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Here, � is the surface strain tensor, uS =  is the dis�

placement vector on Ω2, ∇S is the surface gradient
operator [13], A = I – n ⊗ n, I is the three�dimensional
unit tensor, n is the external�normal vector to Ω2, λS,
and μS are the surface elastic moduli (the analogues of
the Lamé surface constants), and τ0 is the residual sur�
face stress. The function U in Eq. (2) coincides with
the strain energy of a membrane�shell, and � is equal
to the linear stretch tensor [14].

The total�energy functional for a body with the sur�
face stresses has the form

Here, f is the vector of external volume forces.

The stationarity condition δJ(u) = 0, ∀δu: δ  =

0, leads to the equilibrium equations and the static
boundary conditions:

(3)

The stress and surface�stress tensors in Eq. (3) are
given by formulas

It is also possible to show that an arbitrary solution of
boundary�value problem (1) and (3) is the stationary
point of the functional J(u) on the kinematically
admissible displacement fields u.
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Further, we require fulfillment of the conditions of
positive definiteness of the functions W(ε) and U( ):

(4)
The fulfillment of inequalities (4) results in the follow�
ing restrictions on the elastic moduli:

(5)

It is necessary to note that assumptions (4) should
be fulfilled independently from each other. If, in par�
ticular, we assume that U < 0 for certain deformations,
or inequalities (5)3, 4 are violated, it is possible to show
that J(u) proves to be unbounded from below.

2. For the transition to the shell�theory equations,
we consider a three�dimensional body, one of the
characteristic sizes of which is much less than oth�
ers—the so�called shell�like body (Fig. 1). The shell�
like body volume V is bounded by two faces Ω± and the
lateral surface Ων. We introduce also a middle (base)
surface ω, which is equidistant from Ω±. The lateral
surface Ων represents the ruled surface formed by the
motion of the normal n to ω along its contour γ ≡ ∂ω.
It is convenient to present the radius vector r of the
shell�body points as [13, 14]

where ρ is the radius vector of points of the base sur�
face ω, n is the vector of the normal to ω, z is the coordi�
nate counted from the normal to ω, z ∈ [–h/2, h/2], h is
the shell thickness, and q1 and q2 are the Gaussian coor�
dinates at ω. The radius vectors of Ω± are r± = ρ ± nh/2,
respectively.

We display certain auxiliary formulas related to the
description of tensor fields near the surface ω [13, 14].
The basic and dual bases and the surface nabla opera�
tor at ω are given by the formulas

where  is the Kronecker delta. We use the quantities

q1, q2, and z as the curvilinear coordinates in the vicin�
ity of ω. Then the following formulas hold:
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Fig. 1. Shell�like body.
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where B is the curvature tensor of the surface ω.
We assume that the following surface stresses act on

Ω2 = Ω+ ∪ Ω–:

(6)

In Eq. (6), n± are the vectors of the normal to Ω± (see

Fig. 1),  and ϕ± are the surface stresses and surface
loads at Ω±, respectively,

Here,  and  are the surface elastic moduli, and

 are the residual stresses at Ω±. We note that the sur�

face gradient operators  at Ω±, differ from each
other, in general.

For passing to the two�dimensional equations of
shell theory, we use a procedure known in shell the�
ory—the integration of equilibrium equations (3) over
thickness with taking into account boundary condi�
tions (6) used also in [12]. Integrating Eqs. (3) over z
with taking into account Eq. (6), we obtain

(7)

where T = 〈(A – zB)–1 · σ〉 is the stress resultants tensor,
q = G+ϕ+ – G–ϕ– + 〈f〉 is the surface density of the
external forces acting to the shell,

Taking the vector product of equilibrium equa�
tion (3) and zn at the left and integrating over the
thickness, we obtain the second equilibrium equation

(8)

The tensor M = –〈(A – zB)–1 · zσ × n〉 is the stress cou�
ples tensor, while

is the surface moment distributed over ω, the sub�
script × designates the vector invariant of the second�
order tensor, in particular, the vector invariant is cal�
culated for the dyad formed by the vectors a and b from
the formula (a ⊗ b)× = a × b.

The presence of terms related to the fact that τ± dis�
tinguishes equilibrium Eqs. (7) and (8) from the equi�
librium equations of the linear theory of shells. Trans�
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forming them while taking into account the assump�
tion that h||B|| � 1, we obtain

(9)

where the effective stress resultants and couples ten�
sors T* and M* are introduced

(10)

For description the shell deformations, we assume
the displacement�field approximation linear in thick�
ness used in the theory of plates and shells with taking
into account the transverse shear (see, for example,
[15]):

(11)

Here it is assumed that the rotation vector ϑ is kine�
matically independent of the displacement vector of
the shell midsurface w. Equation (11) leads to the for�
mulas

(12)

where

are the two�dimensional tensors of extension–shear
and bending–torsion deformations. Using Eq. (12),
we obtain for the surface stresses τ± the expressions

In the case of the shell with identical surface properties,

i.e., when  =  = τ0,  =  = μS,  =  = λS,
we obtain the stress resultants and couples tensors gen�
erated by the surface�stress action:

(13)

With taking into account Eqs. (10), it follows from
Eq. (13) that the surface stresses render no effect on
the transverse shear forces because TS · n = 0 and have
little or no effect on the stiffness and the transverse
shear of the shell. From Eq. (13), it can be seen also
that the residual surface stresses τ0 do not affect the
shell stiffness, although, naturally they affect its stress
state.
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For T and M, we accept the constitutive equations
in one of the simplest forms given, for example, in [15]

(14)

(15)

Here, WS is the surface strain energy density, C and D
are the fourth�order tensors determining the tangen�
tial and bending stiffness of the shell, γ is the trans�
verse�shear vector: γ = ∇S(w · n) – ϑ, while Γ is the
transverse�shear stiffness. For an isotropic shell [15]

where

e1 and e2 are the unit vectors lying in the plane tangent
to ω (e1 · e2 = e1 · n = e2 · n = 0). The components C11,
C22, D22, D33, and Γ are given by the formulas [15]

T A⋅ 1
2
�� M··B( )A– n×

∂WS

∂�
���������,=

T n⋅
∂WS

∂γ
���������, M

∂WS

∂κ
��������,= =

2WS �··C··� κ··D··κ Γγ γ.⋅+ +=

C C11a1a1 C22 a2a2 a4a4+( ),+=

D D22 a2a2 a4a4+( ) C33a3a3,+=

a1 A e1 e1⊗ e2 e2,⊗+≡=

a2 e1 e1⊗ e2 e2,⊗–=

a3 A– n× e1 e2 e2 e1,⊗–⊗= =

a4 e1 e2⊗= e2 e1,⊗+

C11
Eh

2 1 ν–( )
����������������, C22

Eh
2 1 ν+( )
����������������,= =

D22
Eh3

24 1 ν+( )
�������������������, D33

Eh3

24 1 ν–( )
������������������, Γ kμh,= = =

E 2μ 1 ν+( ), ν λ
2 λ μ+( )
�����������������,= =

C C11 C22+≡ Eh

1 ν2–
�����������,=

where C and D are the tangential and bending stiffness
parameters, E and ν are the Young’s modulus and
Poisson ratio of the shell material, respectively; and k
is the analogue of the transverse�shear factor [15]. The
effective tangential and bending stiffness parameters
are equal to

Ceff � C1 + C2 = C + 4μS + 2λS, 

Deff � D1 + D2 = D + h2μS + .

Constitutive equations (14) and (15) make it possi�
ble to write the equilibrium equations for the shell and
plate with taking into account surface stresses (9) in
terms of displacements w and rotations ϑ. In particular,
the equation for the deflection w = w · i3 in the case of
the plate (n = i3) can be reduced to the form

For the quantitative estimate of the results of the
surface�stress effect, we use the data for aluminum [1]:
μ = 34.7 GPa, ν = 0.3, λS = –3.48912 N/m, and μS =
6.2178 N/m. We consider the dependences of Deff, C1,
C2, D1, and D2 on the thickness h. The plot for the
bending stiffness Deff is shown in Fig. 2, and the plots

for the dimensionless values  = , = ,

 = , and  =  are shown in Fig. 3.

As it follows from Figs. 2 and 3, the surface�stress
effect is almost negligible for h > 50 nm. They render
the greatest effect for h < 20 nm. In addition, it can be
seen that the surface stresses differently affect the stiff�
ness parameters —some of them increase (C1, D1),
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Fig. 2. Dependence of bending stiffness on thickness.
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Fig. 3. Dependences of stiffness parameters on thickness.
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while others (C2, D2) decrease, the thicknesses being
zero for certain values. Condition (5) guarantees a
positive sign for Ceff and Deff for arbitrary values of h.

Thus, we obtained the two�dimensional equilib�
rium equations for plates and shells with taking into
account the transverse shear and the presence of sur�
face stresses. We presented the relations for the stress
resultants and couples tensors and found the expres�
sions for effective stiffness parameters of shells. In par�
ticular, it was shown that the plate stiffness substan�
tially changes with taking into account the surface
stresses, which agrees with the results of the theoretical
analysis and the experimental data known in the liter�
ature (see, for example, [1]). In particular, it is shown
that the shell bending stiffness substantially grows for
the nanometer thicknesses.
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