
HAL Id: hal-00824735
https://hal.science/hal-00824735

Submitted on 22 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Web-of-Things Gateway for KNX Networks
Gérôme Bovet, Jean Hennebert

To cite this version:
Gérôme Bovet, Jean Hennebert. A Web-of-Things Gateway for KNX Networks. Smart SysTech 2013
European Conference on Smart Objects, Systems and Technologies, Jun 2013, Erlangen, Germany.
�hal-00824735�

https://hal.science/hal-00824735
https://hal.archives-ouvertes.fr

A Web-of-Things Gateway for KNX Networks

Gérôme Bovet (1,2)
(1) LTCI

Telecom ParisTech ENST
46 Rue Barrault, 75013 Paris, France
gerome.bovet@telecom-paristech.fr

Jean Hennebert (2)
(2) HES-SO, EIA-FR

University of Applied Sciences of Western Switzerland
Boulevard de Pérolles 80, 1705 Fribourg, Switzerland

jean.hennebert@hefr.ch

Abstract—Smart buildings tend to democratize both in new
and renovated constructions aiming at minimizing energy con-
sumption and maximizing comfort. They rely on dedicated
networks of sensors and actuators orchestrated by management
systems. Building networks are often heterogeneous, leading to
complex management systems having to implement all the avail-
able protocols and resulting in low system integration and heavy
maintenance efforts. Typical building networks offer no common
standardized application layer to build applications. We propose
in this paper to leverage on the Web-of-Things (WoT) framework,
using well-known technologies like HTTP and RESTful APIs to
offer a simple and homogeneous application layer. We outline the
implementation of a gateway using the principles of the WoT to
expose capabilities of the KNX building network as Web services,
allowing a fast integration in management systems.

I. INTRODUCTION

In recent years, building management systems (BMS) have
become very common in various types of buildings, such as
offices, manufactures or even private households. They rely
on a variety of sensors and actuators composing together a
dedicated building network. Initially, the heating control of
a building was very simple, relying on global or room-wise
thermostats, targeting a threshold temperature value. Motivated
by raising energy costs and by the importance of the comfort,
more complicated strategies have since then been developed.
Modern BMS include many kinds of sensing and actuating
devices, managing the HVAC (Heating, Ventilation and Air
Conditioning), the lighting, doors opening, windows and blinds
control, and also security access systems. Buildings have
become ”smart” and are now including complete information
systems using dedicated building management networks for
communication, as for example KNX, BACnet, or LonWorks.
KNX is actually the most used network in Europe. One can
find almost every kind of device compatible with this network.
The physical support of the KNX network is most of the time
based on the 29V powered twisted pair TP1 inherited from
the EIB standard [1]. KNX supports also different types of
physical connections like Ethernet, RF or power line. Another
emerging standard for interconnecting sensors and actuators in
buildings is Enocean, principally based on energy harvesting
wireless technologies [2].

Unfortunately, such building management networks do not
offer a standardised way to interact with devices connected to
them from an application point of view. Due to this, it becomes
difficult to build BMS combining multiple networks. This
situation can be found in buildings where the network should
evolve with new devices that are not compatible with the actual
one, or where extending the wiring is not feasible because

of physical constraints [3]. This is leading to heterogeneous
building management networks such as the one illustrated in
figure 1. While it exists gateways encapsulating the specific
telegrams of the building management network in IP packets,
there is actually no standard at the application level, resulting
in the BMS having to understand and to implement every
network protocol.

BMS

IP Gateway
IP Gateway

IP Gateway

IP
 B

a
c
k
b
o
n
e

Fig. 1. Network heterogeneity in smart buildings

Looking now at Internet and Web technologies, so called Web
services are nowadays widespread, able to make heterogeneous
information systems (IS) interoperable. They are platform
independent and use well-known standards for structured data
exchange. The Simple Object Access Protocol (SOAP) is
an example of Web service protocol specification relying on
Extensible Markup Language (XML) for its message format
and Hypertext Transfer Protocol (HTTP) for message nego-
tiation and transmission [4]. Unfortunately SOAP is not well
suited for accessing sensors and actuators considered as things,
because of the large overhead of XML and the complexity of
the service description language WSDL. On the other hand, the
emerging Web-of-Things framework (WoT), offers new ways
for accessing things in a resource oriented architecture (ROA),
which are more suited for BMS [5].

In this paper, we present the implementation of a gateway
allowing access to devices connected to a KNX network in
a Web-of-Things manner. By taking advantage of the bests
practices of the WoT, we guarantee a fast integration of KNX
in every control system. In addition to this, we put importance
on the fact that our gateway must be simple to use, low-cost
and easily integrable in an existing environment.

This paper is organised as follows. The next section refers
and summarizes related work. In Sect. 3, we provide an
overview of the Web-of-Things paradigm. Its application to
the KNX network is discussed in Sect. 4. Sect. 5 describes
the implementation of the gateway. Performance tests in a real
building are shown in Sect. 6. Sect. 7 concludes our paper and
provides insights on further research.

II. RELATED WORK

One of the early projects considering people, places and
things as Web resources is Cooltown [6]. This project intro-
duced a new interaction approach by using HTTP GET and
POST requests to manipulate things. Then, with the progress
made in embedded systems, it was possible to integrate Web
servers directly on sensors and actuators. So-called mashups
were introduced in the WebPlug framework relying on the
Web-of-Things paradigm, where sensors and actuators play a
central role [7].

Due to the intrinsic architecture of things leveraging on Web
services, problems related to performance and memory usage
were quickly discovered. Another source of problems is related
to the energy consumption of things that needs to be min-
imised. In other words, optimisations are sought at every level
when dealing with things. Some works have started tackling
optimisations at the communication layers [8]. Other works
have proposed to simplify the way things expose their services
through the web using RESTful APIs instead of heavyweight
SOAP protocol [9], [10], [11].

Trying to ease the development of applications using KNX
devices has been explored in different works. A first attempt
was realized with the BCU SDK [12], which consists of a
script generating C++ classes representing devices capabilities.
A more Web oriented approach has been realized in [13]. The
principle was to expose KNX functionalities as Web services
by using the oBIX (Open Building Information Exchange)
standard, which is a special XML schema for representing
building data and operations. Unfortunately, oBIX is not at all
widespread in BMS, probably because of its relatively complex
XML schema. In addition to this, the proposed implementation
does not allow an easy integration of the gateway in an existing
environment, requiring an important configuration effort for
large networks. The openhab [14] project is a BMS system
offering interfaces to various building networks, including
KNX. Although being a complete solution, it does not allow
for importing a KNX configuration nor exposing stored data
through REST services. Additionally the project is quite com-
plex and asks for having a deep knowledge of its working. Our
approach tackles these limitations by taking advantage of the
WoT’s simplicity and by being highly integrable in existing
KNX infrastructures.

III. THE WOT FRAMEWORK

The Web-of-Things framework fills the gap left by the
Internet-of-Things regarding the application layer [15]. The
IoT actually only covers the IP connectivity of everyday
objects, resolving problems linked to the Internet access and
network topologies. The WoT is completing the paradigm by
leveraging on well-accepted standards of the Web to build
Application Programming Interfaces (APIs) to things. In this
framework, things are representing resources identified using
URLs and manageable using the verbs of the HTTP protocol
to form the so-called RESTful APIs. Based on the widespread
standards of Web applications, the WoT approach has good
potentials to become the de facto standard to communicate
and program small and constrained interconnected objects. In
this chapter we will provide insights of the main concepts
underlying the WoT.

A. Resource identification

In the WoT, every capability or property of a device is
considered as a resource. For example, a temperature sensor
could return the measured value both in Celsius and in
Fahrenheit. This would give us two resources that can be read.
More precisely, some resources can allow multiple operations
as read and write. So, we first need to be able to identify and
address those resources in a simple way before we can interact
with them. This is realized by using URLs in the same way
as for retrieving Web pages on servers. An advantage of this
approach is in its hierarchical way to organize resources re-
flecting the physical world. This principle is shown in figure 2.
For accessing the Celsius temperature value, one would use
the following URL: http://<DOMAIN>:<PORT>/generic-
nodes/1/sensors/temperature/celsius.

/genericNodes

/{genericNodes-n}

/sensors /actuators

/temperature /sensor ...

/celsius /fahrenheit

/leds /speakers /actuator ...

/volume/a /b

Fig. 2. Resource hierarchy example of an abstract node

The domain part of the URL also allows to be hierarchically
structured to match a virtual abstract structure or a real
physical organization. In the case of buildings, URLs can give
insights on the location of devices inside the organization by
decomposing it into sub-domains according to buildings, floors
and rooms.

B. RESTful APIs

RESTful APIs are really the communication and appli-
cation layers in the WoT by leveraging the HTTP protocol.
Unlike SOAP, HTTP is used as application protocol and not
only for transport. REST has several advantages over SOAP
by having less overhead and being resource oriented, which
fits naturally with physical objects. With the WoT paradigm,
every object or thing is embedding a Web server exposing an
API for acting with its sensing, actuating and configuration
capabilities. Those services are located through the URLs as
explained previously. The interaction with the resources is
achieved by sending HTTP requests containing a so-called
HTTP verb that can be one as follows: GET, POST, PUT and
DELETE. These verbs reflect actions that can be performed
on resources. The GET is for retrieving information, POST to
modify information, PUT to add information, and DELETE for
removing information on a resource. The GET and POST verbs
are in the context of WoT the most used ones. For example,

one will use the GET verb to read a sensor’s value, and the
POST one for actuating a relay.

A HTTP communication always consist of a request to a
specific resource and a response, this for any kind of operation.
HTTP responses contain in the header a code value expressing
errors, exceptions and successes. Each code has a well-known
meaning listed in the HTTP 1.1 specifications.

C. Events notifications

In many scenarios systems want to be informed as soon as
something happen on a monitored resource. Instead of using a
polling technique that is resource consuming, the WoT relies
on callbacks. In an event-based system, the first step is the
registration of the consumer at the producer. Working with
things embedding a REST Web server, we can expand the API
with methods dedicated to registration. A system interested
to be notified about a change of state on a resource will
announce itself by providing the callback, instanciated by a
URL representing a REST service on the consumer side. We
demonstrate this mechanism with a simple example involving
a BMS and a motion detector as illustrated in figure 3.

Motion sensorBMS

1

2

3

1

POST /register HTTP/1.1
Host:
motion.room5.office
Content-Length: 24
Content-Type: text/plain

http://bms.office/notify

2

Wait for motion

3

POST /notify HTTP/1.1
Host: bms.office
Content-Length: 4
Content-Type: text/plain
Referer: motion.room5.office

true

Fig. 3. Event notification mechanism with (1) consumer registration step with
callback notification, (2) producer value monitoring, (3) producer notification
to the consumer.

1 - The BMS will register at the motion sensor in order
to be notified when someone enters or leaves a room. This
is achieved by the BMS sending a HTTP POST request
to http://motion.room5.office/register containing the callback
URL. 2 - The producer will then internally watch its resource.
3 - Every time the value changes the motion sensor will do a
HTTP POST request to the callback URL. The steps 2 and 3
are repeated until the consumer unregisters.

IV. FROM KNX TO RESTFUL API

As previously outlined with WoT paradigms, every object
is expected to embed a REST server offering an API located
through URLs for interaction. Unfortunately this approach can
not be applied as such to a KNX network. Devices connected
to the KNX network have no IP address and therefore will
not be accessible by using URLs. In addition to this, KNX
devices are very constrained and task oriented, which makes
it impossible for most of them to embed a Web server.

A way of filling this gap is to propose a gateway exposing de-
vices functionalities in the form of RESTful APIs. The gateway
will hide the complexity of the KNX network and allow clients
to interact with KNX devices in a Web-of-Things manner. In
other words, the devices will appear to other participants of
the WoT as they would be embedding the API on themselves.
Clients will therefore be able to retrieve information from a
KNX network (for example read a temperature value) or to
influence the behaviour of the installation (for example to move
blinds).

Though the gateway approach is seducing, open questions
remain about the automatic mapping of devices functionalities
to URLs and RESTful services. In the next sections, we
propose a discovery approach allowing clients to identify
which devices are accessible by using RESTful services and
what are their capabilities.

A. KNX application layer

The KNX application layer, also known as KNX interwork-
ing, was thought to ensure interoperability between devices of
various manufacturers. It standardizes the way how payload
data inside telegrams have to be structured and interpreted.
Like many systems dedicated to automation, the interworking
is based on so-called functional blocks to describe system
functionality [16]. Logical parts of a device, such as a specific
function are symbolized by those Functional Blocks (FBs).
We can illustrate this principle with an example of a light
switch FB that is a logical function of a four channels relay.
A functional block is always attached only to one device.

Functional
block

Light switch

OutputsInputs

Parameters

I1

I2

P1

O1
DPT I1

DPT I2

DPT P1

DPT O1

Datapoint type

Data type Size

Format Coding Value range Unit

Fig. 4. Functional block structure and datapoint type composition

As visible in the upper part of figure 4, FBs are composed of
a set of datapoints (DPs). Those datapoints are communication
endpoints of devices allowing access to the functions of a
block [13]. The inputs (DPT I) stand for states that can
be altered by other devices. The parameters (DPT P) are
configured by administrators or engineers for changing the
behaviour of the FB. At last, the outputs (DPT O) give insights
of the actual state of the block. KNX administrators simply link

outputs and inputs together for associating devices. Datapoints
are also standardized in terms of syntax and semantics as
visible in the lower part of figure 4, and also organized
in several categories depending on their FBs purposes. For
example, our light switch provides the DP ”switch on off”
allowing to turn the light on or off. By knowing the datapoint
type, one can find in the KNX specification all information
regarding the datapoint, including the format, coding, value
range and unit.

The KNX protocol identifies two categories of DPs: group
objects (GOs) and interface object properties (IOPs). The
GOs are endpoints involved in group communications between
producers and consumers basing on a multicast approach. This
type of DP is used by sensors, actuators and control devices
for exchanging information. On the other hand, IOPs are only
for configuration and management purposes. One can address
an IOP only with the physical address of the device.

B. ETS export archive

The KNX association has developed the Engineering Tool
Software (ETS) to configure a KNX infrastructure. With this
software, administrators and engineers have the possibility
to create the building hierarchy, the network topology, and
finally to create group objects that will represent functionalities
between devices. At the time of writing this article, ETS is
the most used tool for KNX configuration in professional
installations. As shown in figure 5, ETS exports projects in an
archive composed of multiple XML files. The knx master.xml
file contains the description of all the DP types. The net-
work topology, building organization and group addresses are
stored in the 0.xml file. Finally, there is a folder for every
manufacturer, containing a XML file for each device type
composing the network. The device file informs about the
available DPs on the device. This archive, being zipped without
security, containing XML files easily understandable allows
to import all the network knowledge into other applications.
As illustrated in figure 5, we propose here to apply a XSL
transformation to the different XML files inside the archive in
order to centralize all necessary information for our gateway
into one single XML file.

ETS project archive

knx_master.xml

0.xml Product ID.xml

Manufacturer IDProject ID

datapoints.xml
transform.xsl

Fig. 5. ETS project archive structure

C. Datapoints to REST

As previously explained, access to functionalities in
a KNX network is done via group objects, which are
compositions of datapoints and a group address. In the
elaboration of the gateway, we match group objects to REST
services for allowing interaction with KNX devices. For

doing this, we use the XSLT output that was created from
the XSL transformation. By taking into consideration the
corresponding fields of the XML, we are able to compose a
URL identifying a specific group object. For example, the
datapoint shown in listing 1 would result in the following
URL: http://heating.office005.ground.leso.epfl.ch/dpt switch.
The domain part is composed of the physical location of the
device inside the building, completed by the domain name
of the organization. The last part of the URL that represents
the action to perform is the datapoint type name. We can
now easily link group objects to URLs by following
this rule: http://<GROUP NAME>.<LOCATION>.
<ORGANIZATION DOMAIN>/<DATAPOINT>.

Listing 1. Datapoint XML representation after XSL transformation
<d a t a p o i n t s t a t e B a s e d =” t r u e ”
name=” H e a t i n g ” desc =” S t a t u s ”
mainNumber=” 1 ”
p r i o r i t y =”Low” act ionName=” DPT Switch ”
a c t i o n D e s c =” on / o f f ” dp tDesc =”1− b i t ”
d p t B i t s S i z e =” 1 ”
l o c a t i o n =” O f f i c e 0 0 5 . ground . LESO”>

<knxAddress t y p e =” group ”>
6195

< / knxAddress>
< / d a t a p o i n t>

Our objective is here to allow the BMS to pull state values
and to perform actions on the KNX network by sending HTTP
requests to the gateway. A HTTP GET request will result in
the HTTP response containing the actual value of the group
object inside the payload data. For changing a state, one will
send a HTTP POST request containing the new value inside
the payload data. Representing the structural organization of
the building inside the domain part of the URL opens a new
dimension. By acting this way, we can hide the fact that the
device is actually in a KNX network and not directly connected
to an IP network. For users of the system, the device seems to
be an IP one with its own DNS entry directly pointing to it.
However, this brings a certain complexity for the DNS system
as it musts contain entries matching with KNX groups. For
example, the DNS equivalence of the group heating located in
room office005 of the ground floor in the leso building, giving
the DNS entry heating.office005.ground.leso has to redirect
requests to the gateway.

D. Events

To avoid control systems being forced to implement a
polling strategy for observing changes of states, our gateway
offers a notification mechanism allowing to observe every
group object. Here, the events notifications principle of the
Web-of-Things is applied. Every URL identifying a group
object is extended with two sub-resources for registration
and unregistration. The register and unregister key-words
are placed after the datapoint type as sub-resource. In our
previous example, the URLs for registration and unregistration
will be as follows: http://heating.office005.ground.leso.epfl.ch/
dpt switch/[un]register. The gateway holds internally a list of
all the consumers registered for every group object. When a
change of state of a group object occurs, the gateway checks
its list of listeners, and perform the notification through the
callback of the consumers.

E. Discovery

Before communicating with KNX devices, a system has
first to discover what group objects are available on the
gateway. A very simple manner would be to provide a single
list informing about all group objects. Such an approach is
obviously not well adapted due to its poor structure and
the need to transmit the whole list for every discovery re-
quest. Here, we propose to expand our concept of building-
composition structured DNS. In addition of keeping entries
for groups, it does also have entries for the sub-domains
composing the URLs. For example, it will store entries like
ground.leso.epfl.ch. By calling http://ground.leso.epfl.ch, the
DNS server redirects the request to the gateway. The gateway
will perform a lookup in the XML file to find all children and
will respond with a JSON structured message.

Once a group has been located, the available datapoints can
be known by adding the placeholder * instead of the datapoint
identifier. The gateway will answer with a JSON payload
describing the datapoints one can interact with. An example of
this procedure is given in listing 2. The resulting URL struc-
ture is as follows: http://<GROUP NAME>.<LOCATION>.
<ORGANIZATION DOMAIN>/*.

Listing 2. JSON message structure example of a datapoint description for
http://heating.office005.ground.leso.epfl.ch/*
{” d a t a p o i n t i n f o ” : ”1− b i t ” ,
” d a t a p o i n t t y p e ” : ” DPT Switch ” ,
” d e s c r i p t i o n ” : ” on / o f f ” ,
” b i t s s i z e ” : 1 ,
” d a t a p o i n t n u m b e r ” : ” 1 .001 ” ,
” u r l ” : ” h t t p : / / h e a t i n g . o f f i c e 0 0 5 .
ground . l e s o . e p f l . ch / d p t s w i t c h ”}

F. Storage

BMS are nowadays evolving from simple reactive to
proactive controls where the user behaviour and habits play
a key role. Proactive BMS use past data to build more and
more complex mathematical models of the building’s use, for
example to anticipate the control of heating or to provide
energy consumption feedback [17], [18]. A possibility would
be to let the BMS store all sensor data into a local database.
The BMS would then have to register callbacks on all sensors.
This would result in a lot of event notifications, eventually
causing some congestions. Therefore, we propose that our
gateway acts as decentralized storage.

We introduce here the concept of storage registration, where
the BMS announce their interest of storing some sensor data
on the gateway. This is achieved by the client calling the
.../storage/add sub-resource of a group object with a HTTP
POST request. This request must contain the Referer header
used for identifying the client. The maximum number of days
data have to be stored has to be provided inside the payload
as parameter. Once having a client registered for storage, the
gateway will start to store the measurements for this datapoint.
When the client does not need the storage anymore, it can
unregister by POSTing to .../storage/remove, providing its ID
in the Referer header. For retrieving the data, one has to make
GET requests with some URL parameters delimiting the range
of data. In our design, we propose two ways of filtering the

data. The first is by indicating the number of days one wants to
go back in the history with the URL: .../storage?days=X. The
second one is by specifying a period of time with a start and
end date as follows: .../storage?from=X&to=Y. In both cases
the gateway will respond with a JSON array containing the
stored data, composed of values and timestamps. An example
is given in listing 3.

Listing 3. JSON message structure example of a datapoint storage for
http://lighting.office005.ground.leso.epfl.ch/dpt switch
{
” s t o r a g e ” : [
{ ” v a l u e ” : ” on ” ,
” t imes t amp ” : ”2013−01−10 0 8 : 1 2 : 3 4 ” } ,
{ ” v a l u e ” : ” o f f ” ,
” t imes t amp ” : ”2013−01−10 0 9 : 0 5 : 5 7 ” } ,
{ ” v a l u e ” : ” on ” ,
” t imes t amp ” : ”2013−01−10 1 3 : 4 0 : 0 3 ” } ,
{ ” v a l u e ” : ” o f f ” ,
” t imes t amp ” : ”2013−01−10 1 7 : 3 3 : 1 1 ” }]
}

As the gateway has also a limit to its storage space, we propose
to include rules for the management of the data history:

• In the case of multiple clients registered to the same
group object with different maximum days to be
stored, the gateway will store data according to the
highest value.

• In the case of multiple clients registered to the same
group object with different maximum days to be
stored, when the client with the highest maximum
days unregisters, the data pool is shrunk to the new
highest one.

• When an unique client of a group object unregisters,
the stored data for this group object will be dropped.

• When the stored data of a group object is not read
during three times the maximum number of days of
this group object (maximal days value between all
clients of the GO), the data is dropped and all clients
of the group object are automatically unregistered.

Our storage concept brings many advantages compared to
classical ”logger” approaches where usually everything is
stored using a circular buffer. First, we only store data that
are effectively needed by the BMS. Clients can choose what
kind of data they need and for how long it has to be available.
Second, the rules listed before allow using small storage media
like SD cards on constrained devices.

V. IMPLEMENTATION

We provide here more details on a practical implementation of
the gateway according to the principles exposed in Section IV.
We voluntary restricted the implementation to only state based
group objects which are used by BMS.

A. Platform

We selected as hardware platform the Raspberry Pi model
B which is low-cost and offers enough computing power for
running our gateway [19] . This tiny micro-computer (85.6mm

HTTP

server

DNS server

KNXnet/IP Gateway

discovery

Calimero 2.0

DNS

manager

KNX

comm

http://knxgateway.epfl.ch

KNX - WoT Gateway

192.168.1.3

epfl.ch

192.168.1.212

C:\epfl.knxproj Load

Submit

Locate

root

DNS server IP

DNS main domain

DNS user

DNS password

KNXnet/IP GW IP

ETS archive

KNXnet/IP

Gateway

KNXnet/IP Tunneling

Datapoint object

representation

Calimero 2.0

REST

client

HTTP

server

Datapoint

locator

datapoints.xml

KNX

comm

KNX Twisted Pair

KNXnet/IP

Gateway

HTTPDP

Gateway configuration Gateway WoT<->KNX

datapoints.xml

XML

generator

Notification

manager

Storage

manager

Fig. 6. Overall KNX-WoT gateway architecture illustrating the logical modules for two scenarios: gateway configuration (left part) and gateway normal operation
(right part).

x 56mm x 21mm) embeds an ARM1176JZFS CPU running
at 700MHz with 512MB of RAM. The model B offers an
Ethernet connectivity with an RJ45 port. It is composed of a
SD card reader, two USB ports, one HDMI video port and
a RCA video output. This module can be considered as low-
power with about 4W consumption, powered at 5V over a
micro USB port. The Raspberry Pi can be operated by many
Linux systems installed on a SD card plugged into the device.
Any kind of software compatible with the ARM processor can
be installed on it, like Java, MySQL and many others.

B. Architecture

Our implementation relies on the Calimero 2.0 Java li-
brary [20]. This library provides Java classes and methods for
KNXnet/IP tunnel communications, and datapoint object rep-
resentation allowing developers to build applications dedicated
to KNX infrastructures. The Web part of our implementation
is composed of a Java servlet running on a Jetty server [21].
We opted for Jetty instead of other common Java Web servers
like Tomcat, Glassfish, JBoss or Grizzly because of Jetty
being easily embeddable on low-resources hardware thanks
to its lightweight implementation. The database is running
on MySQL. All components of the implementation are open
source and free.

As shown in figure 6, we based our implementation on several
logical modules shared in different scenarios of use. The first
one is the configuration of the gateway, where the administrator
will provide all the necessary information for proper running.
Once configured, the gateway enters in its normal operation
where it can serve requests for manipulating group objects.
We provide here more details about the role of the different
logical modules.

The Datapoints file acts as database even if it only consists
of XML tags. This file is at the heart of the application and
holds all the mandatory information for communication with
the KNX devices. It contains a description of all group objects
reachable on the network, indicating the datapoint type, the

group address, and other kind data about the group object.
This file also stores configuration data provided through the
Web configuration page.

The Web server stands as entry point of the application. It
implements the doGet() and doPost() methods for handling the
HTTP requests. The first step is to decode the URL in order
to identify which action is requested on which group object,
as it could be a direct interaction or a notification registration
message. Once the operation identified, it acts as controller and
dispatches the request to the right modules. At the end of the
processing, it will respond either with a value corresponding
to the GET read request, or only with the HTTP response code
in the case of a POST.

The XML generator processes the ETS project archive for
generating the XML datapoints file. It first decompresses the
archive and then applies the XSL stylesheet to the project. All
special characters are removed during this processing as they
can not be present in URLs. The XML file is saved inside the
resource directory of the Web server.

The DNS manager is responsible of adding DNS record en-
tries representing groups. This is performed with the DNSJava
library offering methods for managing zones and records of a
DNS server [22].

The Datapoint locator acts as query engine for the datapoints
file. It can look up specific group objects according to the
datapoint type, group name and location, and then returns them
in the Calimero datapoint object representation. It is also used
for retrieving all the possible domain names for accessing the
group objects, used by the DNS manager for adding entries on
the DNS server. In the case of a client willing to discover the
available datapoints, the Datapoint locator can answer with all
sub-domains or with all datapoints descriptions of a group.

The KNX comm represents an interface to the KNXnet/IP
network. This module can discover KNXnet/IP gateways by
sending multicast messages, thus avoiding administrators to
look after the IP address of the gateway. This feature is useful

when DHCP is used to configure the IP addresses. The KNX
comm module handles the tunnel connection, allowing to talk
with the KNX network. By listening to the network, it will
notify the Events manager of incoming telegrams that might
concern some consumers. Activating a cache feature can avoid
to overload the KNX network due to many clients reading the
same group object.

The Storage manager is the interface to the database that
offers methods for handling clients (un)registrations and for
retrieving group object data. Another role of this module is to
implement the storage rules as explained above, for example
shrinking the database when some data are not anymore used.
This allows to store data for many group objects even having
only a few GB of space.

For managing the notification paradigm, we introduce an
Events manager. This module stores in an associative table
the consumers registered on group objects for notifications.
Triggered by the KNX comm module, it will lookup if
consumers are registered for the group object having undergo
a change of state, and then launches the notification by calling
all related callbacks.

VI. EVALUATION

We evaluated the capabilities and limitations of the im-
plemented gateway through several tests. In order to have
realistic feedbacks, we performed our tests on a building
already equipped with a KNX installation. From the evaluation
results, we also discuss some improvements of the gateway that
would be beneficial for BMS.

A. Performance

To establish the performances of our gateway, we decided
to measure various key-values such as: maximum number of
requests per second, maximum simultaneous requests, noti-
fication reaction time (from the action on the KNX device
until producer notification) and processing time of the ETS
project archive (during configuration). All our measurements
are done with an existing KNX installation of the 4 floors office
LESO building located on the EPFL campus in Lausanne,
Switzerland. The installation features 265 devices, distributed
in 765 groups, with a total of 795 group objects and represents
an average installation that can be found in many buildings.

Measure type Result

ETS archive processing time 30 [min]
Maximum HTTP requests per second 45
Maximum simultaneous HTTP requests 620
Average event reaction time 33 [ms]

TABLE I. GATEWAY PERFORMANCE MEASURED ON A REAL-LIFE
KNX INSTALLATION RUNNING 265 DEVICES

B. Discussion

Table I summarises the performance of the gateway im-
plemented on a Raspberry Pi as described in Section V. The
ETS archive processing time is quite long, mainly due to the
XSLT that is extremely resource consuming. However, as this
operation has only to be performed during the configuration
of the gateway, we can assume that it is not an important
issue. The maximum HTTP requests per seconds is actually

bottlenecked by the twisted pair of the KNX network offering
only 9600b/s. The maximum simultaneous HTTP requests is
limited by the Raspberry Pi. Nonetheless, we believe that
the measured value is largely sufficient for common BMS
operation. Finally, we observed a fast event response time that
would typically allow a BMS to function in reactive mode. We
can see that all the results are suitable for such an installation
and that the Raspberry Pi has to be considered as an alternative
to classical PCs running gateways or serving as middleware.

A potential limitation of our proposition lies in the DNS
approach which implies access to the DNS server of the host
IP network. Such access may be restricted by security policies
in which case a dedicated DNS server has to be made available
for the gateway. A second issue is related to the security of our
gateway where currently no authentication is implemented. An
authentication layer based on access lists could be a solution
to this.

Some developers have actually built small applications in-
teracting with the KNX devices through our gateway, this
in various languages. Their feedback were positive, showing
the benefits of leveraging on standardized and well-accepted
protocols to reduce the integration time of KNX devices on a
BMS.

Some developers have also asked us to provide a mechanism
of actions scheduling in order to implement some behaviours
of proactive BMS and to deport the logic on the gateway.
This idiom would lead to distributed BMS, where the heavy
modelling tasks would run somewhere in the cloud and bring
back the logical control on the gateways.

VII. CONCLUSIONS

Inspired by Web-of-Things paradigms, we explored the
feasibility and benefits of using well-known web standards
like HTTP and RESTful APIs to interface KNX networks and
building management systems. We proposed an architecture
for a KNX-WoT gateway that has been validated through an
implementation on a low-cost Raspberry Pi and validated on
a realistic KNX configuration. Positive feedbacks were also
returned by developers of building management systems thanks
to the simplicity of use of WoT APIs.

Generally speaking, we believe that WoT approaches are
good candidates to facilitate the integration of heterogeneous
networks. We also believe that building management systems
will have to dialog with various networks in a near future as
new technologies are emerging, such as for example Enocean.

Our future works will cover security aspects of the gateway
through authentication and encryption of data to prevent mis-
use. A mechanism for distributing the logical rules coming
from proactive BMS, potentially distributed in the cloud, will
also be explored. Finally, we will investigate the feasibility of
building a direct connection to the KNX twisted pair in the
gateway to eliminate the need of the KNXnet/IP module.

The software running on the gateway can be made available
for any scientific research project upon request to the authors.

ACKNOWLEDGMENT

The authors are grateful to the Swiss Hasler Foundation and
to the RCSO grants from the HES-SO financing our research

in this exciting area of smart buildings. The authors would
also like to thank Sébastien Baudin, scientific collaborator at
the University of Applied Sciences of Western Switzerland for
its contribution to the development of the gateway.

REFERENCES

[1] KonnexAssociation, “Knx specification,” 2004.
[2] E. Alliance, “Enocean technology – energy harvesting wireless,”

http://www.enocean.com/fileadmin/redaktion/pdf/white paper/WP
EnOcean Technology en Jul11.pdf, July 2011.

[3] G. Bovet and J. Hennebert, “The web-of-things conquering smart
buildings,” vol. 10s/2012. ElectroSuisse, 2012, pp. 15–19.

[4] W3C, “Soap version 1.2,” http://www.w3.org/TR/soap12-part1/, April
2007.

[5] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the internet
of things to the web of things : Resource oriented architecture and
best practices,” in Architecting the Internet of Things, D. Uckelmann,
M. Harrison, and F. Michahelles, Eds. Springer Berlin Heidelberg,
2011, pp. 97–129.

[6] T. Kindberg and al., “People, places, things: Web presence for the real
world,” in Mobile Networks and Applications, vol. 7. Building, 2002,
pp. 365–376.

[7] B. Ostermaier, F. Schlup, and K. Römer, “Webplug: A framework for
the web of things,” in Proc. of the First IEEE International Workshop
on the Web of Things (WOT2010), Mannheim, Germany, 2010.

[8] G. Bovet and J. Hennebert, “Communicating With Things - An Energy
Consumption Analysis,” in Pervasive, Newcastle, UK, June 2012, pp.
1–4.

[9] F. Aijaz, M. Chaudhary, and B. Walke, “Performance comparison of a
soap and rest mobile web server,” in Proc. of the Third International
Conference on Open-Source Systems and Technologies (ICOSST 2009),
2009.

[10] H. Hamad, M. Saad, and R. Abed, “Performance evaluation of restful
web services,” in Computer Engineering, vol. 1. Computer Engineering
Department, 2010, pp. 72–78.

[11] C. Groba and S. Clarke, “Web services on embedded systems –
a performance study,” in 2010 8th IEEE International Conference
on Pervasive Computing and Communications Workshops PERCOM
Workshops, vol. 3. IEEE, 2011, pp. 726–731.

[12] W. Kastner, G. Neugschwandtner, and M. Kögler, “An open approach
to eib/knx software development,” in Fieldbus Systems and their Appli-
cations, 2005, pp. 255–262.

[13] M. Neugschwandtner, G. Neugschwandtner, and W. Kastner, “Web
services in building automation: Mapping knx to obix,” in Proc. of the
5th IEEE International Conference on Industrial Informatics, vol. 1,
2007, pp. 87–92.

[14] “openhab,” http://code.google.com/p/openhab/, April 2013.
[15] D. Guinard, “A web of things application architecture – integrating the

real-world into the web,” Ph.D. dissertation, ETHZ, 2011.
[16] KNX Advanced Course Specification, February 2012 ed. KNX

Association, 2012.
[17] N. Morel, M. Bauer, M. El-Khoury, and J. Krauss, “Neurobat, a

predictive and adaptive heating control system using artificial neural
networks,” International Journal of Solar Energy, vol. 21, no. 2-3, pp.
161–201, 2001.

[18] C. Gisler, G. Barchi, G. Bovet, E. Mugellini, and J. Hennebert,
“Demonstration Of A Monitoring Lamp To Visualize The Energy
Consumption In Houses,” in The 10th International Conference on
Pervasive Computing (Pervasive2012), Newcastle, jun 2012.

[19] “Rapberry pi,” http://www.raspberrypi.org/, January 2013.
[20] “Calimero 2.0,” http://calimero.sourceforge.net/, January 2013.
[21] “Jetty server,” http://jetty.codehaus.org/jetty/, January 2013.
[22] “Dnsjava library,” http://www.xbill.org/dnsjava/, January 2013.

Gérôme Bovet (M’12) was born in Fribourg,
Switzerland, in 1985. He received the engineer de-
gree in computer science from the College of en-
gineering in Fribourg Switzerland, in 2008 and a
M.S degree in engineering of information systems
from the University of Applied Sciences of Western
Switzerland in 2012. He is currently pursuing the
Ph.D. degree in computer science at Telecom Paris-
Tech, Paris, France.

From 2008 to 2012, he was working in the field
of LBS, geolocation and mobile computing for two

Swiss companies. Since 2011, he is also lecturer at the College of engineering
in Fribourg, Switzerland. His research interest includes architecting the Web-
of-Things for smart buildings, the development of smart gateways, and low
power sensor networks.

Mr. Bovet’s awards include the Swiss Engineering prize 2008 for his
engineer degree final work, and the third prize of the European Satellite
Navigation contest 2009.

Jean Hennebert (M’06) Jean Hennebert received
the Electrical Engineering degree from the Faculté
Polytechnique de Mons, Hainaut, Belgium, in 1993
and the Ph.D. degree in computer science from the
Swiss Federal Institute of Technology, Lausanne,
Switzerland, in 1998.

He then worked for six years as IT System Archi-
tect and Independent Consultant for different private
companies. In 2004, he was with the multimedia en-
gineering DIVA group of the Computer Science De-
partment, University of Fribourg, Fribourg, Switzer-

land, where he is in charge of teaching and research activities. Since 2007,
he is Professor with the University of Applied Sciences Western Switzerland
– HES-SO and is affiliated as Lecturer with the University of Fribourg. His
research interests are in the areas of telecommunication, signal processing and
machine learning where IoT and WoT technologies are enablers.

