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absorbates, etc., see e.g. Seoánez, Guinea, and Castro Neto (2008). In particular, the surface viscoelasticity phenomenon is
recognized for both liquids and solids. The experimental methods of investigation of surface viscoelasticity are different than
in the case of bulk material, in general, and use various types of microscopies, light scattering, etc., see e.g. Earnshaw,
McGivern, McLaughlin, and Winch (1990), Garcia et al. (2006), Kajiyama, Tanaka, Ge, and Takahara (1996), Sahoo, Thakur,
Senthilkumar, and Das (2003), Tranchida, Kiflie, Acierno, and Piccarolo (2009), Wang, Xiao, and Tsui (2001). For the descrip-
tion of surface dissipation of nanosized beams, Ru (2009) proposed the one-dimensional constitutive law that is similar to
the model of the standard viscoelastic solids but formulated for the two-dimensional surface stresses.

In this paper we consider the influence of surface viscoelasticity on the effective or apparent properties of nanosized thin-
walled structures. The paper is organized as follows. In Section 1 we recall the basic equations of the continuum with surface
stresses. We use the more general constitutive viscoelastic model for the surface stresses than the proposed by Ru (2009). In
Section 2 using the correspondence principle, we present the governing equations of plates and shells with viscoelastic sur-
face stresses. Here we assume that the bulk material is elastic while the surface has the viscoelastic properties. We formulate
the two-dimensional (2D) constitutive equations and obtain the 2D relaxation functions for plates and shells. Finally we
compare the proposed model of shells with viscoelastic surface stresses with the model of sandwich plate with viscoelastic
faces in Section 3.

2. Basic equations of solids with surface stresses

First we consider the problems with mixed boundary conditions for a deformable body with surface stresses. Let V 2 R3 is
the volume of the body with the boundary X = @V.

For quasistatic deformations of linear solids with surface stresses the boundary-value problem is given by

r � rþ qf ¼ 0; x 2 V ; ð1Þ
ujX1

¼ 0; n � rjX2
¼ t; x 2 X; ð2Þ

where r is the stress tensor, u the displacement vector, r the 3D gradient operator (3D nabla operator), q the density, f the
density of the volume forces, and n the external unit normal to X = X1

S
X2, X1

S
X2 = ;. The surface stress vector t is ex-

pressed through a given load u and the stress vector due the surface stresses tS by the formula
t ¼ uþ tS;

where tS is determined through the surface stress tensor s by the formula of Duan, Wang, Huang, and Karihaloo (2005), Duan
et al. (2008), Gurtin and Murdoch (1975), Povstenko (1993)

tS ¼ rS � s; ð3Þ

Here s is the surface stress tensor on X, rS is the nabla operator on the surface X that relates with r by the formula

rS ¼ r n
@

@z

z is the coordinate along the normal to X.
For the sake of simplicity, we restrict ourselves to an isotropic material. We assume that the bulk material is elastic but

the surface stresses are viscoelastic. So, the constitutive equation for the bulk material is the Hooke law

r ¼ 2leþ kItr e; ð4Þ
where

e ¼ eðuÞ � 1
2
ðruþ ðruÞTÞ

is the strain tensor, k and l are Lamé’s coefficients, and I is the three-dimensional unit tensor, respectively.
For the surface stresses we assume the following constitutive equation

s ¼ 2
Z t

�1
lSðt sÞ _eðsÞ dsþ

Z t

�1
kSðt sÞtr _eðsÞ dsA; ð5Þ

e ¼ eðvÞ � 1
2
ðrSv � Aþ A � ðrSvÞTÞ;

where e is the surface strain tensor, v the displacement of the surface point x of X2, A � I n � n the two-dimensional unit
tensors, the overdot denotes differentiation with respect to time t, and kS and lS are the relaxation functions of the surface
film X2, respectively.

Following Gurtin and Murdoch (1975), Povstenko (1993), we use the non-separation condition that explicitly states that
the displacements of the surface film X2 coincide with the body displacements on the boundary

v ¼ ujX2
:
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The integral constitutive law (5) contains the viscoelastic constitutive equation of Ru (2009) as the special case. If lS and kS

are constants then (5) reduces to the elastic constitutive equations used in Duan et al. (2008).
Eqs. (1)–(5) constitute the boundary-value problem (BVP) for the elastic body with viscoelastic surface stresses. In what

follows we use this BVP to derive two-dimensional (2D) equations of shear-deformable shells.

3. Reduction to the two-dimensional theory

In the literature there are known various approaches of derivation of 2D equations of plates and shells using the reduction
procedure of the equations of elasticity, see e.g. Berdichevsky (2009), Eremeyev and Zubov (2008), Libai and Simmonds
(1998), Naghdi (1972). Here we use the through-the-thickness integration procedure presented for example, in Lebedev,
Cloud, and Eremeyev (2010) with tensorial notations but applied to the nonclassical BVP (1)–(5).

In the case of viscoelastic material we use the correspondence principle which establishes that if an elastic solution is
known, the corresponding viscoelastic solution can be obtained by substituting for the elastic quantities the Laplace trans-
forms of the unknown functions (Christensen, 1971; Tschoegl, 1989). In other words, one can use the solution of BVP for elas-
tic material as the solution of BVP for viscoelastic material but given in terms of Laplace transforms. According to this principle
we use the results of 3D to 2D reduction procedure for the elastic shell-like body given by Altenbach et al. (2009, 2010).

In fact, using the Laplace transform of a function f(t)

f ðsÞ ¼
Z 1

0
f ðtÞe�stdt;

one can write (5) in the form

s ¼ 2slSðsÞeþ skSðsÞðtr eÞA; ð6Þ

which coincides formally with the surface Hook’s law assumed in Altenbach et al. (2009, 2010).
The through-the-thickness integration procedure applied to shell-like body with surface stresses leads to the following

2D equations, see Altenbach et al. (2009, 2010),

rS � Tþ q ¼ 0; rS �Mþ T� þm ¼ 0; ð7Þ
where T is the stress resultant tensor, M the couple stress tensor, T� denotes the vectorial invariant of second-order tensor T
(Lebedev et al., 2010), for example the vectorial invariant of the diad of two vectors a and b is equal to their vector product:
(a � b)� = a � b, q and m are the surface force and couple vector fields defined as in Altenbach et al. (2009, 2010).

Tensors T and M can be represented each as the sums of two terms, see Altenbach and Eremeyev (2011), Altenbach et al.
(2009, 2010),

T ¼ Tb þ Ts; M ¼ Mb þMs: ð8Þ

Here Tb and Mb are the stress resultant and couple stress tensors related to the bulk material while Ts and Ms are the stress
resultant and couple stress tensors related to the surface stresses. With the accuracy of O(h/R) where h is the shell thickness
and R is the maximum of the curvature radius of the shell base surface, one can use the following formulae for Tb, Mb, Ts, and Ms

T ¼ hA � ri; M ¼ hA � zr� ni; ð9Þ

Ts ¼ sþ þ s�; Ms ¼
h
2
ðsþ s�Þ � n; ð10Þ

hð. . .Þi ¼
Z h=2

�h=2
ð. . .Þ dz;

where s± are the surface stresses acting at the shell faces, i.e. s± = sjz=±h/2.
The expressions (9) for the components of the stress resultants and couple stress tensors are widely used in the literature,

see e.g. Goldenveizer (1961), Novozhilov, Chernykh, and Mikhailovsky (1991), Timoshenko and Woinowsky-Krieger (1985).
Eq. (9) result in the following component representations

Tb ¼ Tabq
a � qb þ Ta3q

a � n; Mb ¼ Mabq
a � qb � n; where a;b ¼ 1;2; ð11Þ

Tab ¼ hrabi; Ta3 ¼ hra3i; Mab ¼ hzrabi;
where rab = qa � r � qb, ra3 = qa � r � n, qa and qb are the main and reciprocal bases on the shell base surface x with the unit
normal vector n.

In what follows we use the linear approximation of the translation vector u

uðzÞ ¼ w z#; n � # ¼ 0: ð12Þ
This approximation is used in the theories of shear-deformable plates and shells, see e.g. Lebedev et al. (2010), w is the trans-
lation vector of shell base surface x, # is the rotation vector of the shell normal, that are kinematically independent each
other.
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For the isotropic shell the constitutive equations, i.e. the dependence of Tb and Mb on strain measures, are given by

Tb ¼ Cb : �þ Cc� n; Mb ¼ Db : j; ð13Þ

where �, j, and c are the surface strain measures given by

� ¼ 1
2
ðrSw � Aþ A � ðrSwÞTÞ; j ¼ 1

2
ðrS# � Aþ A � ðrS#ÞTÞ; c ¼ rSðw � nÞ #;

and the forth-order tensors Cb and Db take the form

Cb ¼ C11a1 � a1 þ C22ða2 � a2 þ a4 � a4Þ;
Db ¼ D22ða2 � a2 þ a4 � a4Þ þ D33a3 � a3;

a1 ¼ A � e1 � e1 þ e2 � e2; a2 ¼ e1 � e1 e2 � e2;

a3 ¼ A� n ¼ e1 � e2 e2 � e1; a4 ¼ e1 � e2 þ e2 � e1:

ð14Þ

Here e1, e2 are arbitrary unit vectors in the tangential plane to x, e1 � e2 = e1 � n = e2 � n = 0. The components C11, C22, D22, D33,
and C are given by

C11 ¼
Eh

2ð1 mÞ ; C22 ¼
Eh

2ð1þ mÞ ;

D22 ¼
Eh3

24ð1þ mÞ ; D33 ¼
Eh3

24ð1 mÞ ; C ¼ klh;

E ¼ 2lð1þ mÞ; m ¼ k
2ðkþ lÞ ;

C � C11 þ C22 ¼
Eh

1 m2 ; D � D11 þ D22 ¼
Eh3

12ð1 m2Þ ;

where E and m are the Young modulus and Poisson ratio of bulk material. C and D are the tangential and bending stiffness of
the shell, C is the transverse shear stiffness, and k the transverse shear factor.

From (13) it follows the relations

T ¼ C1�þ C2Atr �þ Cc� n; M ¼ ½D1jþ D2Atr j� � n; ð15Þ

C1 ¼ 2C22; C2 ¼ C11 C22; D1 ¼ 2D22; D2 ¼ D33 D22;

or in the component form

Tab ¼
Eh

1þ m
�ab þ

m
1þ m

aab �gg

� �
; Ta3 ¼ Cca; Mab ¼

Eh3

1þ m
jab þ

m
1þ m

aab jg
g

� �
;

where aab are the metric coefficients, aab = qa � qb, �gg ¼ tr �, and jg
g ¼ tr j.

Let us consider the constitutive equations for Ts and Ms. For the sake of simplicity we assume the same viscoelastic prop-
erties for both shell faces. From (12) follow the relations

s� ¼
Z t

�1
kSðt sÞtr _�ðsÞ dsAþ 2

Z t

�1
lSðt sÞ _�ðsÞ ds

	 h
2

Z t

�1
kSðt sÞtr _jðsÞ dsAþ

Z t

�1
2lSðt sÞ _jðsÞ ds

� �
:

Thus, we obtain that

sþ þ s� ¼
Z t

�1
ð2kSðt sÞAtr _�ðsÞ þ 4lSðt sÞ _�ðsÞÞ ds;

sþ s� ¼ h
Z t

�1
ðkSðt sÞAtr _jðsÞ þ 2lSðt sÞ _jðsÞÞ ds;

and finally we have

TS ¼
Z t

�1
CS

1ðt sÞ _�ðsÞ þ CS
2ðt sÞAtr _�ðsÞ

h i
ds; ð16Þ

MS ¼
Z t

�1
DS

1ðt sÞ _jðsÞ þ D2ðt sÞSAtr _jðsÞ
h i

ds� n; ð17Þ

CS
1 ¼ 4lS; CS

2 ¼ 2kS; DS
1 ¼ h2lS; DS

2 ¼ h2kS=2:

As a result from (8), (15)–(17) we establish the constitutive equations for the shell with viscoelastic surface stresses in the
form
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T ¼
Z t

�1
½C1ðt sÞ _�ðsÞ þ C2ðt sÞAtr _�ðsÞ� dsþ Cc� n;

M ¼
Z t

�1
½D1ðt sÞ _jðsÞ þ D2ðt sÞAtr _jðsÞ� ds� n;

C1ðtÞ ¼ 2C22 þ 4lSðtÞ; C2ðtÞ ¼ C11 C22 þ 2kSðtÞ;

D1ðtÞ ¼ 2D22 þ h2lSðtÞ; D2ðtÞ ¼ D33 D22 þ
h2

2
kSðtÞ:

The tangential and bending relaxation functions are given by

C ¼ Eh
1 m2 þ 4lS þ 2kS; ð18Þ

D ¼ Eh3

12ð1 m2Þ þ
h2

2
ð2lS þ kSÞ: ð19Þ

Let us note that the surface stresses do not influence the transverse shear stiffness.

4. Comparison: plate with surface stresses versus three-layered plate

The presented above model of plates and shells with surface stresses is similar to the theories of three-layered plates and
shells that are widely presented in the literature, see e.g. Altenbach, Altenbach, and Kissing (2004), Berdichevsky (2009),
Reddy (2004). This similarity is mentioned in Altenbach et al. (2010) in the case of elastic materials. To analyze this similarity
in the viscoelastic case let us consider the symmetric three-layered plate (sandwich plate) with the thickness h = hc + 2hf,
where hc is the thickness of core, hf the thickness of faces, and hc
 hf. We assume that the core is made of elastic material
with the Young modulus E or the shear modulus l, and Poisson ratio m while the faces are viscoelastic with the relaxation
function Ef(t) and the constant Poisson ratio mf.

Using the approach by Altenbach and Eremeyev (2009), for the viscoelastic sandwich plate we obtain the constitutive
equations in the form

T ¼
Z t

�1
eCðt sÞ : _�ðsÞ dsþ

Z t

�1

eCðt sÞ _cðsÞ ds� n; M ¼
Z t

�1
eDðt sÞ : _jðsÞ ds; ð20Þ

where

eC ¼ eC11a1 � a1 þ eC22ða2 � a2 þ a4 � a4Þ; eD ¼ eD22ða2 � a2 þ a4 � a4Þ þ eD33a3 � a3;eC11 ¼ 1
2

2Ef hf
1�mf
þ Ehc

1�m

� �
; eC22 ¼ 1

2
2Ef hf
1þmf
þ Ehc

1þm

� �
;

eD22 ¼ 1
24

Ef h3�h3
cð Þ

1þmf
þ Eh3

c
1þm

� �
; eD33 ¼ 1

24
Ef h3�h3

cð Þ
1�mf

þ Eh3
c

1�m

� �
:

The transverse shear relaxation function eC can be restored from its Laplace transform given by the relation

eC ¼ ‘2 eD22;

where ‘ is the minimal positive root of the equation

n cos ‘
hf

2
cos ‘

hc

2
sin ‘

hf

2
sin ‘

hc

2
¼ 0; n ¼ l=lf ; lf ¼

Ef

2ð1þ mf Þ
:

The tangential and bending relaxation functions of the sandwich plate are given by

eC ¼ eC11 þ eC 22 ¼
2Ef hf

1 m2
f

þ Ehc

1 m2 ; ð21Þ

eD ¼ eD22 þ eD33 ¼
1

12

Ef h3 h3
c

� �
1 m2

f

þ Ech3
c

1 m2
c

2
4

3
5: ð22Þ

Comparing (21) with (18) we can conclude that the surface relaxation functions kS and lS can be expressed through the
relaxation function of faces Ef, Poisson ratio mf, and the thickness hf. With accuracy of O h2

f

� �
we obtain that

lS �
Ef hf

2ð1þ mf Þ
� lf hf ; kS �

mf Ef hf

1 m2
f

� kf hf
1 2mf

1 mf
; ð23Þ

where kf is the second relaxation function of faces. Comparison of (19) with (22) results in the same formulae. Hence, we get
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lS ¼ lim
hf!0

lf hf ; kS ¼ lim
hf!0

kf
1 2mf

1 mf
hf : ð24Þ

The latter equations interpret the surface viscoelastic properties lS and kS through the relaxation functions of plate faces and
their thickness.

Unlike to the tangential and bending relaxation functions the transverse shear relaxation function for the sandwich plate
with viscoelastic faces eC differs from the function C for any values of hf.

For linear and nonlinear sandwich plates and shells Berdichevsky (2009, 2010a, 2010b) proposed the model of hard-skin
structures using two additional small parameters

K1 ¼
lhc

lf hf
; K2 ¼

hf

hc
: ð25Þ

In the case of shell with surface stresses we use (24)1 and hf = 0. Thus, we h = hc and K1, K2 became

K1 ¼
lh
lS

; K2 ¼ 0: ð26Þ

K1 depends on the shell thickness and the characteristic length parameter d = lS/l. It is obvious that K1� 1 if h� d. As an
example let us take the values used in Duan et al. (2005, 2008), Wang et al. (2006) for anodic aluminum. We set l = 34.7 GPa,
m = 0.3, and lS = 6.2178 N/m. As in Altenbach et al. (2009, 2010), one can prove that the influence of surface stresses is neg-
ligible when h > 50 nm. This means that the elastic and viscoelastic plates and shells with surface stresses can be considered
as the hard-skin structures at the nanoscale only.

5. Conclusions

In this paper we extend the constitutive relations of elastic thin-walled structures with surface stresses (Eremeyev et al.,
2009; Altenbach et al., 2009, 2010) taking into account the surface viscoelasticity. Similar to the Gurtin–Murdoch model of
surface elasticity the linear surface viscoelasticity contains the surface stresses which depends on the surface strains. But
here the 2D constitutive equations express dependence of the surface stresses on the prehistory of surface strains. In linear
isotropic case these dependencies are given by the relation (5). Using the correspondence principle and the through-the-
thickness integration technique of reduction of 3D equations to 2D ones, it was shown that

 the well-known elastic approach can be extended to the linear viscoelastic case,
 the transverse shear stiffness plays a specific role and must be computed carefully, and
 the surface behavior is not affected by the transverse shear behavior with respect to the thinness of the influence zone.

It was also shown that influence of the surface viscoelastic properties depends on the values of material parameters in the
relaxation functions and may be significant for such objects as nanoplates and nanoshells.
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