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Juvenile hormone (JH) is a sesquiterpenoid of vital importance
for insect development, yet the molecular basis of JH signaling
remains obscure, mainly because a bona fide JH receptor has not
been identified. Mounting evidence points to the basic helix–loop–
helix (bHLH)/Per-Arnt-Sim (PAS) domain protein Methoprene-tol-
erant (Met) as the best JH receptor candidate. However, details of
how Met transduces the hormonal signal are missing. Here, we
demonstrate that Met specifically binds JH III and its biologically
active mimics, methoprene and pyriproxyfen, through its C-termi-
nal PAS domain. Substitution of individual amino acids, predicted
to form a ligand-binding pocket, with residues possessing bulkier
side chains reduces JH III binding likely because of steric hindrance.
Although a mutation that abolishes JH III binding does not affect
a Met–Met complex that forms in the absence of methoprene, it
prevents both the ligand-dependent dissociation of the Met–Met
dimer and the ligand-dependent interaction of Met with its part-
ner bHLH-PAS protein Taiman. These results show that Met can
sense the JH signal through direct, specific binding, thus establish-
ing a unique class of intracellular hormone receptors.

structure modeling | insecticide action | metamorphosis | Tribolium |
Drosophila

Juvenile hormone (JH) prevents adult transition (metamorpho-
sis) of insect larvae until they have attained an appropriate

stage (1, 2), and it typically stimulates oogenesis in adult females
(3). How JH achieves its function remains unclear, mainly be-
cause a JH receptor has long eluded identification (4). The lipo-
philic nature of the sesquiterpene JH suggests an intracellular
receptor, yet none of the known insect nuclear hormone receptors
have been linked with the biological function of JH. A screen for
Drosophilamutants resistant to methoprene (5), a JHmimic and a
widely used insecticide (6), uncovered the Methoprene-tolerant
(Met) protein containing a basic helix–loop–helix (bHLH) motif
followed by two Per-Arnt-Sim (PAS) domains (7). Recombinant
Drosophila Met was shown to bind JH at physiological (nano-
molar) concentrations and to mediate a weak JH- and metho-
prene-dependent transcriptional activation in vitro (8). However,
Met-null mutant flies were viable and fertile (5), leaving the notion
that Met is a putative JH receptor unsupported with an antici-
pated developmental phenotype. Latest reports show that, in
Drosophila, Met might functionally overlap with its paralog,
encoded by the germ cell-expressed (gce) gene. Gce can increase
sensitivity of Met-null mutants to methoprene (9), and only si-
multaneous loss of both Met and Gce is lethal (10). However, the
actual mode of interaction between JH/methoprene and Met or
Gce still remains unclear.
Knockdown of the single Met gene in the flour beetle Tribo-

lium castaneum induced beetle larvae to pupate before reaching
their final instar (11), producing a precocious metamorphosis
phenotype similar to that caused by loss of JH itself (12).

Conversely, removal of Met precluded inhibition of adult de-
velopment by exogenous JH (11, 13). The studies in Tribolium
have thus provided the missing evidence that Met is an essential,
JH-dependent repressor of insect metamorphosis. Recently,
premature degeneration of the fat body was observed in Dro-
sophila larvae that either were deprived of JH or lacked both Met
andGce, and addition of a JHmimic (pyriproxyfen) could remedy
only deficiency of JH but not the loss of Met and Gce (10).
Nevertheless, Met and Gce may not always act redundantly be-
cause precocious metamorphic development occurring within the
nervous system of either JH-deficient or Met-null (gce+) Dro-
sophila prepupae was only suppressed to a minor degree in Met
mutants treated with pyriproxyfen (14). Met exerts its anti-
metamorphic effect at least in part via JH-inducible activation
of the Krüppel homolog 1 (Kr-h1) gene (13).
bHLH-PAS proteins typically form heterodimeric transcrip-

tion factors. The vertebrate aryl hydrocarbon receptor (AhR)
requires activation by a ligand bound to its C-terminal PAS
domain (PAS-B) to combine with the AhR nuclear translocator
(Arnt) and to activate transcription (15). Similarly, Met has been
recently shown to form a JH-dependent transcriptionally active
complex with another member of the bHLH-PAS family, termed
FISC (16) or SRC (17), the latter name reflecting its homology
with the mammalian steroid receptor coactivator 1 (SRC-1)/
NCoA-1/p160 (18). Following the FlyBase nomenclature, we will
refer to this protein as Taiman.
Despite the recent progress, Met has not yet been generally

recognized as a bona fide JH receptor. The high-affinity binding
of JH by Met (8) has neither been verified nor extended to other
species, and a ligand-binding domain of Met has not been char-
acterized. Consequently, it could not be ascertained whether the
JH-dependent interaction between Met and Taiman requires the
hormone to be bound to a specific ligand-binding site. Here, we
show that TriboliumMet binds JH and its mimics with high affinity
through a well-conserved hydrophobic pocket within its PAS-B
domain. We identify specific amino acid residues responsible for
JH binding and demonstrate that the ligand-binding capacity is
necessary for interaction of Met with its partner Taiman.
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Results and Discussion
Binding of JH III to Met Homologs. The in vitro-translated product
of the Drosophila Met gene was shown to bind JH III with a Kd of
5.3 nM (8). Our first goal was to reproduce this result and see
whether it applied to homologous proteins in Drosophila mela-
nogaster and other species. Met from the beetle Tribolium was
our primary interest because we have defined Met as an essential
transducer of the JH signal during metamorphosis in this model
(11). In all hormone-binding assays, we have been using proteins
with an N-terminal Myc epitope tag, which were translated from
DNA optimized for mammalian codon use in rabbit reticulocyte
lysates. This system allowed us to (i) ensure standard expression
of different proteins, (ii) track the amount and stability of each
protein in every assay, and (iii) eliminate endogenous JH binders
occurring in insect systems.
In agreement with the previous report (8), we detected low

but reproducible binding of [3H]JH III to the Drosophila Met
(DmMet) protein (Fig. 1A). Unexpectedly, the activity of DmMet
appeared much weaker compared with its paralog DmGce (Fig.
1A), which had not been previously tested. The capacity of both
Drosophila Met and Gce to bind JH III agrees with the ability of
Gce to restore methoprene sensitivity in Met-null flies (9) and
supports the view thatMet and Gce functionally overlap (10). The
full-length Met protein from the beetle Tribolium showed robust
binding of JH III (Fig. 1A). Saturation experiments determined
the Kd value of 2.94 ± 0.68 nM (Fig. 1B). Therefore, Tribolium
Met binds JH III with an affinity comparable to that reported for
Drosophila Met (8).
To test whether Met might have the JH-binding capacity in

evolutionarily distant insects, we chose the firebrat, Thermobia
domestica (Zygentoma), which represents a basal wingless insect
lineage and is known to possess endogenous JH III (19). We have
cloned an ortholog of Met from the firebrat (20). The in vitro-
translated PAS-B domain of ThermobiaMet proved to be a potent
JH III binder (Fig. 1A), suggesting that the capacity ofMet to sense
the JH signal resides in the conserved C-terminal PAS domain and
that it predates the evolution of insect metamorphosis.

PAS-B Domain of Tribolium Met Specifically Binds JH III and Its
Mimics. To determine which part of the Tribolium Met protein
is responsible for binding JH III, we systematically deleted the
conserved domains (Fig. 2A and Fig. S1). Testing the truncated
proteins in the ligand-binding assay revealed that the N-terminal
half of Met, including the bHLH and PAS-A domains (amino
acids 1–240), was not required and had no JH-binding activity
alone (Fig. 2B). Only constructs containing the PAS-B domain
were capable of binding the hormone. The C-terminal region,
which shows poor sequence conservation (residues 387–516), was
dispensable for hormone binding, but its removal lowered the
protein yield (Fig. S1), likely causing lower JH binding in con-
structs Met(1–386) and Met(240–386) (Fig. 2B). Because the
C-terminal region improved protein expression, we performed
further analyses either on full-length Met(1–516) or on Met
(240–516), which includes the PAS-B domain and the native
protein end. Taiman, the bHLH-PAS dimerization partner of
Met (16, 17), did not bind JH III (Fig. 2B). To verify the ligand-
binding capacity of Met PAS-B in another type of assay, we
subjected Met to equilibrium dialysis in the presence of radio-
labeled JH III. The hormone specifically accumulated in the
dialysis compartment containing Met(1–516) and Met(240–516)
but not Met(1–240), which lacks the PAS-B domain (Fig. S2).
Saturation assays determined that Met(240–516) bound JH III

with an average Kd of 12.3 ± 0.62 nM (Fig. 3A), an affinity
slightly lower than that of the entire protein (Fig. 1B). Metho-
prene and pyriproxyfen, known to be effective juvenoids in Tri-
bolium (11, 13, 21), competed against JH III in binding to
Met(240–516), whereas the inactive JH precursor farnesol did not
(Fig. 3B). Ki values of 388 ± 52 nM for methoprene and 4.75 ±
0.86 nM for pyriproxyfen suggested an affinity ranking of pyr-
iproxyfen > JH III > methoprene for Met(240–516). The above
data show that the PAS-B domain of Met is necessary and suf-
ficient for specific, high-affinity ligand binding and discriminates
between biologically active and inert compounds.

Pyriproxyfen Is a Potent Met Agonist. Unlike methoprene, pyr-
iproxyfen has a chemical structure unrelated to natural JH (6).
Because pyriproxyfen is both a potent ligand of Met (Fig. 3B)
and more effective than methoprene as insecticide against Tri-
bolium (21), we tested whether pyriproxyfen exerted a specific
biological effect in vivo through Met. Indeed, pyriproxyfen in-
duced expression of a well-characterized Met target gene, Kr-h1,
in Tribolium pupae. This induction required Met because it was
abolished in animals lacking the Met protein (Fig. 3C). Consis-
tent with its higher affinity to Met(240–516), pyriproxyfen

Fig. 1. Tribolium Met and its orthologs bind JH III. (A) Myc-tagged full-
length proteins from D. melanogaster (Dm) and T. castaneum (Tc) and the
PAS-B region from T. domestica (Td) were translated in vitro (Inset, immu-
noblot) and incubated with 0.5 pmol of [3H]JH III. Total binding is compared
against reticulocyte lysate without DNA (mock). The value obtained for
DmMet is significantly higher thanmock (Mann–Whitney test, P< 0.05; n = 4).
(B) Full-length Tribolium Met was incubated with increasing concentrations
of [3H]JH III in the absence (○, total binding) or presence (●, nonspecific
binding) of a 100-fold molar excess of unlabeled JH III. Each data point is
mean± SD of two to four assays, and the saturation curve shown is average of
four independent experiments. The calculated Kd is 2.94 ± 0.68 nM.

Fig. 2. The PAS-B domain of Met is necessary and sufficient for JH III
binding. (A) Deletion constructs representing the individual domains of
Tribolium Met and Taiman proteins tagged with the Myc epitope (black
boxes) were translated in vitro (for immunoblot, see Fig. S1). Numbers in-
dicate amino acid positions; 1–516 is the entire Met protein. (B) JH III-binding
activities are plotted next to the respective proteins as total radioactivity
bound. Values are mean ± SD of several independent repeats (n numbers are
in brackets).
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appeared to be more potent than methoprene in inducing Kr-h1
transcription (Fig. 3D). Therefore, like JH III or its structural
analog methoprene, pyriproxyfen activates JH-dependent gene
expression through the same receptor protein. These data

establish pyriproxyfen as a Met agonist and Met as a target of
chemically diverse insecticides that mimic the effect of JH.

Structural Models Predict a JH-Binding Pocket Within the PAS-B
Domain of Met. To understand how the structure of Met might
accommodate the hormonal ligand, we modeled the Tribolium
Met PAS-B domain based on the crystal structure of hypoxia-
inducible factor 2α (HIF2α) PAS-B (22) as a homologous tem-
plate (Fig. S3). The obtained model contained an elongated in-
ternal cavity of 625 Å3 that extended from helix Cα to Fα and
presented an opening between the Fα-helix and the β-sheet (Fig.
4A). Secondary structure elements of the PAS-B domain con-
tributed to this pocket with mainly hydrophobic residues (Fig.
4B). Both the size and the hydrophobic nature of the cavity fit
the expected role of binding small hydrophobic ligands.
Computational docking of JH III to the Met PAS-B model led

to several solutions, which all filled the bottom part of the pocket
near the Cα-helix (Fig. S4A). The best docking result corre-
sponded to a theoretical affinity of −7.4 kcal/mol and showed JH
III forming a single hydrogen bond with the Tyr-252 side-chain
hydroxyl group (N-terminal β-strand Aβ) through its epoxide
moiety (Fig. 4C). Docking of the chemically disparate but bi-
ologically active pyriproxyfen molecule into the Met PAS-B
domain produced a single best solution with a theoretical affinity
of −9.2 kcal/mol. Pyriproxyfen in its position overlapped with JH
III and contacted the side chains of Tyr-252 and Lys-311 through
hydrogen bonds involving two of its ether groups (Fig. S4B). The
good fit of pyriproxyfen to the PAS-B model corresponded with
its ability to effectively compete with JH III for binding Met
(240–516) (Fig. 3B).

Mutations Within the Ligand-Binding Pocket Disrupt JH III Binding. To
test the model of JH binding to Met, we changed several of the
residues whose side chains point toward the ligand (Fig. 4C).
These mutations (Fig. S5) were to amino acids with larger side
chains but similar physicochemical properties to block ligand
binding by steric hindrance. All versions of Met(240–516) har-
boring the individual mutations were expressed to the same ex-
tent and remained stable throughout the JH III-binding assay
(Fig. S6). Mutations T254Y, V280F, V297F, T330Y, and C347M
resulted in total or nearly total loss of detectable JH III binding;
I262F and L318F reduced it to 15% and 30%, respectively, of
WT PAS-B activity (Table 1). In contrast, substituting phenyl-
alanine for the conserved valine residues at positions 346 and
348, whose side chains point away from the ligand-binding
pocket, only reduced JH III binding to 85% and 91% of the WT,
respectively (Table 1). To verify whether mutations disrupting
JH III binding of Met PAS-B had the same effect in the context
of the entire Met protein, we introduced mutations of two

Fig. 3. Met selectively binds JH III and its mimics and mediates the effect of
pyriproxyfen in vivo. (A) In vitro-translated Met PAS-B was incubated with
[3H]JH III in the absence (○, total binding) or presence (●, nonspecific
binding) of a 100-fold molar excess of cold JH III. The saturation curve shown
is average of six independent experiments. The calculated Kd is 12.3 ± 0.62
nM. (B) Met PAS-B was incubated with 2 pmol of [3H]JH III in the presence of
increasing concentrations of the indicated compounds. The competition
curves shown are average of three independent experiments. The calculated
dissociation constants (Ki) are 388 ± 52 nM for methoprene and 4.75 ± 0.86
nM for pyriproxyfen; farnesol did not significantly compete for binding. (C)
At 3 d after injection with egfp (control) or Met dsRNA, Tribolium pupae
were treated with pyriproxyfen and tested for Kr-h1 mRNA expression 12 h
later. Inset shows RNAi knockdown of the Met protein in these pupae. Data
are mean ± SD from six animals. (D) Kr-h1 mRNA levels were assessed in Tri-
bolium pupae at 8 h after treatment with 0.1 mM solutions of the indicated
compounds. Data are mean ± SD from n = 4 pupae; the difference between
pyriproxyfen and methoprene is significant at P = 0.03 (Student’s t test).

Fig. 4. Model of the ligand-binding cavity of the TriboliumMet PAS-B domain. (A) Overall structure of Met PAS-B (blue, N terminus; red, C terminus) with the
cavity. Position of a hypothetical heterodimeric partner, here represented by Arnt as in the HIF2α–Arnt crystal structure PDB ID 3F1P (22), is shown in gray. (B)
A closer view of the pocket relative to the amino acid residues mutated in this study. (C) Docking model of a Met–JH III complex. A hydrogen bond (dotted
line) is predicted between the hydroxyl group of Tyr-252 and the epoxide moiety of JH III. Orientation is the same in all models.
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selected amino acids residing in opposite corners of the ligand-
binding cavity, V280F and V297F (Fig. 4B), into Met(1–516).
Both mutations (but not V346F) abolished JH III binding (Table
1) by the full-lengthMet protein. Themutant andWTMet(1–516)
proteins showed equal expression levels and stability (Fig. S6).
Interestingly, some of the amino acids critical for JH binding

in Met occur in positions corresponding to residues within the
ligand-binding pocket of AhR PAS-B, which are important for
binding of the dioxin (TCDD) ligand (23, 24). Mutations of
T283, homologous to T254 in Met (Fig. S7), abolish TCDD
binding. AhR mutations P291F and C327A, which affect residues
at positions occupied by I262 and V297, respectively, in Tribo-

lium Met (Fig. 4C), strongly reduce TCDD binding. Finally,
substitution of A375 in the center of the AhR ligand-binding
pocket with bulkier residues prevents TCDD binding because of
steric hindrance (23). A375 corresponds to C347, which is in-
variant in Met proteins (Figs. S5 and S7).
Although docking solutions for both JH III and pyriproxyfen

involved a hydrogen bond with Tyr-252, contribution of this H
bond was not critical because mutation Y252F did not reduce JH
binding (Table 1). However, tryptophan occurs in place of Tyr-
252 in the true bugs, Pyrrhocoris apterus (20) and Rhodnius pro-
lixus (Hemiptera) (Fig. S5), and the Y252W substitution lowered
JH III binding to 21.5% (Table 1). Interestingly, a closely related
bug species, Plautia stali, possesses a skipped bisepoxide type of
JH (25), suggesting that the tryptophan residue might reflect the
structural difference of the bug JH.

Ligand-Dependent Protein–Protein Interactions. Met proteins from
Drosophila and the Aedes mosquito form homodimers (and
a heterodimer with Gce in Drosophila) in the absence of JH III
or methoprene; addition of either compound leads to dissocia-
tion of the complexes (16, 26). Using immunoprecipitation in
transfected human cells, we found that Tribolium Met also
formed a dimer that dissociated upon methoprene addition (Fig.
5A). However, this methoprene-induced dissociation was par-
tially prevented if one of the Met monomers carried the V297F
mutation that abolished JH binding, and, when both monomers
were mutated, the complex became resistant to methoprene (Fig.
5A). Immunoprecipitation of Met(240–516) proteins showed
that the PAS-B domain alone was sufficient for dimer formation
and that the JH-dependent inhibition of Met dimerization re-
sided within the PAS-B domain itself (Fig. 5B). Although Met

Table 1. Effect of mutations within the PAS-B domain of
Tribolium Met on JH III binding

Mutation
WT Met(240–516)

binding, % n
WT Met(1–516)
binding, % n

WT 100 ± 11.8 9 100 ± 3.4 3
Y252F 110.9 ± 15.2 6
Y252W 21.5 ± 3.1 7
T254Y 0.4 ± 0.7 3
I262F 14.9 ± 2.3 7
V280F 1.0 ± 0.9 3 0.9 ± 0.3 3
V297F 0.7 ± 0.8 9 1.4 ± 1.3 4
L318F 29.7 ± 8.6 7
T330Y 2.0 ± 1.5 3
V346F 85.3 ± 7.2 5 90.0 ± 5.8 3
C347M 2.1 ± 2.6 4
V348F 91.2 ± 5.3 6
Mock 0.6 ± 1.1 6

Fig. 5. Ligand-dependent protein interactions of Tribolium Met. Proteins N-terminally tagged with either EGFP (shaded) or the Myc epitope were coex-
pressed in human HEK293 cells. Methoprene (1 μM) or ethanol was added to cell cultures at 1 h before lysis. Cell lysates were subjected to immunopre-
cipitation (IP, outlined) with an anti-EGFP serum, and interacting proteins were detected on Western blots (WB) with an anti-Myc antibody. Input panels
represent 10% of the initial material. Methoprene disrupted homophilic complexes of full-length Met(1–516) (A) or PAS-B Met(240–516) (B) proteins but not
of their V297F mutant versions lacking the JH binding capability. Binding of Met(1–240) bHLH and PAS-A domains to full-length Met was insensitive to
methoprene (C). Interaction of full-length Met (D) or its PAS-B domain (E) with Taiman required methoprene and was prevented by mutations that abolish
binding of JH.
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(1–240) harboring the bHLH and PAS-A regions also dimerized,
it did so in a methoprene-insensitive manner (Fig. 5C).
The fact that the single point mutation V297F renders the

Met–Met complex resistant to the effect of methoprene shows
that the dissociation is induced by methoprene through the
specific ligand-binding pocket within PAS-B. This process might
involve a ligand-induced conformational change of Met that is
incompatible with formation of a homophilic complex. The
ability of Met V297F to dimerize in the absence of methoprene
also confirms that the failure of this mutant to bind JH III is not
attributable to a compromised integrity of the protein.
bHLH-PAS proteins typically act as heterodimers (15), and

Met proteins from Aedes and Tribolium have been recently
shown to activate gene expression upon JH-dependent physical
interaction with Taiman (16, 17). These results have suggested
that the Met–Taiman dimer might be an active JH receptor, but
the mechanism through which JH induces Met to bind Taiman
remains unclear. We addressed this question by using Met
mutants incapable of binding JH. The WT Tribolium Met bound
Taiman only in the presence of methoprene (Fig. 5D), con-
firming the published data (16, 17). By contrast, two mutations
that abolished JH III binding, V297F and V280F (Table 1 and
Fig. 4C), severely reduced the capacity of Met to respond to
methoprene by binding Taiman, whereas the neutral V346F
substitution left the interaction unaffected (Fig. 5D). The same
effect of V297F was observed with the truncated PAS-B domain
(Fig. 5E). These data demonstrate that the interaction between
Met and Taiman specifically depends on methoprene binding to
the PAS-B domain of Met. Therefore, the critical role of PAS-B
in regulating heterodimer formation is common to insect Met and
mammalian bHLH-PAS proteins such as HIF2α and Arnt (27).
Together with other recent advances (16, 17, 26), our results

support a model in which unliganded Met occurs as a presumably
inactive homodimer. Upon JH binding to the PAS-B domain,
Met undergoes a conformational change that (i) liberates Met
from the homophilic complex and (ii) allows it to bind Taiman.
By sensing JH and forming a ligand-dependent complex with
a partner of its own bHLH-PAS family, Met establishes a unique
class of intracellular hormone receptors. Its action resembles
type II nuclear receptors, whereby a ligand-specific sensor (such
as a thyroid hormone or retinoic acid receptor) combines with
a versatile heterodimer partner, the retinoid X receptor RXR
(28). Although the exact mechanism of JH-dependent activation
of Met has yet to be determined, the present study sheds light on
the long-elusive problem of JH reception, including the action of
insecticidal JH mimics.

Methods
DNA Constructs and Protein Expression. DNA sequences encoding all Met and
Gce proteins or their truncated and mutant versions were synthesized for
optimal mammalian codon use (GenScript); taiman cDNA was cloned from
Tribolium larval RNA by RT-PCR. Appropriate DNA regions were cloned into

the pK-Myc-C2 vector containing a T7 promoter and an N-terminal Myc
epitope tag (29). Proteins were produced with the TnT Quick Coupled
in vitro transcription/translation system (Promega) with 400 ng of template
plasmid per 50-μL reaction. The efficiency of translation was assessed on
immunoblots with the mouse anti-Myc antibody 9E10 (Roche).

Ligand-Binding Assays. Racemic (RS)-tritiated JH III (10–20 Ci·mMol−1) was
from Perkin-Elmer and racemic JH III, pyriproxyfen, trans,trans-farnesol, and
methoprene were from Sigma-Aldrich. Dextran-coated charcoal (DCC) assays
were performed as described (8, 30), and integrity of radiolabeled JH III
throughout the assay was verified (SI Methods and Fig. S8). Nonspecific
binding was determined in DCC assays with a 100-fold molar excess of un-
labeled ligand in addition to [3H]JH III. Dissociation constants (Kd) were de-
termined by nonlinear regression from total and nonspecific binding data of
saturation experiments by using GraphPad Prism 5.00 (GraphPad Software)
on the assumption that JH III binds to a single site and that both the 10R-
and 10S-JH III isomers bind equally. For competition assays, the Ki of JH
mimics was calculated by using the “one site fit Ki” model.

Immunoprecipitation. Tribolium Met and Taiman proteins were expressed
with N-terminal EGFP or Myc epitope tags from pEGFP-C2 (Clontech) or pK-
Myc-C2 vectors, respectively, by transient transfection in the HEK293 cells. At
1 h before cell harvesting, cells were treated with 1 μM methoprene (or
ethanol for control) and then lysed (SI Methods). The lysate was applied
(with or without methoprene) to Dynabeads Protein G (Invitrogen) pre-
bound with rabbit anti-EGFP antiserum. Input and bound proteins were
detected with mouse anti-GFP (Sigma-Aldrich) and anti-Myc 9E10 (Roche)
antibodies on immunoblots.

Protein Structure Modeling and Ligand Docking. The Tribolium Met PAS-B
domain (Leu-240–Leu-358) structure was modeled with Modeler version 9.9
software (31) with HIF2α PAS-B crystal structure (PDB ID 3F1P) (22) as a ho-
mologous template. Among 10 models generated, the one with the lowest
objective function was retained for ligand docking with AutoDock Vina (32)
after the receptor and ligand files were prepared with AutoDock Tools (33).
The volume of the cavity of the modeled PAS-B was calculated by using
CASTp with default parameters (34). Figures were prepared with Pymol
version 0.99 (DeLano Scientific).

RNAi, Hormonal Treatments, and mRNA Expression Analysis. Within 12 h after
ecdysis, Tribolium pupae were injected with Met or control (egfp) dsRNA
and after 3 d were treated with acetone-diluted 0.1 mM farnesol, metho-
prene, or pyriproxyfen as described (11). Total RNA was isolated from in-
dividual pupae and subjected to quantitative RT-PCR with Kr-h1 primers (13)
by using the iQ SYBR Green Supermix kit and the C1000 Thermal Cycler (Bio-
Rad). Data were normalized to the relative levels of ribosomal protein
(Rp49) mRNA.
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