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for stress and moment tensors with the surface stresses acting on the shell surface taken into account.
The difference from the classical case, i.e., the theory without surface stresses, is that the shell effective
stiffness, in particular, the flexural stiffness D, also depends on the surface moduli of elasticity. This
results in a more complicated dependence of the shell stiffness on the thickness, which manifests itself
in the case of nanodimensional thicknesses of the shell.

We use an example of a plate to discuss the similarity and distinctions of the obtained equations of
state in the case of three-layer plates considered in [33–36].

1. BASIC EQUATIONS OF LINEAR ELASTICITY
WITH SURFACE STRESSES TAKEN INTO ACCOUNT

To pose the boundary-value problems of elasticity with surface stresses, we use the variational
method. We assume that the solid occupies a domain V ∈ R

3 bounded by a smooth surface Ω. Without
loss of generality, we assume that part of the boundary Ω1 ⊂ Ω is fixed, i.e., the field of the displacement
vector u on it is zero:

u
∣
∣
Ω1

= 0. (1.1)

We also assume that the external loads Ω2 = Ω \ Ω1 are given on the remaining part of the boundary ϕ.
The action of surface stresses τ on Ω2 is also taken into account.

Further, for simplicity, we consider only isotropic bodies. The potential energy of a deformed
elastic body is given by the formula W = W (ε) ≡ 1

2 λ tr2 ε + με ·· ε, where ε is the stress tensor,
ε = ε(u) ≡ 1

2 (∇u + ∇uT ), λ and μ are Lamé constants, ∇ is the spatial gradient operator, the dot
denotes the scalar product, ε ·· ε = tr(ε · ε), and tr is the trace operator of second-rank tensor.

In addition to W , we also specify the density of the surface energy U as a surface strain function
defined on Ω2. For an isotropic body, the surface energy U can be written as [17]:

U = U(ε) ≡ τ0 tr ε + 1
2 λS tr2 ε + μSε ·· ε. (1.2)

Here ε is the surface strain tensor, ε = ε(u) ≡ 1
2 [(∇SuS) ·A + A · (∇SuS)T ], uS = u

∣
∣
Ω2

is the
displacement vector on Ω2, ∇S is the surface gradient operator [23, 37], A = I − n⊗ n, I is the three-
dimensional unit tensor, n is the vector of outer normal on Ω2, λS and μS are the surface elastic moduli
(analogs of surface Lamé constants), and τ0 is the residual surface stress. The function U in (1.2) is in
fact the membrane shell strain energy and ε is the linear tensor in the tangent plane, which is used in the
linear theory of shells [38–41].

The total energy functional for a body with surface stresses has the form

J(u) = E(u) − A(u),

E(u) =
∫

V

W (ε) dV +
∫

Ω2

U(ε) dΩ, A(u) =
∫

V

f · u dV +
∫

Ω2

ϕ · u dΩ.

Here f and ϕ are vectors of external bulk and surface forces.
The stationarity condition

δJ(u) = 0 ∀δu : δu
∣
∣
Ω1

= 0

implies the equations of equilibrium and the static boundary conditions

∇ · σ + f = 0, (1.3)

(n · σ −∇S · τ )
∣
∣
Ω2

= ϕ. (1.4)

The stress and surface stress tensors in (1.3) and (1.4) are given by the formulas

σ =
∂W

∂ε
= λI tr ε + 2με, τ =

∂U

∂ε
= τ0A + λSA tr ε + 2μSε.

A relation of the form (1.4) was used, for example, in [1, 3] for τ0 = 0.
The converse statement also holds: any solution of the boundary-value problem (1.3), (1.1), and (1.4)

is a stationary point of the functional J(u) on kinematically admissible displacement fields u.



Fig. 1.

In what follows, we assume that the conditions of positive definiteness of the functions W (ε) and U(ε)
are satisfies:

W (ε) > 0 ∀ε �= 0, U(ε) > 0 ∀ε �= 0. (1.5)

If the second inequality in (1.5) is satisfied, then the following constraint are imposed on the surface
moduli:

μS > 0, μS + λS > 0, (1.6)

which differ from the similar inequalities of spatial elasticity of an isotropic solid: μ > 0 and 3λ + 2μ > 0.
Indeed, we have

2U(ε) = λS(ε11 + ε22)2 + 2μS(ε2
11 + ε2

22 + 2ε2
12) > 0.

Here we set ε11 = ε22 = 0 and readily obtain the inequality μS > 0. According to the Silvester
criterion, the conditions of positive definiteness for (λS + 2μS)ε2

11 + (λS + 2μS)ε2
22 + 2λSε11ε22 are the

following two inequalities: λS + 2μS > 0 and (λS + 2μS)2 − λ2
S > 0. The latter reduces to the form

(λS + 2μS)2 − λ2
S = 4μS(λS + μS) > 0 and implies λS + μS > 0, since μS > 0.

We note that assumptions (1.5) must be satisfied independently of each other. If, in particular, we
assume that U < 0 for some deformations or if inequalities (1.6) are violated, then we can show that J(u)
is unbounded below.

The sign of the residual surface stresses τ0 can be either positive (tensile stresses) or negative
(compressive stresses). In this case, the linear term with τ0 in the expression for the surface energy
does not affect the positive definiteness of U .

2. TRANSITION TO EQUATIONS OF THE SHELL THEORY
We consider a three-dimensional body one of whose characteristic dimensions is much less than the

other two, i.e., the so-called shell body (Fig. 1). We assume that the shell body volume V is bounded
by two face surfaces Ω± and the lateral surface Ων . We also introduce the median (base) surface ω
equidistant from Ω±. The lateral surface Ων is the ruled surface formed by the motion of the normal n
towards ω along its contour γ ≡ ∂ω. It is convenient to represent the radius vector of the shell body
points r in the form [23, 35, 37, 40, 41]:

r = ρ(q1, q2) + zn,

where ρ is the radius vector of the base surface points ω, n is a normal vector to ω, z is the coordinate
counted along the normal to ω, z ∈ [− 1

2 h, 1
2 h], h is the shell thickness, and q1, q2 are Gaussian



coordinates on ω. The radius vectors of Ω± are, respectively, equal to r± = ρ ± 1
2 nh. In what follows,

for simplicity, we assume that h is constant, although the final results also remain true for variable shell
thickness if g is a sufficiently smooth function of the coordinates q1 and q2.

We write several auxiliary formulas relevant for describing tensor fields near the surface ω

[23, 35, 37, 41]. The main and dual bases on ω are given by the formulas ρα = ∂ρ/∂qα, ρα · ρβ = δβ
α,

α, β = 1, 2, where δβ
α is the Kronecker symbol. The surface nabla operator on ω is

∇S = ρα ∂

∂qα
.

As the curvilinear coordinates near ω, we use the variables q1, q2, z. Then the vectors of the main and
dual spatial bases in V are expressed as

rα =
∂r
∂qα

= ρα + z
∂n
∂qα

= (A − zB) · ρα, r3 = r3 = n,

rα = (A− zB)−1 · ρα, rα · rβ = δβ
α, B = −∇Sn,

where B is the tensor of curvature of the surface ω. The spatial gradient operator ∇ and the surface
gradient operators ∇±

S are, respectively, given by

∇ = rα ∂

∂qα
+ n

∂

∂z
= (A − zB)−1 · ρα ∂

∂qα
+ n

∂

∂z
= (A− zB)−1 · ∇S + n

∂

∂z
,

∇±
S =

(

A ∓ h

2
B

)−1
· ρα ∂

∂qα
=

(

A∓ h

2
B

)−1
· ∇S.

We note that the inverse of the tensor A− zB is understood here and henceforth as the inverse of a
two-dimensional tensor, i.e.,

(A− zB)−1 · (A − zB) = (A− zB) · (A − zB)−1 = A.

We assume that the surface stresses act on the face surfaces Ω±, i.e., Ω2 = Ω+ ∪ Ω−. This leads to
the following boundary conditions on Ω±:

(n± · σ ∓∇±
S · τ±

S )
∣
∣
Ω±

= ϕ±. (2.1)

In (2.1), n± are normal vectors to Ω± (see Fig. 1), τ±
S and ϕ± are the respective surface stresses and

surface loads acting on Ω±:

τ± = τ±
0 A + λ±

S A tr ε± + 2μ±
S ε±, 2ε± = (∇±

S u±
S ) · A + A · (∇±

S u±
S )T .

Here μ±
S and λ±

S are the surface elastic moduli, and τ±
0 are the residual stresses on Ω±. We note that, in

general, the surface gradient operators ∇±
S on Ω± differ from each other.

To pass to two-dimensional equations of the shell theory, we integrate equilibrium equations (1.3)
over the thickness with boundary conditions (2.1) taken into account. This procedure is described in
detail, for example, in [35, 39, 41]. Integrating Eqs. (1.3) over z with (1.2) taken into account, we obtain

∇S · T + G+∇+
S · τ+ + G−∇−

S · τ− + q = 0, (2.2)

T = 〈(A − zB)−1 · σ〉, q = G+ϕ+ − G−ϕ− + 〈f〉, 〈(. . .)〉 =

h/2∫

−h/2

(. . .)Gdz,

G = G(z) ≡ det(A − zB), G± = G(± 1
2 h).

(2.3)

The quantity T is the stress tensor and q is the surface density of external forces acting on the shell.
We perform the vector multiplication of equations of equilibrium (1.3) from the left by zn and

integrate over the thickness with the boundary conditions (2.1) taken into account to obtain the second
equilibrium equation

∇S ·M + T× + m +
h

2
G+n×∇+

S · τ+ − h

2
G−n×∇−

S · τ− = 0, (2.4)



M = −〈(A − zB)−1 · zσ × n〉, m =
h

2
G+n× ϕ+ +

h

2
G−n × ϕ− + 〈zn × f〉. (2.5)

The tensor M is the moment tensor and m is the surface moment distributed over ω; the subscript ×
denotes a vector invariant of a second-rank tensor, which was introduced by J. W. Gibbs [42] (also
see [41, 43, 44]). For the dyad formed by vectors a and b, the vector invariant is calculated by the formula
(a ⊗ b)× = a × b, which extends to second-rank tensors by linearity.

The presence of terms related to τ± distinguishes equilibrium equations (2.2) and (2.4) from the
equilibrium equations of the linear theory of shells [23, 33, 35, 40]. Let us simplify them. We have the
relation that follows from the Hamilton–Cayley theorem for two-dimensional tensors:

G(A − zB)−1 = A + z(B − A tr B).

This relation implies the identity

G±∇±
S = ∇S ± h

2
(B − A trB) · ∇S,

which permits writing the terms depending on τ± as

G+∇+
S · τ+ + G−∇−

S · τ− = ∇S · (τ+ + τ−) + O(h‖B‖),
G+n×∇+

S · τ+ − G−n×∇−
S · τ− = n×∇S · (τ+ − τ−) + O(h‖B‖)

= −∇S · [(τ+ − τ−) × n] + [(τ+ − τ−) ·B]× + O(h‖B‖).
Here the terms of the order of O(h‖B‖) compared to the other terms are usually neglected in the linear
theory of shells. Further, we assume that h‖B‖ � 1. From the physical viewpoint, this means that the
shell is thin and its surface ω is described by sufficiently smooth functions. Thus, in Eqs. (2.2) and (2.4)
and further, we use the relations G± = 1 and ∇±

S = ∇S .
This assumption permits, instead of (2.3) and (2.5), using simpler formulas for stresses and moments,

which were also used in [38–40]: T= 〈A ·σ〉 and M=−〈A · zσ ×n〉. Thus, Eqs. (2.2) and (2.4) become

∇S · T + ∇S · (τ+ + τ−) + q = 0, (2.6)

∇S · M− h

2
∇S · [(τ+ − τ−) × n] + T× + [(τ+ − τ−) · B]× + m = 0. (2.7)

Since m · n = 0, Eq. (2.7) implies the “sixth equation of equilibrium” in algebraic form:

M ·· B + T× · n = 0.

Equations (2.6) and (2.7) permit introducing effective stress and moment tensors T∗ and M∗:

T∗ = T + TS , M∗ = M + MS ,

TS = τ+ + τ−, MS = − h

2
(τ+ − τ−) × n.

(2.8)

To describe the shell strains, we assume the displacement field to be linear in thickness; this approxi-
mation is used in the theory of plates and shells with the transverse shear taken into account [35, 45, 49]:

u(q1, q2, z) = w(q1, q2) − zϑ(q1, q2), n · ϑ = 0. (2.9)

Here we assume that the rotation vector ϑ is kinematically independent of the vector of the shell median
surface displacements w. Formula (2.9) implies

u±
S = w ∓ h

2
ϑ, ε± = ε ∓ h

2
κ, (2.10)

ε =
1
2

[∇Sw ·A + A · (∇Sw)T ], κ =
1
2

[∇Sϑ · A + A · (∇Sϑ)T ],

where ε and κ are two-dimensional tensors of tensile-shear and bending-torsion strains. We use (2.10)
to obtain the expressions for the surface stresses τ±:

τ± = τ±
0 A + λS

±A tr ε + 2μS
±ε ∓ h

2
(λS

±A tr κ + 2μS
±κ).



Thus, we have the formulas

τ+ + τ− = (τ+
0 + τ−

0 )A + (λS
+ + λS

−)A tr ε + 2(μS
+ + μS

−)ε − h

2
[(λS

+ − λS
−)A tr κ + 2(μS

+ − μS
−)κ],

τ+ − τ− = (τ+
0 + τ−

0 )A + (λS
+ + λS

−)A tr ε + 2(μS
+ − μS

−)ε − h

2
[(λS

+ + λS
−)A tr κ + 2(μS

+ − μS
−)κ].

In the case of shells with equal surface properties, i.e., in the case where τ+
0 = τ−

0 = τ0, μS
+ = μS

− = μS,
and λS

+ = λS
− = λS , these formulas simplify:

τ+ + τ− = 2τ0A + 2λSA tr ε + 4μSε,

τ+ − τ− = −h(λSA tr κ + 2μSκ).

This implies that the stress and moment tensors generated by the action of surface stresses are equal to

TS = 2τ0A + CS
1 ε + CS

2 A tr ε, MS = −(DS
1 κ + DS

2 A tr κ) × n,

CS
1 = 4μS , CS

2 = 2λS , DS
1 = h2μS , DS

2 = Dν +
h2λS

2

(2.11)

With (2.8) taken into account, it follows from (2.11) that the surface stresses do not affect the cutting
forces, because TS · n = 0, and do not affect the transverse shear stiffness of the shell. It also follows
from (2.11) that the residual surface stresses τ0 do not affect the shell stiffness, although they naturally
affect its stressed state.

For T and M we take the equations of state in the simplest form, which are presented, for example,
in [35]:

T · A− 1
2

(M ·· B)A × n =
∂WS

∂ε
, T · n =

∂WS

∂γ
, M =

∂WS

∂κ
,

2WS = ε ·· C ·· ε + κ ·· D ·· κ + Γγ · γ.

Here WS is the potential strain energy of the shell, C and D are fourth-rank tensors determining the
shell tangential and flexural stiffnesses, γ is the transverse shear vector: γ = ∇S(w · n) − ϑ, and Γ is
the transverse shear stiffness. For isotropic shells, C and D are expressed as [35]:

C = C11a1a1 + C22(a2a2 + a2a4), D = D22(a2a2 + a4a4) + D33a3a3,

a1 = A ≡ e1 ⊗ e1 + e2 ⊗ e2, a2 = e1 ⊗ e1 − e2 ⊗ e2,

a3 = −A× n = e1 ⊗ e2 − e2 ⊗ e1, a4 = e1 ⊗ e2 + e2 ⊗ e1,

where e1, e2 are unit vectors lying in the tangent plane to ω (e1 · e2 =e1 ·n=e2 ·n=0). The components
C11, C22, D22, D33, and Γ are given by the formulas

C11 =
Eh

2(1 − ν)
, C22 =

Eh

2(1 + ν)
, D22 =

Eh3

24(1 + ν)
, D33 =

Eh3

24(1 − ν)
, Γ = kμh,

E = 2μ(1 + ν), ν =
λ

2(λ + μ)
, C ≡ C11 + C22 =

Eh

1 − ν2
, D ≡ D11 + D22 =

Eh3

12(1 − ν2)
,

where C and D are the shell tangential and flexural stiffnesses, E and ν are Young’s modulus and
Poisson’s ratio of the shell material, and k is the transverse shear coefficient [35, 45].

3. THEORY OF PLATES
The equations of state have the simplest form in the case of plate. Here B=0 and n= i3. The effective

stresses and moments are expressed as [32]:

T∗ = C1ε + C2A tr ε + Γγ ⊗ i3, M∗ = −(D1κ + D2A tr κ) × i3,

C1 = C(1 − ν) + 4μS , C2 = Cν + 2λS , D1 = D(1 − ν) + h2μS , D2 = Dν +
h2λS

2
.

(3.1)

The plate effective tangential and flexural stiffnesses are equal to

Ceff ≡ C1 + C2 = C + 4μS + 2λS , Deff ≡ D1 + D2 = D + h2μS +
h2λS

2
.



Fig. 2.

Fig. 3.

The equations of state (3.1) permit writing the plate equilibrium equations with the surface
stresses (2.6) and (2.7) taken into account in terms of displacements w and rotations ϑ. In particular,
the equation for the deflection w = w · i3 can be reduced to the form [36]:

DeffΔΔw = ∇S ·m − Deff

Γ
Δqn + qn, qn = q · i3, Δ = ∇S · ∇S.

We note that the equations of state for effective stresses and moments (3.1) qualitatively differ from
the equations of state for isotropic homogeneous plates. The dependence of T and M on strains is
determined by the four elastic constants: C, D, ν, Γ. The tensors T∗ and M∗ are determined by five
independent elastic constants: C1, C2, D1, D2, Γ.

To obtain quantitative estimates of the results of the surface stresses influence, we use the data for
aluminum obtained by simulation methods in [29] and also used in [1, 3, 4]. For the bulk phase, we
set μ = 34.7 GPa and ν = 0.3. For λS and μS we take the following values: λS = −3.48912 N/m
and μS = 6.2178 N/m.

Let us have a look at how Deff , C1, C2, D1, and D2 depend on the thickness h. The dependence
of the flexural stiffness Deff on the thickness is displayed in Fig. 2. The graphs of dimensionless
quantities C̄1 = C1/[C(1 − ν)], C̄2 = C2/(Cν), D̄1 = D1/[D(1 − ν)], D̄2 = D2/(Dν) are shown in
Fig. 3, curves 1 to 4.

One can see from Figs. 2 and 3 that for h > 50 nm, the influence of surface stresses is practically
unnoticeable. Their influence is most significant for h < 20 nm. In addition, one can see that the
surface stresses affect the stiffness differently — some of them increase (C1 and D1), while others (C2



Fig. 4.

and D2) decrease, and even take zero values for some values of thickness. Nevertheless, we note that
condition (1.6) guarantees that Ceff and Deff remain positive for any values of h.

4. COMPARISON WITH THE THEORY OF THREE-LAYER PLATES

The above concept of surface stresses is based on the assumption that the surface layer properties
differ from the properties of the material in the bulk. In other words, the equations of state for
the near-surface stresses must differ from the equations of state in the bulk. Methods for studying
inhomogeneities with respect to thickness, for example, in the case of three-layer plates and shells, were
developed in the theory of plates and shells (e.g., see [35, 46–49]). It is easy to see that there is a certain
similarity between the theory with surface stresses and the theory of three-layer plates and shells. First,
we consider the simplest problem on tension by a force P of a strip with surface tensions (Fig. 4 a)
and a three-layer strip of symmetric structure (Fig. 4 b). If we denote the stress in the bulk by σ, the
surface stress by τ , and the stress in the surface layer by τf , then we obtain the relations P = σh + 2τ
and P = σ(h − 2hf) + 2τfhf , where h and hf are the total thickness and the surface layer thickness,
respectively. It follows that

τ = (τf − σ)hf .

The relation permits interpreting the surface stress τ as an excessive (compared to that in the bulk) force
acting in a surface layer of thickness ff . The case with surface stresses is obtained as the limit case
as hf → 0:

τ = lim
hf→0

τfhf

In addition, this simple example permits estimating the advantages of the surface stress concept
compared with the three-layer model, which originate from experimental studies of nanodimensional
plates. To determine τ , it suffices to perform fewer experiments. The point is that the surface layer
thickness hf is generally unknown, and the stress distribution in the layer is hardly homogeneous.
Actually, the concept of surface stresses implies the use of the direct approach to the surface stress
modeling, i.e., the construction of two-dimensional equations of state for the force tensor τ instead of
three-dimensional equations for the surface layer with their subsequent averaging over the thickness.

To analyze the similarity and distinctions between the plate model with surface stresses and the
three-layer plate in more detail, we use the method for determining effective stiffnesses of three-layer
plates [33–36]. We consider an isotropic plate with a symmetric cross-section with respect to the
thickness (Fig. 4 b). Let hc be the thickness of the internal layer (kernel), and let hf be the thickness
of the surface layers, and hc � hf . The total thickness is equal to h = hc + 2hf . The kernel and surface
layer material properties are given by Young’s moduli Ec and Ef and Poisson’s ratios νc and νf (or the
shear moduli μc and μf).

The equations of state for the three-layer plate have the form [34–36]:

T = C1ε + C2A tr ε + Γγ ⊗ i3, M = −(D1κ + D2A tr κ) × i3, (4.1)

where the effective stiffnesses are equal to

C1 = 2C22, C2 = C11 − C22, D1 = 2D22, D2 = D33 − D22, Γ = 
2D22,

C11 =
1
2

(
2Efhf

1 − νf
+

Echc

1 − νc

)

, C22 =
1
2

(
2Efhf

1 − νf
+

Echc

1 + νc

)

,



D22 =
1
24

[
Ef(h3 − h3

c)
1 + νf

+
Ech

3
c

1 + νc

]

, D33 =
1
24

[
Ef(h3 − h3

c)
1 − νf

+
Ech

3
c

1 − νc

]

.

and 
 is the least positive root of the equation

μ0 cos 

hf

2
cos 


hc

2
− sin 


hf

2
sin 


hc

2
= 0, μ0 =

μc

μf
.

The flexural stiffness of the three-layer plate is equal to

Deff = D33 + D44 =
1
12

[
Ef(h3 − h3

c)
1 − ν2

f

+
Ech

3
c

1 − ν2
c

]

.

Comparing the equations of state with the surface stresses taken into account (3.1) and rela-
tions (4.1), we can interpret the surface moduli λS and μS in terms of the elastic characteristics of the
surface layer Ef and νf and its thickness hf . Assuming that Ec = E and νc = ν and comparing the
tangential stiffnesses as hf → 0, we obtain up to O(h2

f ):

μS ≈ Efhf

2(1 + νf)
≡ μfhf , λS ≈ νfEfhf

1 − ν2
f

≡ λfhf
1 − 2νf

1 − νf
, (4.2)

where λf is the elastic Lamé constant of the surface layer. The same formulas are obtained by comparing
the flexural stiffnesses as hf → 0. Thus, we obtain the limit relations

μS = lim
hf→0

μfhf , λS = lim
hf→0

λf
1 − 2νf

1 − νf
hf .

These relations permit interpreting the surface elastic moduli μS and λS in terms of the Lamé constants
of the surface layer and its thickness. At the same time, we note that the formulas for the stiffness
of three-layer plates (4.1) were obtained under the assumption that the layer material properties are
homogeneous. In the case of nano shells and plates, this condition is generally difficult to verify, and it
is hardly satisfied. It is also possible to perform the comparison with the theory of functionally gradient
plates and shells, which is presented, for example, in [36, 49, 50]. Prescribing a certain law of the material
properties distribution in the surface layer, we can obtain formulas relating the surface moduli to the
surface layer properties.

Formulas (4.2) are asymptotically exact as hf → 0. As was already noted, for finite values of hf , they
hold up to terms of the order of O(h2

f ). If we take these terms and the terms of greater order of magnitude
into account, then it is easy to verify that the comparison of tangential and flexural stiffnesses given by
formulas (3.1) and (4.1) leads to different expressions for μS and λS depending on whether the tangential
or flexural stiffness are compared. Naturally, this difference is quantitatively small, but theoretically, it
permits concluding that the theory of plates with surface stresses taken into account is equivalent to the
theory of three-layer plates only asymptotically and cannot be reduced to it.

CONCLUSION
We obtained two-dimensional equations of equilibrium for plates and shells with the transverse shear

and surface stresses taken into account. We presented relations for stress and moment tensors and
found expressions for the shell effective stiffnesses. In particular, it was shown that, with the surface
stresses taken into account, the plate stiffnesses vary significantly, which agrees with the results of
theoretical analysis and with experimental data given in the literature (e.g., see review [1]). In particular,
it was shown that the shell flexural stiffness significantly increases for thicknesses in the nanorange.
The above comparison with the case of three-layer plates showed that taking the surface stresses into
account is equivalent to the existence of surface layers of a certain thickness, and in this case, the surface
elastic moduli are expressed in terms of the Lamé constants of the surface layer material multiplied by its
thickness. At the same time, this comparison shows the distinctions from the case of three-layer shells.
These two theories coincide up to O(h2

f ). Moreover, the surface stresses do not affect the transverse
shear stiffness.

The introduction of surface stresses corresponds to the direct approach, i.e., to the formulation of
two-dimensional equations of state for the body surface. In the case of mechanics of nanodimensional



plates and shells with the surface stresses, it seems logical to use the direct approach for constructing
the theory of plates and shells on the whole, i.e., to introduce the constitutive relations for the shell
as for a two-dimensional continuum without separating the terms corresponding to bulk and surface
properties. Moreover, in the direct approach, there is no need for approximations of the type (2.9),
integration of the equations of equilibrium or motion of a three-dimensions shell body over the
thickness, and asymptotic methods and other procedures used in the theory of plates and shells (e.g.,
see [23, 35, 39, 40, 47, 49, 51–55]). A certain drawback of the direct approach is that it is necessary to
determine the material constants contained in the equations of state theoretically and/or experimentally,
which can be a complicated problem. Here this drawback is removed to a certain extent by the fact that
it is necessary to find the surface constants λS and μS along with λ and μ independently.
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