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Fine andultrafinemetallic particulatematters (PMs) are emitted frommetallurgic activities in peri-urban zones into

the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer ofmetals andmetalloids and their

fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of

metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM

(Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory.Metal and

metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and

life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from

atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several

complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy

dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the

localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the

surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead

secondary species (PbCO3 and organic Pb). Some compounds were internalized in their primary form (PbSO4)

underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are

proposed as two major mechanisms involved in foliar uptake of particulate matter.

1. Introduction

Metal-recycling activities contribute to sustainable development.
However, they also emit fine and ultrafine particulate matters (PMs)
enriched with metals (Batonneau et al., 2004; Ettler et al., 2005; Nair
et al., 2010; Uzu et al., 2010). In lead-recycling plants, different stages
of the process (crushing, fusion, reduction and refining) are respon-
sible for atmospheric emissions of PM enriched with various metals
and metalloids: lead (Pb), arsenic (As), antimony (Sb), stain (Sn),
copper (Cu), zinc (Zn) and cadmium (Cd) (Cecchi et al., 2008). PM10

(particulate matter with an aerodynamic diameter of 10 μmor less) is a
target pollutant for the World Health Organization (WHO, 1987) and
the European Commission Regulation (EC)No. 221/2002 on ambient air

quality assessment (European Commission, 2002) due to its adverse
effects on the environment and human health. Although PM2.5, PM1,
and nanoparticles are minor components (in weight) of the total
emitted particles, they are more critical in terms of their environmental
and health impacts (Auffan et al., 2009a; Uzu et al., 2009, 2011b;
Fernández Espinosa et al., 2002). In addition to its high inhalation
potential (Uzu et al., 2011b), PM can deposit on terrestrial ecosystems
(Donisa et al., 2000; Ma et al., 2010), leading to contamination of soils
(Lin and Xing, 2007; Lee et al., 2008; Stampoulis et al., 2009; Schreck
et al., 2011) and plants (Uzu et al., 2010; Hu et al., 2011). Thus, PM is a
health risk for humans and grazing animals upon ingestion (Alexander
et al., 2006; Polichetti et al., 2009; Perrone et al., 2010).

Unlike root transfer, which has been largely studied (Lin and Xing,
2007, 2008; Stampoulis et al., 2009; Ma et al., 2010; Yin et al., 2011;
Lombi et al., 2011), little is known about metal uptake by plant leaves
from the atmosphere (Tomasevic et al., 2005; Honour et al., 2009; Uzu
et al., 2010). Furthermore, most of the studies on metal uptake are not
recent, and have not investigated the transfer pathways involved (Little,
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1978; Ward and Savage, 1994) or have solely focused on fallout
biomonitoring (Caggiano et al., 2005; Rossini Oliva and Mingorance,
2006; Rodriguez et al., 2008; Bermudez et al., 2009; Gonzalez-Miqueo
et al., 2010).

Recently, Birbaum et al. (2010) reported that smaller particles
may be incorporated into leaves, whereas large agglomerates are
trapped on the surface wax. Therefore, the interactions of fine
particles with leaves need to be further evaluated. Tomasevic et al.
(2005) found that the amount of particles deposited on leaves
depended on the species due to different characteristics of the
epidermis. Foliar pathways have been studied in regard to solutes and
water-suspended particles (Eichert et al., 2008), organic compounds
(Barber et al., 2004; Perkins et al., 2005; Moeckel et al., 2008) and
gaseous elemental Hg (Millhollen et al., 2006; Stamenkovic and
Gustin, 2009). To our knowledge, no recent studies have investigated
uptake pathways for metals from deposited PM on leaves. Metal
accumulation and pathways have been studied in lichens and mosses
(Catinon et al., 2008; Godinho et al., 2009; Spagnuolo et al., 2011),
but current knowledge on foliar uptake in vascular plants is still
incomplete.

Recently, investigation on lead uptake by lettuce leaves, (Uzu et al.
(2010)) showed that PM deposited on plant leaves may be retained by
cuticular waxes and trichomes, but some ofmetals contained in PM can
penetrate inside plant tissues. Observations performed on lettuce
exposed to lead-rich fallout showed (i) fine Pb and Fe-rich particles
on stomata (PbSO4, PbO, PbCO3 and Fe2O3), (ii) secondary species, such
as needle crystals, enriched in lead due to transformation at the leaf
surface and (iii) the presence of primary PM (with PbSO4 and PbCO3 as
major species) under an organic layer often corresponding to necrotic
zones (Uzu et al., 2010).

The main objective of the present work was to increase the
understanding of the foliar uptake of metals and metalloids in the
context of atmospheric PM fallout. The extent of uptake and the
pathways involved may depend on the plant species and on the metal
considered. In this study, we compared the accumulation of various
metals (Cd, Cu, Pb, Sn and Zn) and metalloids (As and Sb) by plant
species presenting contrasting morphologies and exposed to atmo-
spheric fallouts of a lead recycling factory. The following plant species
were chosen for their differences of morphology and use: lettuce and
parsley (food) and ryegrass (fodder). The total concentrations of
copper (Cu), zinc (Zn), cadmium (Cd), tin (Sn), antimony (Sb),
arsenic (As) and lead (Pb) were measured in plants. As the major
pollutant in PM emitted by a battery-recycling facility, lead was
chosen to study foliar uptake mechanisms because it is concentrated
enough to be detected for various microscopic and spectroscopic
techniques. The localization and speciation of lead-containing PM
present on and inside leaves were investigated by micro-X-ray
fluorescence (μXRF), scanning electron microscopy coupled with
energy dispersive X-ray microanalysis (SEM-EDX), and time-of-flight
secondary ion mass spectrometry (ToF-SIMS).

These methods were chosen because they have a low spatial
resolution to get elemental distribution and speciation of metals with
few micrometer depth resolutions. μXRF and SEM-EDX provide an
elemental distribution whereas ToF-SIMS is unique to determine both
elemental distribution and speciation as a function of depth analysis.
Microscopy and spectroscopy are complementary tools to determine
metal distribution and speciation in leaves.

2. Materials and methods

2.1. Atmospheric fallout collection and plant exposure

Plant exposure experiments were performed in the courtyard of a
secondary lead smelter that recycles car batteries. It is located in
Southwest France in the peri-urban area of Toulouse (43°38′12″ N,

01°25′34″ E). The smelter emits 328 kg of total suspended particu-
lates (TSP) each year.

In order to estimate an exposure rate of plant to metal-rich PM, the
bulk metal concentrations in atmospheric fallouts were determined
during the whole plant exposure period. Atmospheric fallouts were
sampled in the smelter courtyard with 9.2 cm diameter high-density
polyethylene (HDPE) Nalgene funnels connected to 2 L HDPE Nalgene
bottles fixed on posts 2 m above ground, as described by Munksgaard
and Parry (1998) and Gandois et al. (2010). The funnels and bottles
were acid washed before initial use. Sample bottles filled with high
purity water were used as references.

Elemental total contents of fallouts were determined by an
ICP-OES IRIS Intrepid II XXDL instrument. The metal concentrations
in bulk atmospheric fallouts were measured every week.

Various plant species were studied: (i) lettuce (Lactuca sativa L.), a
leafy vegetable that has been used to test soil–plant transfer of metals
(Waisberg et al., 2004; Alexander et al., 2006), (ii) parsley (Petroselinum
crispum), an aromatic plant cultivated in kitchen gardens, presenting
large foliar surfaces and a short life cycle, and (iii) ryegrass (Lolium
perenne L.), a model plant for cattle exposure, with a longer life cycle
and silicon-rich leaves. One-week-old plants were grown for 15 days in
pots each containing 4 kg of uncontaminated soil in a greenhouse.
Twenty-five pots of each plant specieswere placed for onemonth in the
smelter courtyard under atmospheric fallout. Because this study
focused on the foliar transfer of metals, a geotextile membrane was
placed on the soil to protect it against atmospheric fallout and to avoid
soil–plant transfer, as previously described (Uzu et al., 2010). Plants
were watered from below, through pots equipped with water tank.
Control plants (ten pots for each plant species) were also cultivated in
the same culture devices, but placed in a greenhouse 13.2 km away
from the Pb recycling facility, i.e., receiving background levels of
atmospheric fallouts.

2.2. Metal concentrations in plant shoots

Five plants of each species were harvested every twoweeks, and the
fresh shoot and root biomasses were determined. In contrast to
biomonitoring studies, tissues were washed based on human or animal
ingestion. A two-step washing method with deionized water was
performed for lettuce shoots (Birbaum et al., 2010; Uzu et al., 2010),
whereas a single rinsing with deionized water was used for parsley as
generally done before eating in a home washing process. Metal
concentrations in water after washing were analyzed. Ryegrass was
not washed in order to reproduce the scenario of consumption by cattle
(but plants received rain washes during the culture). Plant tissues were
oven-dried at 40 °C for 72 h. After mineralization of plant samples in
aqua regia (mixture of 1/4 HNO3 and 3/4 HCl) with a Digiprep
instrument at 80 °C for 4 h, the Pb, Cd, Sn, Sb, As, Cu and Zn
concentrations were measured by inductively coupled plasma-optical
emission spectrometry ICP-OES (IRIS Intrepid II XXDL) or inductively
coupled plasma-mass spectrometry ICP-MS (X Series II, Thermo
Electron). Ten blanks were submitted to the same treatment (miner-
alization and assay) for method control. Each sample was analyzed in
triplicate. The detection limits of Pb, Cd, Sn, Sb, As, Cu and Zn were 0.3,
0.2, 0.2, 0.2, 0.2, 1.3 and 2.2 μg L−1, respectively, whereas the limits of
quantification were about 0.4, 0.3, 0.3, 0.4, 0.3, 2 and 3 μg L−1,
respectively. The accuracy of measurements was checked using
reference materials: Virginia tobacco leaves, CTA-VTL-2, ICHTJ and
TM-26.3 certified reference material from the National Water Research
Institute, Canada. The concentrations foundwerewithin 95–102%of the
certified values for all measured elements.

2.3. Microscopic and spectroscopic observations

Leaf observations on amicroscopic scale were performed on lettuce,
parsley and ryegrass by using complementary techniques. μXRF was



used to map elemental distributions of centimeter regions of leaves
with a resolution of 30 μm and a detection limit of 100 mg kg−1. The
morphology and elemental composition of PM deposits were deter-
mined at a higher resolution by SEM-EDX, which has a low sensitivity
(about 1000 mg kg−1) but a better lateral resolution than μXRF. Finally,
ToF-SIMS was used to map Pb-containing molecular fragments on
localized metal-enriched areas of lettuce leaves to measure the
penetration of particles throughout the leaves.

2.3.1. Micro-X-ray fluorescence (μXRF)

Elemental distributions in leaves were observed by μXRF as
described by Uzu et al. (2010). μXRF measurements were performed
on freeze-dried leaves. An EDAX Eagle III XRF spectrometer equipped
with an Rh anode and a polycapillary, which focuses the X-ray beam
down to 30 μm full width at half maximum (FWHM), was used. An
EDX detector with a resolution of 140 eV was used to measure the
X-ray fluorescence. The spectrometer was operated at 20 kV and
300–450 μA. Centimeter sized X-ray maps were collected over 256 by
200 pixels with steps of 30–50 μm. The counting time was
600–2000 ms per pixel. Additionally, a set of 27 point μXRF spectra
was acquired on metal-rich regions on ryegrass. The spectral dataset
was used to statistically determine elemental associations in leaves
(see Section 2.4).

2.3.2. Scanning electronic microscopy coupled with EDX (SEM-EDX)

Element distributions and leaf-specific morphologies were studied
using an SEM-EDX instrument (Jeol JSM 6400 SEM) equipped with a
Bruker SPD analyzer operating at 20 kV. Portions of leaves were dried,
fixed on a carbon substrate and covered with carbon before analysis.
Environmental SEM-EDX measurements using a Quanta 200 FEI
instrument equipped with a Quantax EDX detector were also carried
out to control the morphology and elemental composition of the
analyzed area before ToF-SIMS measurements. Leaves were dried and
fixed on a carbon substrate without any further preparation before
analysis. The apparatus was operated in low-vacuummode (~133 Pa)
at 25 kV.

2.3.3. Time-of-flight secondary ion mass spectrometry and imaging

(ToF-SIMS) for depth profiling

Surface analysis was performed on lettuce leaves using ToF-SIMS in
the necrotic zones enriched with metals. Dried leaf tissue wasmounted
directly into the instrument sample holder without any further
preparation and then examined at room temperature. Regions of
interest which were identified using SEM-EDX were systematically
investigated in Tof-SIMS experiments. Positive and negative spectra and
ion images were obtained on a Tof-SIMS 5 instrument (IONTOF,
Münster, Germany) equipped with 25 Kev Bi+ or Bi3+ primary ion
sources and a reflectron mass analyzer. A pulsed low-energy electron-
flood gun (0.6 nA DC) was used for charge compensation. Static SIMS
spectra were recorded over an area of 500×500 μm using the Bi+ or
Bi3+ sources. Under the employed experimental conditions, the mass
resolution (m/Δm) ranged from 2000 to 8000 (fwhm) at m/z 500
depending on the sample. Positive and negative images were recorded
over an area of 500×500 μm with 256×256 pixels using the Bi3+

source operating at 25 KeV with a spot size of about 1 μm. The Bi3+

source provided better ionic yield for organic species compared to Bi+.
Raw data streams were acquired in which the complete spectrum was
recorded at each pixel of the image, allowing for reconstruction of
spectra from chosen regions (retrospective microanalysis) or recon-
struction of chemically specific images based on the intensity of chosen
peaks from the average spectrum(retrospective chemical imaging). The
data were acquired in static mode. Depth profiles were also recorded.
Two ion beams were operated in dual beam mode. The first beam was
used to sputter a crater, while the second beam progressively analyzing
the bottom of the crater. An area of 890×890 μm was sputtered using
Cs+ or O2

− beam sources both operating at 0.5 kV. Analyses were

performed over an area of 500×500 μm with the Bi3+ source. The
sputtering time was fixed to 1500 s for depth analyses under 100 nm.
The depth thickness was calculated using the sputtering yield
(comprising between 1 and 4) and atom density of the analyzed
component (here 3×1022 atom cm−3). For all measurements, accurate
mass calibration of positive and negative spectra was carried out using
low-mass single component default peaks.

2.4. Statistical analysis

Metal concentrations in plants were subjected to analysis of variance
(ANOVA), using the software Statistica, Edition '98 (StatSoft Inc., Tulsa,
OK). Significant differences (p-valueb0.05) were measured by the LSD
Fisher test.

The point μXRF spectra recorded on ryegrass was subjected to
principal component analysis (PCA) to investigate elemental associa-
tions in leaves (see Supporting information for more details).
Differences between μXRF spectra and relationships among elemental
contents were assessed by screening the ordination of the spectra in a
factorial map based on the scores of the first two principal components.
The corresponding loadings (the weights for each variable when
calculating the first two principal components) were also examined
on a two-dimensional canonical graph (a correlation circle inwhich the
direction and length of arrows allow for evaluating the correlation
between variables and the relationships between variables and
principal components). Then, tentative grouping of spectra into three
families was performed to highlight different types of elemental
associations. A Monte Carlo test was performed with 1000 permuta-
tions to confirm the significance of this grouping (see e.g., Pascault et al.,
2010). PCA of μXRF spectra was conducted using R software version
2.12 (R Development Core Team, 2010)with the ade4 package (Chessel
et al., 2004).

3. Results and discussion

3.1. Influence of metals and plant species on foliar uptake

The rate of bulk atmospheric deposition was estimated to be about
325.2±12.8 mg.cm−2 week−1, with 139.4±7.8 mg.cm−2 week−1

of lead. All results concerning metal and metalloid concentrations in
atmospheric fallouts recorded during the entire exposure period are
given in Table 1 (concentrations±standard deviation).

As in atmospheric fallouts, lead was found to be the most
concentrated metal in plant shoots. After four weeks of exposure, its
concentration reached approximately 125, 300 and 700 mg Pb.kg−1

of dry weight for lettuce, parsley and ryegrass shoots, respectively.
Antimony, tin, arsenic and cadmium concentrations were significant-
ly (ANOVA, pb0.05) higher in exposed plants than in the controls.
The copper and zinc concentrations in shoots were slightly increased
relative to the controls in parsley and ryegrass leaves only.

After only two weeks of exposure to atmospheric fallouts, the metal
contents in plant shoots were relatively high (Table 1): the Pb content
reached about 100 mg.kg−1 DW in lettuce and parsley and
300 mg.kg−1 DW in ryegrass. These values are largely higher than the
threshold set by the European Commission Regulation (EC) No. 221/
2002 for leafy vegetables and fresh herbs, (0.3 mg.kg−1 FW, which is
about 6 mg.kg−1 DW). Similarly, Cd concentrations of 1.7, 0.8 and
1.6 mg.kg−1 DW were found for lettuce, parsley and ryegrass,
respectively, compared to limit values of 0.2 mg.kg−1 of fresh weight,
which is about 4 mg.kg−1 DW (Kabelitz and Sievers, 2004). These
values are one to two orders ofmagnitude higher than those obtained in
soil–root metal transfer with the same PM at a concentration of
1650 mg.kg−1 of PM in soils (15.2 and 1.6 mg.kg−1DW in plant shoots,
for Pb and Cd, respectively) (Uzu et al., 2009). These data suggest that
the foliar pathway formetal uptakemay be predominantly the soil–root
pathway in urban and industrial environments. In the present study,



some PM are ultrafine, i.e., sub-micronic and nanoparticles as observed
by SEM-EDX (not shown) inducing a high reactivitywith a large specific
surface of PM (Auffan et al., 2009b). Foliar uptake is likely favored by
these PM morphologies and the use of young plants (three-week old).

Indeed, according to Guderian et al. (1985), plants accumulate more
atmospheric pollutants during the first stages of their development.

Most of the metal concentrations, particularly lead, were higher in
ryegrass than in lettuce and parsley (Table 1). The washing process

Table 1

Metal and metalloid concentrations in plant shoots (mg kg−1 of dry weight) and in atmospheric fallouts (mg cm−2). Results are expressed as the mean of five replicates±SD. Zn

and Pb concentrations were determined by ICP-OES whereas other concentrations were determined by ICP-MS.

Metal and metalloid concentrations in plants (mg.kg−1 of dry weight±SD)

Cu Zna Cd Sn Sb As Pba

Lettuce Controls 6.1±1.1 29.5±3.9 0.4±0.1 0.2±0.1 0.1±0.0 0.6±0.1 2.1±0.2

After 2 weeks 6.3±0.3 31.6±2.5 1.7±0.2 0.9±0.1 0.8±0.1 0.6±0.0 107.4±8.6

After 4 weeks 6.8±0.6 29.1±1.5 1.7±0.1 1.3±0.1 1.4±0.2 1.1±0.1 122.0±5.5

Parsley Controls 2.3±0.1 19.6±0.8 0.5±0.1 1.0±0.1 0.2±0.1 0.2±0.1 0.7±0.1

After 2 weeks 2.4±0.1 23.4±2.1 0.6±0.1 4.9±0.3 1.0±0.0 0.3±0.0 96.0±9.7

After 4 weeks 4.4±1.7 25.4±1.9 0.8±0.1 7.9±1.9 1.8±0.2 0.4±0.0 298.7±33.1

Ryegrass Controls 5.5±0.1 26.5±2.9 0.8±0.2 2.0±0.3 0.6±0.1 0.2±0.0 4.7±0.2

After 2 weeks 5.9±0.1 26.5±2.9 0.8±0.1 13.3±1.4 1.0±0.1 0.5±0.0 320.2±11.1

After 4 weeks 7.0±0.1 32.1±1.2 1.6±0.1 16.4±0.7 4.5±0.1 0.8±0.0 700.1±27.5

Metal and metalloid concentrations in atmospheric fallouts (mg.cm−2±SD)

Cu Zna Cd Sn Sb As Pba

For 4 weeks 1.7±0.2 6,9±0.8 0.9±0.1 2.6±0.5 1.9±0.3 0.2±0.0 456.2±6.4

a Determined by ICP-OES whereas the others were determined by ICP-MS.
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Fig. 1. μXRF elemental maps obtained for a portion of rye-grass leaf, and SEM-EDX analyses in the red triangle region. The EDX spectra for the particles noted 1, 2 and 3 are shown.

Particle 1 is an aggregate of sub-micrometer-sized particles of metallic Pb, particle 2 is rich in Fe and Pb, and particle 3 is probably an alumino silicate.



contributed to a loss factor of about 25% for lead, suggesting that a
part of the PM was removed by washing. However, after four weeks,
the amount of lead still remained 3 and 7 times higher in ryegrass than in
parsley or lettuce, respectively (Table 1). The washing process cannot
fully explain the metal retention in ryegrass. The differences in plant
morphology and physiology may be responsible for the differences in
metal contents observed in our plant samples. Barber et al. (2004)
reported that many factors may affect the air–vegetation transfer
including plant characteristics such as functional type, leaf surface area,
cuticular structure and leaf longevity. Little (1978) and Madany et al.
(1990) showed that rough and hairy leaves accumulate significantly
more lead (up to 10-fold) than smooth leaves. Rao and Dubey (1992)
reported that morphological factors such as stomatal index and trichome
density and length affect the efficiency of dust collection by plants. These
hypotheses of surface structure were confirmed by scanning electron
microscopy (SEM) images of plant surfaces (Fig. S1). Although the leaf
surface of ryegrass is hairless, the plant morphology with many long
leaves and silicon-enriched parallel structures (Fig. S1 — A1) with an
upper surface evenly ribbed favors the interception of fine atmospheric
PM as observed in Fig. S1 — A4. Birbaum et al. (2010) showed that
adsorption on the leaves is reasonable, as the finest particles prefer to
locate in the interphases of systems. Ryegrass was classified as a good
bioindicator for heavy metal atmospheric pollution (Garrec and Van
Haluwyn, 2002;NFX43-901, 2008). According toRichmond and Sussman
(2003) or Da Cunha and Do Nascimento (2009), silicon largely present in

ryegrass leaves (as shown in Fig. S1—A1)might favor itsmetal tolerance.
Although parsley is hairless as well, it forms a rosette of tri-pinnate finely
cut leaves. Thus, parsley can serve as a good filter for atmospheric PM
with its rough leaves to trap particles (Fig. S1 — B). Moreover this plant
species exhibits a distinct specific leaf surface area due to the dissected
shape of its leaves, as shown by the SEM images in Fig. S1—B. As reported
by Schreiber and Schönherr (1992), specific leaf surface areas could
explain differences in rates of uptake between plant species. Lettuce
leaves exhibit wide and smooth areas with small-sized granular
structures (Grzegorzewski et al., 2010). They have a lower specific surface
compared to the other plants studied but still present a large surface
exposed to atmospheric fallout (Fig. S1—C). Their leaves are sensitive and
highly damaged by environmental stresses; necrotic zones were largely
observed in the plant surface (as shown by the Fig. S1 — C7). Ward and
Savage (1994)measured the Pb content in various plants exposed to road
traffic emissions. Although washing protocols differed from the present
study, they observed the same order for lead contents in plants:
grass>aromatic plants>leaf–vegetables>cereals>fruits.

3.2. Mechanisms potentially involved on a microscopic scale μXRF and

SEM-EDX observations of plant leaves

In ryegrass leaves, particles of several micrometers in diameter,
most often consisting of aggregates of sub-micrometer sized particles,
were observed on leaf surfaces by SEM-EDX (Fig. 1). Metallic Pb- and
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Fig. 2. μXRF elemental maps obtained for a portion of rye-grass leaf, and μXRF spectrum of the Pb-rich spot.



Pb–Fe-rich grains were identified as well as aluminosilicate particles
attributed to industrial and soil-derived particles, respectively. Some
Pb-rich regions were larger than the particles observed on the leaf
surface (Fig. 2). Because of the relatively weak resolution (about
30 μm), μXRF spectra most likely integrate the signal of several particles
and the leaf tissue. Considering the size of the particles, it may be
difficult to characterize individual particles by this technique. Therefore,
a statistical analysis was tested on a set of 27 μXRF spectra recorded on
ryegrass. All 27 point spectra (Fig. S2) contained peaks assigned to P, K,
S, Si (Kα emission line), Ca and Cl (Kα and Kβ emission lines). Some of
them also contained peaks corresponding to Al, Mn, Ti, Zn (Kα emission
line), Fe (Kα and Kβ emission lines) and Pb (Lα and Lβ emission lines).
Results of the principal component analysis are shown in Fig. 3. The first
two principal components accounted for 56% of the total variance
(Fig. 3a). The main differences in elemental contents were observed
along the first axis of the PCA (PC1=38% of total variance), which was
mainly associated with Fe, Ti, Al, Mn, Pb and P, in decreasing order of

importance, as revealed by examination of the PCA loadings in the
correlation circle (Fig. 3b). The second axis of the PCA (PC2=18% of
total variance) was mainly associated with Ca, S, Zn, Si and Al. Detailed
examination of the PCA correlation circle provided additional informa-
tion on elemental associations in plant leaves (Fig. 3b and details in
Supporting information). Fe and Ti were highly and positively
correlated but were negatively correlated with Pb (Fig. 3b). These
elements probably come frommineral dust, due to soil re-suspension in
the atmosphere (Dall'Osto et al., 2010). However, this negative
correlation did not signify a total separation of Fe–Ti and Pb in plant
leaves, as shown by the ordination of the spectra in the PC1–PC2
factorial map (Fig. 3a). High and positive correlations between Al and Si
were also observed on the PCA correlation circle (Fig. 3b). The latter
suggests the presence of alumino silicate particles on plant leaves,
which was confirmed by SEM-EDX (Fig. S1). Three populations of
spectra were significantly discriminated by PC1 (Monte-Carlo test,
p valueb0.001): (i) spectra with high Pb and low Fe–Ti levels,
(ii) spectra with no Pb and intermediate Fe–Ti levels, and (iii) spectra
with low Pb and high Fe–Ti levels (Fig. 3a). The high Pb and low Fe–Ti
spots likely correspond to primary Pb compounds emitted by the
smelter. Previous characterization of the process particles allowed for
identification of Pb0, PbS, PbSO4, PbO.PbSO4 as major lead species (Uzu
et al., 2009). Because this group contained only three spectra, other
types of minor Pb-secondary speciesmay have beenmissed. Analysis of
a larger set of spectra would be required to identify them. The no Pb
groups may correspond to mineral dust of soil origin.

Parsley leaves were observed by μXRF and SEM-EDX. Aggregates of
particlesb1 μm were observed on the surface. As previously suggested
by the SEM observations of the leaf morphology (Fig. S1), the applied
washing processes appeared to be insufficient for removing all the
deposited PMs. Some of particles contained metallic Pb (Fig. 4). Other
Pb-containing particles were enriched in Fe and Mn, Ca and K as well,
whichmay correspond to ultrafine particle aggregation. The set of μXRF
spectra was too small to perform PCA analyses and highlighting
element correlations. Some particles (b2 μm) were located near and
at the edge of the stomatal openings (Fig. 4). Similarly, SEM-EDX
measurements were carried out on lettuce shoots, fine particles were
observed inside stomatal openings (Fig. S1) which confirmed our
previous observations (Uzu et al., 2010). Kozlov et al. (2000) studied the
transfer of Cu and Ni-rich particles in birch, and suggested that particles
may penetrate inside leaves through stomata. Fernandez and Eichert
(2009) proposed that particles could penetrate inside the leaf tissue
through pores present on the leaf cuticle and inside stomata. The
diameter of cuticular pores was estimated to about 2 nm by Eichert and
Goldbach (2008) and between 0.45 and 1.18 nm by Schönherr (2006).
Stomatal pores were estimated to be slightly larger, a few tens of nm
(Eichert et al., 2008). According to Uzu et al. (2011a), the finest PM
emitted by the recycling industry is larger than 2 nm, so they could not
enter by cuticular pores but could penetrate through stomatal openings.

Inorganic elements may also penetrate inside leaves after PM
dissolution depending on humidity, temperature and PM characteris-
tics (Schönherr and Luber, 2001). Moreover, as suggested by Gandois
et al. (2010) and Eichert and Goldbach (2008), metal concentrations
and speciation in leaves could be modified by interactions on the
phyllosphere between PM andmicrobes. Needle crystallites enriched in
Pb, not observed in the fallout PM,were observed on the parsley surface
(Fig. 5-a). This was also observed in our previous work on lettuce
(Uzu et al., 2010). They likely correspond to Pb-containing secondary
compounds that could be due to transformations occurring after contact
with the leaf. The various hypotheses are as follows: (i) changes of
temperature and humidity transform PM at the leaf surface (ii) changes
due to phyllosphere activity (Lindow and Brandl, 2003; Uzu et al.,
2010). The second hypothesis was supported by absence of needle
particles in aged PMs collected in the atmosphere (results not shown).
Molecular characterization of these crystals by micro-analytical tech-
niques is in progress. Observations with higher magnification showed

Fig. 3. Results of the principal component analysis of the set of μXRF spectra.

a: Representation of the spectra in the PC1–PC2 plane. b: Correlation circle

representing the 39 variables used for the PCA in the PC1–PC2 plane.



some lead-rich particles internalized within plant tissues (Fig. 5-b
and -c).

3.2.1. Surface imaging and depth profiling of the lead-containing necrotic

zone in lettuces

Metal-containing necrotic zones located at the surface of lettuce
leaves were complementarily analyzed using ToF-SIMS. This technique
was used previously to study the distribution of metals (Becker et al.,
2008), nutrients (Metzner et al., 2008) and organic compounds (Jetter
and Sodhi, 2011) in plant leaves, but it is the first use for localization of
metal-rich PM and their secondary compounds.

A lot of observations and Tof-SIMS analyses were performed on
necrosis and lead-enriched specific zones of the leaves. Only the most
interesting and representative results are presented in this work.
Positive and negative ion spectra obtained from the leaf surface and
necroses-lead free were investigated (not shown) and compared those
of the lead-rich zone. The molecular image of a Pb-rich necrosis in
positivemodewas reconstructed and is presented in Fig. S3. The peak of
C2H5

+ at m/z 29 was defined as typical of the organic layer on the leaf
surface (cuticle). The peak of Ca+ at m/z 40 was typically found in

positive ion spectra of the necrotic zone, confirming the EDX analysis.
Characteristic peaks of Pb isotopes 206Pb, 207Pb and 208Pbwere found on
the central zone of the necrosis as observed on the elementalmaps. The
isotopic ratios of lead in the Pb-rich zones were 24% 206Pb, 22% 207Pb
and 52%208Pb, allowing for correct assignment of all molecular
fragments containing Pb. On the surface, the peak intensities of the
Pb+ molecular fragments were low. Thus, determining lead speciation
at the leaf surface was not possible. Depth profiling of this area was
performed using a Cs+ sputtering beam. Molecular images in positive
and negative modes were recorded after the profiling (not shown). The
profile for characteristic positive molecular fragments (Fig. 6) clearly
indicated a decrease in the C2H5

+ fragment, which is related to an
organic layer, whereas themolecular fragments related to Pb increased.
New Pb fragments such as PbSO2

+, PbO+ and PbCO+ clearly appeared
when the thin organic layer was removed, indicating the presence
of Pb compounds beneath the organic layer (estimated to be about
5 nm thick). Identification of PbSO2

+, PbO+ and PbCO+ fragments
agreed with the Pb species previously identified in necrotic zones,
including PbSO4 and PbCO3 (Uzu et al., 2010) and correspond to
primary particles.
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Fig. 4. SEM-EDX analyses of the surface of parsley leaf. Particles 1 and 2 correspond to metallic Pb. Particles 3 and 4 are enriched in Fe and also contain Pb, K and Ca. Some particles

are observed near and at the edge of the stomata (f).



The Pb+fragments predominated in the upper part of the profile
(between 20 and 1000 s sputtering time), with PbSO2

+ as the major
species at this depth. This result was confirmed by ToF-SIMS images
recorded after depth profiling, which predominantly showed local-
ized PbSO2

+ (Fig. S3). The difference observed between the surface
and depth analyses may be explained by differences in lead speciation
at the surface compared to below the surface, but this hypothesis
needs to be confirmed. ToF-SIMS observations clearly showed the

internalization in leaf cuticle tissues of lead-containing particles as
primary PM without any biogeochemical transformation.

3.2.2. Proposed potential foliar pathways

As previously suggested by electron microscopy (Fig. 5), particles
might be found on the surface of the leaves in a strongly agglomerated
form. They might be trapped by the cuticular wax and then diffused in
the leaf tissue (after dissolution or translocation through the cuticle).
Honour et al. (2009) reported that leaf surface characteristics were
affected by pollutant exposure: contact angle measurements indicated
changes in surface wax structure, suggesting a role of this external
protection mechanism in particle incorporation. The ToF-SIMS results
were consistent with particle penetration through the cuticle, as
suggested by the presence of Pb compounds beneath the organic
layer. Ward (1990) reported that several metals such as Co, Cu or Mn
could cross the cuticle. Grantz et al. (2003) suggested that PM
deposition could involve vegetative surface injuries and the uptake of
materials, such as metals, across the cuticle. According to Chamberlain
(1983) and Nair et al. (2010), this phenomenon depends on cuticle
maturity and environmental factors. The thickness of the organic layer
above the internalized primary compounds (about 5 nm) indicates that
the process could be a kind of internalization throughout the cuticle
wax. Birbaum et al. (2010) reported that wax lipids may quickly adsorb
on the large surface of the particles. This hypothesis was confirmed by
Schreiber (2005), who reported polar paths of diffusion across plant
cuticles, suggesting a new way for uptake of ionic compounds.

After diffusion through the cuticle, ultrafine particles may interact
with cells. As reported by Birbaum et al. (2010) for cerium dioxide
nanoparticles, fine particles can easily cross biological barriers such as

Pb
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Fig. 5. SEM-EDX observations of Pb-containing secondary compounds observed on the leaf surface. a. Needle crystallites enriched in Pb were observed in the parsley surface.

b. By zooming, some particles seemed to be currently in the way of a potential internalization. c. Spectrum showed that lead is the major component of internalized particles.
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Fig. 6. Depth profiling of a lead-rich necrosis obtained by ToF-SIMS.



the cell wall of plants. Nair et al. (2010) reported that nanoparticles
could be internalized during endocytosis with the help of a cavity-like
structure formed by a plasma membrane. Moreover, working on lead
absorption by root cells of maize, Raven et al. (1999) reported that
endocytosis via integral membrane proteins (IMPs) occurred in
specialized regions of the plasma membrane. Contrary to stomata
pathways which are not selective, uptake through the cuticle could be
strongly affected by physicochemical interactions between the solutes
or particles and cuticular components (Schönherr and Schreiber, 2004).
The membrane could invaginate and form a vesicle, allowing internal-
ization of lead compounds in the root cell. Measurements using
transmission electron microscopy on leaf sections should be acquired
to test this hypothesis.

4. Conclusions

This study showed for the first time amulti-element foliar uptake and
the accumulation of Pb, Cu, Zn, Cd, Sn, Sb and As for plants exposed to
atmospheric PM fallouts emitted by a lead-battery recycling factory.
Metal concentrations differed in the three plant species, with ryegrass
being the highest metal accumulator. The different washing procedures
used could not account for these differences, suggesting an influence of
the plant species, possibly related to their morphology and physiology.
The use of complementary techniques (μXRF, SEM-EDX and ToF-SIMS)
allowed the investigation of leaves at different scales and provided
information on chemical associations, morphology and speciation of lead
compounds at different depths from the leaf surface. After deposition of
metal-enriched particles, internalization through the cuticle and pene-
tration through stomatal openings might represent major pathways for
metal entry.

The internalization of Pb-rich particles and changes in metal
speciation observed have (i) environmental implications since leaves
affect the fate of Pb-rich particles after deposition, and (ii) health
implications since crops represent an entry point for metals in the food
chain (in the present case, for human and cattle), and metal speciation
is closely related to their bioaccessibility.
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