY;0Q) € H?(Q) N HE(Q;00),

we have

oh
<ay Y50 (p1) > ., =0
A2 H™2(80);H2 (8Q)

Since Cg°(RN;T.) N Co(RY;09) is dense in H~2(9) and the matrix (A2)*" is
positive defined, it follows that

(226) Y90 (p1) = 0.
Hence, equality (224), for all h € C§°(RY;T.), gives

oh oh
e (pme) b)) =
VA H™3(I.);HZ(T.) va H™2(P.);HZ(T.)

Taking into account the fact that the mapping

80 a0 : H* () N HE (Qe300) — H2(L.)
is an epimorphism (see Theorem 1.1.4 in [13]), from (227) it follows that
(228) . (p1) = pa-
Thus, in view of (226) and (228), relation (224) takes the form

om >
Wy L u-dwourd ey

<DyEE(A2aUg7yg7p1”YIqe(p1>)7h>Y*'Y: < :0

for all h € H%(Q.)NHE(Qe; 09Q). Applying the same arguments as before, we finally
conclude that
Op1

229
(229 Ov(agye

=0 on TI'. (in the sense of distribution).

As a result, having gathered relations (222), (226), and (229), we arrive at the
boundary value problem (215)—(217). Moreover, by the regularity of solutions to
the problem (215)-(217), we have p. € H?(2.) N H}(Q;09Q) [15].

In order to end of the proof of this theorem, it remains to show the validity of
the relations (218)—(219). With that in mind, we note that, in view of the structure
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(203)—(205), condition (201) takes the form

(230)  (DaL(AZ, 02,5 pevr. (p=)), A = AD) o quuny 20, VAEU, =

/ (V4 + Vpe, (A0 — (A2)*r™) Vy0) . da

€

b [ (T (A% — (AN V) e 20, VA €%
Q

€

(231) DU‘C(A27Uga ygapEa’YlQ‘E (p&‘)) =0 = ;’UE - AH%(FE)VIQ‘E (pE) = Oa

Here, we have used the fact that H %(1"5) can be reduced to a Hilbert space with

respect to an appropriate equivalent norm, and, hence, H —3 (T'¢) is a dual Hilbert
space as well (for the details we refer to Lions and Magenes [21, p.35]). O

Remark 22. In view of the assumption (211), we make use of the following ob-
servation. Let {(Ac,ve,¥:) € Ec}. be a weakly convergent sequence in the sense
of Definition 6.4. Since in this case {y. € H} (Qf;aﬂ)}s>o are the solutions to
the boundary value problem (208)—(209) with A = A, and g = f. € L*(Q), and
w=v; € H—3 (T2), it follows that the sequence { div (AEVyE)XQE }s>0 is obviously
bounded in L?(£2). However, because of the non-symmetry of L*-matrices {A.}, .,
it does not imply the same property for the sequence { div (Ag’WVyE)XQE }E>0. In
order to guarantee this property, we make use of the notion of divergence div A
of a skew-symmetric matrix A € L2 (Q'SN ) We define it as a vector-valued

' Mskew

distribution d € H~1(Q;RY) following the rule

(232) <di7@>H—1(Q);H[§(Q) =— /Q(ai,Vap)RN de, Vo € C(Q), Vie{l,...,N},

where a; stands for the i-th column of the matrix A. As a result, we can give the
following conclusion: if div Askew € L°(Q;RY) for all ¢ > 0 and the sequence
{div Agkew}oo is uniformly bounded in L (£2;RY), then there exists a constant
C > 0 independent of € such that

(233) sup HXQE div (Agkewv%) HLZ(Q) <C
e>0
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Indeed, since
—<diV (A:’“wvws) aXQg¢>H*1(Q);Hé(Q)
= — <div (AgkewVi//a) a<P>H—1(QE);Hé(QE)
ainga

— (i . >
< Y v ") mr o)
a’Nyg wE

Z diva;q, e
; 9%i [ g ()

=0
si skew 2(0.sN
since Ag €L <Q’Sskew)

due to the fact that div AF* e L®°(Q; RN) for all € > 0
€

:/Q (divA:ke“’,Vwe)RNgadx,

€

for any ¥., p € C§°(£2.), it follows that this relation can be extended by continuity
to the following one
— (div (Azkewvys) 7XQE‘P>H—1(Q);H3(Q) = /Q ( div Agkew, VyE)RN pdx.
Hence
[[xq. div (AZFVy.) < (LN ()2 div A2 oo (,m)

X Vel L2 (. my) < +00.

20

To deduce the estimate (233), it remains to refer to the boundedness of . in variable
HY(Q;09) (see Definition 6.4).

Our next intention is to provide an asymptotic analysis of the optimality system
(212)—(219) as € tends to zero. With that in mind, we assume the fulfilment of the
following Hypotheses:

(AH1) For each admissible control A € 2,4 the corresponding bilinear form [y, ¢] 4
is continuous in the following sense:

(234) lim[ye, pela = [y,p]a

provided {p:}..o C H3(Q), {y:}.o0 C HS(Q), ye = y in H{(Q), p- — p in
HY(Q), and y,y. € D(A) for € > 0 small enough.
(AH2) Let {(A2,v2,92, p. )}E>0 be a sequence of tuples such that, for each € > 0

the corresponding cortege (A%, 02,40 p.) satisfies the optimality system
(212)—(219). Then there exists a sequence of extension operators

{P- € £ (Hg(Q309), Hy()) } ..,
and element ¢ € H}(€2) such that

P.(p.) =1 strongly in H}(Q) and ¢ € D(A*).
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Theorem 7.3. Let yq € L*(Q) and f € H=*(Q) be given distributions. Let A* €
L? (Q,S?Lew) be a matriz of the F-type. Let {(Ag, 00 90) € EE}E>0 be a sequence of
optimal solutions to reqularized problems (136)—(138), and let (A%, y°) € D(A*) x
H}(Q) be its w-limit. Let {pg € H&(Qs;aﬁ)}oo be a sequence of corresponding
adjoint states. Then, the fulfilment of the Hypotheses (H1)-(H2) and (AH1)-(AH2)
implies that (A%, y°) € A,ax HE(Q) is an optimal pair to the original OCP (21)—(22)
and there exists an element ¥ € H} () such that

(235) (A2 00 4%) B (A% 4°) as € —0,
(236) P.(p:) — 1 strongly in H(Q),
—div (AOVyO) = f in Q
2
(237) y=0 on 09,
. . 0\ sym 0 0 _ .
(238) div ( V ) 2 div ( A ) Vy ) +2 (y yd) mn £,
=0 on 09,

[0, (e (A7) (94 ) )

Q
(239) > [yOaJ}AO - [Z/O,E]A, VA€ Qlacb

Proof. To begin with, we note that due to Theorem 6.6, the sequence of optimal
solutions {(A2,v¢,4?) € EE}6>O to the regularized problems (136)—(138) is compact
with respect to w-convergence and each of its w-cluster pairs (A%, 4°) is an optimal
pair to the original problem (21)—(22). Hence, (A°,4°) € 2,4, and the limit passage
n (212)—(214) as e — 0 leads us to the integral identity (101). Thus, the relation
(237) holds true in the sense of distributions. In what follows, we divide the proof
onto several steps.
Step 1. Since the integral identity

/Q (V. (A9 VP-(p2) — (AU VE.(p.)) o xer, de
. /Q (Ve (A" VP)) | xe

(240) 9 / (Po(6) - a) oo, dz, Vo € CF(Q)

holds true for every e > 0, we can pass to the limit in (240) as ¢ — 0 due to
Hypothesis (H3) and Definition 6.4 (here, we apply the arguments of Remark 15).
Using the strong convergence xqo. — Yo in L?(£2) (see Proposition 8), we arrive at
the equality

/Q (Ve, (A°)' V) da = —2/

Q
(241) - 2/ (yo - yd) pdr, YeeCi°(Q).
Q

Hence, 1) € D(A%) C HZ () (see Proposition 5) and 1 satisfies relation (238) in the
sense of distributions.

Step 2. On this step we study the limit passage in inequality (219) as e — 0. To
this end, we rewrite it as follows

(242) JE(A) > J5 — JE(A), VAEA, Ve>0,

(V<,07 (A0)™ Vy())RN dx
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where

(243) @A) = [ (Vi ATV, da,

(244) T= [ (T A9
(245) T = [ (V40 (A= (42)) Vo) do

€

By Theorem 6.6 (see (189)), we have

0 0y . 0 2 0 0\ sym 0
I(A Y ) = Hy _deL2(Q) +/Q (Vy 7(A ) vy )]RN dx
. 0,0 ,0\._ 1 0 2
- g%IE(AE,yE,yE) T 25% ||(y8 _yd)XQE L2(Q)
1
. 0 0\ Sym 0 s 10,0112
(246) + lim . (VyE,(Ae) VyE)RN dz + lim EUHUEHH*%(FE)'
Since
(247) tim |42 ~ va)xe. |32 ) = l18° — vall
I} (ye a)XQe || 12() dllLz()

by the compactness of the embedding H} () < L?(Q), and lim._,0 e~ |0?

0 by Theorem 6.6 (see estimate (186)), it follows from (246) that

[
H™2(T%)

e—0

Sge 0 ( 40\$Y™ 7, 0 _.
(248) lim JE = /Q (Vy (A% vy )RN dz =: Jo.
Step 3. As for the term J5(A), we see that

lim J5(A) = lim [ (Vy2,(A0)'Vp.),y da = ( by (240) )

21 220 Jo,
~ lim [ - 2/9 (VP-(0), (A" VPe(yS))RN Xa. dz
~2 [ (P6) = wa) Pone, da] = ( by (208) and (247))
- - 2/9 (Vs ()" ") do 2/Q (v° = ya) ° da
= lim [— P /Q (VPa(yg), (49 VyO)RN xa, dz
- 2/Q (v° = ya) P-(y2)x0. dw} = ( by (241) )

. t A
= 1y [ (VP00 (4) 9D, do

sym 7

= [ (A0 V) i+ B[P B0 = (o (ATE2)

(249) - / (5°, (%)™ V) o di + [, § a0
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and

lim N (Vy2, A'Vp.) g da = /Q (Vy°, AV da

(250) +lim [ (VP.(pe), A" VP (y2)) on Xe. d

e—0 Jo
as the limit of product of weakly and strongly convergence sequences in L2(Q; RY).
Hence, combining relations (249) and (250), we get
lim JE(A) = / (4°, (Asym - (AO)‘“"”") V) gy dz = [y°, 9] a0
Q

e—0

+ lim [ (VP(p-), ASke“’VPE(yg))RN Xq. dx = (by Hypothesis (AH2))

e—0 Jo

= [P (A = (A)") V) o = 4.+ [ T
(251) = Jy(A).

Step 4. At this step we study the asymptotic behaviour of the term J{(A) in
(243) as € — 0. To this end, we note that in view of the property (7), the lower
semicontinuity of L2-norm with respect to the weak convergence, immediately leads
us to the inequality

e—0 e—0

lim J(A) = liminf / (Vy2, A" Vy2) p da
Q.
= liminf [y, (A" Vy2|22 qmn)
e—0 ’

> (A7)0 By = [ (T8 AVVy0) 0 do

(252) —: J1(A).

However, because of inequality in (252), we cannot assert that the limit values are
related as follows

(253) Jl(A) > Jy — Jg(A), VAeA,.

In order to guarantee this relation, we assume the converse, namely, there exists a
matrix Ay € Agq such that Jy(A4y) < Jo — J3(A4y). That is, in view of (248),(251),
and (252), this leads us to the relation

(254) /Q (Vyo, (A;ym - (AO)Sym) VyO)RN dx

[0 (437 = (A0)"™) V) do < 00,0 — 0 B
Q
The direct computations show that, in this case, we arrive at the inequality

LAy, 1,9) < LA 9", 1,6) = I(Ao, o) = inf _T(A,y),
JY)EE
where E(A, y, A, p) is the Lagrange function given by (81). However, this contradicts
with the Lagrange principle, and therefore, the inequality (253) remains valid. Thus,
following (253), we finally get

(a0 (Ao = (20" (9 £ 9)) = 5L =
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for all A € ,4. This concludes the proof. O

Remark 23. As Theorem 7.3 indicates, the limit passage in optimality system
(212)—(219) for the regularized problems (136)—(138) as € — 0 leads to the relations
which coincide with the optimality system for the original OCP (21)—(22). However,
a strict substantiation of this passage requires rather strong assumptions in the form
of Hypotheses (H1)-H2) and (AH1)-(AH2). At the same time, the verification of
these Hypotheses becomes trivial provided

(255) A* € L>(Q;8%..,) in (25),
(256) and 3C >0 : [|div A% poqry) < C, VA E Uga.

Indeed, the validity of Hypotheses (H1)-(H2) evidently follows from (255). More-
over, in this case the relation (234) takes the form

3 k _ skew
lim i (Vpe, A%FUVye) g da = /Q (Vp, A%V y) oy da
and it holds obviously true provided y. — y in H} (), p. — p in H}(Q), and
Askew < A* € L>°(Q; SN ). Hence, Hypothesis (AH1) is valid as well. As for Hy-

pothesis (AH2), we see that admissible controls A € 2,4 with extra property (256)
form a close set with respect to the strong convergence in L?(£2;SY ). Moreover,

skew
in this case we have that the sequence { xq. div ((AS)Skew Vy?)} is uniformly
e>0

bounded in L?(2) (see Remark 22). Hence, the sequence of adjoint states {p}.-,
given by (215)—(217), is bounded in H?(€).) by the regularity of solutions to the
problem (215)—(217). Hence, within a subsequence, we can suppose that the se-
quence {P.(p)}.. is weakly convergent in H?(£2). This proves Hypothesis (AH2).
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