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Abstract. In this paper we study an optimal control problem (OCP) asso-

ciated to a linear elliptic equation on a bounded domain Ω. The matrix-
valued coefficients A of such systems is our control in Ω and will be taken in
L2(Ω;RN×N ) which in particular may comprise som cases of unboundedness.
Concerning the boundary value problems associated to the equations of this
type, one may face non-uniqueness of weak solutions— namely, approximable
solutions as well as another type of weak solutions that can not be obtained

through the L∞-approximation of matrix A. Following the direct method in
the calculus of variations, we show that the given OCP is well-posed in the

sense that it admits at least one solution. At the same time, optimal solutions
to such problem may have a singular character in the above sense. In view
of this, we indicate two types of optimal solutions to the above problem: the
so-called variational and non-variational solutions, and show that some of that
optimal solutions can be attainable by solutions of special optimal boundary
control problems.

In this paper we deal with the following optimal control problem (OCP) in coef-
ficients for a linear elliptic equation

(1)





Minimize I(A, y) = ‖y − yd‖2L2(Ω) +

∫

Ω

(∇y,Asym∇y)
RN dx

subject to the constraints
− div

(
Asym∇y +Askew∇y

)
= f in Ω,

y = 0 on ∂Ω
A ∈ Aad,

where (Asym, Askew) ∈ L∞(Ω;RN×N ) × L2(Ω;RN×N ) are respectively the sym-
metric and antisymmetric part of the control A, yd ∈ L2(Ω) and f ∈ H−1(Ω) are
given distributions, and AAd denotes the class of admissible controls which will be
precised later.

The characteristic feature of this problem is the fact that the skew-symmetric
part of matrix A(x) = [aij(x)]i,j=1,...,N belongs to L2-space (rather than L∞). The
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2 T. HORSIN AND P. I. KOGUT

existence, uniqueness, and variational properties of a weak solution to (1) are usu-
ally drastically different from the corresponding properties of solutions to the elliptic
equations with L∞-matrices in coefficients. In most of the cases, the situation can
deeply change for the matrices A with unremovable singularity. Typically, in such
cases, the above boundary value problem may admit infinitely many weak solu-
tions which can be divided into two classes: approximable and non-approximable
solutions [12, 30, 32]. A function y = y(A) is called an approximable solution to
the boundary value problem in (1) if it can be attained by weak solutions to the
similar boundary value problems with L∞-approximated matrix A. However, this
type does not exhaust all weak solutions to the above problem. There is another
type of weak solutions, which cannot be approximated by weak solutions of such
regularized problems. Usually, these are called non-variational [30, 32], singular
[2, 18, 19, 29], pathological [23, 26] and others.

It may seem puzzling to consider, for an optimal control problem, a state equa-
tion with singular matrix involved in the coefficients. Despite this offhand abstract
aspect of the problem, one should be aware that singular equations appear natu-
rally when considering optimal control problems with a nonlinear state equation
(see, for instance, [3] for quasi-linear elliptic equations). Moreover, formal analysis
in optimization are well-known to state that optimal control problems and their
adjoints are completely dual from each other through saddle points consideration
which also justifies the fact that one may be interested in dealing with optimization
of linear singular equations.

The aim of this work is to study the existence of optimal controls to the problem
(1), propose a scheme of their approximations, and discuss the optimality conditions
of this problem. Using the direct method in the Calculus of Variations, we show in
Section 2 that the original OCP admits in general a non-unique solution even if the
corresponding boundary value problem is ill-possed. This problem is thus another
example of the difference between well-posedness of optimal control problems for
systems with distributed parameters and ill-posedness of boundary value problems
for partial differential equations.

In Section 3 we show that there are two types of optimal solutions: the so-
called variational and non-variational solutions. By the first type we mean those
optimal solutions which can be attained through the sequence of optimal solutions
to regularized OCP for boundary value problem (1) with skew-symmetric parts
of admissible controls Askew

k ∈ L∞(Ω; SN ) such that Askew
k → Askew strongly in

L2(Ω; SN ). We give the sufficient conditions which guarantee that the solutions
to OCP (1) have a variational character. The second type of optimal solutions
is related to those which cannot be attained by the above procedure. We discuss
in Section 5 the example of an optimal control problem in coefficients with non-
variational optimal solution. This stimulates us to develop another approach of
approximation for the considered optimal control problems.

In Section 4 we discuss optimality conditions for OCP (1). In spite of the fact that
the corresponding Lagrange functional is, in general, not Gâteaux differentiable, we
show that the optimality conditions can be derived using the notion of quasi-adjoint
state to the original problem [27]. As for a result, this leads to an optimality system
which contains the so-called extended values of bilinear forms generated by L2-skew-
symmetric matrices.

In section 6 we give a precise description of the class of admissible controls
Aad ⊂ L2

(
Ω;RN×N

)
which guarantee that non-variational solutions can be attained
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through the sequence of optimal solutions to OCPs in special perforated domains
with fictitious boundary controls on the boundary of holes. Namely, we consider
the following family of regularized OCPs

(2)





Minimize Iε(A, v, y) := ‖y − yd‖2L2(Ωε)
+

∫

Ωε

(∇y,Asym∇y)
RN dx

+
1

εσ
‖v‖2

H− 1
2 (Γε)

subject to the constraints
− div

(
Asym∇y +Askew∇y

)
= f in Ωε,

y = 0 on ∂Ω, ∂y/∂νA = v on Γε,
y ∈ H1

0 (Ωε; ∂Ω),

where Ωε is the subset of Ω such that ∂Ω ⊂ ∂Ωε, σ > 0, and ‖A(x)‖SN :=
maxi,j=1,...,N |aij(x)| ≤ ε−1 a.e. in Ωε. Here, v stands for the fictitious control.

We show that OCP (2) has a nonempty set of solutions (A0
ε, v

0
ε , y

0
ε) for every

ε > 0. Moreover, as follows from (2)1, the cost functional Iε seems to be rather
sensitive with respect to the fictitious controls. Due to this fact, we prove that the
sequence

{
(A0

ε, y
0
ε)
}
ε>0

gives in the limit an optimal solution (A0, y0) to the original
problem.

The main technical difficulty, which is related with the study of the asymp-
totic behaviour of OCPs (2) as ε → 0, deals with the identification of the limit

limε→0

{〈
v0ε , y

0
ε

〉
H− 1

2 (Γε);H
1
2 (Γε)

}
ε>0

of two weakly convergent sequences. Due to

the special properties of the skew-symmetric parts of admissible controls A ∈ Aad ⊂
L2
(
Ω; SN

)
, we show that this limit can be recovered in an explicit form. We also

show in this section that the energy equalities to the regularized boundary value
problems can be specified by two extra terms which characterize the presence of
the-called hidden singular energy coming from L2-properties of skew-symmetric
components Askew of admissible controls.

In conclusion, in Section 7, we derive the optimality conditions for regularized
OCPs (2) and show that the limit passage in optimality system for the regularized
problems (2) as ε→ 0 leads to the optimality system for the original OCP (1).

Let us point out that situations where the non uniqueness of some problems oc-
curs can lead to serious numerical difficulties. A good numerical scheme is assumed
to construct a desired solution. At a basic stage, the proof of the Cauchy-Peano
theorem for O.D.E is relevant of this situation: though the construction of the solu-
tion may seem explicit, the fact the convergence is obtained only for a subsequence
is a brake to finding the desired solution see [8]. In the context of this paper, due
to limited capacities of computers, any kind of representation of matrices with L2-
coefficients will lead to a truncated version of it. Naturally, thus, any attempt to
treat numerically some problem of the type (1), will probably force the algorithm to
obtain an optimal variational solution. Thus, in order to produce numerically non-
variational optimal solutions of the problem (1), the method of perforated domain
can be used. But in this case, one has to face the fact that fictitious controls are
distributions, which, of course, have a quite bad numeric representation. One may
thus think that those fictitious controls could be taken in spaces of higher regularity
(e.g. L2(∂Ωε)), but basic examples of non-variational solutions (see [30, 32] ) shows
that it is probably in general possible to have non variational solutions with such
properties.
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Of course, one may wonder if situations of non uniqueness and moreover of
lack of procedure to obtain some uniqueness are relevant from the point of view
of applications. Nematic liquid crystals, as modeled by harmonic maps between
manifolds, can be, throughout this model, represented by minimizing harmonic
maps or stationary harmonic maps, for which, both of them satisfy formally the
same equation, but mathematically not. We refer to [9] for descriptions of this
topic.

For our particular equations, there may be some physical situations where the
ill-posed problem in (1) has also a mere sense in itself, notwithstanding the optimal
control problem. In deed, it is a common old principle to assume that the stress
Cauchy tensor σ in mechanics is symmetric and leads to the classical relations

− div (σe(u)) = f

where e(u) is given by

e(u) =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

)

see [4].
On the contrary to this equation which can be stated in the form

− div (A∇u) = f

for some symmetric matrix A, the Cosserats brothers have introduced a non sym-
metric form for this equation, [7]. Of course at a gross scale, the symmetric part
of the stress behavior dominates the behavior, but some micro-rotation may be ob-
served in material according to strain actions, for example in bones or some specific
materials [22]. In that sense the assumption on Askew may be reflecting some par-
ticular fragile point of a material, fragile meaning with respect to some local ability
of the surrounding matricant to degenerate in torsion, while remaining stable in
elongation.

In the spirit of the OCP, (1) can be thought as a way of realizing some specific
material with objective yd (for example a desired deformation) according to some
prescribed set of singular behaviours (the points where Askew is singular), that is
the material has a micro-rotative behavior at only some prescribed set. Of course,
according to the previous analysis, designing such a material may be difficult to
realize as a result of the following analysis.

1. Notation and Preliminaries

Let Ω be a bounded open connected subset of RN (N ≥ 2) with Lipschitz bound-
ary ∂Ω. The spaces D′(Ω) of distributions in Ω is the dual of the space C∞

0 (Ω).
As usual by H1

0 (Ω) we denote the closure of C∞
0 (Ω)-functions in the Sobolev space

H1(Ω), while H−1(Ω) denotes the dual of H1
0 (Ω), any of its element can be repre-

sented, in the sense of distribution, as f = f0+
∑

j ∂jfj , with f0, f1, . . . , fN ∈ L2(Ω).

The usual norm in H1
0 (Ω) will be replaced by the equivalent one defined by

‖y‖H1
0 (Ω) =

(∫

Ω

‖∇y‖2
RN dx

)1/2

.

Let Γ be a part of the boundary ∂Ω with positive (N −1)-dimensional measures.
We consider

C∞
0 (RN ; Γ) =

{
ϕ ∈ C∞

0 (RN ) : ϕ = 0 on Γ
}
,
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and denote H1
0 (Ω; Γ) its closure with respect to the norm

‖y‖ =

(∫

Ω

‖∇y‖2
RN dx

)1/2

.

For any vector field v ∈ L2(Ω;RN ), the divergence of v is an element div v of the
space H−1(Ω) defined by the formula

(3) 〈div v, ϕ〉H−1(Ω);H1
0 (Ω) = −

∫

Ω

(v,∇ϕ)RN dx, ∀ϕ ∈ C∞
0 (Ω),

where 〈·, ·〉H−1(Ω);H1
0 (Ω) denotes the duality pairing between H−1(Ω) and H1

0 (Ω),

and (·, ·)RN stands for the scalar product in R
N .

Symmetric and skew-symmetric matrices. Let M
N be the set of all N × N real

matrices. We denote by S
N
skew the set of all skew-symmetric matrices C = [cij ]

N
i,j=1,

i.e., C is a square matrix whose transpose is also its opposite. Thus, if C ∈ S
N
skew

then cij = −cji and, hence, cii = 0. Therefore, the set SNskew can be identified with

the Euclidean space R
N(N−1)

2 . Let SNsym be the set of all N×N symmetric matrices,

which are obviously determined by N(N + 1)/2 scalars. Since M
N = S

N
sym + S

N
skew

and S
N
sym ∩ S

N
skew = ∅, it follows that M

N = S
N
sym ⊕ S

N
skew. Moreover, for each

matrix B ∈ M
N , we have a unique representation

(4) B = Bsym +Bskew,

where Bsym := 1
2 (B +Bt) ∈ S

N
sym and Bskew := 1

2 (B −Bt) ∈ S
N
skew. In the sequel,

we will always identify each matrix B ∈ M
N with its decomposition in the form (4).

Let L2(Ω)
N(N−1)

2 = L2
(
Ω; SNskew

)
be the normed space of measurable square-

integrable functions whose values are skew-symmetric matrices with the norm

‖A‖L2(Ω;SN
skew

) =



∫

Ω

(
max

i,j=1,...,N
j>i

|aij(x)|
)2

dx




1/2

.

By analogy, we can define the spaces

L2(Ω)
N(N+1)

2 = L2
(
Ω; SNsym

)
and L2(Ω)N×N = L2

(
Ω;MN

)
.

Let A(x) and B(x) be given matrices such that A,B ∈ L2(Ω; SNskew). We say
that these matrices are related by the binary relation � on the set L2(Ω; SNskew) (in
symbols, A(x) � B(x) a.e. in Ω), if

(5) LN





N⋃

i=1

N⋃

j=i+1

{x ∈ Ω : |aij(x)| > |bij(x)|}



 = 0.

Here, LN (E) denotes the N -dimensional Lebesgue measure of E ⊂ R
N defined on

the completed borelian σ-algebra.
We define the divergence divA of a matrix A ∈ L2

(
Ω;MN

)
as a vector-valued

distribution d ∈ H−1(Ω;RN ) by the following rule

(6) 〈di, ϕ〉H−1(Ω);H1
0 (Ω) = −

∫

Ω

(ai,∇ϕ)RN dx, ∀ϕ ∈ C∞
0 (Ω), ∀ i ∈ {1, . . . , N} ,

where ai stands for the i-th row of the matrix A.
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For fixed two constants α and β such that 0 < α ≤ β < +∞, we define Mβ
α(Ω)

as a set of all matrices A = [ai j ] in L
∞(Ω; SNsym) such that

(7) αI ≤ A(x) ≤ βI, a.e. in Ω.

Here, I is the identity matrix in M
N , and (7) should be considered in the sense of

quadratic forms defined by (Aξ, ξ)
RN for ξ ∈ R

N .

Unbounded bilinear forms on H1
0 (Ω). Let A ∈ L2

(
Ω;MN

)
be an arbitrary matrix.

In view of the representation A = Asym +Askew, we can associate with A the form
ϕ(·, ·)A : H1

0 (Ω)×H1
0 (Ω) → R following the rule

ϕ(y, v)A =

∫

Ω

(
∇v,Askew(x)∇y

)
RN dx, ∀ y, v ∈ H1

0 (Ω).

It is easy to see that, in general, this form is unbounded on H1
0 (Ω), however, it is

expected some kind of alternating and antisymmetric properties of it. In order to
deal with these concepts, we introduce of the following set.

Definition 1.1. Let A = Asym + Askew ∈ L2
(
Ω;MN

)
be a given matrix. We say

that an element y ∈ H1
0 (Ω) belongs to the set D(A) if

(8)

∣∣∣∣
∫

Ω

(
∇ϕ,Askew∇y

)
RN dx

∣∣∣∣ ≤ c(y,Askew)

(∫

Ω

|∇ϕ|2
RN dx

)1/2

, ∀ϕ ∈ C∞
0 (Ω)

with some constant c depending only of y and Askew.

Consequently, having set

[y, ϕ]A =

∫

Ω

(
∇ϕ,Askew(x)∇y

)
RN dx, ∀ y ∈ D(A), ∀ϕ ∈ C∞

0 (Ω),

we see that the bilinear form [y, ϕ]A can be defined for all ϕ ∈ H1
0 (Ω) using (8) and

the standard rule

(9) [y, ϕ]A = lim
ε→0

[y, ϕε]A,

where {ϕε}ε>0 ⊂ C∞
0 (Ω) and ϕε → ϕ strongly in H1

0 (Ω). In this case the value

[v, v]A is finite for every v ∈ D(A), although the ”integrand”
(
∇v,Askew∇v

)
RN

need not be integrable, in general.

Functions with bounded variations. Let f : Ω → R be a function of L1(Ω). Define

TV (f) :=

∫

Ω

|Df | = sup
{∫

Ω

f (∇, ϕ)RN dx :

ϕ = (ϕ1, . . . , ϕN ) ∈ C1
0 (Ω;R

N ), |ϕ(x)| ≤ 1 for x ∈ Ω
}
,

where (∇, ϕ)RN =
∑N

i=1
∂ϕi

∂xi
.

According to the Radon-Nikodym theorem, if TV (f) < +∞ then the distribution
Df is a measure and there exist a vector-valued function ∇f ∈ [L1(Ω)]N and a
measure Dsf , singular with respect to the N -dimensional Lebesgue measure LN⌊Ω
restricted to Ω, such that Df = ∇fLN⌊Ω+Dsf.

Definition 1.2. A function f ∈ L1(Ω) is said to have a bounded variation in Ω
if TV (f) < +∞. By BV (Ω) we denote the space of all functions in L1(Ω) with
bounded variation, i.e.

BV (Ω) =
{
f ∈ L1(Ω) : TV (f) < +∞

}
.
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Under the norm ‖f‖BV (Ω) = ‖f‖L1(Ω) + TV (f), BV (Ω) is a Banach space. For
our further analysis, we need the following properties of BV -functions (see [11]):

Proposition 1. (1) Let {fk}∞k=1 be a sequence in BV (Ω) strongly converging
to some f in L1(Ω) and satisfying condition supk∈N TV (fk) < +∞. Then

f ∈ BV (Ω) and TV (f) ≤ lim inf
k→∞

TV (fk);

(2) for every f ∈ BV (Ω)∩Lr(Ω), r ∈ [1,+∞), there exists a sequence {fk}∞k=1 ⊂
C∞(Ω) such that

lim
k→∞

∫

Ω

|f − fk|r dx = 0 and lim
k→∞

TV (fk) = TV (f);

(3) for every bounded sequence {fk}∞k=1 ⊂ BV (Ω) there exists a subsequence,
still denoted by fk, and a function f ∈ BV (Ω) such that fk → f in L1(Ω).

Variational convergence of optimal control problems. Throughout the paper ε de-
notes a small parameter which varies within a strictly decreasing sequence of positive
numbers converging to 0. When we write ε > 0, we consider only the elements of
this sequence, in the case ε ≥ 0 we also consider its limit ε = 0. Let Iε : Uε×Yε → R

be a cost functional, Yε be a space of states, and Uε be a space of controls. Let
min {Iε(u, y) : (u, y) ∈ Ξε} be a parameterized OCP, where

Ξε ⊂ {(uε, yε) ∈ Uε × Yε : uε ∈ Uε, Iε(uε, yε) < +∞}
is a set of all admissible pairs linked by some state equation. Hereinafter we always
associate to such OCP the corresponding constrained minimization problem:

(10) (CMPε) :

〈
inf

(u,y)∈Ξε

Iε(u, y)

〉
.

Since the sequence of constrained minimization problems (10) lives in variable spaces
Uε × Yε, we assume that there exists a Banach space U× Y with respect to which
a convergence in the scale of spaces {Uε × Yε}ε>0 is defined (for the details, we
refer to [17, 31]). In the sequel, we use the following notation for this convergence

(uε, yε)
µ−→ (u, y) in Uε × Yε.

In order to study the asymptotic behavior of a family of (CMPε), the passage
to the limit in (10) as the small parameter ε tends to zero has to be realized. The
expression “passing to the limit” means that we have to find a kind of “limit cost
functional” I and “limit set of constraints” Ξ with a clearly defined structure such
that the limit object

〈
inf(u,y)∈Ξ I(u, y)

〉
may be interpreted as some OCP.

Following the scheme of the direct variational convergence [17], we adopt the
following definition for the convergence of minimization problems in variable spaces.

Definition 1.3. A problem
〈
inf(u,y)∈Ξ I(u, y)

〉
is the variational limit of the se-

quence (10) as ε→ 0
(
in symbols,

〈
inf

(u,y)∈Ξε

Iε(u, y)

〉
Var−−−→
ε→0

〈
inf

(u,y)∈Ξ
I(u, y)

〉 )

if and only if the following conditions are satisfied:

(d) The space U×Y possesses the weak µ-approximation property with respect
to the scale of spaces {Uε × Yε}ε>0, that is, for every δ > 0 and every
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pair (u, y) ∈ U × Y, there exist a pair (u∗, y∗) ∈ U × Y and a sequence
{(uε, yε) ∈ Uε × Yε}ε>0 such that

(11) ‖u− u∗‖U + ‖y − y∗‖Y ≤ δ and (uε, yε)
µ−→ (u∗, y∗) in Uε × Yε.

(dd) If sequences {εk}k∈N
and {(uk, yk)}k∈N

are such that εk → 0 as k → ∞,

(uk, yk) ∈ Ξεk ∀ k ∈ N, and (uk, yk)
µ−→ (u, y) in Uεk × Yεk , then

(12) (u, y) ∈ Ξ; I(u, y) ≤ lim inf
k→∞

Iεk(uk, yk).

(ddd) For every (u, y) ∈ Ξ ⊂ U × Y and any δ > 0, there are a constant ε0 > 0
and a sequence {(uε, yε)}ε>0 (called a (Γ, δ)-realizing sequence) such that

(uε, yε) ∈ Ξε, ∀ ε ≤ ε0, (uε, yε)
µ−→ (û, ŷ) in Uε × Yε,(13)

‖u− û‖U + ‖y − ŷ‖Y ≤ δ,(14)

I(u, y) ≥ lim sup
ε→0

Iε(uε, yε)− Ĉδ,(15)

with some constant Ĉ > 0 independent of δ.

Then the following result takes place [17].

Theorem 1.4. Assume that the constrained minimization problem

(16)
〈

inf
(u,y)∈Ξ0

I0(u, y)
〉

is the variational limit of sequence (10) in the sense of Definition 1.3 and this
problem has a nonempty set of solutions

Ξopt
0 :=

{
(u0, y0) ∈ Ξ0 : I0(u

0, y0) = inf
(u,y)∈Ξ0

I0(u, y)

}
.

For every ε > 0, let (u0ε, y
0
ε) ∈ Ξε be a minimizer of Iε on the corresponding set Ξε.

If the sequence {(u0ε, y0ε)}ε>0 is relatively compact with respect to the µ-convergence

in variable spaces Uε × Yε, then there exists a pair (u0, y0) ∈ Ξopt
0 such that

(u0ε, y
0
ε)

µ−→ (u0, y0) in Uε × Yε,(17)

inf
(u,y)∈Ξ0

I0(u, y) = I0
(
u0, y0

)
= lim

ε→0
Iε(u

0
ε, y

0
ε) = lim

ε→0
inf

(uε,yε)∈Ξε

Iε(uε, yε).(18)

2. Setting of the Optimal Control Problem

Let f ∈ H−1(Ω) be a given distribution. The optimal control problem we con-
sider in this paper is to minimize the discrepancy (tracking error) between a given
distribution yd ∈ L2(Ω) and a solution y of the Dirichlet boundary value problem
for the linear elliptic equation

− div
(
A(x)∇y

)
= f in Ω,(19)

y = 0 on ∂Ω(20)

by choosing an appropriate control A ∈ L2(Ω;MN ).
More precisely, we are concerned with the following OCP

Minimize I(A, y) = ‖y − yd‖2L2(Ω) +

∫

Ω

(∇y,Asym∇y)
RN dx(21)

subject to the constraints (19)–(20) with A ∈ Aad ⊂ L2(Ω;MN ).(22)
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In order to make a precise meaning of the OCP setting and indicate of its char-
acteristic properties, we begin with the definition of the class of admissible controls
Aad.

Let A∗ ∈ L2(Ω; SNskew) be a given nonzero matrix, let c be a given positive
constant, and let Q be a nonempty convex compact subset of L2(Ω; SNskew) such
that the null matrix A ≡ [0] belongs to Q. To define possible classes of admissible
controls, we introduce the following sets

Ua,1 =
{
A = [ai j ] ∈ L1(Ω; SNsym)

∣∣TV (aij) ≤ c, 1 ≤ i ≤ j ≤ N
}
,(23)

Ub,1 =
{
A = [ai j ] ∈ L∞(Ω; SNsym)

∣∣A ∈ Mβ
α(Ω)

}
,(24)

Ua,2 =
{
A = [ai j ] ∈ L2(Ω; SNskew)

∣∣ A(x) � A∗(x) a.e. in Ω
}
,(25)

Ub,2 =
{
A = [ai j ] ∈ L2(Ω; SNskew)

∣∣ A ∈ Q
}
.(26)

Remark 1. It is worth to note that

Aad,1 := Ua,1 ∩ Ub,1 6= ∅ and Aad,2 := Ua,2 ∩ Ub,2 6= ∅.
Indeed, the validity of these relations immediately follows from (23)–(24), definition
of the binary relation �, and properties of the matrix A∗. In order to describe a
possible way for the choice of the set Q, we may use the following result [24]: An
arbitrary closed bounded subset C ⊂ L2(Ω) is compact if and only if, for any
orthonormal basis {gk}k∈N

in L2(Ω), there exists a compact ellipsoid

Cε =

{
g =

∞∑

k=1

αkgk ∈ L2(Ω)

∣∣∣∣∣

∞∑

k=1

|αk|2
ε2k

≤ 1

}

with εk → 0 as k → ∞, such that C ⊆ Cε.

As a result, we adopt the following concept.

Definition 2.1. We say that a matrix A = Asym+Askew is an admissible control to
the Dirichlet boundary value problem (19)–(20) (in symbols, A ∈ Aad ⊂ L2(Ω;MN ))
if Asym ∈ Aad,1 and Askew ∈ Aad,2.

For our further analysis, we use of the following results.

Proposition 2. If {Asym
k }

k∈N
⊂ Aad,1 and Asym

k → Asym
0 in L1(Ω; SNsym) as k →

∞, then Asym
0 ∈ Aad,1 and

(27) Asym
k → Asym

0 in Lp(Ω; SNsym), ∀ p ∈ [1,+∞).

Proof. Since the sequence {Asym
k }

k∈N
converges strongly to Asym

0 in L1(Ω; SNsym)

and Asym
k ∈ Mβ

α(Ω) for every k ∈ N, it follows that αI ≤ Asym
0 ≤ βI a.e. in Ω.

Hence, Asym
0 ∈ Ub,1. At the same time, following assertion (i) of Proposition 1,

we have TV (aij) ≤ c for each entry of matrix Asym
0 . As a result, we conclude

Asym
0 ∈ Ua,1, and, therefore, Asym

0 ∈ Aad,1. Concerning the property (27), it
immediately follows from the following estimate

‖Asym
k −Asym

0 ‖p
Lp(Ω;SNsym)

=

∫

Ω

(
max

i,j=1,...,N
j≥i

|akij(x)− a0ij(x)|
)p

dx

=

∫

Ω

(
max

i,j=1,...,N
j≥i

|(akij(x)− α)− (a0ij(x)− α)|
)p−1

max
i,j=1,...,N

j≥i

|akij(x)− a0ij(x)| dx

≤ 2p−1(β − α)p−1‖Asym
k −Asym

0 ‖L1(Ω;SNsym), ∀ p ∈ [1,+∞).
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�

Proposition 3. Aad,1 is a sequentially compact subset of Lp(Ω; SNsym) for every
p ∈ [1,+∞).

Proof. Let {Asym
k }

k∈N
be a sequence of Aad,1. In view of definition of the set Ua,1,

we see that {Asym
k }

k∈N
is a bounded sequence in BV (Ω; SNsym). Hence, to conclude

the proof, it is enough to apply Proposition 2 and assertion (iii) of Proposition 1. �

Taking these observations into account, we prove the following results.

Proposition 4. The set Aad is nonempty, convex, and sequentially compact with
respect to the strong topology of L2(Ω;MN ).

Proof. Let
{
Ak = Asym

k +Askew
k

}
k∈N

⊂ Aad be an arbitrary sequence of admissible
controls. Since

Aad = Aad,1 ⊕ Aad,2, Aad,1 ⊂ BV (Ω; SNsym),

Aad,2 ⊂ Ub,2, and Ub,2 is a compact in L2(Ω; SNskew),

we may suppose that there exist matrices Asym
0 ∈ BV (Ω; SNsym)∩L∞(Ω; SNsym) (see

Propositions 2–3) and Askew
0 ∈ Ub,2 ⊂ L2(Ω; SNskew) such that within a subsequence

Asym
k → Asym

0 in Lp(Ω; SNsym), ∀ p ∈ [1,+∞),(28)

Asym
k

∗
⇀ Asym

0 in L∞(Ω; SNsym),(29)

Askew
k → Askew

0 in L2(Ω; SNskew),(30)

and Askew
k → Askew

0 almost everywhere in Ω.(31)

Combining these facts with (25) and the definition of the binary relation � (see
(5)), we arrive at the conclusion: Askew

0 ∈ Ua,2, and hence

Ak := Asym
k +Askew

k → Asym
0 +Askew

0 =: A0 in L2(Ω;MN ).

Thus, A0 ∈ Aad. Since the convexity of Aad is obviously valid, this concludes the
proof. �

The distinguishing feature of optimal control problem (21)–(22) is the fact that
the matrix-valued control A ∈ Aad is merely measurable and belongs to the space
L2
(
Ω;MN

)
(rather than the space of bounded matrices L∞

(
Ω;MN

)
). As we will see

later, this entails a number of pathologies with respect to the standard properties
of optimal control problems for the classical elliptic equations, even with ’a good’
right-hand f . In particular, the unboundedness of the skew-symmetric part of
matrix A ∈ Aad can have a reflection in non-uniqueness of weak solutions to the
corresponding boundary value problem.

Definition 2.2. We say that a function y = y(A, f) is a weak solution to boundary
value problem (19)–(20) for a fixed control A = Asym + Askew ∈ Aad and a given
distribution f ∈ H−1(Ω), if y ∈ H1

0 (Ω) and the integral identity

(32)

∫

Ω

(
∇ϕ,Asym∇y +Askew∇y

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω)

holds true for any ϕ ∈ C∞
0 (Ω).

Note that by Hölder’s inequality this definition makes sense for any matrix A ∈
L2
(
Ω;MN

)
. At the same time, in view of Definition 1.1, the following result gives

another motivation to introduce the set D(A).
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Proposition 5. Let y ∈ H1
0 (Ω) be a weak solution to the boundary value problem

(19)–(20) for a given control A = Asym+Askew ∈ Aad in the sense of Definition 2.2.
Then y ∈ D(A).

Proof. In order to verify the validity of this assertion it is enough to rewrite the
integral identity (32) in the form

(33) [y, ϕ]A = −
∫

Ω

(
Asym∇y,∇ϕ

)
RN dx+ 〈f, ϕ〉H−1(Ω);H1

0 (Ω)

and apply Hölder’s inequality to the right-hand side of (33). As a result, we have
∣∣∣[y, ϕ]A

∣∣∣ ≤
(
‖Asym‖L∞(Ω;SNsym)‖∇y‖L2(Ω;RN ) + ‖f‖H−1(Ω)

)
‖ϕ‖H1

0 (Ω)

≤
(
β‖y‖H1

0 (Ω) + ‖f‖H−1(Ω)

)
‖ϕ‖H1

0 (Ω).

�

Remark 2. Due to Proposition 5, Definition 2.2 can be reformulated as follows: y
is a weak solution to the problem (19)–(20) for a given control A = Asym+Askew ∈
Aad, if and only if y ∈ D(A) and

(34)

∫

Ω

(
Asym∇y,∇ϕ

)
RN dx+ [y, ϕ]A = 〈f, ϕ〉H−1(Ω);H1

0 (Ω) ∀ϕ ∈ H1
0 (Ω).

Moreover, as immediately follows from (9) and (34), every weak solution y ∈ D(A)
to the problem (19)–(20) satisfies the energy equality

(35)

∫

Ω

(
Asym∇y,∇y

)
RN dx+ [y, y]A = 〈f, y〉H−1(Ω);H1

0 (Ω) .

It is well known that boundary value problem (19)–(20) is ill-posed, in general
(see, for instance, [12, 23, 26, 30, 32]). It means that there exists a matrix A ∈
L2
(
Ω;MN

)
such that the corresponding state y ∈ H1

0 (Ω) may be not unique. It is
clear that in this case, it would not be correct to write down y = y(A, f). To avoid
this situation, we adopt the following notion.

Definition 2.3. We say that (A, y) is an admissible pair to the OCP (21)–(22) if
A ∈ Aad ⊂ L2

(
Ω;MN

)
, y ∈ D(A) ⊂ H1

0 (Ω), and the pair (A, y) is related by the
integral identity (34).

We denote by Ξ the set of all admissible pairs for the OCP (21)–(22). We say
that a pair (A0, y0) ∈ L2

(
Ω;MN

)
×D(A0) is optimal for problem (21)–(22) if

(A0, y0) ∈ Ξ and I(A0, y0) = inf
(A,y)∈Ξ

I(A, y).

As follows from the definition of the bilinear form [y, ϕ]A, the value [y, y]A may
not of constant sign for all y ∈ D(A). Hence, the energy equality (35) does not allow
us to derive a reasonable a priory estimate in H1

0 -norm for the weak solutions. In
spite of this, we show that the OCP (21)–(22) is well-posed. This problem is, thus,
yet another example for the difference between well-posedness for optimal control
problems for systems with distributed parameters and partial differential equations
(see [17] for a discussion and further examples).

Let τ be the topology on the set of admissible pairs Ξ ⊂ L2
(
Ω;MN

)
× H1

0 (Ω)

which we define as the product of the strong topology of L2
(
Ω;MN

)
and the weak

topology of H1
0 (Ω).
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Theorem 2.4. Assume that OCP (21)–(22) is regular, i.e. Ξ 6= ∅. Then, for each
f ∈ H−1(Ω) and yd ∈ L2(Ω), this problem admits at least one solution.

Proof. Since the original problem is regular and the cost functional for the given
problem is bounded below on Ξ, it follows that there exists a minimizing sequence
{(Ak, yk)}k∈N

⊂ Ξ such that

I(Ak, yk) −−−−→
k→∞

Imin ≡ inf
(A,y)∈Ξ

I(A, y) ≥ 0.

Hence, supk∈N I(Ak, yk) ≤ C, where the constant C is independent of k. Since

sup
k∈N

‖yk‖2H1
0 (Ω) ≤ α−1 sup

k∈N

∫

Ω

(∇yk, Asym
k ∇yk)RN dx ≤ α−1 sup

k∈N

I(Ak, yk) ≤ α−1C,

in view of Proposition 4, it follows that passing to a subsequence if necessary, we
may assume that there exists a pair (A0, y0) ∈ Aad ×H1

0 (Ω) such that

Ak := Asym
k +Askew

k → Asym
0 +Askew

0 =: A0 in L2(Ω;MN ),(36)

Asym
k → Asym

0 in Lp(Ω; SNsym), ∀ p ∈ [1,+∞),(37)

Askew
k → Askew

0 in L2(Ω; SNskew),(38)

yk ⇀ y0 in H1
0 (Ω), I(A0, y0) < +∞.(39)

Since (Ak, yk) ∈ Ξ for every k ∈ N, it follows that the integral identity

(40)

∫

Ω

(
∇ϕ,Asym

k ∇yk
)
RN dx+

∫

Ω

(
∇ϕ,Askew

k ∇yk
)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω)

holds true for all ϕ ∈ C∞
0 (Ω).

In order to pass to the limit in (40), we note that
∫

Ω

(
∇ϕ,Askew

k ∇yk
)
RN dx =−

∫

Ω

(
(Askew

k −Askew
0 )∇ϕ,∇yk

)
RN dx

−
∫

Ω

(
Askew

0 ∇ϕ,∇yk
)
RN dx = I1,k + I2,k

by the skew-symmetry property of Askew
k and Askew

0 . Hence, in view of (38)–(39),
we have

lim
k→∞

|I1,k| ≤ ‖ϕ‖C1(Ω) sup
k∈N

‖∇yk‖L2(Ω;RN ) lim
k→∞

∥∥Askew
k −Askew

0

∥∥
L2(Ω;SN

skew
)
= 0,

lim
k→∞

I2,k
by (39)
= −

∫

Ω

(
Askew

0 ∇ϕ,∇y0
)
RN dx =

∫

Ω

(
∇ϕ,Askew

0 ∇y0
)
RN dx

since Askew
0 ∇ϕ ∈ L2(Ω;RN ) ∀ϕ ∈ C∞

0 (Ω).

Having applied the same arguments to the first term in (40), as a result of the
limit passage in (40), we finally obtain: the pair (A0, y0) is related by identity (32).
Hence, y0 ∈ D(A0) by Proposition 5. Thus, (A0, y0) is an admissible pair to problem
(21)–(22).

It remains to show that (A0, y0) is an optimal pair. Indeed, in view of the
compactness of the embedding H1

0 (Ω) →֒ L2(Ω), one gets

Imin = lim
k→∞

I(Ak, yk) = lim
k→∞

[
‖yk − yd‖2L2(Ω) +

∫

Ω

(∇yk, Asym
k ∇yk)RN dx

]

= ‖y0 − yd‖2L2(Ω) + lim
k→∞

∫

Ω

∥∥∥(Asym
k )1/2∇yk

∥∥∥
2

RN
dx.
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At the same time, due to (37), we obviously have (Asym
k )1/2 → (Asym

0 )1/2 in

L2(Ω; SNsym). Hence, taking into account the condition (39), we get (Asym
k )1/2∇yk ⇀

(Asym
0 )1/2∇y0 in L2(Ω;RN ). So, using the lower semicontinuity of the norm ‖ ·

‖L2(Ω;RN ) with respect to the the weak topology of L2(Ω;RN ), we finally obtain

lim
k→∞

∫

Ω

∥∥∥(Asym
k )1/2∇yk

∥∥∥
2

RN
dx ≥

∫

Ω

∥∥∥(Asym
0 )1/2∇y0

∥∥∥
2

RN
dx

=

∫

Ω

(∇y0, Asym
0 ∇y0)RN dx.(41)

Thus,

Imin ≥ ‖y0 − yd‖2L2(Ω) +

∫

Ω

(∇y0, Asym
0 ∇y0)RN dx = I(A0, y0),

and hence, the pair (A0, y0) is optimal for problem (21)–(22). The proof is complete.
�

3. On variational solutions to OCP (21)–(22) and their approximation

The question we are going to discuss in this section is about some pathological
properties that can be inherited by optimal pair to the problem (21)–(22) and other
unexpected surprises concerning the approximation of the original OCP and its
solutions.

To begin with, we show that the main assumption on the regularity property
of OCP (21)–(22) in Theorem 2.4 can be eliminated due to the approximation
approach. It is clear that the condition A∗ ∈ L2(Ω; SNskew) ensures the existence
of the sequence of skew-symmetric matrices {A∗

k}k∈N
⊂ L∞(Ω; SNskew) such that

A∗
k → A∗ strongly in L2(Ω; SNskew). This leads us to the idea to consider the following

sequence of constrained minimization problems associated with matrices A∗
k

(42)

{ 〈
inf

(u,y)∈Ξk

Ik(u, y)

〉
, k → ∞

}
.

Here,

Ik(u, y) := I(u, y) ∀ (u, y) ∈ L2(Ω;MN )×H1
0 (Ω), ∀ k ∈ N,(43)

Ξk =





(u, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

− div
(
Asym∇y +Askew∇y

)
= f in Ω,

y = 0 on ∂Ω,

A = Asym +Askew ∈ Ak
ad = Aad,1 ⊕ Ak

ad,2, y ∈ H1
0 (Ω),

Ak
ad,2 = Ua,2 ∩ Uk

b,2,

Uk
b,2 =

{
B = [bi j ] ∈ L2(Ω; SNskew)

∣∣ B(x) � A∗
k(x) a.e. in Ω

}
.





(44)

Before we will provide an accurate analysis of the optimal control problems (42),
we make use of the following auxiliary result.

Lemma 3.1. The sequence of sets
{
Uk
b,2

}
k∈N

converges to Ub,2 as k → ∞ in the

sense of Kuratowski with respect to the strong topology of L2(Ω; SNskew).

Proof. We recall here that a sequence
{
Uk
b,2

}
k∈N

of the subsets of L2(Ω; SNskew) is

said to be convergent to a closed set S in the sense of Kuratowski with respect to
the strong topology of L2(Ω; SNskew), if the following two properties hold:
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(K1) for every B ∈ S, there exists a sequence of matrices
{
Bk ∈ Uk

b,2

}
k∈N

such

that Bk → B in L2(Ω; SNskew) as k → ∞;
(K2) if {kn}n∈N

is a sequence of indices converging to +∞, {Bn}n∈N
is a sequence

of skew-symmetric matrices such that Bn ∈ Ukn

b,2 for each n ∈ N, and

{Bn}n∈N
strongly converges in L2(Ω; SNskew) to some matrix B, then B ∈ S.

For the details we refer to [17].
In order to show that S = Ub,2, we begin with the verification of (K2)-item. Let

{kn}n∈N
be a given sequence of indices such that kn → ∞, and let

{
Bn ∈ Ukn

b,2

}
n∈N

be a sequence satisfying the property Bn → B in L2(Ω; SNskew) and, hence, Bn(x) →
B(x) almost everywhere in Ω as n→ ∞. By definition of Uk

b,2, we have

(45) Bn(x) � A∗
kn
(x) a.e. in Ω,

where A∗
k → A∗ strongly in L2(Ω; SNskew). Taking into account the fact that the

binary relation � is reflexive and transitive, we can pass to the limit in relation
(45) as n → ∞ (in the sense of almost everywhere) and get B(x) � A∗(x) almost
everywhere in Ω, hence, B ∈ Ub,2.

It remains to verify the (K1)-item. To this end, we fix an arbitrary skew-
symmetric matrix B ∈ Ub,2 and make use of the concept of the Lebesgue set
W(B). We say that x ∈ Ω is of the Lebesgue set W(B) for the matrix B ∈ Ub,2 ⊂
L2(Ω; SNskew), if x is a Lebesgue point of B. In other words, at this point matrix
B(x) must be approximately continuous and, hence, it does not oscillate too much,
in an average sense. It is well known that almost each point in Ω is a Lebesgue
point for an absolutely locally integrable function [11]. Hence, LN (Ω \W(B)) = 0.
Moreover, since A∗

k ∈ L∞(Ω; SNskew), it follows that any point of approximate conti-
nuity of A∗

k is its Lebesgue point [11]. As a result, we construct a strong convergent

sequence
{
Bk ∈ Uk

b,2

}
k∈N

to B ∈ Ub,2 as follows: Bk(x) = [bkij(x)]
N
i,j=1, where

bkij(x) =





bij(x), if |bij(x)| ≤
∣∣∣a∗,kij (x)

∣∣∣ and x ∈ W(B),

a∗,kij (x), if |bij(x)| >
∣∣∣a∗,kij (x)

∣∣∣ and x ∈ W(B),

0, otherwise,

,(46)

for all i, j ∈ {1, . . . , N} and k ∈ N.
Since the strong convergence A∗

k → A∗ in L2(Ω; SNskew) implies (up to a sub-
sequence) the pointwise convergence a.e. in Ω, and B � A∗, it follows that the

sequence
{
Bk ∈ Uk

b,2

}
k∈N

, given by (46), satisfies all properties of (K1)-item. This

concludes the proof. �

We are now in a position to study the optimal control problems (42).

Theorem 3.2. Let yd ∈ L2(Ω) and f ∈ H−1(Ω) be given distributions. Then for
every k ∈ N there exists a minimizer (A0

k, y
0
k) ∈ Ξk to the corresponding minimiza-

tion problems (42) such that the sequence of pairs
{
(A0

k, y
0
k) ∈ Ξk

}
k∈N

is relatively

compact with respect to the τ -topology on L2(Ω;MN ) × H1
0 (Ω) and each of its τ -

cluster pairs (Â, ŷ) possesses the properties:

(47) (Â, ŷ) ∈ Ξ, [ŷ, ŷ ]Â ≥ 0.
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Proof. To begin with, we show that the sequence of minimal values for the problems
(42) is uniformly bounded, i.e.

(48) sup
k∈N

inf
(u,y)∈Ξk

Ik(u, y) ≤ C for some C > 0.

Indeed, for each k ∈ N, we obviously have Ak
ad,2 6= ∅ and Ak

ad,2 ⊂ L∞(Ω; SNskew).

Hence, for any admissible control Ak = Asym
k + Askew

k ∈ Ak
ad, we can claim that

Askew
k ∈ L∞(Ω; SNskew) and, therefore, the corresponding bilinear form

[y, ϕ]Ak
=

∫

Ω

(
∇ϕ,Askew

k ∇y
)
RN dx

is bounded on H1
0 (Ω) and satisfies the identity

∫

Ω

(
∇ϕ,Askew

k ∇y
)
RN dx = −

∫

Ω

(
∇y,Askew

k ∇ϕ
)
RN dx.

Therefore,

(49)

∫

Ω

(
∇v,Askew

k (x)∇v
)
RN dx = 0 ∀ v ∈ H1

0 (Ω)

and, hence, the boundary value problem (44) has a unique solution yk ∈ H1
0 (Ω) for

each Ak ∈ Ak
ad ⊂ L∞(Ω;MN ) by the Lax-Milgram lemma. As obvious consequence

of this observation and the property of τ -lower semicontinuity of the cost functional
Ik, we conclude (see for comparison Theorem 2.4): the corresponding minimization
problem (42) admits at least one solution [20]

Ik(A
0
k, y

0
k) = inf

(A,y)∈Ξk

Ik(A, y), (A0
k, y

0
k) ∈ Ξk.

Moreover, having fixed a control Ak ∈ Ak
ad, condition (49) implies the fulfilment of

the following identities for every k ∈ N

∫

Ω

(
∇ϕ,Asym

k ∇yk +Askew
k ∇yk

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω) , ∀ϕ ∈ C∞
0 (Ω),(50)

∫

Ω

(∇yk, Asym
k ∇yk)RN dx = 〈f, yk〉H−1(Ω);H1

0 (Ω) ,(51)

where yk = yk(Ak, f) ∈ H1
0 (Ω) are the corresponding solutions to the boundary

value problems (44). Hence, the sequence {yk}k∈N
is bounded in H1

0 (Ω) and due to
the a priori estimate

(52) ‖yk‖H1
0 (Ω) ≤ α−1‖f‖H−1(Ω),

we arrive at the relation

Ik(A
0
k, y

0
k) = inf

(A,y)∈Ξk

Ik(A, y) ≤ Ik(Ak, yk)

≤ 2‖yd‖2L2(Ω) + 2‖yk‖2L2(Ω) + β‖yk‖2H1
0 (Ω)(53)

≤ 2‖yd‖2L2(Ω) + (2C1 + β)α−2‖f‖2H−1(Ω) ≤ C ∀ k ∈ N.(54)

Thus, (48) holds true and it implies that supk∈N ‖y0k‖2H1
0 (Ω)

< +∞. So, we can

suppose that the sequence of optimal states
{
y0k
}
k∈N

is weakly convergent: y0k ⇀ ŷ

in H1
0 (Ω). At the same time, due to the definition of the sets Ak

ad, it is easy to see
that the corresponding sequence of optimal controls

{
A0

k

}
k∈N

belongs to Ua,1⊕Ub,2.
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Hence, applying the arguments of the proof of Proposition 4, we get: there exists a

matrix Â ∈ Ua,1 ⊕ Ub,2 such that

A0
k := A0,sym

k +A0,skew
k → Âsym + Âskew =: Â in L2(Ω;MN ),(55)

A0,sym
k → Âsym in Lp(Ω; SNsym), ∀ p ∈ [1,+∞),(56)

A0,sym
k

∗
⇀ Âsym in L∞(Ω; SNsym),(57)

A0,skew
k → Âskew in L2(Ω; SNskew).(58)

Therefore, in view of Lemma 3.1, we can conclude: Â ∈ Aad. As a result, summing
up the above properties of the sequences

{
y0k
}
k∈N

and
{
A0

k

}
k∈N

, we obtain:

(A0
k, y

0
k)

τ→ (Â, ŷ ) and (Â, ŷ ) ∈ Ξ.

It remains to prove the properties (47). To do so, we note that due to the strong

convergence A0
k → Â in L2(Ω;MN ), we get

∣∣∣∣
∫

Ω

(
∇ϕ, Â∇ŷ −A0

k∇y0k
)
RN

dx

∣∣∣∣

≤
∫

Ω

‖A0
k − Â‖MN ‖∇y0k‖RN ‖∇ϕ‖RN dx+

∣∣∣∣
∫

Ω

(
Â∇ϕ,∇ŷ −∇y0k

)
RN

dx

∣∣∣∣

≤ ‖ϕ‖C1(Ω) sup
k∈N

‖y0k‖H1
0 (Ω)‖A0

k − Â‖L2(Ω;MN )

+

∣∣∣∣
∫

Ω

(
Â∇ϕ,∇ŷ

)
RN

dx−
∫

Ω

(
Â∇ϕ,∇y0k

)
RN

dx

∣∣∣∣ −→ 0 as k → ∞

for every ϕ ∈ C∞
0 (Ω). Hence, A0

k∇y0k
∗
⇀ Â∇ŷ in L1(Ω;RN ). It means that we can

pass to the limit in integral identity (50) with A = A0
k. As a result, we have: the

pair (Â, ŷ ) is related by the integral identity (32), therefore, ŷ is a weak solution to

the original boundary value problem (19)–(20) under A = Â. Thus, ŷ ∈ D(Â) and,

hence, (Â, ŷ ) ∈ Ξ.
In order to proof the property (47)2, we pass to the limit in the energy equality

(51) using the lower semicontinuity of the norm ‖ · ‖H1(Ω) with respect to the weak

convergence ∇y0k ⇀ ∇ŷ in L2(Ω;RN ) and the property (57). To do so, we note

that due to the inclusion Âsym ∈ Aab,1, we have A ∈ Mβ
α(Ω). Hence, the norms

‖y‖H1(Ω) and |||y||| :=
(∫

Ω

(
∇y, Âsym∇y0k

)
RN

dx
)1/2

are equivalent in H1
0 (Ω). As

a result, we obtain

〈f, ŷ 〉H−1(Ω);H1
0 (Ω) = lim

k→∞

∫

Ω

(
∇y0k, (A0,sym

k − Âsym)∇y0k
)
RN

dx

+ lim
k→∞

∫

Ω

(
∇y0k, Âsym∇y0k

)
RN

dx

by (56)
= lim

k→∞

∫

Ω

(
∇y0k, Âsym∇y0k

)
RN

dx

by (7)

≥
∫

Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx.

(59)

Thus, the desired inequality (47)2 obviously follows from (35) and (59). The proof
is complete. �
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Remark 3. As Theorem 3.2 proves, for any approximation {A∗
k}k∈N

of the matrix

A∗ ∈ L2
(
Ω; SNskew

)
with properties {A∗

k}k∈N
⊂ L∞(Ω; SNskew) and A

∗
k → A∗ strongly

in L2(Ω; SNskew), optimal solutions to the regularized OCPs (42)–(44) always lead

us in the limit to some admissible (but not optimal in general) solution (Â, ŷ ) of
the original OCP (21)–(22). Moreover, this limit pair can depend on the choice of
the approximative sequence {A∗

k}k∈N
. It is reasonably to call such pairs attainable

admissible solutions to OCP. However, the entire structure of the set of all attainable
solutions remain unclear; for instance, it is not known whether this set is convex
and closed in Ξ. It is also unknown whether the optimal solution to OCP (21)–(22)
is attainable. At the end of this section we give the conditions on the matrix A∗

which ensures the attainability of optimal solutions to the original OCP.

Taking these observations into account, we make use of the following notion.

Definition 3.3. We say that a pair (Â, ŷ ) ∈ L2(Ω;MN )×H1
0 (Ω) is a variational so-

lution to OCP (21)–(22) if there exists an approximation {A∗
k}k∈N

⊂ L∞(Ω; SNskew)

of the matrix A∗ ∈ L2
(
Ω; SNskew

)
with property A∗

k → A∗ strongly in L2(Ω; SNskew)
such that

I(Â, ŷ ) = inf
(A,y)∈Ξ

I(A, y), (Â, ŷ ) ∈ Ξ, and(60)

〈
inf

(A,y)∈Ξk

Ik(A, y)

〉
Var−−−−→

k→∞

〈
inf

(A,y)∈Ξ
I(A, y)

〉
in the sense of Definition 1.3,

(61)

where the minimization problems

〈
inf

(A,y)∈Ξk

Ik(A, y)

〉
are defined by (43)–(44).

As a direct consequence of Definition 3.3, Theorem 3.2, and properties of the
variational limits of constrained minimization problems (see Theorem 1.4), we have
the following result.

Proposition 6. Let (Â, ŷ ) ∈ L2(Ω;MN )×H1
0 (Ω) be a variational solution to OCP

(21)–(22). Then [ŷ, ŷ]Â = 0 and the pair (Â, ŷ ) can be attained by optimal solutions

(A0
k, y

0
k) to the regularized OCPs (42)–(44) as follows

(62)

A0
k → Â strongly in L2(Ω;MN ),

y0k ⇀ ŷ weakly in H1
0 (Ω) as k → ∞,

lim
k→∞

∫

Ω

(
∇y0k, A0,sym

k ∇y0k
)
RN

dx =

∫

Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx.





Proof. Indeed, in view of a priori estimates (52)–(54) and properties (55)–(58),
within a subsequence, we have

y0k ⇀ ŷ in H1
0 (Ω),(63)

A0
k := A0,sym

k +A0,skew
k → Âsym + Âskew =: Â in L2(Ω;MN ),(64)

A0,sym
k → Âsym in Lp(Ω; SNsym), ∀ p ∈ [1,+∞).(65)

On the other hand, following main properties of the variational convergence (see
Theorem 1.4), we can claim that there exists an optimal pair (A0, y0) ∈ Ξ for the
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problem (21)–(22) such that

inf
(A,y)∈Ξ

I(A, y) =I
(
A0, y0

)
:=
∥∥y0 − yd

∥∥2
L2(Ω)

+

∫

Ω

(
∇y0, A0,sym∇y0

)
RN dx

= lim
k→∞

inf
(Ak,yk)∈Ξk

Ik(Ak, yk) = lim
k→∞

Ik(A
0
k, y

0
k)

= lim
k→∞

[∥∥y0k − yd
∥∥2
L2(Ω)

+

∫

Ω

(
∇y0k, A0,sym

k ∇y0k
)
RN

dx

]
.(66)

However, because of condition (63)–(65), it turns out that (see the estimate (41))

inf
(A,y)∈Ξ

I(A, y)
by (66)
= lim

k→∞

[∥∥y0k − yd
∥∥2
L2(Ω)

+

∫

Ω

(
∇y0k, A0,sym

k ∇y0k
)
RN

dx

]

≥ ‖ŷ − yd‖2L2(Ω) +

∫

Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx.

Since the pair (Â, ŷ ) is admissible for the problem (21)–(22) (see Theorem 3.2), it

follows that (Â, ŷ ) is an optimal pair, that is, in view of (66), it gives

inf
(A,y)∈Ξ

I(A, y) =I
(
Â, ŷ

)
:= ‖ŷ − yd‖2L2(Ω) +

∫

Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx

= lim
k→∞

inf
(Ak,yk)∈Ξk

Ik(Ak, yk) = lim
k→∞

Ik(A
0
k, y

0
k)

= lim
k→∞

[∥∥y0k − yd
∥∥2
L2(Ω)

+

∫

Ω

(
∇y0k, A0,sym

k ∇y0k
)
RN

dx

]
.(67)

Hence, (62) is a direct consequence of properties (63)–(67). As a result, we get

0
by (49)
= lim

k→∞
[y0k, y

0
k]A0

k

by (51)
= − lim

k→∞

∫

Ω

(
∇y0k, A0,sym

k ∇y0k
)
RN

dx

+ lim
k→∞

〈
f, y0k

〉
H−1(Ω);H1

0 (Ω)

by (62) and (67)
= −

∫

Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx

+ 〈f, ŷ 〉H−1(Ω);H1
0 (Ω)

by (35)
= [ŷ, ŷ]Â.

�

Remark 4. Since for some matrices A ∈ L2
(
Ω;MN

)
the weak solutions to the

boundary value problem (19)–(20) are not unique in general, it follows from Remark
3 and Proposition 6 that even if the OCP (21)–(22) has a unique solution (A0, y0)
and this solution possesses the property [y0, y0] ≥ 0, it does not ensure that the
pair (A0, y0) is the variational solution to the above problem. Let A ∈ Aad be a
fixed matrix and let L(A) be a subspace of H1

0 (Ω) such that

(68) L(A) =

{
h ∈ D(A) :

∫

Ω

(
∇ϕ,A∇h

)
RN dx = 0 ∀ϕ ∈ C∞

0 (RN )

}
,

i.e., L(A) is the set of all weak solutions of the homogeneous problem

(69)
− div

(
A∇y

)
= 0 in Ω,

y = 0 on ∂Ω.

Since L(A) can contain non-trivial elements in general, it follows that the set

Λ :=
{
(A0, y0 + h) ∀h ∈ L(A0)

}

is not a singleton in Ξ.
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Let
{
(A0

k, y
0
k)
}
k∈N

be optimal solutions to the regularized OCPs (42)–(44). Let

A0 be a strong limit in L2(Ω;MN ) of
{
A0

k

}
k∈N

. Then Theorem 3.2 implies that

y0k ⇀ y∗ in H1
0 (Ω) and (A0, y∗) ∈ Ξ. However, it means that (A0, y∗) ∈ Λ rather

than y∗ = y0. Moreover, the existence of (Γ, δ)-realizing sequence (see Definition
1.3) for the pair (A0, y0) ∈ Ξ is an open problem. In other words, the existence
at least one approximation {A∗

k}k∈N
⊂ L∞(Ω; SNskew) in (42)–(44) leading to the

pair (A0, y0) in the sense of conditions (13)–(14) is not established. As follows from
our further analysis (see Section 6), such solutions can be attained through other
structures of regularized OCPs than in (42)–(44).

We are now in a position to discuss the existence of variational solutions to the
OCP (21)–(22).

Theorem 3.4. Assume that for every matrix A ∈ Aad ⊂ L2
(
Ω;MN

)
, we have

(70) [y, y]A = 0 ∀ y ∈ D(A).

Then the OCP (21)–(22) has variational solutions.

Proof. Let us consider {A∗
k}k∈N

⊂ L∞(Ω; SNskew) and A
∗ ∈ L2

(
Ω; SNskew

)
such that

A∗
k → A∗ strongly in L2(Ω; SNskew). With each matrix A∗

k we associate the con-
strained minimization problem

〈
inf

(A,y)∈Ξk

Ik(A, y)

〉
,

where the cost functional Ik and the set Ξk are defined by (43)–(44).
Let {(Ak, yk)}k∈N

be a sequence in L2(Ω;MN )×H1
0 (Ω) with the following prop-

erties:

(a) (Ak, yk) ∈ Ξnk
for every k ∈ N, where {nk}k∈N is a subsequence converging

to ∞ as k tends to ∞;
(aa) yk ⇀ y in H1

0 (Ω) and Ak → A in L2(Ω;MN ) with additional properties as
in (56)–(57).

Then proceeding as in the proof of Theorem 3.2, it can be shown that the limit pair
(A, y) is admissible to the original OCP (21)–(22). Hence, this problem is regular
and, therefore, it is solvable by Theorem 2.4. Our aim is to show that this problem
can be interpreted as the variational limit of the sequence of constrained minimiza-
tion problems (42). To do so, we have to verify the fulfilment of all conditions of
Definition 1.3.

Indeed, it is easy to see that in the case of space L2(Ω;MN
)
×H1

0 (Ω), the condition
(d) is obviously true with δ = 0. As for the property (dd), it immediately follows
from the following relation

lim inf
k→∞

Ik(Ak, yk) = lim inf
k→∞

[
‖yk − yd‖2L2(Ω) +

∫

Ω

(∇yk, Asym
k ∇yk)RN dx

]

by (41)

≥ ‖y − yd‖2L2(Ω) +

∫

Ω

(∇y,Asym∇y)
RN dx = I(A, y),

which holds true for any sequence {(Ak, yk)}k∈N
⊂ Aad × H1

0 (Ω) with properties
(a)–(aa).

We focus now on the verification of condition (ddd) of Definition 1.3. Let (A♯, y♯)
be an arbitrary admissible pair to the original problem. Since A♯,skew � A∗, we
make use of the hint of Lemma 3.1 in order to construct a sequence of admissible
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controls
{
Ak ∈ Ak

ad ⊂ L2(Ω;MN )
}
k∈N

. Namely, we proceed as follows. Let A∗
k =

[a∗,kij (x)]Ni,j=1 and A♯,skew = [a♯ij(x)]
N
i,j=1. Then we set:

(71) Asym
k = A♯,sym ∀ k ∈ N for the symmetric parts of Ak,

and for the skew symmetric parts Askew
k (x) = [akij(x)]

N
i,j=1, we put

akij(x) =





a♯ij(x), if
∣∣∣a♯ij(x)

∣∣∣ ≤
∣∣∣a∗,kij (x)

∣∣∣ and x ∈ W(A♯,skew),

a∗,kij (x), if
∣∣∣a♯ij(x)

∣∣∣ >
∣∣∣a∗,kij (x)

∣∣∣ and x ∈ W(A♯,skew),

0, otherwise,

(72)

for all i, j ∈ {1, . . . , N} and k ∈ N.
Since the strong convergence A∗

k → A∗ in L2(Ω; SNskew) implies (up to a subse-
quence) the pointwise convergence of this sequence a.e. in Ω, and A♯,skew � A∗, it
follows that conditions (71)–(??) lead us to the following conclusion:

Ak := Asym
k +Askew

k → A♯,sym +A♯,skew =: A♯ in L2(Ω;MN ),(73)

Asym
k → A♯,sym in Lp(Ω; SNsym), ∀ p ∈ [1,+∞),(74)

Askew
k → A♯,skew in L2(Ω; SNskew).(75)

Let {yk = y(Ak, f)}k∈N
be the corresponding solutions to the regularized boundary

value problems (44). Then by applying the arguments of the proof of Theorem 3.2,
it can be shown that the sequence {yk}k∈N

is uniformly bounded in H1
0 (Ω) and

there exists an element ŷ ∈ D(A♯) such that (A♯, ŷ) ∈ Ξ and, within a subsequence,
yk ⇀ ŷ in H1

0 (Ω). Our aim is to show that ŷ = y♯ and that the following identity

(76) I(A♯, y♯) = lim sup
k→∞

Ik(Ak, yk)

holds true.
Indeed, since (A♯, y♯) ∈ Ξ and (A♯, ŷ) ∈ Ξ, it follows that y = y♯ − ŷ is a

solution of the homogeneous problem (69). Following our initial assumptions, we
have [y, y]A = 0 ∀ y ∈ D(A) and for each matrix A ∈ Aad ⊂ L2

(
Ω;MN

)
. Hence,

the problem (69) has only trivial solution, since for this solution we have
∫

Ω

(
∇y,A♯,sym∇y

)
RN dx = −[y, y]A♯ = 0.

Thus, y♯ = ŷ. To prove the equality (76), we use of the idea of D.Cioranescu
and F.Murat (see [6]). Taking into account the property (73), compactness of the
embedding H1

0 (Ω) →֒ L2(Ω), and the energy identities (51) and (35), we get

lim
k→∞

Ik(Ak, yk) = lim
k→∞

[
‖yk − yd‖2L2(Ω) +

∫

Ω

(∇yk, Asym
k ∇yk)RN dx

]

=
∥∥y♯ − yd

∥∥2
L2(Ω)

+ lim
k→∞

∫

Ω

(∇yk, Asym
k ∇yk)RN dx

by (51) and (73)
=

∥∥y♯ − yd
∥∥2
L2(Ω)

+ lim
k→∞

[
〈f, ŷk〉H−1(Ω);H1

0 (Ω)

]

by (70)
=

∥∥y♯ − yd
∥∥2
L2(Ω)

+
〈
f, y♯

〉
H−1(Ω);H1

0 (Ω)
− [y♯, y♯]A♯

by (35)
=

∥∥y♯ − yd
∥∥2
L2(Ω)

+

∫

Ω

(
∇y♯, A♯,sym∇y♯

)
RN dx = I(A♯, y♯).

This concludes the proof. �
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Our next observation shows that variational solutions do not exhaust the entire
set of all possible solutions to the original OCP (21)–(22).

Lemma 3.5. Assume that there exists a matrix A0 ∈ Aad and an element v ∈
D(A0) with property [v, v]A0

< 0. Then there are distributions f ∈ H−1(Ω) and
yd ∈ L2(Ω) such that the optimal control problem

Minimize I(A, y) = ‖y − yd‖2L2(Ω) +

∫

Ω

(∇y −∇yd, Asym(∇y −∇yd))RN dx(77)

subject to the constraints (19)–(20) and A ∈ Aad ⊂ L2(Ω;MN )(78)

has a non-variational solution in the sense of Definition 3.3.

Proof. We consider the OCP (77)–(78) with

yd = v and f = −divA0∇v.
Since v ∈ D(A0), it follows that v ∈ H1

0 (Ω) and f ∈ H−1(Ω). It is easy to see that
yd is a solution to the boundary value problem (19)–(20) under A = A0. Moreover,
since I(A0, yd) = 0. it follows that (A0, yd) is the optimal pair to the above OCP.

By contradiction, we assume that (A0, yd) is the variational solution. As follows
from Theorem 3.2 (see also Remark 3), each attainable solution (A♯, y♯) to this
OCP satisfies the inequality [y♯, y♯]A♯ ≥ 0. Since [yd, yd]A0 := [v, v]A0 < 0, it means
that the pair (A0, yd) is not attainable and we come into conflict with Definition
3.3. The proof is complete. �

Taking this result into account, we adopt the following concept.

Definition 3.6. We say that a pair (A0, y0) ∈ Ξ is a non-variational solution to
OCP (21)–(22) if

(79) I(A0, y0) = inf
(A,y)∈Ξ

I(A, y), (A0, y0) ∈ Ξ, and [y0, y0]A0 6= 0.

Remark 5. As follows from Theorem3.2, Proposition 6, and Lemma 3.5 none of
non-variational solutions can be attainable through the limit of optimal solutions
to the regularized problem (42)–(44).

4. Optimality Conditions

We consider the extremal problem (21)–(22), where, as above, the set of admis-
sible pairs Ξ is defined by relation

Ξ =
{
(A, y) ∈ Aad ×D(A) ⊂ L2(Ω;MN )×H1

0 (Ω) : I(A, y) < +∞,
∫

Ω

(
∇ϕ,Asym∇y +Askew∇y

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω) , ∀ϕ ∈ C∞
0 (Ω)

}
.

As usual, we determine a solution (A0, y0) ∈ Ξ to the problem (21)–(22) as follows

I(A0, y0) = inf
(A,y)∈Ξ

I(A, y).

To derive the optimality conditions for optimal control problem (21)–(22), we set
F (A, y) = − div

(
A(x)∇y

)
and consider the Lagrange functional

(80) L(A, y, λ, ϕ) = λI(A, y) + 〈F (A, y), ϕ〉H−1(Ω);H1
0 (Ω) − 〈f, ϕ〉H−1(Ω);H1

0 (Ω),

where λ ∈ R+, ϕ ∈ C∞
0 (Ω), and

〈F (A, y), ϕ〉H−1(Ω);H1
0 (Ω) =

∫

Ω

(
∇ϕ,Asym∇y

)
RN dx+

∫

Ω

(
∇ϕ,Askew∇y

)
RN dx.
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Remark 6. It is worth to note that, in view of Remark 2, the Lagrange functional
L(A, y, λ, ϕ), given by (80), can be extended over all ϕ ∈ H1

0 (Ω) by continuity
provided we apply the rule (9). As a result, for each A ∈ Aad, the extended

functional L̂ : Aad ×D(A)× R+ ×H1
0 (Ω) → R takes the form

(81)

L̂(A, y, λ, p) = λI(A, y) +

∫

Ω

(
∇p,Asym∇y

)
RN dx+ [y, p ]A − 〈f, p〉H−1(Ω);H1

0 (Ω).

Hence, because of unboundedness of the bilinear form
∫
Ω

(
∇p,Askew(x)∇y

)
RN dx,

the extended Lagrangian L̂(A, y, λ, p) is not Gâteaux differentiable, in general.

Moreover, we cannot even assert that the mapping y 7→ L̂(A, y, λ, p) has a ’right
hand’ directional derivative [25]

D+
y L̂(A, y, λ, p, h) := lim

θ→+0

L̂(A, y + θh, λ, p)− L̂(A, y, λ, p)

θ
.

Indeed, for given h ∈ H1
0 (Ω) and θ ∈ [0, 1], since the structure of the set D(A) is

unknown, we cannot claim that y+ θh is still an element of D(A) even if θ is small
enough. Hence, the term [y + θh, p]A can be undefined, in general.

Remark 7. In view of Remark 6, the characteristic feature of extremal problem
(21)–(22) is the fact that the set of admissible solutions Ξ can contain pairs (A, y) ∈
Ξ such that Askew 6∈ L∞(Ω; SNskew), A

skew ∈ L2(Ω; SNskew), and, hence, the mapping
y 7→ F (A, y) is not continuously differentiable in any neighbourhood of y. As
a result, in order to deduce an optimality system for the problem (21)–(22), we
cannot apply the well-known results of Ioffe and Tikhomirov (see [13, 14]).

In order to avoid this option, we make use of the following concepts.

Definition 4.1. We say that the mapping y 7→ L̂(A, y, λ, p) has a generalized ’right
hand’ directional derivative at the point (A, y, λ, p) ∈ Aad × D(A) × R+ × H1

0 (Ω)
with respect to y in the direction h ∈ H1

0 (Ω) if the ’right hand’ directional derivative

D+
y L̂(A, y, λ, p, ϕ) in a smooth direction ϕ ∈ C∞

0 (Ω) can be extended by continuity

for ϕ = h ∈ H1
0 (Ω), that is,

D+
y L̂(A, y, λ, p, h) = lim

ε→0
D+

y L̂(A, y, λ, p, ϕε)

whatever {ϕε}ε>0 ⊂ C∞
0 (Ω) such that ϕε → h strongly in H1

0 (Ω).

We are now in a position to implement this concept to the study of differential

properties of the Lagrangian L̂(A, y, λ, p).

Lemma 4.2. If a given tuple (A, y, λ, p) ∈ Aad × D(A) × R+ × H1
0 (Ω) is such

that p ∈ D(A), then for each direction h ∈ H1
0 (Ω), the generalized ’right hand’

directional derivative D+
y L̂(A, y, λ, p, h) exists and takes the form

D+
y L̂(A, y, λ, p, h) = 2

∫

Ω

(y − yd)h dx+ 2

∫

Ω

(∇h,Asym∇y)
RN dx

+

∫

Ω

(∇h,Asym∇p)
RN dx− [p, h]A.(82)
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Proof. For a given tuple (A, y, λ, p), let {ϕε}ε>0 ⊂ C∞
0 (Ω) be a sequence such that

ϕε → h strongly in H1
0 (Ω). Then the direct computations show that

D+
y L̂(A, y, λ, p, ϕε) = lim

θ→+0

L̂(A, y + θϕε, λ, p)− L̂(A, y, λ, p)

θ

= 2λ

∫

Ω

(y − yd)ϕε dx+ 2λ

∫

Ω

(∇ϕε, A
sym∇y)

RN dx

+

∫

Ω

(∇ϕε, A
sym∇p)

RN dx+ J,

where

J = lim
θ→+0

limδ→0[y + θϕε, ψδ]A − [y, p ]A
θ

,(83)

[y + θϕε, ψδ]A =

∫

Ω

(
∇ψδ, A

skew(∇y + θ∇ϕε)
)
RN dx,(84)

[y, p ]A := lim
δ→0

∫

Ω

(
∇ψδ, A

skew∇y
)
RN dx(85)

for any {ψδ}δ>0 ⊂ C∞
0 (Ω) such that ψδ → p strongly in H1

0 (Ω).
Since y ∈ D(A) and
∣∣∣∣
∫

Ω

(
∇ψδ, A

skew∇ϕε

)
RN dx

∣∣∣∣ ≤ ‖ϕε‖C1(Ω)‖Askew‖L2(Ω;SN
skew

)‖ψδ‖H1
0 (Ω),

it follows that

lim
δ→0

[y + θϕε, ψδ]A = [y, p ]A + θ

∫

Ω

(
∇p,Askew∇ϕε

)
RN dx

= [y, p ]A − θ

∫

Ω

(
∇ϕε, A

skew∇p
)
RN dx.

Summing up the previous transformations, we get

D+
y L̂(A, y, λ, p, ϕε) = 2λ

∫

Ω

(y − yd)ϕε dx+ 2λ

∫

Ω

(∇ϕε, A
sym∇y)

RN dx

+

∫

Ω

(∇ϕε, A
sym∇p)

RN dx

−
∫

Ω

(
∇ϕε, A

skew∇p
)
RN dx, ∀ϕε → h in H1

0 (Ω).(86)

Since p ∈ D(A) by the initial assumptions, it follows that

(87)
∣∣[p, ϕε]A

∣∣ :=
∣∣∣∣
∫

Ω

(
∇ϕε, A

skew∇p
)
RN dx

∣∣∣∣ ≤ c(p,A)‖ϕε‖H1
0 (Ω).

Hence, the ’right hand’ directional derivative D+
y L̂(A, y, λ, p, ϕε) admits an exten-

sion by continuity for ϕ ∈ H1
0 (Ω). Therefore, the limit passage in (86) as ε → 0

immediately leads us to the representation (82). �

Corollary 1. The representation (82) for the generalized ’right hand’ directional

derivative D+
y L̂(A, y, λ, p, h) remains valid even if y 6∈ D(A) but rather y ∈ H1

0 (Ω).
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Proof. Indeed, in this case we have

L̂(A, y, λ, p) = λI(A, y) +

∫

Ω

(
∇p,Asym∇y

)
RN dx

− 〈f, p〉H−1(Ω);H1
0 (Ω) − lim

ε→0

∫

Ω

(
∇ψε, A

skew∇p
)
RN dx

= λI(A, y) +

∫

Ω

(
∇p,Asym∇y

)
RN dx− 〈f, p〉H−1(Ω);H1

0 (Ω) − [p, y]A.

for any {ψδ}δ>0 ⊂ C∞
0 (Ω) such that ψδ → y strongly in H1

0 (Ω). It remains to
observe further that formulae (83)–(85) should be read in this case as follows

J = lim
θ→+0

limδ→0[ψδ + θϕε, p ]A + [p, y]A
θ

,

[ψδ + θϕε, p ]A =

∫

Ω

(
∇p,Askew(∇ψδ + θ∇ϕε)

)
RN dx(88)

= −
∫

Ω

(
∇ψδ + θ∇ϕε, A

skew∇p
)
RN dx,(89)

[p, y]A := lim
δ→0

∫

Ω

(
∇ψδ, A

skew∇p
)
RN dx(90)

for any {ψδ}δ>0 ⊂ C∞
0 (Ω) such that ψδ → y strongly in H1

0 (Ω).
Since p ∈ D(A), it follows that

lim
δ→0

[ψδ + θϕε, p ]A = −[p, y]A − θ

∫

Ω

(
∇ϕε, A

skew∇p
)
RN dx.

In the rest, we have to follows the arguments of the proof of Lemma 4.2. �

As an evident consequence of these results, we can give the following specification
of formula (82).

Corollary 2. Let (A, y, λ, p) ∈ Aad ×H1
0 (Ω) × R+ ×H1

0 (Ω) be a given tuple. As-
sume that ∇p ∈ L∞(Ω;RN ) so that p ∈ D(A). Then the generalized ’right hand’

directional derivative D+
y L̂(A, y, λ, p, h) exists for each direction h ∈ H1

0 (Ω) and
takes the form

D+
y L̂(A, y, λ, p, h) = 2λ

∫

Ω

(y − yd)h dx+ 2λ

∫

Ω

(∇h,Asym∇y)
RN dx

+

∫

Ω

(∇h,Asym∇p)
RN dx−

∫

Ω

(
∇h,Askew∇p

)
RN dx.(91)

Proof. Since ∇p ∈ L∞(Ω;RN ), it follows that the estimate (87) can be justified as
follows
∣∣[p, ϕε]A

∣∣ :=
∣∣∣∣
∫

Ω

(
∇ϕε, A

skew∇p
)
RN dx

∣∣∣∣ ≤ ‖∇p ‖L∞(Ω)‖Askew‖L2(Ω;SN
skew

)‖ϕε‖H1
0 (Ω).

Hence, p ∈ D(A) and, therefore, the existence of the generalized ’right hand’ direc-

tional derivative D+
y L̂(A, y, λ, p, h) follows from Lemma 4.2. It remains to observe

that, for such a given p, we have Askew∇p ∈ L2(Ω;RN ). Hence, the passage to the
limit in the last term of (86) reads

[p, h]A = lim
ε→0

∫

Ω

(
∇ϕε, A

skew∇p
)
RN dx =

∫

Ω

(
∇h,Askew∇p

)
RN dx.

�
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Corollary 3. Assume that instead of the condition ∇p ∈ L∞(Ω;RN ) in Corollary 2,
we have

(92) Askew ∈ L2+ 4
γ (Ω; SNskew) and ∇p ∈ L2+γ(Ω;RN ) for some γ ∈ (0,∞].

Then the assertion of Corollary 2 remains true.

Proof. In order to preserve the correctness of the statement of Corollary 2, it is
enough to show that assumptions (92) imply inclusion p ∈ D(A). Indeed, since

∣∣[p, ϕε]A
∣∣ :=

∣∣∣∣
∫

Ω

(
∇ϕε, A

skew∇p
)
RN dx

∣∣∣∣

≤ ‖ϕε‖H1
0 (Ω)

(∫

Ω

‖∇p ‖2
RN ‖Askew‖2

SN
skew

dx

)1/2

,

it remains to apply the Hölder’s inequality with conjugates r = (2 + γ)/2 and
q = 1 + 2/γ, (r−1 + q−1 = 1). We finally get

∫

Ω

‖∇p ‖2
RN ‖Askew‖2

SN
skew

dx ≤
(∫

Ω

‖Askew‖2+
4
γ

SN
skew

dx

) γ
2+γ

(∫

Ω

‖∇p ‖2+γ
RN dx

) 2
2+γ

≤‖Askew‖2
L

2+ 4
γ (Ω;SN

skew
)
‖∇p ‖2L2+γ(Ω) < +∞.

Hence, p ∈ D(A) and this concludes the proof. �

As obvious consequence of these assertions, we have the following result.

Lemma 4.3. Let A ∈ Aad, y ∈ H1
0 (Ω), λ ∈ R+, and p ∈ H1

0 (Ω) be given distribu-
tions. If

(93) ∇p ∈ L∞(Ω;RN ) or
[
Askew ∈ L2+ 4

γ (Ω; SNskew) and ∇p ∈ L2+γ(Ω;RN )
]

for some γ ∈ (0,∞], then the mapping H1
0 (Ω) ∋ v 7→ L̂(A, v, λ, p) ∈ R is Gâteaux

differentiable and its Gâteaux differential takes the form

〈
Dy L̂(A, y, λ, p), h

〉
H−1(Ω);H1

0 (Ω)
= D+

y L̂(A, y, λ, p, h), ∀h ∈ H1
0 (Ω).

Proof. Let (A, y, λ, p) ∈ Aad×H1
0 (Ω)×R+×H1

0 (Ω) be a given tuple. Since p ∈ D(A)
by Corollaries 2–3, it follows from Lemma 4.2 that the value [y + θh, p ]A is well
defined for each h ∈ H1

0 (Ω). Moreover, the properties (93) imply the validity of the
representation (91) which, of course, implies

D+
y L̂(A, y, λ, p, h) = −D+

y L̂(A, y, λ, p,−h), ∀h ∈ H1
0 (Ω),

and thus ascertains the Gâteaux differentiability. �

In what follows, we need the following auxiliary result.

Lemma 4.4. Let A ∈ Aad, v ∈ H1
0 (Ω), y ∈ H1

0 (Ω), λ ∈ R+, and p ∈ H1
0 (Ω) be

given distributions. Assume that the property (93) holds true. Then there exists a



26 T. HORSIN AND P. I. KOGUT

positive value ε ∈ [0, 1] such that

L̂(A, v, λ, p)−L̂(A, y, λ, p) =
〈
Dy L̂(A, y + ε(v − y), λ, p), v − y

〉
H−1(Ω);H1

0 (Ω)

= 2λ

∫

Ω

(y + ε(v − y)− yd) (v − y) dx

+ 2λ

∫

Ω

(∇(v − y), Asym(∇y + ε(∇v −∇y)))
RN dx

+

∫

Ω

(∇(v − y), Asym∇p)
RN dx

−
∫

Ω

(
∇(v − y), Askew∇p

)
RN dx.(94)

Proof. For given A, λ, p, y, and v, let us consider the scalar function

ϕ(t) = L̂(A, y + t(v − y), λ, p).

Since by Lemma 4.3 and Corollary 1, the mapping H1
0 (Ω) ∋ ξ 7→ L̂(U , ξ, λ, p) is

Gâteaux differentiable at each point of the segment

[y, v] := {y + α(v − y) : ∀α ∈ [0, 1]} ⊂ H1
0 (Ω),

it follows that the function ϕ = ϕ(t) is differentiable on [0, 1] and

ϕ′(t) =
〈
Dy L̂(A, y + t(v − y), λ, p), v − y

〉
H−1(Ω);H1

0 (Ω)
, ∀ t ∈ [0, 1].

To conclude the proof, it remains to take into account the representation (91) and
apply the Rolle’s Theorem:

ϕ(1)− ϕ(0) = ϕ′(ε) for some ε ∈ [0, 1].

�

In what follows, we make use of the following concept.

Definition 4.5. Let Aθ ∈ Aad (θ ∈ [0, 1]) be an admissible control, let y(Aθ) be
a weak solution of the problem (19)-(20), and let εθ ∈ [0, 1] be a given value. Let
(A0, y0) ∈ Ξ be an optimal pair to the problem (21)–(22). We say that a distribution
ψθ is the quasi-adjoint state to y0 ∈ H1

0 (Ω) for fixed θ ∈ [0, 1] and εθ ∈ [0, 1], if ψθ

satisfies the following integral identity:

(95)

∫

Ω

(
∇ϕ,Asym

θ ∇ψθ −Askew
θ ∇ψθ

)
RN dx = −2λ

∫

Ω

(yθ − yd)ϕdx

− 2λ

∫

Ω

(∇ϕ,Asym
θ ∇yθ)RN dx, ∀ϕ ∈ H1

0 (Ω),

where yθ = y0 − εθ(y(Aθ)− y0).

By analogy with Proposition 5, we can give the following conclusion.

Proposition 7. Let (A0, y0) ∈ Ξ be an optimal pair for problem (21)–(22), and let
(Aθ, y(Aθ)) be an admissible pair to this problem. Then, for given θ ∈ [0, 1] and
εθ ∈ 0, 1], ψε is the quasi-adjoint state to y0 ∈ H1

0 (Ω) if ψθ ∈ D(Aθ) ⊂ H1
0 (Ω) is a

weak solution to the boundary value problem

− div
(
At

θ∇ψθ

)
= 2λ div

(
Asym

θ ∇yθ
)
− 2λ (yθ − yd) in Ω,(96)

ψθ = 0 on ∂Ω.(97)
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As for the proof of this assertion, it is enough to observe that At
θ = Asym

θ −Askew
θ

and D(Aθ) = D(At
θ) by Definition 1.1, and then repeat the arguments of the proof

of Proposition 5. In particular, as a consequence of this result, we have the following
equalities for the quasi-adjoint state ψθ:∫

Ω

(
∇ϕ,Asym

θ ∇ψθ

)
RN dx− [ψθ, ϕ]Aθ

= −2λ

∫

Ω

(yθ − yd)ϕdx

−2λ

∫

Ω

(∇ϕ,Asym
θ ∇yθ)RN dx ∀ϕ ∈ H1

0 (Ω),(98)

∫

Ω

(
Asym

θ ∇ψθ,∇ψθ

)
RN dx− [ψθ, ψθ]Aθ

= −2λ

∫

Ω

(yθ − yd)ψθ dx

−2λ

∫

Ω

(∇ψθ, A
sym
θ ∇yθ)RN dx.(99)

Let us assume the fulfilment of the following hypotheses:

(H1) If A ∈ Aad is an admissible matrix-valued control, then D(A) ⊇ D(A∗),
where the skew symmetric matrix A∗ ∈ L2(Ω; SNskew) is given in (25).

(H2) There exists an optimal pair (A0, y0) ∈ Ξ to the problem (21)–(22) such
that y0 ∈ D(A∗).

(H3) Let (A0, y0) ∈ Ξ be an optimal pair to the problem (21)–(22) such that

y0 ∈ D(A∗). Let Â ∈ Aad be an arbitrary admissible control, and let

Aθ = A0 + θ(Â − A0) for each θ ∈ [0, 1]. Then there exists a sequence of
corresponding solutions to the boundary value problem problem (19)-(20){
yθ := y (Aθ) = y

(
A0 + θ(Â−A0)

)}
θ→0

such that yθ ⇀ y(A0) in H1
0 (Ω)

as θ → 0, and yθ ∈ D(A∗) for θ small enough.
(H4) Let (A0, y0) ∈ Ξ be an optimal pair to the problem (21)–(22) such that

y0 ∈ D(A∗). Let Â ∈ Aad be an arbitrary admissible control, and let

Aθ = A0 + θ(Â − A0) for each θ ∈ [0, 1]. Then, for each θ ∈ [0, 1] and
εθ ∈ [0, 1], there exists γ ∈ (0,∞] such that

(100) ∇ψθ ∈ L∞(Ω;RN ) or
[
A∗ ∈ L2+ 4

γ (Ω; SNskew) and ∇ψθ ∈ L2+γ(Ω;RN )
]

and the sequence of quasi-adjoint states {ψθ}θ→0 is relatively compact with
respect to the strong topology of H1

0 (Ω).

Remark 8. It is worth to note that due to the condition (25) and Definition 1.1,
Hypothesis (H1) sounds realistic. Indeed, in view of estimate (8), it is reasonably
to suppose that the set D(A∗) ⊆ H1

0 (Ω) strictly depends on the location of ’un-
boundedness zones’ of matrix A∗. Since Askew � A∗ for all A ∈ Aad, it follows that
each of matrices A ∈ Aad inherits the integration properties of A∗ in spite of the
fact that, as was mentioned earlier, the structure of the set D(A) is still unknown
for the time being.

Remark 9. Hypothesis (H3) can be reformulated in other form. Namely, instead
of the given variant of (H3), we assume that y0 is a unique solution of the boundary
value problem (19)-(20) under A = A0, y0 ∈ D(A∗), and yθ ∈ D(A∗) for θ small
enough, where the sequence {yθ := y (Aθ)}θ→0 is defined as in (H3). Let us show
that the remaining conditions of Hypothesis (H2) is carried out in this case. Indeed,
since the boundary value problem (19)-(20) is ill-posed, in general, it means that for
a fixed θ ∈ [0, 1] this problem can admit non-unique solution yθ := y (Aθ). In view
of Remark 3, we can take yθ as a weak limit in H1

0 (Ω) of approximated solutions
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to (19)-(20). With that in mind, it is enough to apply an arbitrary approximation{
Askew

k,θ

}
k∈N

of the matrix Askew
θ ∈ L2

(
Ω; SNskew

)
with properties

{
Askew

k,θ

}
k∈N

⊂
L∞(Ω; SNskew) and A

skew
k,θ → Askew

θ strongly in L2(Ω; SNskew) for each θ ∈ [0, 1]. As a

result, the sequence {yθ}θ→0 is uniformly bounded in H1
0 (Ω) by Theorem 3.2 (see

estimate (52)). Therefore, within a subsequence, we can suppose that there exists a

function y∗ ∈ H1
0 (Ω) such that (Aθ, yθ)

τ→ (A0, y
∗ ) as θ → 0. Moreover, the limit

passage in the integral identity
∫

Ω

(
∇ϕ,Aθ∇yθ

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω) , ∀ϕ ∈ C∞
0 (Ω)

as θ → 0, immediately leads us to the conclusion that (A0, y
∗) is an admissible pair

for optimal control problem (21)–(22). Since boundary value problem (19)-(20) has
a unique solution under A = A0, we get y0 = y∗ (see Remark 10). Hence, we obtain

the required property: (Aθ, yθ)
τ→ (A0, y0 ).

Remark 10. The assumption in Remark 9 that y0 has to be a unique solution of
the boundary value problem (19)-(20) under A = A0, can be omitted if, instead of
this, we assume that a given optimal pair (A0, y0) can be attained through τ -limit
of the sequence

{
(Aθ, yθ) :=

(
A0 + θ(Â−A0), y

(
A0 + θ(Â−A0)

))
)
}
θ→0

,

where Â ∈ Aad is an arbitrary matrix.

We are now in a position to derive the optimality conditions for the optimal
control problem (21)–(22).

Theorem 4.6. Let f ∈ H−1(Ω) and yd ∈ L2(Ω) be given distributions. Let (A0, y0)
be an optimal pair to the problem (21)–(22) satisfying Hypothesis (H2). Then the
fulfilment of the Hypotheses (H1), (H3)–(H4) implies the existence of elements λ ∈
R+ and ψ ∈ H1

0 (Ω) such that λ and ψ are non-zero simultaneously, and

∫

Ω

(
∇ϕ,A0∇y0

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω) , ∀ϕ ∈ C∞
0 (Ω),(101)

∫

Ω

(
∇ϕ, At

0∇ψ
)
RN dx = − 2λ

∫

Ω

(y0 − yd)ϕdx

− 2λ

∫

Ω

(∇ϕ,Asym
0 ∇y0)RN dx, ∀ϕ ∈ C∞

0 (Ω),(102)

∫

Ω

(
∇y0,

(
Asym −Asym

0

) (
λ∇y0 +∇ψ

) )
RN dx

≥ [y0, ψ]A0 − [y0, ψ]A, ∀A ∈ Aad.(103)

Proof. Let (Â, ŷ) ∈ Ξ be an admissible pair. We set Aθ = A0 + θ(Â − A0), where
θ ∈ [0, 1]. By Proposition 4, we have Aθ ∈ Aad for all θ ∈ [0, 1]. Moreover, it is easy

to see that Aθ → A0 in the sense (28)–(30). Let yθ := y (Aθ) = y
(
A0 + θ(Â−A0)

)

be a solution of the boundary value problem problem (19)-(20). Then Hypothesis
(H3) ensures that

(104) (Aθ, yθ)
τ→ (A0, y0 ) as θ → 0.
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It is clear that

∆L̂ = L̂(Aθ, yθ, λ, p)− L̂(A0, y0, λ, p) = L̂(Aθ, yθ, λ, p)− L̂(Aθ, y0, λ, p)

+ L̂(Aθ, y0, λ, p)− L̂(A0, y0, λ, p)

= ∆y L̂(Aθ, y0, λ, p) + ∆A L̂(A0, y0, λ, p) ≥ 0,

∀ θ ∈ [0, 1], ∀ (λ, p) ∈ R+ ×H1
0 (Ω).(105)

Taking into account the representations (80)-(81), we obtain

∆A L̂(A0, y0, λ, p) := L̂(Aθ, y0, λ, p)− L̂(A0, y0, λ, p)

= lim
δ→0

[
L(Aθ, y0, λ, ϕδ)− L(A0, y0, λ, ϕδ)

]

= θλ

∫

Ω

(
∇y0,

(
Âsym −Asym

0

)
∇y0

)
RN dx

+ θ

∫

Ω

(
∇p,

(
Âsym −Asym

0

)
∇y0

)
RN dx

+ θ lim
δ→0

∫

Ω

(
∇ϕδ,

(
Âskew −Askew

0

)
∇y0

)
RN dx,(106)

for any sequence {ϕδ}δ>0 ⊂ C∞
0 (Ω) such that ϕδ → p in H1

0 (Ω).
It is worth to notice that due to the property y0 ∈ D(A∗), Hypothesis (H1)

implies that, in general, for an arbitrary p ∈ H1
0 (Ω), the last term in (106) can be

written θ
(
[y0, p ]Â − [y0, p ]A0

)
.

As for the term ∆y L̂(A0, y0, λ, p) in (105), we temporary assume that the dis-
tribution p ∈ H1

0 (Ω) satisfies the property (93) with A = A∗. Then by Lemma 4.4,
there exists a positive value εθ ∈ [0, 1] such that

(107) ∆y L̂(A0, y0, λ, p) = L̂(Aθ, yθ, λ, p)− L̂(Aθ, y0, λ, p)

=
〈
Dy L̂(Aθ, y0 + εθ(yθ − y0), λ, p), yθ − y0

〉
H−1(Ω);H1

0 (Ω)
.

As a result, combining (106) and (107), and taking into account property (93) with
A = A∗ and Lemma 4.4, we can represent inequality (105) as follows

∆L̂ =L̂(Aθ, yθ, λ, p)− L̂(A0, y0, λ, p) = 2λ

∫

Ω

(y0 + εθ(yθ − y0)− yd) (yθ − y0) dx

+ 2λ

∫

Ω

(∇(yθ − y0), A
sym
θ (∇y0 + εθ(∇yθ −∇y0)))RN dx

+

∫

Ω

(∇(yθ − y0), A
sym
θ ∇p )

RN dx−
∫

Ω

(
∇(yθ − y0), A

skew
θ ∇p

)
RN dx

+ θλ

∫

Ω

(
∇y0,

(
Âsym −Asym

0

)
∇y0

)
RN dx

+ θ

∫

Ω

(
∇y0,

(
Âsym −Asym

0

)
∇p
)
RN dx

− θ

∫

Ω

(
∇y0,

(
Âskew −Askew

0

)
∇p
)
RN dx.(108)

In view of the property (100), let us define the element p in (108) as the quasi-
adjoint state to y0 ∈ H1

0 (Ω), that is, we set p = ψθ, where ψθ satisfies the following
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integral identity:

∫

Ω

(
∇ϕ,Asym

θ ∇ψθ

)
RN dx−

∫

Ω

(
∇ϕ,Askew

θ ∇ψθ

)
RN dx

= − 2λ

∫

Ω

(y0 + εθ(yθ − y0)− yd)ϕdx

− 2λ

∫

Ω

(∇ϕ,Asym
θ (∇y0 + εθ(∇yθ −∇y0))RN dx, ∀ϕ ∈ H1

0 (Ω).(109)

As a result, we can justify relation (51) to the form

∆L̂

θ
=
L̂(Aθ, yθ, λ, ψθ)− L̂(A0, y0, λ, ψθ)

θ

= λ

∫

Ω

(
∇y0,

(
Âsym −Asym

0

)
∇y0

)
RN dx

+

∫

Ω

(
∇y0,

(
Âsym −Asym

0

)
∇ψθ

)
RN dx

+

∫

Ω

(
∇ψθ,

(
Âskew −Askew

0

)
∇y0

)
RN dx ≥ 0, ∀ Â ∈ Aad,(110)

where the last term has a sense by property (100) and Hypotheses (H1)–(H2).
It remains to pass to the limit in (109)–(110) as θ → +0. To this end, we note

that (see (104))

(A1) Aθ → A0 in the sense of (28)–(31) as θ → 0;
(A2) yθ ⇀ y0 in H1

0 (Ω) as θ → 0 by Hypothesis (H3);
(A3) there exists an element ψ ∈ H1

0 (Ω) such that (within a subsequence) ψθ → ψ
in H1

0 (Ω) as θ → 0 by Hypothesis (H4).

Then, taking into account the fact that
(
Âsym − Asym

0

)
∈ L∞(Ω; SNsym), the limit

passage in (110) gives

lim
θ→0

∆L̂

θ

by (A1)–(A3)
= λ

∫

Ω

(
∇y0,

(
Âsym −Asym

0

)
∇y0

)
RN dx

+

∫

Ω

(
∇y0,

(
Âsym −Asym

0

)
∇ψ
)
RN dx

+ lim
θ→0

∫

Ω

(
∇ψθ,

(
Âskew −Askew

0

)
∇y0

)
RN dx ≥ 0.(111)

For each θ ∈ [0, 1], we define a sequence {ϕδ,θ}δ→0 ⊂ C∞
0 (Ω) such that ϕδ,θ → ψθ

in H1
0 (Ω) as δ → 0. Further, we note that

∣∣∣∣
∫

Ω

(
∇(ψθ − ϕδ,θ),

(
Âskew −Askew

0

)
∇y0

)
RN dx

∣∣∣∣
by (H1) and (8)

≤ c(y0, A
∗)‖ψθ − ϕδ,θ‖H1

0 (Ω) → 0 as δ → 0.
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Hence, there exists a monotonically decreasing to 0 sequence {δ(θ)}θ→0 such that
ϕδ(θ),θ − ψθ → 0 in H1

0 (Ω) as θ → 0, and, therefore,

lim
θ→0

∫

Ω

(
∇ψθ,

(
Âskew −Askew

0

)
∇y0

)
RN dx

= lim
θ→0

∫

Ω

(
∇ϕδ(θ),θ,

(
Âskew −Askew

0

)
∇y0

)
RN dx

= lim
θ→0

(
[y0, ϕδ(θ),θ]Â − [y0, ϕδ(θ),θ]A0

)

= (by continuity) = [y0, ψ]Â − [y0, ψ]A0 .

Combining this result with (111), we immediately arrive at the inequality (103).
As for the limit passage in (109) as θ → 0, we see that the numerical sequence

{εθ}θ→0 is bounded and

Asym
θ → Asym

0 and Askew
θ → Askew

0 strongly in L2(Ω;MN ) by (A1)-condition,
(y0 + εθ(yθ − y0)) → y0 strongly in L2(Ω) by (A2)-condition,

(∇y0 + εθ(∇yθ −∇y0) ⇀ ∇y0 weakly in L2(Ω) by (A2)-condition.

As a result, the limit passage in (109) as θ → 0 leads us to integral identity (102).
This concludes the proof. �

Remark 11. As follows from Remark 4, the optimality system given by Theo-
rem 4.6 admits the existence of zero Lagrange multiplier λ = 0. Indeed, the set of
all weak solutions of the adjoint problem under λ = 0

(112)
− div

(
At

0∇ψ
)
= 0 in Ω,

ψ = 0 on ∂Ω.

may contain non-trivial elements, and, hence, the inequality

∫

Ω

(
∇y0,

(
Asym −Asym

0

)
∇ψ
)
RN dx ≥ [y0, ψ]A0

− [y0, ψ]A

can remain valid for all A ∈ Aad. At the same time, following Zhikov (see [32]),
it can be easily shown that the boundary value problem (112) has a unique trivial
solution if only

(113) lim
p→∞

p−1‖Askew
0 ‖Lp(Ω;SN

skew
) = 0.

It is east to see that this condition can be interpreted as some extension of the case
of L∞(Ω; SNskew)-matrices because the fulfilment of property (113) is obvious for the
skew-symmetric matrices with entries like e.g. ln ln ‖x‖RN .

Taking this remark into account, we can precise Theorem 4.6 as follows.

Theorem 4.7. Let f ∈ H−1(Ω) and yd ∈ L2(Ω) be given distributions. Let (A0, y0)
be an optimal pair to the problem (21)–(22) satisfying Hypothesis (H2) and property
(113). Then the fulfilment of the Hypotheses (H1), (H3)–(H4) implies the existence
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of an element ψ ∈ H1
0 (Ω) such that

∫

Ω

(
∇ϕ,A0∇y0

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω) , ∀ϕ ∈ C∞
0 (Ω),

∫

Ω

(
∇ϕ, At

0∇ψ
)
RN dx = − 2

∫

Ω

(y0 − yd)ϕdx

− 2

∫

Ω

(∇ϕ,Asym
0 ∇y0)RN dx, ∀ϕ ∈ C∞

0 (Ω),

∫

Ω

(
∇y0,

(
Asym −Asym

0

) (
∇y0 +∇ψ

) )
RN dx

≥ [y0, ψ]A0
− [y0, ψ]A, ∀A ∈ Aad.

5. Example of a non-variational optimal solution

Let Ω be the unit ball in R
3, Ω =

{
x ∈ R

3 : ‖x‖R3 < 1
}
. Let us consider the

following OCP:

Minimize I(A, y) == ‖y − yd‖2L2(Ω) +

∫

Ω

(∇y −∇yd, Asym(∇y −∇yd))RN dx

(114)

subject to the constraints (19)–(20) and A ∈ Aad ⊂ L2(Ω;MN ),(115)

where the distributions A∗ ∈ L2(Ω, S3skew), f ∈ H−1(Ω), and yd ∈ H1
0 (Ω) will be

defined later on. Our intention is to show that in this case the above problem admits
a non-variational solution, i.e. there exists an admissible pair (A0, y0) ∈ Asd×H1

0 (Ω)
such that

(116) I(A0, y0) = 0 = inf
(A,y)∈Ξ

I(A, y) and [y0, y0]A = −ζ
2
< 0,

where ζ is a given positive value.
We divide our analysis into several steps. At the first step we define a skew-

symmetric matrix A∗ as follows

(117) A∗(x) =




0 a(x) 0
−a(x) 0 −b(x)

0 b(x) 0


 ,

where a(x) =
x1

2‖x‖2
R3

and b(x) =
x3

2‖x‖2
R3

. Since

‖a‖2L2(Ω) =

∫

Ω

(
x1

2‖x‖2
R3

)2

dx

=

∫ 1

0

∫ 2π

0

∫ π

0

ρ2 cos2 ϕ sin2 ψ

ρ4
ρ2 sinϕdψ dϕdρ < +∞,

it follows that a ∈ L2(Ω). By analogy, it can be shown that b ∈ L2(Ω). Moreover,
it is easy to see that the skew-symmetric matrix A∗, define by (117), satisfies the
property A∗ ∈ H(Ω, div; S3), i.e. A∗ ∈ L2(Ω; S3skew) and divA∗ ∈ L1(Ω;R3).
Indeed, in view of the definition of the divergence divA∗ of a skew-symmetric

matrix, we have divA∗ =



d1
d2
d3


, where di = div a∗i =

xix2
‖x‖4

R3

and a∗i is i-th
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column of A∗. As a result, we get

‖div a∗i ‖L1(Ω) =

∫ 1

0

∫ 2π

0

∫ π

0

∣∣∣∣
ρ2fi(ϕ, ψ) sinϕ sinψ

ρ4

∣∣∣∣ ρ
2 sinϕdψ dϕdρ < +∞,

for the corresponding fi = fi(ϕ, ψ) (i = 1, 2, 3). Therefore, divA∗ ∈ L1(Ω;R3).
Step 2 deals with the choice of the function yd ∈ H1

0 (Ω). We define it by the rule

(118) yd =

√
ζ

π

(
1− ‖x‖5

R3

)
√

4π − atan2

(
x2

‖x‖R3

,
x1

‖x‖R3

)
in Ω,

where the two-argument function atan2(y, x) is defined as follows

atan2 (y, x) =





arctan
(
y
x

)
+ π, x < 0,

arctan
(
y
x

)
+ 2π, y < 0, x > 0,

arctan
(
y
x

)
, y ≥ 0, x > 0,

π/2, y > 0, x = 0,
3π/2, y < 0, x = 0,
0, y = 0, x = 0.

It is easy to see that the range of atan2(y, x) is [0, 2π] and

v20

( x

‖x‖R3

)
:=

ζ

π2

(
4π − atan2

(
x2

‖x‖R3

,
x1

‖x‖R3

))
=

ζ

π2
(4π − ϕ) , ∀ϕ ∈ [0, 2π]

with respect to the spherical coordinates. Hence, v0 ∈ C∞(∂Ω), and, as immediately
follows from (118), it provides that

yd ∈ L2(Ω) and yd = 0 on ∂Ω.

By direct computations, we get

(119) ∇v0
( x

‖x‖R3

)
=

1

‖x‖3
R3




∂v0

∂z1

(
‖x‖2

R3 − x21
)
− ∂v0

∂z2
x1x2

∂v0
∂z2

(
‖x‖2

R3 − x22
)
− ∂v0

∂z1
x1x2

−∂v0

∂z1
x1x3 − ∂v0

∂z2
x2x3


 , ∀x 6= 0.

Hence, there exists a constant C∗ > 0 such that
∥∥∥∥∇v0

( x

‖x‖R3

)∥∥∥∥
R3

≤ C∗

‖x‖R3

.

Thus,

‖∇yd‖R3 ≤
∣∣∣∣v0
( x

‖x‖R3

)∣∣∣∣
∥∥∇
(
1− ‖x‖5

R3

)∥∥
R3

+
(
1− ‖x‖5

R3

) ∥∥∥∥∇v0
( x

‖x‖R3

)∥∥∥∥
R3

≤ C1 +
C2

‖x‖R3

.

As a result, we infer that ∇yd ∈ L2(Ω;R3), i.e. we finally have yd ∈ H1
0 (Ω).

Step 3. We show that the function yd, which was introduced before, belongs to
the set D(A∗). To do so, we have to prove the estimate

(120)

∣∣∣∣
∫

Ω

(
∇ϕ,A∗(x)∇yd

)
R3 dx

∣∣∣∣ ≤ C̃(yd)

(∫

Ω

|∇ϕ|2
R3

)1/2

∀ϕ ∈ C∞
0 (R3).
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To this end, we make use of the following transformations
∫

Ω

(
∇ϕ,A∗∇ψ

)
R3 dx = −

〈
div (A∗∇ψ) , ϕ

〉
H−1(Ω);H1

0 (Ω)

=
〈
div




(a∗1)
t∇ψ

(a∗2)
t∇ψ

(a∗3)
t∇ψ


 , ϕ

〉
H−1(Ω);H1

0 (Ω)

=

3∑

i=1

〈
div a∗i , ϕ

∂ψ

∂xi

〉

H−1(Ω);H1
0 (Ω)

+

∫

Ω

3∑

i=1

3∑

j=1

(
a∗ij

∂2ψ

∂xi∂xj

)
ϕdx

︸ ︷︷ ︸
=0

since A∗∈L2(Ω;S3
skew

)

(due to the fact that divA∗ ∈ L∞(Ω;R3))

=

∫

Ω

( divA∗,∇ψ)
R3 ϕdx,

which are obviously true for all ψ, ϕ ∈ C∞
0 (Ω). Since

∣∣∣∣
∫

Ω

( divA∗,∇ψ)
R3 ϕdx

∣∣∣∣ =
∣∣∣∣
∫

Ω

(
∇ϕ, A∗∇ψ

)
R3 dx

∣∣∣∣ ≤ C‖A∗‖L2(Ω;S3
skew

)‖ψ‖H1
0 (Ω),

it follows that, using the continuation principle, we can extend the previous equality
with respect to ψ to the following one

(121)

∫

Ω

(∇ϕ,A∗∇yd)R3 dx =

∫

Ω

ϕ ( divA∗,∇yd)R3 dx ∀ϕ ∈ C∞
0 (Ω).

Let us show that ( divA∗,∇yd)R3 ∈ L∞(Ω). In this case, relation (121) implies
the estimate∣∣∣∣

∫

Ω

(∇ϕ,A∗∇yd)R3 dx

∣∣∣∣ ≤‖( divA∗,∇yd)R3‖L∞(Ω)

∫

Ω

|ϕ| dx

≤C̃(yd)
(∫

Ω

|∇ϕ|2
RN

)1/2

∀ϕ ∈ C∞
0 (RN ),

which means that the element yd belongs to the set D(A∗).
Indeed, as follows from (119), we have the equality

(122)

(
∇v0

( x

‖x‖R3

)
,

x

‖x‖3
R3

)

R3

= 0.

Thus, the gradient of the function ∇v0( x
‖x‖

R3
) is orthogonal to the vector field

Q = x/‖x‖3
R3 outside the origin. Therefore,

(∇yd, divA∗)
R3 :=

(
∇
[(
1− ‖x‖5

R3

)
v0

( x

‖x‖R3

)]
,

x

‖x‖3
R3

x2
‖x‖R3

)

R3

=

(
∇
(
1− ‖x‖5

R3

)
,

x

‖x‖3
R3

)

R3

v0

( x

‖x‖R3

) x2
‖x‖R3

+
(
1− ‖x‖5

R3

)(
∇v0

( x

‖x‖R3

)
,

x

‖x‖3
R3

)

R3

x2
‖x‖R3

= I1 + I2,(123)

where I2 = 0 by (122). Since ∇
(
1− ‖x‖5

R3

)
= −5‖x‖3

R3x,
x2

‖x‖
R3

= sinϕ sinψ with

respect to the spherical coordinates, and function v0 is smooth, it follows that there
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exists a constant C0 > 0 such that |(∇yd, divA∗)
R3 | ≤ C0 almost everywhere in Ω.

Thus, ( divA∗,∇yd)R3 ∈ L∞(Ω) and we have obtained the required property.
Step 4. Using results of the previous steps, we show that the function yd satisfies

the condition [yd, yd]A∗ = − ζ
2 < 0. Indeed, let {ϕε}ε→0 ⊂ C∞

0 (Ω) be a sequence

such that ϕε → yd strongly in H1
0 (Ω). Then by continuity, we have

[yd, yd]A∗ = lim
ε→0

∫

Ω

(∇ϕε, A
∗∇yd)R3 dx

by (121)
= lim

ε→0

∫

Ω

ϕε ( divA
∗,∇yd)R3 dx

Since ( divA∗,∇yd)R3 ∈ L∞(Ω) and ϕε → yd strongly in H1
0 (Ω), we can pass to the

limit in the right-hand side of this relation. As a result, we get

(124) [yd, yd]A∗ =

∫

Ω

yd ( divA
∗,∇yd)R3 dx =

1

2

∫

Ω

(
divA∗,∇y2d

)
R3 dx.

Let Ωε =
{
x ∈ R

3 | ε < ‖x‖R3 < 1
}

and let Γε = {‖x‖R3 = ε} be the sphere of
radius ε centered at the origin. Then
∫

Ωε

(
divA∗,∇y2d

)
R3 dx

since yd∈H1
0 (Ω)

=

∫

Γε

( divA∗, ν)
R3 y

2
d dH2

=

∫

Γε

( divA∗, ν)
R3

(
1− ‖x‖5

R3

)2
v20

( x

‖x‖R3

)
dH2

=

∫

Γε

( divA∗, ν)
R3 v

2
0

( x

‖x‖R3

)
dH2 + o(1)

=

∫

Γε

(
x

‖x‖3
R3

,
(
− x

‖x‖R3

))

R3

x2
‖x‖R3

v20

( x

‖x‖R3

)
dH2 + o(1)

= −ε−2

∫

Γε

x2
‖x‖R3

v20

( x

‖x‖R3

)
dH2 + o(1)

= −
∫

Γ

b0(x)v
2
0(x) dH2 + o(1),

where b0 = sinϕ sinψ and and v20 = ζ
π2 (4π − ϕ). Since

∫

∂Ω

b0v
2
0 dH2 =

ζ

π2

∫ 2π

0

sinϕ (4π − ϕ) dϕ

∫ π

0

sin2 ψ dψ = ζ > 0,

it remains to combine this result with (124) and relation
∫

Ω

(
divA∗,∇y2d

)
R3 dx = lim

ε→0

∫

Ωε

(
divA∗,∇y2d

)
R3 dx.

As a result, we infer [yd, yd]A∗ = −ζ/2 < 0.
Step 5. This is the last step in our analysis of OCP (114)–(115). Let us define

the distribution f ∈ H−1(Ω) as follows

f = −div
(
A♯∇yd +A∗∇yd

)
,(125)

where A♯ is an arbitrary symmetric matrix such that A♯ ∈ Aad,1.
Assume that a compact set Q of L2(Ω; S3skew) contains matrix A∗. Then it is

obvious that the matrix A0 = A♯ + A∗ is admissible for OCP (114)–(115), i.e.
A0 ∈ Aad.

Since yd ∈ D(A∗), it follows that f ∈ H−1(Ω). Hence, (A0, yd) is an admissible
pair to the problem (114)–(115). Taking into account that I(A0, yd) = 0, we finally
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conclude: the pair (A0, y0) := (A♯ + A∗, yd) is a non-variational solution to OCP
(114)–(115).

6. On approximation of non-variational solutions to OCP (21)–(22)

We begin this section with some auxiliary results and notions. Let ε be a small
parameter. Assume that the parameter ε varies within a strictly decreasing sequence
of positive real numbers which converge to 0. Hereinafter in this section, for any
subset E ⊂ Ω, we denote by |E| its N -dimensional Lebesgue measure LN (E).

For every ε > 0, let Tε : R → R be the truncation function defined by

(126) Tε(s) = max
{
min

{
s, ε−1

}
,−ε−1

}
.

The following property of Tε is well known (see [16]). Let g ∈ L2(Ω) be an arbitrary
function. Then we have:

(127) Tε(g) ∈ L∞(Ω) ∀ ε > 0 and Tε(g) → g strongly in L2(Ω).

Let A∗ ∈ L2
(
Ω; SNskew

)
be a matrix mentioned in the control constraints (25).

For a given sequence {ε > 0}, we define the cut-off operators Tε : S
N
skew → S

N
skew as

follows Tε(A
∗) =

[
Tε(a

∗
ij)
]N
i,j=1

for every ε > 0. We associate with such operators

the following set of subdomains {Ωε}ε>0 of Ω

(128) Ωε = Ω \Qε, ∀ ε > 0,

where

(129) Qε = closure

{
x ∈ Ω : ‖A∗(x)‖SN

skew
:= max

1≤i<j≤N

∣∣a∗ij(x)
∣∣ ≥ ε−1

}
.

Definition 6.1. We say that a matrix A∗ ∈ L2
(
Ω; SNskew

)
is of the F-type, if there

exists a strictly decreasing sequence of positive real numbers {ε} converging to 0
such that the corresponding collection of sets {Ωε}ε>0, defined by (128), possesses
the following properties:

(i) Ωε are open connected subsets of Ω with Lipschitz boundaries for which
there exists a positive value δ > 0 such that

∂Ω ⊂ ∂Ωε and dist (Γε, ∂Ω) > δ, ∀ ε > 0,

where Γε = ∂Ωε \ ∂Ω.
(ii) The surface measure of the boundaries of holes Qε = Ω\Ωε is small enough

in the following sense:

(130) HN−1(Γε) = o(ε) ∀ ε > 0.

(iii) For each matrix A ∈ L2(Ω;MN ) such that Askew � A∗ a.e. in Ω, and for
each element h ∈ D(A), there is a constant c = c(h) depending on h and
independent of ε such that

(131)

∣∣∣∣∣

∫

Ω\Ωε

(
∇ϕ,Askew∇h

)
RN dx

∣∣∣∣∣ ≤ c(h)

√
|Ω \ Ωε|

ε

(∫

Ω\Ωε

|∇ϕ|2
RN dx

)1/2

for all ϕ ∈ C∞
0 (RN ).
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Thus, if A∗ is of the F-type, each of the sets Ωε is locally located on one side
of its Lipschitz boundary ∂Ωε. Moreover, in this case the boundary ∂Ωε can be
divided into two parts ∂Ωε = ∂Ω ∪ Γε. Observe also that if A∗ ∈ L∞

(
Ω; SNskew

)

then the estimate (131) is obviously true for all matrices A ∈ L2(Ω;MN ) such that
Askew � A∗.

Remark 12. As immediately follows from Definition 6.1, the sequence of perforated
domains {Ωε}ε>0 is monotonically expanding, i.e., Ωεk ⊂ Ωεk+1

for all εk > εk+1,
and perimeters of Qε tend to zero as ε → 0. Moreover, because of the structure of
subdomains Qε (see (129)) and L2-property of the matrix A∗, we have

|Ω \ Ωε|
ε2

≤
∫

Ω\Ωε

‖A∗(x)‖2
SN
skew

dx, ∀ ε > 0 and lim
ε→0

‖A∗‖L2(Ω\Ωε;SNskew)
= 0.

This entails the property: |Ω \ Ωε| = o(ε2) and, hence, limε→0 |Ωε| = |Ω|. Besides,
in view of the condition (ii) of Definition 6.1, we have

(132)
εHN−1(Γε)

|Ω \ Ωε|
= O(1).

Remark 13. As follows from [5], F-property of the skew-symmetric matrix A∗

implies the so-called strong connectedness of the sets {Ωε}ε>0 which means the

existence of extension operators Pε from H1
0 (Ωε; ∂Ω) to H

1
0 (Ω) such that, for some

positive constant C independent of ε,

(133) ‖∇ (Pεy)‖L2(Ω;RN ) ≤ C ‖∇y‖L2(Ωε;RN ) , ∀ y ∈ H1
0 (Ωε; ∂Ω).

Remark 14. It is easy to see that in view of the conditions (1)–(ii) of Definition 6.1
and the Sobolev Trace Theorem [1], for all ε > 0 small enough, the inequality

(134) ‖ϕ‖L2(Γε) ≤
C√

HN−1(Γε)
‖ϕ‖H1

0 (Ωε;∂Ω), ∀ϕ ∈ C∞
0 (Ω)

holds true with a constant C = C(Ω) independent of ε.

As a direct consequence of Definition 6.1, we have the following result.

Proposition 8. Assume that A∗ ∈ L2
(
Ω; SNskew

)
is of the F-type. Let {Ωε}ε>0

be a sequence of perforated domains of Ω given by (129), and let {χΩε
}ε>0 be the

corresponding sequence of characteristic functions. Then

(135) χΩε
→ χΩ strongly in L2(Ω) and weakly-∗ in L∞(Ω).

Proof. As immediately follows from Definition 6.1, the sequence {χΩε
}ε>0 is mono-

tonically increasing, i.e., χΩεk
≤ χΩεk+1

almost everywhere in Ω provided εk > εk+1.

Taking into account the following representation for the cut-off operators

‖Tε(A∗(x))‖SN
skew

= χΩε
(x)‖A∗(x)‖SN

skew
+ (1− χΩε

(x))ε−1, ∀ ε > 0.

and the condition (127)2, we may suppose, within a subsequence, that
(
χΩε

(x)‖A∗(x)‖SN
skew

+ (1− χΩε
(x))ε−1

)

=
(
χΩε

(x)‖A∗(x)‖SN
skew

+ χΩ\Ωε
(x)ε−1

)
→ ‖A∗(x)‖SN

skew
a.e. in Ω as ε→ 0,

and |Ω \ Ωε| := LN (Ω \ Ωε)
by Remark 12

= o(ε2) → 0 as ε→ 0.
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Hence, in view of the monotonicity property of {χΩε
}ε>0, we finally obtain (see

[10])

χΩε
→ χΩ a.e. in Ω, and, hence, χΩε

→ χΩ strongly in L1(Ω).

Since the strong convergence of characteristic functions in L1(Ω) implies their strong
convergence in L2(Ω), this concludes the proof. �

Definition 6.2. We say that a sequence
{
yε ∈ H1

0 (Ωε; ∂Ω)
}
ε>0

is weakly conver-

gent in variable spaces H1
0 (Ωε; ∂Ω) if there exists an element y ∈ H1

0 (Ω) such that

lim
ε→0

∫

Ωε

(∇yε,∇ϕ)RN dx =

∫

Ω

(∇y,∇ϕ)
RN dx, ∀ϕ ∈ C∞

0 (Ω)

Remark 15. Let y∗ ∈ H1
0 (Ω) be a weak limit in H1

0 (Ω) of the extended functions{
Pεyε ∈ H1

0 (Ω)
}
ε>0

. Since
∫

Ω

(∇y,∇ϕ)
RN dx = lim

ε→0

∫

Ωε

(∇yε,∇ϕ)RN dx = lim
ε→0

∫

Ω

(∇ (Pεyε) ,∇ϕ)RN χΩε
dx

by (135) and (133)
=

∫

Ω

(∇y∗,∇ϕ)
RN dx, ∀ϕ ∈ C∞

0 (Ω),

it follows that

lim
ε→0

∫

Ωε

(∇yε,∇ϕ)RN dx = lim
ε→0

∫

Ω

(∇ (Pεyε) ,∇ϕ)RN dx

and, hence, the weak limit in the sense of Definition 6.2 does not depend on the
choice of extension operators Pε : H

1
0 (Ωε; ∂Ω) → H1

0 (Ω) with the properties (133).

Let us consider the following sequence of regularized OCPs associated with per-
forated domains Ωε

(136)

{ 〈
inf

(A,v,y)∈Ξε

Iε(A, v, y)

〉
, ε→ 0

}
,

where

Iε(A, v, y) := ‖y − yd‖2L2(Ωε)
+

∫

Ωε

(∇y,Asym∇y)
RN dx+

1

εσ
‖v‖2

H− 1
2 (Γε)

,(137)

Ξε =





(A, v, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− div
(
A∇y

)
= fε in Ωε,

y = 0 on ∂Ω, ∂y/∂νA = v on Γε,

v ∈ H− 1
2 (Γε), y ∈ H1

0 (Ωε; ∂Ω),

A = Asym +Askew,

A ∈ Aε
ad = Aad,1 ⊕ Aε

ad,2, A
ε
ad,2 = Ua,2 ∩ Uε

b,2,

Uε
b,2 =

{
Askew = [ai j ] ∈ L2(Ω; SNskew) :

Askew(x) � A∗(x) a.e. in Ωε

}
.





.(138)

Here, yd ∈ L2(Ω) and fε ∈ L2(Ω) are given functions, ν is the outward normal unit

vector at Γε to Ωε, v ∈ H− 1
2 (Γε) is considered as a fictitious control, and σ is a

positive number such that

(139) ε−σHN−1(Γε) → 0 as ε→ 0 (see (130)).

Using the fact that A ∈ L∞(Ωε;M
N ) for every ε > 0 and each A ∈ Aε

ad, and
proceeding as in the proof of Theorem 3.2, we arrive at the following obvious result.
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Theorem 6.3. For every ε > 0 the problem
〈
inf(A,v,y)∈Ξε

Iε(A, v, y)
〉
admits at

least one minimizer (A0
ε, v

0
ε , y

0
ε) ∈ Ξε.

In order to study the asymptotic behavior of the sequences of admissible solu-

tions
{
(Aε, vε, yε) ∈ Ξε ⊂ Aε

ad ×H− 1
2 (Γε)×H1

0 (Ωε; ∂Ω)
}
ε>0

in the scale of vari-

able spaces, we adopt the following concept.

Definition 6.4. We say that a sequence {(Aε, vε, yε) ∈ Ξε}ε>0 weakly converges

to a pair (A, y) ∈ Aad ×H1
0 (Ω) in the scale of spaces

(140)
{
L2(Ω;MN )×H− 1

2 (Γε)×H1
0 (Ωε; ∂Ω)

}
ε>0

,

(shortly, (Aε, vε, yε)
w→ (A, y)), if

Aε := Asym
ε +Askew

ε → Asym +Askew =: A in L2(Ω;MN ),(141)

Asym
ε → Asym in Lp(Ω; SNsym), ∀ p ∈ [1,+∞),(142)

Asym
ε

∗
⇀ Asym in L∞(Ω; SNsym),(143)

Askew
ε → Askew in L2(Ω; SNskew),(144)

yε ⇀ y in H1
0 (Ωε; ∂Ω),(145)

and sup
ε>0

1

HN−1(Γε)
‖vε‖2

H− 1
2 (Γε)

< +∞.(146)

We are now in a position to state the main result of this section.

Theorem 6.5. Assume that the matrix A∗ ∈ L2
(
Ω; SNskew

)
is of the F-type and

such that

(147)
the equality [y, y]A = 0 does not hold in D(A)

for all A ∈ Aad with Askew = A∗ a.e. in Ω.

Let {Ωε}ε>0 be a sequence of perforated subdomains of Ω associated with matrix

A∗. Let f ∈ H−1(Ω) and yd ∈ L2(Ω) be given distributions. Then the original
optimal control problem

〈
inf(A,y)∈Ξ I(A, y)

〉
, where the sequence

{
fε ∈ L2(Ω)

}
ε>0

is such that χΩε
fε → f strongly in H−1(Ω), is variational limit of the sequence

(136)–(138) as the parameter ε tends to zero.

Remark 16. As follows from Theorem 3.4, if there exists a matrix A ∈ Aad and
an element ŷ ∈ D(A) such that [ŷ, ŷ ]A 6= 0, then OCP (21)–(22) may admit a non-
variational solution. So, (147) can be interpreted as a necessary (but not sufficient)
condition of the existence of non-variational solutions to OCP (21)–(22). On the
other hand, condition (147) may imply the existence of at least one pair (A, h∗) ∈
Aad × D(A) such that h∗ 6∈ L∞(Ω) and h∗ is a solution to homogeneous problem
(69). It means that in this case the linear form

[h∗, ϕ] =

∫

Ω

(
∇ϕ,Askew(x)∇h∗

)
RN dx, ∀ϕ ∈ C∞

0 (RN )

has a non-trivial extension onto the entire set D(A) following the rule (9).

Proof of Theorem 6.5. Since each of the optimization problems
〈
inf(A,v,y)∈Ξε

Iε(A, v, y)
〉

lives in the corresponding space Aε
ad×H− 1

2 (Γε)×H1
0 (Ωε; ∂Ω), we have to show that

in this case all conditions of Definition 1.3 hold true. To do so, we divide this proof
into three steps.
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Step 1. We show that the space Aad ×H1
0 (Ω) possesses the weak approximation

property with respect to the weak convergence in the scale of spaces (140). Indeed,
let δ = 0 and let (A, y) ∈ Aad × H1

0 (Ω) be an arbitrary pair. We define h as an
element of C∞

0 (Ω) such that

(148) div
(
Asym∇h+Askew∇h

)
∈ L2(Ω).

Hence, h ∈ D(A). As a result, we construct the sequence
{
(Aε, vε, yε) ∈ L2(Ω;MN )×H− 1

2 (Γε)×H1
0 (Ωε; ∂Ω)

}
ε>0

as follows

Aε = A, vε =
∂h

∂νA
on Γε, and yε = y, ∀ ε > 0.

Here, ∂h
∂νA

=
∑N

i,j=1

(
aij(x)

)
∂h
∂xj

cos(ν, xi), cos(n, xi) is the i-th directing cosine of

ν, and ν is the outward unit normal vector at Γε to Ωε.

In view of (135), we have χΩε

∗
⇀ χΩ in L∞(Ω). Hence,

lim
ε→0

∫

Ωε

(∇ϕ,∇yε)RN dx = lim
ε→0

∫

Ω

(∇ϕ,∇y)
RN χΩε

dx

=

∫

Ω

(∇ϕ,∇y)
RN dx ∀ϕ ∈ C∞

0 (Ω),

i.e., yε ⇀ y in H1
0 (Ωε; ∂Ω) as ε→ 0.

It remains to show that the sequence
{
vε ∈ H− 1

2 (Γε)
}
ε>0

is bounded in the sense

of Definition 6.4. Following Green’s identity, for an arbitrary ϕ ∈ C∞
0 (Ω), we get

∣∣∣
〈 ∂h

∂νA
,ϕ
〉
H− 1

2 (Γε);H
1
2 (Γε)

∣∣∣ ≤
∣∣∣∣
∫

Qε

div
(
Asym(x)∇h+Askew(x)∇h

)
ϕdx

∣∣∣∣

+

∣∣∣∣
∫

Qε

(
∇ϕ,Asym(x)∇h+Askew(x)∇h

)
RN dx

∣∣∣∣

≤
(∫

Qε

|div
(
Asym(x)∇h+Askew(x)∇h

)
|2 dx

)1/2

‖ϕ‖L2(Qε)

+ β‖∇h‖L2(Qε;RN )‖∇ϕ‖L2(Qε;RN )

by (131)
+ c(h)

√
|Ω \ Ωε|

ε

(∫

Ω\Ωε

|∇ϕ|2
RN dx

)1/2

≤ (I1 + I2 + I3) ‖ϕ‖H1(Ω\Ωε).

Since |Ω \ Ωε| = o(ε2) by the F-type properties of A∗, it follows that there exists a
suitable change of variables and a constant C > 0 independent of ε such that

I2 = β‖∇h‖L2(Qε;RN ) = β

(
C
|Ω \ Ωε|

ε

∫

Ω\Ω1

‖∇h(y)‖2
RN dy

)1/2

by (132)

≤ C1

√
HN−1(Γε) ‖h‖H1(Ω).(149)

Following the similar arguments, in view of (148), we get

I1 =
∥∥∥div (∇h+A(x)∇h)

∥∥∥
L2(Qε)

≤ C2(h)
√

HN−1(Γε).
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As a result, summing up the previous inequalities, we come to the following con-
clusion: there exists a constant C = C(h) independent of ε such that

1√
HN−1(Γε)

〈
∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

≤ C(h)‖ϕ‖H1(Ω\Ωε) ∀ϕ ∈ C∞
0 (Ω).

Hence,

(150) sup
ε>0

(
1√

HN−1(Γε)

∥∥∥ ∂h
∂νA

∥∥∥
H− 1

2 (Γε)

)
≤ C.

Thus, the weak approximation property is proved.
Step 2. We show on this step that condition (ddd) of Definition 1.3 holds true

with δ = 0. Let (A, y) ∈ Ξ be an arbitrary admissible pair to the original OCP
(21)–(22). We will indicate two cases.

Case 1. The set L(A), defined in (68), is a singleton. It means that h ≡ 0 is a
unique solution of homogeneous problem (69);

Case 2. The set L(A) is not a singleton. So, we suppose that the set L(A) is a
linear subspace of H1

0 (Ω) and it contains at least one non-trivial element of
D(A) ⊂ H1

0 (Ω).

We start with the Case 2. Let h ∈ D(A) be a element of the set L(A) such that
h is a non-trivial solution of homogeneous problem (69). In the sequel, the choice of
element h ∈ L(A) will be specified (see (167)). Then we construct a (Γ, 0)-realizing
sequence {(Aε, vε, yε) ∈ Ξε}ε>0 in the following way:

(j) Aε = A for all ε > 0. In view of definition of the set Aε
ad, we obviously

have that
{
Aε ∈ Aε

ad ⊂ L2(Ω;MN )
}
ε>0

is a sequence of admissible controls

to the problems (136).

Remark 17. Note that in this case the properties (141)–(144) are obviously
true for the sequence {Aε}ε>0.

(jj) Fictitious controls
{
vε ∈ H− 1

2 (Γε)
}
ε>0

are defined as follows

(151) vε := wε +
∂h

∂νAε

∀ ε > 0,

where distributions wε are such that

(152) sup
ε>0

(
1√

HN−1(Γε)
‖wε‖

H− 1
2 (Γε)

)
≤ C

with some constant C independent of ε.
(jjj)

{
yε ∈ H1

0 (Ωε; ∂Ω)
}
ε>0

is the sequence of weak solutions to the correspond-
ing boundary value problems

− div
(
A∇yε

)
= − div

(
Asym∇yε +Askew∇yε

)
= fε in Ωε,(153)

yε = 0 on ∂Ω, ∂yε/∂νA = vε on Γε.(154)

Since A = Tε(A) whenever x ∈ Ωε for every ε > 0, it means that A ∈ L∞(Ωε;M
N ).

Hence, due to the Lax-Milgram lemma and the superposition principle, the sequence{
yε ∈ H1

0 (Ωε; ∂Ω)
}
ε>0

is defined in a unique way and for every ε > 0 we have the
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following decomposition yε = yε,1+yε,2, where yε,1 and yε,2 are elements of H1
0 (Ωε)

such that∫

Ω

(
∇ϕ,Asym∇yε,1 +Askew∇yε,1

)
RNχΩε

dx =

∫

Ω

fεχΩε
ϕdx

+ 〈wε, ϕ〉
H− 1

2 (Γε);H
1
2 (Γε)

, ∀ϕ ∈ C∞
0 (Ω; ∂Ω),(155)

∫

Ω

(
∇ϕ,Asym∇yε,2 +Askew∇yε,2

)
RNχΩε

dx

=

〈
∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

, ∀ϕ ∈ C∞
0 (Ω; ∂Ω).(156)

Remark 18. Hereinafter, we suppose that the functions yε of H1
0 (Ωε, ∂Ω) are

extended by operators Pε outside of Ωε.

By the skew-symmetry property of Askew ∈ L∞(Ωε; S
N
skew), we have

∫

Ω

(
∇yε,i, Askew∇yε,i

)
RNχΩε

dx = 0, i = 1, 2.

Then (155)–(156) lead us to the energy equalities
∫

Ω

(
∇yε,1, Asym∇yε,1

)
RNχΩε

dx =

∫

Ω

fεχΩε
yε,1 dx

+ 〈wε, yε,1〉
H− 1

2 (Γε);H
1
2 (Γε)

,(157)
∫

Ω

(
∇yε,2, Asym∇yε,2

)
RNχΩε

dx =

〈
∂h

∂νA
, yε,2

〉

H− 1
2 (Γε);H

1
2 (Γε)

.(158)

By the initial assumptions, we have h ∈ L(A). Then the condition (iii) of Defini-
tion 6.1 implies that (for the details we refer to (149))
∣∣∣∣∣

〈
∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

∣∣∣∣∣ =
∣∣∣∣∣

∫

Ω\Ωε

(
∇ϕ,Asym∇h+Askew∇h

)
RN dx

∣∣∣∣∣

≤
√

|Ω \ Ωε|
ε

(C1(h) + C2(h)) ‖ϕ‖H1(Ω\Ωε)

by (130)

≤ C(h)
√

HN−1(Γε)‖ϕ‖H1(Ω\Ωε), ∀ϕ ∈ H1
0 (Ω)

with some constant C(h) independent of ε. Hence,

(159) sup
ε>0

(
HN−1(Γε)

)−1
∥∥∥ ∂h
∂νA

∥∥∥
2

H− 1
2 (Γε)

< C(h) < +∞.

Thus, using the continuity of the embedding H
1
2 (Γε) →֒ L2(Γε) and Sobolev Trace

Theorem, we get
∣∣∣ 〈wε, yε,1〉

H− 1
2 (Γε);H

1
2 (Γε)

∣∣∣
by (152)

≤ C ‖yε,1‖L2(Γε)

(
HN−1(Γε)

) 1
2

by (134)

≤ C1 ‖yε,1‖H1
0 (Ωε;∂Ω),(160)

∣∣∣
〈
∂h

∂νA
, yε,2

〉

H− 1
2 (Γε);H

1
2 (Γε)

∣∣∣ ≤ C ‖yε,2‖L2(Γε)

(
HN−1(Γε)

) 1
2

by (134)

≤ C1‖yε,2‖H1
0 (Ωε;∂Ω).(161)
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As a result, we arrive at the following the a priori estimates

(∫

Ω

∥∥∇yε,1
∥∥2
RNχΩε

dx

)1/2

≤ α−1
(
‖fεχΩε

‖H−1(Ω) + C
)
,(162)

(∫

Ω

∥∥∇yε,2
∥∥2
RNχΩε

dx

)1/2

≤ Cα−1.(163)

Hence, the sequences

{
yε,1 ∈ H1

0 (Ωε; ∂Ω)
}
ε>0

and
{
yε,2 ∈ H1

0 (Ωε; ∂Ω)
}
ε>0

are weakly compact with respect to the weak convergence in variable spaces [31],
i.e., we may assume that there exists a couple of functions ŷ1 and ŷ2 in H1

0 (Ω) such
that

(164) lim
ε→0

∫

Ω

(
∇ϕ,∇yε,i

)
RNχΩε

dx =

∫

Ω

(
∇ϕ,∇ŷi

)
RN , dx, ∀ϕ ∈ C∞

0 (Ω)

for i = 1, 2.
Now we can pass to the limit in the integral identities (155)–(156) as ε → 0.

Using (152), (164), (159), L2-property of A ∈ Aad, and the fact that χΩε
fε → f

strongly in H−1(Ω), we finally obtain

∫

Ω

(
∇ϕ,Asym∇ŷ1 +Askew∇ŷ1

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω)(165)

∫

Ω

(
∇ϕ,Asym∇ŷ2 +Askew∇ŷ2

)
RN dx = 0(166)

for every ϕ ∈ C∞
0 (Ω). Hence, ŷ1 and ŷ2 are weak solutions to the boundary value

problem (19)–(20) and (69), respectively. Hence, ŷ2 ∈ L(A) and ŷ1 ∈ D(A) by
Proposition 5. As a result, we arrive at the conclusion: the pair (A, ŷ1 +h) belongs
to the set Ξ, for every h ∈ L(A). Since by the initial assumptions (A, y) ∈ Ξ, it
follows that having set in (151)

(167) h = y − ŷ1,

we obtain

(168) h ∈ L(A) and yε = yε,1 + yε,2 ⇀ y in H1
0 (Ωε; ∂Ω) as ε→ 0.

Therefore, in view of (168), (159), (152), and Remark 17, we see that

(Aε, vε, yε)
w→ (A, y) in the sense of Definition 6.4.

Thus, the properties (13)–(14) hold true.

Remark 19. It is worth to notice that in the Case 1, we can give the same con-
clusion, because we originally have h ≡ 0. Hence, the solutions to boundary value
problems (165)–(165) are unique and, therefore, we can claim that y = ŷ1, ŷ2 = 0,
and h = 0.
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It remains to prove the inequality (15). To do so, it is enough to show that

I(A, y) := ‖y − yd‖2L2(Ω) +

∫

Ω

(∇y,Asym∇y)
RN dx

= lim
ε→0

Iε(uε, vε, yε)

= lim
ε→0

[
‖yε − yd‖2L2(Ωε)

(169)

+

∫

Ωε

(∇yε, Asym∇yε)RN dx+
1

εσ
‖vε‖2

H− 1
2 (Γε)

]
,(170)

where the sequence {(uε, vε, yε) ∈ Ξε}ε>0 is defined by (151) and (167).
In view of this, we make use the following relations

‖vε‖2
H− 1

2 (Γε)
≤ 2‖wε‖2

H− 1
2 (Γε)

+ 2
∥∥∥ ∂h
∂νA

∥∥∥
2

H− 1
2 (Γε)

< +∞,

lim
ε→0

1

εσ
‖wε‖2

H− 1
2 (Γε)

by (152)

≤ C lim
ε→0

HN−1(Γε)

εσ
= 0,

lim
ε→0

1

εσ

∥∥∥∥
∂h

∂νA

∥∥∥∥
2

H− 1
2 (Γε)

by (159)

≤ C lim
ε→0

HN−1(Γε)

εσ
= 0,

lim
ε→0

‖yε − yd‖2L2(Ωε)

by (135) and (168)
= ‖y − yd‖2L2(Ω) .





(171)

In order to obtain the convergence

(172) lim
ε→0

∫

Ωε

(∇yε, Asym∇yε)RN dx =

∫

Ω

(∇y,Asym∇y)
RN dx,

we apply the energy equality which comes from the condition (A, y) ∈ Ξ

(173)

∫

Ω

(∇y,Asym∇y)
RN dx = −[y, y]A + 〈f, y〉H−1(Ω);H1

0 (Ω) ,

and make use of the following trick. It is easy to see that the integral identity for
the weak solutions yε to boundary value problems (138) can be represented in the
so-called extended form∫

Ω

(
∇ϕ,Asym∇yε +Askew∇yε

)
RNχΩε

dx =

∫

Ω

fεχΩε
ϕdx

+ 〈wε, ϕ〉
H− 1

2 (Γε);H
1
2 (Γε)

+

〈
∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

−
∫

Ω

(
∇ψ,Asym∇h∗

)
RN dx− [h∗, ψ]A, ∀ϕ, ψ ∈ C∞

0 (Ω),(174)

where h∗ is an arbitrary element of L. Indeed, because of the equality
∫

Ω

(
∇ψ,Asym∇h∗

)
RN dx+ [h∗, ψ]A

by (68)
= 0, ∀ψ ∈ C∞

0 (Ω),

we have an equivalent identity to the classical definition of the weak solutions of
boundary value problem (138).

As follows from (159), (168), and the Sobolev Trace Theorem, the numerical
sequences

{
〈wε, yε〉

H− 1
2 (Γε);H

1
2 (Γε)

}
ε>0

and

{〈
∂h

∂νA
, yε

〉

H− 1
2 (Γε);H

1
2 (Γε)

}

ε>0
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are bounded. Therefore, we can assume, passing to a subsequence if necessary, that
there exists a value ξ1 ∈ R such that

(175) 〈wε, yε〉
H− 1

2 (Γε);H
1
2 (Γε)

+

〈
∂h

∂νA
, yε

〉

H− 1
2 (Γε);H

1
2 (Γε)

−→ ξ1 as ε→ 0.

Since yε ⇀ y weakly in H1
0 (Ωε; ∂Ω) and y ∈ D(A), it follows that there exists

a sequence of smooth functions {ψε ∈ C∞
0 (Ω)}ε>0 such that ψε → y strongly in

H1
0 (Ω). Therefore, following the extension rule (9), we have

lim
ε→0

∫

Ω

(
∇ψε, A

sym∇h∗
)
RN dx =

∫

Ω

(
∇y,Asym∇h∗

)
RN dx,(176)

lim
ε→0

[h∗, ψε]A = [h∗, y]A.(177)

Because of the initial supposition (147) (see Remark 16), we can assume that the
element h∗ ∈ L(A) is such that

[h∗, y]A +

∫

Ω

(
∇y,Asym∇h∗

)
RN dx 6= 0.

Otherwise, we come into conflict with (147). So, due to this observation, we specify
the choice of element h∗ ∈ L(A) as follows

ĥ∗ =
ξ1 + [y, y]A
ξ2 + ξ3

h∗, where ξ3 :=

∫

Ω

(
∇y,Asym∇h∗

)
RN dx, ξ2 := [h∗, y]A,

or, in other words, we aim to ensure the condition ξ1 − ξ2 − ξ3 + [y, y]A = 0. As a

result, we have: ĥ∗ is an element of L(A) such that

(178) lim
ε→0

∫

Ω

(
∇ψε,∇ĥ∗

)
RN dx = ξ2

ξ1 + [y, y]A
ξ2 + ξ3

, lim
ε→0

[ĥ∗, ψε] = ξ3
ξ1 + [y, y]A
ξ2 + ξ3

.

Having put ϕ = yε and h∗ = ĥ∗ in (174) and using the fact that
∫

Ω

(
∇yε, Askew∇yε

)
RNχΩε

dx = 0,

we arrive at the following energy equality for the boundary value problem (138)
∫

Ω

(
∇yε, Asym∇yε

)
RNχΩε

dx =

∫

Ω

fεχΩε
yε dx+ 〈wε, yε〉

H− 1
2 (Γε);H

1
2 (Γε)

+

〈
∂h

∂νA
, yε

〉

H− 1
2 (Γε);H

1
2 (Γε)

−
∫

Ω

(
∇ψε, A

sym∇ĥ∗
)
RN dx− [ĥ∗, ψε]A.(179)

As a result, taking into account the properties (135), (168), (178), we can pass
to the limit as ε→ 0 in (179). This yields

lim
ε→0

∫

Ω

(
∇yε, Asym∇yε

)
RNχΩε

dx = lim
ε→0

∫

Ω

fεχΩε
yε dx

+ lim
ε→0

〈wε, yε〉
H− 1

2 (Γε);H
1
2 (Γε)

+ lim
ε→0

〈
∂h

∂νA
, yε

〉

H− 1
2 (Γε);H

1
2 (Γε)

− lim
ε→0

∫

Ω

(
∇ψε,∇ĥ∗

)
RN dx− lim

ε→0
[ĥ∗, ψε]A

by (178)
= 〈f, y〉H−1(Ω);H1

0 (Ω) − [y, y]A
by (173)

=

∫

Ω

(∇y,Asym∇y)
RN dx.(180)
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Hence, turning back to (170), we see that this relation is a direct consequence of
(171) and (180). Thus, the sequence {(uε, vε, yε) ∈ Ξε}ε>0, which is defined by
(151) and (167), is (Γ, 0)-realizing. The property (ddd) is established.

Step 3. We prove the property (dd) of Definition 1.3. Let {(Ak, vk, yk)}k∈N
be a

sequence such that (Ak, vk, yk) ∈ Ξεk for some εk → 0 as k → ∞,

(181)

Ak := Asym
k +Askew

k → Asym +Askew =: A in L2(Ω;MN ),

Asym
k → Asym in Lp(Ω; SNsym), ∀ p ∈ [1,+∞),

Asym
k

∗
⇀ Asym in L∞(Ω; SNsym),

Askew
ε → Askew in L2(Ω; SNskew),

yk ⇀ y in H1
0 (Ωεk ; ∂Ω),





and the sequence of fictitious controls
{
vk ∈ H− 1

2 (Γεk)
}
k∈N

satisfies inequality

(146). In view of Definition 6.4 it means that

(Ak, vk, yk)
w→ (A, y) as k → ∞

Our aim is to show that

(182) (A, y) ∈ Ξ and I(A, y) ≤ lim inf
k→∞

Iεk(Ak, vk, yk).

Following the arguments of the proof of Theorem 3.2, it is easy to show that the
limit matrix A is an admissible control to OCP (21)–(22), i.e. A ∈ Aad.

Since the integral identity

(183)

∫

Ω

(
∇ϕ,Asym

k ∇yk +Askew
k ∇yk

)
RNχΩεk

dx =

∫

Ω

fεkχΩεk
ϕdx

+ 〈vk, ϕ〉
H− 1

2 (Γεk
);H

1
2 (Γεk

)
, ∀ϕ ∈ C∞

0 (Ω)

holds true for every k ∈ N, we can pass to the limit in (183) as k → ∞ using
Definition 6.4 and the estimate
∣∣∣ 〈vk, ϕ〉

H− 1
2 (Γεk

);H
1
2 (Γεk

)

∣∣∣ ≤ C(Ω) ‖ϕ‖H1
0 (Ω)

(
HN−1(Γεk)

) 1
2 , ∀ϕ ∈ C∞

0 (Ω)

coming from inequality (146). Then proceeding as on the Step 2, it can easily
be shown that the limit pair (A, y) is admissible to OCP (21)–(22). Hence, the
condition (182)1 is valid.

As for the inequality (182)2, we see that

(184) lim
k→∞

‖yk − yd‖2L2(Ωεk
) = lim

k→∞

∥∥∥(yk − yd)χΩεk

∥∥∥
2

L2(Ω)
= ‖y − yd‖2L2(Ω)

by (135) and compactness of the embedding H1
0 (Ω) →֒ L2(Ω). In view of the

properties (181) and (7), the sequence
{
(Asym

k )
1/2
}
k∈N

is obviously bounded in

L2(Ω; SNsym). Moreover, taking into account the norm convergence property

lim
k→∞

‖ (Asym
k )

1/2
ξ‖2L2(Ω;RN ) = lim

k→∞

∫

Ω

(ξ, Asym
k ξ)

RN dx

=

∫

Ω

(ξ, Asymξ)
RN dx = ‖ (Asym)

1/2
ξ‖2L2(Ω;RN ), ∀ ξ ∈ R

N ,
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we can conclude that the sequence
{
(Asym

k )
1/2
}
k∈N

strongly converges to (Asym)
1/2

in L2(Ω; SNsym). Hence, combining this fact with (181)5 and (135), we finally obtain

χΩεk
(Asym

k )
1/2 ∇yk ⇀ χΩ (Asym)

1/2 ∇y in L2(Ω;RN ).

As a result, the lower semicontinuity of L2-norm with respect to the weak conver-
gence, immediately leads us to the inequality

lim inf
k→∞

∫

Ωεk

(∇yk, Asym
k ∇yk)RN dx = lim inf

k→∞
‖χΩεk

(Asym
k )

1/2 ∇yk‖2L2(Ω;RN )

≥ ‖χΩ (Asym)
1/2 ∇y‖2L2(Ω;RN ) =

∫

Ω

(∇y,Asym∇y)
RN dx.(185)

Thus, in order to prove the inequality (182)2, it remains to combine relations
(184), (185), and take into account the following estimate

(186)
1

(εk)
σ ‖vk‖2

H− 1
2 (Γεk

)
≤ C

HN−1(Γεk)

(εk)σ
→ 0 as k → ∞.

The proof is complete. �

In conclusion of this section, we consider the variational properties of OCPs
(136)–(138). To this end, we apply Theorem 1.4.

Theorem 6.6. Let A∗ ∈ L2
(
Ω; SNskew

)
be a matrix of the F-type such that

(187) the equality [y, y]A = 0 does not hold in D(A).

Let yd ∈ L2(Ω) and f ∈ H−1(Ω) be given distributions. Let
{
(A0

ε, v
0
ε , y

0
ε) ∈ Ξε

}
ε>0

be a sequence of optimal solutions to regularized problems (136)–(138), where χΩε
fε →

f strongly in H−1(Ω). Then there exists an optimal pair (A0, y0) ∈ Aad to the orig-
inal OCP (21)–(22), which is attainable in the following sense

(A0
ε, v

0
ε , y

0
ε)

w→ (A0, y0) as ε→ 0(188)

in variable space L2(Ω;MN )×H− 1
2 (Γε)×H1

0 (Ωε; ∂Ω),

inf
(A,y)∈Ξ

I(A, y) = I
(
A0, y0

)
= lim

ε→0
Iε(A

0
ε, v

0
ε , y

0
ε) = lim

ε→0
inf

(A,v,y)∈Ξε

Iε(A, v, y).(189)

Proof. In order to show that this result is a direct consequence of Theorem 1.4, it is
enough to establish the compactness property for the sequence of optimal solutions{
(A0

ε, v
0
ε , y

0
ε) ∈ Ξε

}
ε>0

in the sense of Definition 6.4.

Let h ∈ C∞
0 (Ω) be a non-zero function such that div (Asym∇h+A∗∇h) ∈

L2(Ω), where we assume that A = Asym + A∗ is an admissible control, A ∈ Aad.

We set vε = ∂h
∂νA

∣∣∣
Γε

∈ H− 1
2 (Γε). In view of the initial assumptions and estimate

(150), there is a constant C > 0 independent of ε such that

∥∥∥ ∂h
∂νA

∥∥∥
2

H− 1
2 (Γε)

≤ CHN−1(Γε),

Let yε = yε(Aε, vε, f) ∈ H1
0 (Ωε; ∂Ω) be a corresponding solution to boundary

value problem (138). Then following (162), we come to the estimate

‖yε‖2H1
0 (Ωε;∂Ω) ≤ C̃,
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where the constant C̃ is also independent of ε. As a result, we get

Iε(A
0
ε, v

0
ε , y

0
ε) =

∥∥y0ε − yd
∥∥2
L2(Ωε)

+

∫

Ωε

(
∇y0ε , (A0

ε)
sym∇y0ε

)
RN dx

+
1

εσ
‖v0ε‖2

H− 1
2 (Γε)

≤ Iε(Aε, vε, yε)

≤(2C1 + β)C̃ + 2‖yd‖2L2(Ω) + C
HN−1(Γε)

εσ
.

Since ε−σHN−1(Γε) → 0 as ε → 0, it follows that the minimal values of the cost
functional (137) bounded above uniformly with respect to ε. Thus, the sequence of
optimal solutions

{
(A0

ε, v
0
ε , y

0
ε)
}
ε>0

to the problems (136)–(138) uniformly bounded

in L2(Ω;MN ) × H− 1
2 (Γε) × H1

0 (Ωε) and, hence, in view of Proposition 4 , it is
relatively compact with respect to the weak convergence in the sense of Definition
6.4. For the rest of proof, it remains to apply Theorem 1.4. �

Remark 20. We note that variational properties of optimal solutions, given by
Theorem 6.6, do not allows to say that the convergence of optimal states Pε(y

0
ε) to

y0 is strong in H1
0 (Ω). Indeed, the convergence

(190)

∫

Ωε

(
∇y0ε ,

(
A0

ε

)sym ∇y0ε
)
RN dx

ε→0−→
∫

Ωε

(
∇y0,

(
A0
)sym ∇y0

)
RN dx,

which comes from (188)–(189), does not implies the norm convergence in H1
0 (Ω).

At the same time, combining relation (190) with energy identities
∫

Ωε

(
∇y0ε ,

(
A0

ε

)sym ∇y0ε
)
RN dx =

∫

Ωε

fεy
0
ε dx+

〈
v0ε , y

0
ε

〉
H− 1

2 (Γε);H
1
2 (Γε)

and ∫

Ω

(
∇y0,

(
A0
)sym ∇y0

)
RN

dx = −[y0, y0]A0 +
〈
f, y0

〉
H−1(Ω);H1

0 (Ω)

rewritten for optimal solutions of the problems (153)–(154) and (19)–(20), respec-
tively, we get

(191) lim
ε→0

〈
v0ε , y

0
ε

〉
H− 1

2 (Γε);H
1
2 (Γε)

= −[y0, y0]A0 .

It gives us another example of the product of two weakly convergent sequences that
can be recovered in the limit in an explicit form. Moreover, this limit does not
coincide with the product of their weak limits.

Our next remark deals with a motivation to put forward another concept of the
weak solutions to the approximated boundary value problems (138) and (44) which
can be viewed as a refinement of the integral identities (155) and (50), respectively.

Definition 6.7. Let {Ωε}ε>0 be a sequence of perforated subdomains of Ω as-
sociated with matrix A by the rule (128)–(129). We say that a function yε =
yε(A, f, v) ∈ H1

0 (Ωε) is a weak solution to the boundary value problem (138) for

given A ∈ Aad, fε ∈ L2(Ω), and v ∈ H− 1
2 (Γε), if the relation

(192)

∫

Ω

(
∇ϕ,A∇yε

)
RNχΩε

dx+

∫

Ω

(
∇ψ,A∇h

)
RN dx

−
∫

Ω

fεϕχΩε
dx− 〈v, ϕ〉

H− 1
2 (Γε);H

1
2 (Γε)

= 0.

holds true for all h ∈ L(A), ϕ ∈ C∞
0 (Ω), and ψ ∈ C∞

0 (Ω).
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Definition 6.8. Let Aε := Tε(A) ∈ L∞(Ω;MN ) be a truncation of a given matrix
A ∈ Aad. We say that a function yε = yε(Aε, f) ∈ H1

0 (Ω) is a weak solution to the
boundary value problem (50) for given f ∈ H−1(Ω), if the relation

(193)

∫

Ω

(
∇ϕ,Aε∇yε

)
RN dx+

∫

Ω

(
∇ψ,A∇h

)
RN dx− 〈f, ϕ〉H−1(Ω);H1

0 (Ω) = 0.

holds true for all h ∈ L(A), ϕ ∈ C∞
0 (Ω), and ψ ∈ C∞

0 (Ω).

Since for every A ∈ Aad and h ∈ D(A) the bilinear form [h, ϕ]A can be extended
by continuity (see (9)) onto the entire space H1

0 (Ω), it follows that the integral
identities (192)–(193) can be rewritten as follows

∫

Ω

(
∇ϕ,Asym∇yε +Askew∇yε

)
RNχΩε

dx

+

∫

Ω

(
∇ψ,Asym∇h

)
RN dx+ [h, ψ]A −

∫

Ω

fεϕχΩε
dx

− 〈v, ϕ〉
H− 1

2 (Γε);H
1
2 (Γε)

= 0 ∀ϕ, ψ ∈ H1
0 (Ω), ∀h ∈ L(A)(194)

and
∫

Ω

(
∇ϕ,Asym∇yε +Askew

ε (x)∇yε
)
RN dx

+

∫

Ω

(
∇ψ,Asym∇h

)
RN dx+ [h, ψ]A

− 〈f, ϕ〉H−1(Ω);H1
0 (Ω) = 0 ∀ϕ, ψ ∈ H1

0 (Ω), ∀h ∈ L(A),(195)

respectively.
Hence, using the skew-symmetry property of the matrix Askew ∈ L2

(
Ω; SNskew

)

and the fact that the set L(A) is closed with respect to the strong topology of
H1

0 (Ω), we conclude: for every ε > 0 there exist elements h1ε, h
2
ε in L(A) such that

the relations (194)–(195) can be reduced to the following energy equalities
∫

Ω

(∇yε, Asymyε)RN χΩε
dx+

∫

Ω

(
∇yε, Asym∇h1ε

)
RN dx+ [h1ε, yε]A(196)

=

∫

Ω

fεyεχΩε
dx+ 〈v, yε〉

H− 1
2 (Γε);H

1
2 (Γε)

,(197)

∫

Ω

(∇yε, Asymyε)RN dx+

∫

Ω

(
∇yε, Asym∇h2ε

)
RN dx+ [h2ε, yε]A(198)

= 〈f, yε〉H−1(Ω);H1
0 (Ω)(199)

for the problems (138) and (44), respectively.
Thus, in contrast to the ”typical” energy equalities to the boundary value prob-

lems (138) and (44), relations (197)–(199) include some extra terms which coming
from the singular energy of the boundary value problem (19)–(20) that was orig-
inally hidden in approximated problems (138) and (44). However, in contrast to
the similar functional effect for Hardy inequalities in bounded domains (see [28]),
the terms

∫
Ω

(
∇yε, Asym∇hiε

)
RN dx+[hiε, yε]A are additive to the total energy, and,

hence, their influence may correspond to the increasing or decreasing of the total
energy and may even constitute the main part of it.
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7. Optimality System for Regularized OCPs Associated with
Perforated Domains Ωε and its Asymptotic Analysis

As follows from Theorem 6.3, for each ε > 0 small enough, the optimal control
problem

〈
inf(A,v,y)∈Ξε

Iε(A, v, y)
〉
, where the cost functional Iε : Ξε → R and its

domain Ξε ⊂ Aε
ad × H− 1

2 (Γε) × H1
0 (Ωε; ∂Ω) are defined by (137)–(138), is a well-

posed controllable system. Hence, to deduce an optimality system for this problem,
we make use of the following well-know result.

Theorem 7.1 (Ioffe and Tikhomirov [14, 13]). Let Y , U , and V be Banach spaces,
let J : Y ×U → R be a cost functional, let F : Y ×U → V be a mapping, and let U∂

be a convex subset of the space U containing more than one point. Let (û, ŷ) ∈ U×Y
be a solution to the problem

J(u, y) → inf,

F (u, y) = 0, u ∈ U∂ .

For each u ∈ U∂ , let the mapping y 7→ J(u, y) and y 7→ F (u, y) be continuously
differentiable for y ∈ O(ŷ), where O(ŷ) is some neighbourhood of the point ŷ, and
let ImF ′

y(û, ŷ) be closed and it has a finite codimension in V . In addition, for
y ∈ O(ŷ), let the function u 7→ J(u, y) be convex, the functional J is Gâteaus-
differentiable with respect to u at the point (û, ŷ), and the mapping u 7→ F (u, y) is
continuous from U to Y and affine, i.e.,

F (γu1 + (1− γ)u2, y) = γF (u1, y) + (1− γ)F (u2, y), ∀u1, u2 ∈ U, γ ∈ R.

Then there exists a pair (λ, p) ∈ (R+ × V ∗) \ {0} such that
〈
L′
y(û, ŷ, λ, p), h

〉
Y ∗;Y

= 0, ∀h ∈ Y,(200)

〈L′
u(û, ŷ, λ, p), u〉U∗;U ≥ 0, ∀u ∈ U∂ − û,(201)

where the Lagrange functional L is defined by equality

(202) L(u, y, λ, p) = λJ(u, y) + 〈p, F (u, y)〉V ∗;V .

If ImF ′
y(û, ŷ) = V , then it can be assumed that λ = 1 in (200)–(201).

For our further analysis, we set

Y = H1
0 (Ωε; ∂Ω), V = L2(Ωε)×H− 1

2 (Γε),(203)

U =
(
L2(Ω; SNsym)⊕ L2(Ω; SNskew)

)
×H− 1

2 (Γε),(204)

U∂ = Aad ×H− 1
2 (Γε) := (Aad,1 ⊕ Aad,2)×H− 1

2 (Γε),(205)

J = Iε(A, v, y) := ‖y − yd‖2L2(Ωε)
+

∫

Ωε

(∇y,Asym∇y)
RN dx

+
1

εσ
‖v‖2

H− 1
2 (Γε)

,(206)

F (A, v, y) =

(
− div

(
A∇y

)
− fε,

∂y

∂νA
− v

)
.(207)

Since for each (g, w) ∈ L2(Ωε)×H− 1
2 (Γε) the boundary value problem

− div
(
A∇y

)
= g in Ωε,(208)

y = 0 on ∂Ω, ∂y/∂νA = w on Γε(209)
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has a unique solution y ∈ H1
0 (Ωε; ∂Ω) [21], we have ImF ′

y(û, ŷ) = V . Thus, the
assumptions of Theorem 7.1 are obviously satisfied. It means that the Lagrange
functional Lε to the optimal control problem

〈
inf(A,v,y)∈Ξε

Iε(A, v, y)
〉
can be de-

fined by formula (with λ = 1 in (200)–(201))

Lε(A, v, y, p, p1) = ‖y − yd‖2L2(Ωε)
+

∫

Ωε

(∇y,Asym∇y)
RN dx

+
1

εσ
‖v‖2

H− 1
2 (Γε)

+
(
− div

(
A∇y

)
− fε, p1

)
L2(Ωε)

+

〈
∂y

∂νA
− v, p 2

〉

H− 1
2 (Γε);H

1
2 (Γε)

,(210)

where p = (p1, p 2) ∈ V ∗ := L2(Ωε)×H
1
2 (Γε).

Let γ0Γε
: H1

0 (Ωε; ∂Ω) → H
1
2 (Γε) be the trace operator, i.e. γ0Γε

is the extension

by continuity of the restriction operator γ0Γε
(u) = u

∣∣
Γε

given for all u ∈ C∞
0 (RN ).

We are now in a position to prove the following result.

Theorem 7.2. For a given ε > 0, let

(A0
ε, v

0
ε , y

0
ε) ∈

(
L2(Ω; SNsym)⊕ L2(Ω; SNskew)

)
×H− 1

2 (Γε)×H1
0 (Ωε; ∂Ω)

be an optimal solution to the regularized problems (136)–(138). Assume that the
following condition holds true

(211) div
((
A0

ε

)skew ∇y0ε
)
∈ L2(Ωε).

Then there exists an element pε ∈ H1
0 (Ωε; ∂Ω) such that the tuple

(A0
ε, v

0
ε , y

0
ε , pε, γ

0
Γε
(pε))

satisfies the following system of relations

− div
(
A0

ε∇y0ε
)
= fε in Ωε,(212)

y0ε = 0 on ∂Ω,(213)

∂y0ε/∂νA0
ε
= v0ε on Γε,(214)

div
((
A0

ε

)t ∇pε
)
= − 2 div

((
A0

ε

)sym ∇y0ε
)
+ 2

(
y0ε − yd

)
, a.e. in Ωε,(215)

pε = 0 on ∂Ω,(216)

∂p0ε/∂ν(A0
ε)

t = 0 on Γε,(217)

v0ε =
εσ

2
Λ
H

1
2 (Γε)

γ0Γε
(pε),(218)

(219)

∫

Ωε

(
∇y0ε +∇pε,

(
Asym − (A0

ε)
sym
)
∇y0ε

)
RN dx

+

∫

Ωε

(
∇pε,

(
Askew − (A0

ε)
skew

)
∇y0ε

)
RN dx ≥ 0, ∀A ∈ Aad,

where Λ
H

1
2 (Γε)

is the canonical isomorphism of H
1
2 (Γε) onto H

− 1
2 (Γε).

Remark 21. It is worth to notice that, in contrast to (212), relation (215) should
be interpreted as an equality of L2-functions. It means that the description of
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boundary value problem (215)–(217) in the sense of distributions takes other form,
namely,

div
((
A0

ε

)t ∇p1
)
= 2

(
fε + div

((
A0

ε

)skew ∇y0ε
)
+
(
y0ε − yd

))
, in Ωε,

pε = 0 on ∂Ω,

∂p0ε/∂ν(A0
ε)

t = ∂y0ε/∂ν(A0
ε)

skew on Γε,

where the component ∂y0ε/∂ν(A0
ε)

skew is unknown a priori. Here, we have used the
fact that

(220) − div
((
A0

ε

)sym ∇y0ε
)
= fε + div

((
A0

ε

)skew ∇y0ε
)

in Ωε

by equation (212).

Proof. By Theorem 7.1, there exists a pair p = (p1, p 2) ∈ V ∗ := L2(Ωε)×H
1
2 (Γε)

such that the Lagrange functional L satisfies relations (200)–(201). The direct
computations show that, in view of (210), the condition (200) takes the form

(221)
〈
Dy L̂ε(A

0
ε, v

0
ε , y

0
ε , p1, p2), h

〉
Y ∗;Y

= 2

∫

Ωε

(
∇h,

(
A0

ε

)sym ∇y0ε
)
RN

dx

+ 2

∫

Ωε

(
y0ε − yd

)
h dx+

〈
∂h

∂νA0
ε

, p 2

〉

H− 1
2 (Γε);H

1
2 (Γε)

−
∫

Ωε

div
(
A0

ε∇h
)
p1 dx = 0, ∀h ∈ H2(Ωε) ∩H1

0 (Ωε; ∂Ω)

(here we have used the fact that ImF ′
y(û, ŷ) = V ). As follows from (221) and (211),

for h ∈ C∞
0 (Ωε), we have

(222) 2

∫

Ωε

(
∇h,

(
A0

ε

)sym ∇y0ε
)
RN

dx+ 2

∫

Ωε

(
y0ε − yd

)
h dx

−
∫

Ωε

div
((
A0

ε

)t ∇p1
)
h dx = −2

∫

Ωε

div
((
A0

ε

)sym ∇y0ε
)
h dx

+ 2

∫

Ωε

(
y0ε − yd

)
h dx−

∫

Ωε

div
((
A0

ε

)t ∇p1
)
h dx = 0.

Due to equality (220) and the initial assumptions (211), relation (222) implies that

div
((
A0

ε

)t ∇p1
)
∈ L2(Ωε). Hence,

(
A0

ε

)t ∇p1 ∈ H(Ωε; div ), where

H(Ωε; div ) =
{
ξ | ξ ∈ L2(Ωε;R

N ), div ξ ∈ L2(Ωε)
}
.

Thanks to Lipschitz properties of ∂Ωε, we can conclude that (see, for instance,

[21, 5]) ∂p1/∂ν(A0
ε)

t ∈ H− 1
2 (∂Ωε) and the map

(
A0

ε

)t ∇p1 ∈ H(Ωε; div ) 7→ ∂p1
∂ν(A0

ε)
t

∈ H− 1
2 (∂Ωε)

is linear and continuous. Moreover, if
(
A0

ε

)t ∇p1 ∈ H(Ωε; div ) and h ∈ H2(Ωε) ∩
H1

0 (Ωε; ∂Ω), then the Green formula

−
∫

Ωε

div
(
A0

ε∇h
)
p1 dx = −

∫

Ωε

div
( (
A0

ε

)t ∇p1
)
h dx

−
〈

∂h

∂νA0
ε

, γ0∂Ωε

(
p1
)〉

H− 1
2 (Ωε);H

1
2 (Ωε)

+

〈
∂p1

∂ν(A0
ε)

t

, h

〉

H− 1
2 (Γε);H

1
2 (Γε)

(223)
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is valid. Then, combining this relation with (221)–(222), we arrive at the following
identity

(224)
〈
Dy L̂ε(A

0
ε, v

0
ε , y

0
ε , p1, p2), h

〉
Y ∗;Y

=

〈
∂p1

∂ν(A0
ε)

t

, h

〉

H− 1
2 (Γε);H

1
2 (Γε)

−
〈

∂h

∂νA0
ε

, γ0∂Ωε

(
p1
)〉

H− 1
2 (Ωε);H

1
2 (Ωε)

+

〈
∂h

∂νA0
ε

, p 2

〉

H− 1
2 (Γε);H

1
2 (Γε)

= 0,

which is valid for all h ∈ H2(Ωε) ∩H1
0 (Ωε; ∂Ω) and all p = (p1, p2) such that

(225)
p1 satisfies (222),

(p1, p 2) ∈ L2(Ωε)×H
1
2 (Γε) and

(
A0

ε

)t ∇p1 ∈ H(Ωε, div).

As follows from (224), for each

h ∈ C∞
0 (RN ; Γε) ∩ C0(R

N ; ∂Ω) ⊂ H2(Ωε) ∩H1
0 (Ωε; ∂Ω),

we have 〈
∂h

∂νA0
ε

, γ0∂Ω
(
p1
)〉

H− 1
2 (∂Ω);H

1
2 (∂Ω)

= 0.

Since C∞
0 (RN ; Γε) ∩ C0(R

N ; ∂Ω) is dense in H− 1
2 (∂Ω) and the matrix

(
A0

ε

)sym
is

positive defined, it follows that

(226) γ0∂Ω
(
p1
)
= 0.

Hence, equality (224), for all h ∈ C∞
0 (RN ; Γε), gives

(227)

〈
∂h

∂νA0
ε

, p 2

〉

H− 1
2 (Γε);H

1
2 (Γε)

−
〈

∂h

∂νA0
ε

, γ0Γε

(
p1
)〉

H− 1
2 (Γε);H

1
2 (Γε)

= 0.

Taking into account the fact that the mapping

∂/∂νA0
ε
: H2(Ωε) ∩H1

0 (Ωε; ∂Ω) → H
1
2 (Γε)

is an epimorphism (see Theorem 1.1.4 in [13]), from (227) it follows that

(228) γ0Γε

(
p1
)
= p 2.

Thus, in view of (226) and (228), relation (224) takes the form

〈
Dy L̂ε(A

0
ε, v

0
ε , y

0
ε , p1, γ

0
Γε

(
p1
)
), h
〉
Y ∗;Y

=

〈
∂p1

∂ν(A0
ε)

t

, h

〉

H− 1
2 (Γε);H

1
2 (Γε)

= 0

for all h ∈ H2(Ωε)∩H1
0 (Ωε; ∂Ω). Applying the same arguments as before, we finally

conclude that

(229)
∂p1

∂ν(A0
ε)

t

= 0 on Γε (in the sense of distribution).

As a result, having gathered relations (222), (226), and (229), we arrive at the
boundary value problem (215)–(217). Moreover, by the regularity of solutions to
the problem (215)–(217), we have pε ∈ H2(Ωε) ∩H1

0 (Ωε; ∂Ω) [15].
In order to end of the proof of this theorem, it remains to show the validity of

the relations (218)–(219). With that in mind, we note that, in view of the structure
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(203)–(205), condition (201) takes the form

(230)
(
DAL(A0

ε, v
0
ε , y

0
ε , pε, γ

0
Γε
(pε)), A−A0

ε

)
L2(Ω;MN )

≥ 0, ∀A ∈ Aε
ad =⇒

∫

Ωε

(
∇y0ε +∇pε,

(
Asym − (A0

ε)
sym
)
∇y0ε

)
RN dx

+

∫

Ωε

(
∇pε,

(
Askew − (A0

ε)
skew

)
∇y0ε

)
RN dx ≥ 0, ∀A ∈ Aε

ad,

(231) DvL(A0
ε, v

0
ε , y

0
ε , pε, γ

0
Γε
(pε)) = 0 =⇒ 2

εσ
v0ε − Λ

H
1
2 (Γε)

γ0Γε
(pε) = 0,

Here, we have used the fact that H
1
2 (Γε) can be reduced to a Hilbert space with

respect to an appropriate equivalent norm, and, hence, H− 1
2 (Γε) is a dual Hilbert

space as well (for the details we refer to Lions and Magenes [21, p.35]). �

Remark 22. In view of the assumption (211), we make use of the following ob-
servation. Let {(Aε, vε, yε) ∈ Ξε}ε>0 be a weakly convergent sequence in the sense

of Definition 6.4. Since in this case
{
yε ∈ H1

0 (Ωε; ∂Ω)
}
ε>0

are the solutions to

the boundary value problem (208)–(209) with A = Aε, and g = fε ∈ L2(Ω), and

w = vε ∈ H− 1
2 (Γε), it follows that the sequence

{
div
(
Aε∇yε

)
χΩε

}
ε>0

is obviously

bounded in L2(Ω). However, because of the non-symmetry of L2-matrices {Aε}ε>0,

it does not imply the same property for the sequence
{
div
(
Askew

ε ∇yε
)
χΩε

}
ε>0

. In
order to guarantee this property, we make use of the notion of divergence divA
of a skew-symmetric matrix A ∈ L2

(
Ω; SNskew

)
. We define it as a vector-valued

distribution d ∈ H−1(Ω;RN ) following the rule

(232) 〈di, ϕ〉H−1(Ω);H1
0 (Ω) = −

∫

Ω

(ai,∇ϕ)RN dx, ∀ϕ ∈ C∞
0 (Ω), ∀ i ∈ {1, . . . , N} ,

where ai stands for the i-th column of the matrix A. As a result, we can give the
following conclusion: if divAskew

ε ∈ L∞(Ω;RN ) for all ε > 0 and the sequence{
divAskew

ε

}
ε>0

is uniformly bounded in L∞(Ω;RN ), then there exists a constant
C > 0 independent of ε such that

(233) sup
ε>0

∥∥χΩε
div
(
Askew

ε ∇yε
)∥∥

L2(Ω)
≤ C.
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Indeed, since

−
〈
div

(
Askew

ε ∇ψε

)
,χΩε

ϕ
〉
H−1(Ω);H1

0 (Ω)

= −
〈
div

(
Askew

ε ∇ψε

)
, ϕ
〉
H−1(Ωε);H1

0 (Ωε)

=
〈
div



at1,ε∇ψε

· · ·
atN,ε∇ψε


 , ϕ

〉
H−1(Ωε);H1

0 (Ωε)

=

N∑

i=1

〈
div ai,ε, ϕ

∂ψε

∂xi

〉

H−1(Ωε);H1
0 (Ωε)

+

∫

Ωε

N∑

i=1

N∑

j=1

(
aij,ε

∂2ψε

∂xi∂xj

)
ϕdx

︸ ︷︷ ︸
=0

since Askew
ε ∈L2(Ω;SN

skew
)

(due to the fact that divAskew
ε ∈ L∞(Ω;RN ) for all ε > 0)

=

∫

Ωε

(
divAskew

ε ,∇ψε

)
RN ϕdx,

for any ψε, ϕ ∈ C∞
0 (Ωε), it follows that this relation can be extended by continuity

to the following one

−
〈
div

(
Askew

ε ∇yε
)
, χΩε

ϕ
〉
H−1(Ω);H1

0 (Ω)
=

∫

Ωε

(
divAskew

ε ,∇yε
)
RN ϕdx.

Hence
∥∥χΩε

div
(
Askew

ε ∇yε
)∥∥

L2(Ω)
≤ (LN (Ω))1/2‖ divAskew

ε ‖L∞(Ω;RN )

× ‖∇yε‖L2(Ωε;RN ) < +∞.

To deduce the estimate (233), it remains to refer to the boundedness of yε in variable
H1(Ωε; ∂Ω) (see Definition 6.4).

Our next intention is to provide an asymptotic analysis of the optimality system
(212)–(219) as ε tends to zero. With that in mind, we assume the fulfilment of the
following Hypotheses:

(AH1) For each admissible control A ∈ Aad the corresponding bilinear form [y, ϕ]A
is continuous in the following sense:

(234) lim
ε→0

[yε, pε]A = [y, p ]A

provided {pε}ε>0 ⊂ H1
0 (Ω), {yε}ε>0 ⊂ H1

0 (Ω), yε ⇀ y in H1
0 (Ω), pε → p in

H1
0 (Ω), and y, yε ∈ D(A) for ε > 0 small enough.

(AH2) Let
{
(A0

ε, v
0
ε , y

0
ε , pε )

}
e>0

be a sequence of tuples such that, for each ε > 0

the corresponding cortege (A0
ε, v

0
ε , y

0
ε , pε ) satisfies the optimality system

(212)–(219). Then there exists a sequence of extension operators
{
Pε ∈ L

(
H1

0 (Ωε; ∂Ω), H
1
0 (Ω)

)}
ε>0

and element ψ ∈ H1
0 (Ω) such that

Pε(pε) → ψ strongly in H1
0 (Ω) and ψ ∈ D(A∗).
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Theorem 7.3. Let yd ∈ L2(Ω) and f ∈ H−1(Ω) be given distributions. Let A∗ ∈
L2
(
Ω; SNskew

)
be a matrix of the F-type. Let

{
(A0

ε, v
0
ε , y

0
ε) ∈ Ξε

}
ε>0

be a sequence of

optimal solutions to regularized problems (136)–(138), and let (A0, y0) ∈ D(A∗) ×
H1

0 (Ω) be its w-limit. Let
{
p0ε ∈ H1

0 (Ωε; ∂Ω)
}
ε>0

be a sequence of corresponding

adjoint states. Then, the fulfilment of the Hypotheses (H1)–(H2) and (AH1)–(AH2)
implies that (A0, y0) ∈ Aad×H1

0 (Ω) is an optimal pair to the original OCP (21)–(22)
and there exists an element ψ ∈ H1

0 (Ω) such that

(A0
ε, v

0
ε , y

0
ε)

w→ (A0, y0) as ε→ 0,(235)

Pε(pε) → ψ strongly in H1
0 (Ω),(236)

− div
(
A0∇y0

)
= f in Ω,

y = 0 on ∂Ω,
(237)

div
((
A0
)t ∇ψ

)
= −2 div

((
A0
)sym ∇y0

)
+ 2

(
y0 − yd

)
in Ω,

ψ = 0 on ∂Ω,
(238)

∫

Ω

(
∇y0,

(
Asym −

(
A0
)sym ) (∇y0 +∇ψ

) )
RN dx

≥ [y0, ψ]A0 − [y0, ψ]A, ∀A ∈ Aad,(239)

Proof. To begin with, we note that due to Theorem 6.6, the sequence of optimal
solutions

{
(A0

ε, v
0
ε , y

0
ε) ∈ Ξε

}
ε>0

to the regularized problems (136)–(138) is compact

with respect to w-convergence and each of its w-cluster pairs (A0, y0) is an optimal
pair to the original problem (21)–(22). Hence, (A0, y0) ∈ Aad, and the limit passage
in (212)–(214) as ε → 0 leads us to the integral identity (101). Thus, the relation
(237) holds true in the sense of distributions. In what follows, we divide the proof
onto several steps.

Step 1. Since the integral identity∫

Ω

(
∇ϕ,

(
A0

ε

)sym ∇Pε(pε)−
(
A0

ε

)skew ∇Pε(pε)
)
RNχΩε

dx

= −2

∫

Ω

(
∇ϕ,

(
A0

ε

)sym ∇Pε(y
0
ε)
)
RN

χΩε
dx

− 2

∫

Ω

(
Pε(y

0
ε)− yd

)
ϕχΩε

dx, ∀ϕ ∈ C∞
0 (Ω)(240)

holds true for every ε > 0, we can pass to the limit in (240) as ε → 0 due to
Hypothesis (H3) and Definition 6.4 (here, we apply the arguments of Remark 15).
Using the strong convergence χΩε

→ χΩ in L2(Ω) (see Proposition 8), we arrive at
the equality∫

Ω

(
∇ϕ,

(
A0
)t ∇ψ

)
RN dx = −2

∫

Ω

(
∇ϕ,

(
A0
)sym ∇y0

)
RN

dx

− 2

∫

Ω

(
y0 − yd

)
ϕdx, ∀ϕ ∈ C∞

0 (Ω).(241)

Hence, ψ ∈ D(A0) ⊂ H1
0 (Ω) (see Proposition 5) and ψ satisfies relation (238) in the

sense of distributions.
Step 2. On this step we study the limit passage in inequality (219) as ε→ 0. To

this end, we rewrite it as follows

(242) Jε
1 (A) ≥ Jε

2 − Jε
3 (A), ∀A ∈ Aε

ad, ∀ ε > 0,
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where

Jε
1 (A) =

∫

Ωε

(
∇y0ε , Asym∇y0ε

)
RN dx,(243)

Jε
2 =

∫

Ωε

(
∇y0ε , (A0

ε)
sym∇y0ε

)
RN dx,(244)

Jε
3 (A) =

∫

Ωε

(
∇y0ε ,

(
At − (A0

ε)
t
)
∇pε

)
RN dx.(245)

By Theorem 6.6 (see (189)), we have

I
(
A0, y0

)
:=
∥∥y0 − yd

∥∥2
L2(Ω)

+

∫

Ω

(
∇y0,

(
A0
)sym ∇y0

)
RN

dx

= lim
ε→0

Iε(A
0
ε, v

0
ε , y

0
ε) := lim

ε→0

∥∥(y0ε − yd)χΩε

∥∥2
L2(Ω)

+ lim
ε→0

∫

Ωε

(
∇y0ε ,

(
A0

ε

)sym ∇y0ε
)
RN

dx+ lim
ε→0

1

εσ
‖v0ε‖2

H− 1
2 (Γε)

.(246)

Since

(247) lim
ε→0

∥∥(y0ε − yd)χΩε

∥∥2
L2(Ω)

=
∥∥y0 − yd

∥∥2
L2(Ω)

by the compactness of the embeddingH1
0 (Ω) →֒ L2(Ω), and limε→0 ε

−σ‖v0ε‖2
H− 1

2 (Γε)
=

0 by Theorem 6.6 (see estimate (186)), it follows from (246) that

(248) lim
ε→0

Jε
2 =

∫

Ω

(
∇y0,

(
A0
)sym ∇y0

)
RN

dx =: J2.

Step 3. As for the term Jε
3 (A), we see that

lim
ε→0

Jε
3 (A) = lim

ε→0

∫

Ωε

(
∇y0ε , (A0

ε)
t∇pε

)
RN dx = ( by (240) )

= lim
ε→0

[
− 2

∫

Ω

(
∇Pε(y

0
ε),
(
A0

ε

)sym ∇Pε(y
0
ε)
)
RN

χΩε
dx

− 2

∫

Ω

(
Pε(y

0
ε)− yd

)
Pε(y

0
ε)χΩε

dx
]
= ( by (248) and (247) )

= − 2

∫

Ω

(
∇y0,

(
A0
)sym ∇y0

)
RN

dx− 2

∫

Ω

(
y0 − yd

)
y0 dx

= lim
ε→0

[
− 2

∫

Ω

(
∇Pε(y

0
ε),
(
A0
)sym ∇y0

)
RN

χΩε
dx

− 2

∫

Ω

(
y0 − yd

)
Pε(y

0
ε)χΩε

dx
]
= ( by (241) )

= lim
ε→0

∫

Ω

(
∇Pε(y

0
ε),
(
A0
)t ∇ψ

)
RNχΩε

dx

=

∫

Ω

(
y0,
(
A0
)sym ∇ψ

)
RN dx+ lim

ε→0
[Pε(y

0
ε)χΩε

, ψ ]A0 = (by (AH2))

=

∫

Ω

(
y0,
(
A0
)sym ∇ψ

)
RN dx+ [y0, ψ ]A0(249)



58 T. HORSIN AND P. I. KOGUT

and

lim
ε→0

∫

Ωε

(
∇y0ε , At∇pε

)
RN dx =

∫

Ω

(
∇y0, Asym∇ψ

)
RN dx

+ lim
ε→0

∫

Ω

(
∇Pε(pε), A

skew∇Pε(y
0
ε)
)
RN χΩε

dx(250)

as the limit of product of weakly and strongly convergence sequences in L2(Ω;RN ).
Hence, combining relations (249) and (250), we get

lim
ε→0

Jε
3 (A) =

∫

Ω

(
y0,
(
Asym −

(
A0
)sym)∇ψ

)
RN dx− [y0, ψ ]A0

+ lim
ε→0

∫

Ω

(
∇Pε(pε), A

skew∇Pε(y
0
ε)
)
RN χΩε

dx = (by Hypothesis (AH2))

=

∫

Ω

(
y0,
(
Asym −

(
A0
)sym)∇ψ

)
RN dx− [y0, ψ ]A0 + [y0, ψ ]A

=: J3(A).(251)

Step 4. At this step we study the asymptotic behaviour of the term Jε
1 (A) in

(243) as ε → 0. To this end, we note that in view of the property (7), the lower
semicontinuity of L2-norm with respect to the weak convergence, immediately leads
us to the inequality

lim
ε→0

Jε
1 (A) = lim inf

ε→0

∫

Ωε

(
∇y0ε , Asym∇y0ε

)
RN dx

= lim inf
ε→0

‖χΩε
(Asym)

1/2 ∇y0ε‖2L2(Ω;RN )

≥ ‖ (Asym)
1/2 ∇y0‖2L2(Ω;RN ) =

∫

Ω

(
∇y0, Asym∇y0

)
RN dx

=: J1(A).(252)

However, because of inequality in (252), we cannot assert that the limit values are
related as follows

(253) J1(A) ≥ J2 − J3(A), ∀A ∈ Aad.

In order to guarantee this relation, we assume the converse, namely, there exists a
matrix A♯ ∈ Aad such that J1(A♯) < J2 − J3(A♯). That is, in view of (248),(251),
and (252), this leads us to the relation

(254)

∫

Ω

(
∇y0,

(
Asym

♯ −
(
A0
)sym)∇y0

)
RN

dx

+

∫

Ω

(
y0,
(
Asym

♯ −
(
A0
)sym)∇ψ

)
RN dx < [y0, ψ ]A0 − [y0, ψ ]A♯

.

The direct computations show that, in this case, we arrive at the inequality

L̂(A♯, y
0, 1, ψ) < L̂(A0, y0, 1, ψ) = I(A0, y0) = inf

(A,y)∈Ξ
I(A, y),

where L̂(A, y, λ, p) is the Lagrange function given by (81). However, this contradicts
with the Lagrange principle, and therefore, the inequality (253) remains valid. Thus,
following (253), we finally get

∫

Ω

(
∇y0,

(
Asym −

(
A0
)sym)

(∇y0 +∇ψ)
)
RN

dx ≥ [y0, ψ ]A0 − [y0, ψ ]A
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for all A ∈ Aad. This concludes the proof. �

Remark 23. As Theorem 7.3 indicates, the limit passage in optimality system
(212)–(219) for the regularized problems (136)–(138) as ε→ 0 leads to the relations
which coincide with the optimality system for the original OCP (21)–(22). However,
a strict substantiation of this passage requires rather strong assumptions in the form
of Hypotheses (H1)–H2) and (AH1)–(AH2). At the same time, the verification of
these Hypotheses becomes trivial provided

A∗ ∈ L∞(Ω; SNskew) in (25),(255)

and ∃C > 0 : ‖ divAskew‖L∞(Ω;RN ) ≤ C, ∀A ∈ Aad.(256)

Indeed, the validity of Hypotheses (H1)–(H2) evidently follows from (255). More-
over, in this case the relation (234) takes the form

lim
ε→0

∫

Ω

(
∇pε, Askew∇yε

)
RN dx =

∫

Ω

(
∇p ,Askew∇y

)
RN dx

and it holds obviously true provided yε ⇀ y in H1
0 (Ω), pε → p in H1

0 (Ω), and
Askew � A∗ ∈ L∞(Ω; SNskew). Hence, Hypothesis (AH1) is valid as well. As for Hy-
pothesis (AH2), we see that admissible controls A ∈ Aad with extra property (256)
form a close set with respect to the strong convergence in L2(Ω; SNskew). Moreover,

in this case we have that the sequence
{
χΩε

div
((
A0

ε

)skew ∇y0ε
)}

ε>0
is uniformly

bounded in L2(Ω) (see Remark 22). Hence, the sequence of adjoint states {pε}ε>0,

given by (215)–(217), is bounded in H2(Ωε) by the regularity of solutions to the
problem (215)–(217). Hence, within a subsequence, we can suppose that the se-
quence {Pε(pε)}ε>0 is weakly convergent in H2(Ω). This proves Hypothesis (AH2).
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