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ABSTRACT

Super-resolution (SR) aims at combining several aliased im-

ages of the same scene into a higher resolution image by using

the difference in sampling caused by camera motion. As the

problem of SR is generally ill-posed, techniques developed

in the literature often rely on hypotheses on the regularity of

the image. In this paper, we try to minimize these assump-

tions for the interpolation part of super-resolution. We de-

scribe situations where SR interpolation is invertible and/or

well conditioned. We first study the interpolation problem

for large numbers of images, when motions are pure transla-

tions. Then, we look at the more generic problem of super-

resolution interpolation with translations and rotations. We

give a simple condition on the number of images and zoom

factor for perfect recovery of the high resolution image. We

also study the conditioning in the critical case and propose a

regularization method which adapts to local sampling varia-

tions.

Index Terms— Super-resolution, image processing, as-

sumptionsminimization, regularization degree, perfect recon-

struction condition

1. INTRODUCTION

Super-resolution is the recovery of a high resolution (HR) im-

age from several low resolution (LR) images taken from dif-

ferent positions. If we do not restrict the problem to a partic-

ular case, we need to estimate the camera blur, the motions

and the HR image simultaneously, which is an ill-posed prob-

lem. Super-resolution has been reviewed a number of times

[1] [2] in the literature. Most techniques rely on a regular-

ized minimization of a data fit functional [3] [4] [5]. There

is a wide choice of functionals that we can try to minimize

to recover the HR image, e.g., L2 norm with total variation

(TV) regularization, L1 norm with TV regularization. The

choice of a regularizer is an implicit hypothesis (or a priori

information) on the content of the image. For example, per-

fect reconstruction with TV regularization is not possible if

the image contains too much texture [6]. Our aim is to avoid

or minimize the assumptionsmade on the HR image, and con-

sequently minimize the amount of regularization.

To reduce the complexity, motion is often restricted to a

composition of translations and rotations. In this paper, we

will also limit ourselves to the interpolation aspect of SR (mo-

tion parameters are given and camera blur is not inverted).

With these restrictions, SR can be viewed as an irregular sam-

pling problem which could be solved with dedicated tech-

niques [7] [8]. However, we can use the fact that each LR

image is acquired on a regular grid to obtain more power-

ful methods. For example, the pure translational case can

be viewed as a multichannel sampling problem. Papoulis [9]

showed that if we have a super-resolution factor M , only M2

LR images are needed to recover perfectly the HR image in

a noiseless set-up. In this case, no assumption on the image

is needed. It naturally leads to the study of approaches where

we do not regularize or regularize as little as possible.

In this paper, we first describe our theoretical context. We

then justify that a non-regularized approach is valid for trans-

lational SR interpolation when many images are available.

The conditioning of the system only becomes a problemwhen

the number of images becomes close to the critical case. We

then show that we have the same condition as Papoulis for the

invertibility of the problem when we allow for rotations. We

finally propose a local TV regularization scheme in the near-

critical case, when rotations are small, to reduce the noise

generated by badly conditioned areas.

2. THE SR INTERPOLATION PROBLEM

Let u be the HR image. We represent u as a discrete image (of

sampling step 1) because the optical system of a camera acts

as a low-pass filter on the continuous image before sampling.

The N LR images wi are formed by:

wi = SViu

where the operatorS is the sub-sampling by a factorM and Vi

is the motion of each LR image. We restrict this motion to a

translation in the next part, and will extend it to a composition

of a translation and a rotation in the rest of the paper. The SR

interpolation problem is the inversion of the linear map:

A : u → (SViu)i=1,N = (wi)i=1,N = w (1)

Throughout the paper, we study this problem under sev-

eral angles. First, we look at the conditioning when N >>

M2 for pure translations. Then we show that N = M2 is

sufficient for a perfect theoretical interpolation when motions



include rotations in the noiseless case. Finally, we study the

case where M2 ≤ N < M2 + ǫ, ( ǫ ∈ N) for rotation-

translation motions, i.e. invertible cases were it is more likely

to have a bad conditioning.

3. WELL-POSED TRANSLATIONAL SR

INTERPOLATION

In [10], it was shown that the condition number of the sys-

tem grows with the SR factor M . In this part, we show that

the condition number of the translational (Vi = Ti, where Ti

is a pure translation) SR interpolation problem converges to

one as N grows, a fact which was experimentally illustrated

in [11] in terms of the Cramer-Rao bound for HR image es-

timation. A similar result was demonstrated in [12] for the

reconstruction error. We give a quick demonstration for our

formulation relying on an argument from [12]. We consider

the 1D case for the simplicity of the formulas. If the 1D condi-

tion holds (N ≥ M and translations are all different), the HR

image can be perfectly recovered with a conditioning given

by the condition number of AHA. We show the following:

Proposition 3.1. If the translations follow a uniform distri-

bution (the translations (ti)i=1,N for each LR image are i.i.d.

random variables uniformly distributed in [0, M ]), the con-

ditioning κ of the system converges to 1 (in the distribution

sense) as the number of images grows.

Proof. To recover û (Fourier transform of u) at a particular

pulsation ω, we first write ŵi(ω) (Fourier transform of wi) as

a linear combination of the û(ω) :

ŵi(ω) =
1

M

∑

k∈Z

û(ω +
2πk

M
)ej(ω+ 2πk

M
)ti

Only M terms in the sum are non-zero. If there is more than

M LR images, it is an overdetermined system of size N ×M

for each pulsation:

∆Bûal = w

where ûal(k) = û(ω+ 2πk
M

),w(i) = ŵi(ω),∆ = 1
M

diag(ejωti)

and Bi,k = ej 2πk
M

ti . The conditioning of the system is con-

sequently the conditioning of R = BHB which is a Toeplitz

matrix with term Rr,s =
∑

i ej
2π(s−r)

M
ti . A direct applica-

tion of the central limit theorem shows that R converges to a

multiple of identity because the complex numbers ej
2π(s−r)

M
ti

converge to a uniform distribution on the unit circle (for

s 6= r). By continuity of the condition number, the condition

number κ(R) converges to 1.

In Fig.1, we plot the logarithm of the condition number

κ(R) of random realizations of R as N → ∞ for M = 2
and M = 4. It converges to 0 (i.e. the condition number

converges to 1) for large N . As R converges to a multiple

of identity, no inversion is needed when N → ∞. We just
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Fig. 1. Convergence of the conditioning of a 1D SR problem

with respect to the number of images. (a) 80 realizations of

the experiment with M = 2. (b) 80 realizations of the exper-

iment with M = 4.
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Fig. 2. Convergence of the estimator ũN . (a) Reference sig-

nal. (b) Reconstruction errors (light blue) for M=3 with pre-

dicted convergence speed in red. In dark blue is the mean of

the error for each N value (hidden under the prediction).

need to apply a normalized version of the adjoint operator of

A to w. This operation gives the mean of back-shifted zero-

padded LR images. We call ST the operation of up-sampling

by zero-padding by a factor M . We have:

ũN =
1

N

∑

i=1,N

T−1
i ST wi −−−−→

N→∞
u (2)

The central limit theorem for ũN gives a convergence speed

of 1√
N

for the L2 norm error of this estimator. In Fig.2, we

generate several SR experiments with the same reference sig-

nal (line extracted from a natural image). We then plot the

relative reconstruction error of the estimator ũN from equa-

tion (2) overlaid with the expected convergence speed.

We showed in this part that, with a large number of im-

age, a direct inversion is possible with a high probability. To

achieve this result, we did not make any assumption on the

HR image. It leads to an intuitive take on super-resolution: it

is very interesting to take more images than the critical case

to try to avoid regularization in the inversion process.

4. PERFECT INTERPOLATION IN A

ROTATION-TRANSLATION SET UP

In this part, we extend the result on the critical number of

images for perfect interpolation to motions composed of ro-

tations and translations. We consequently write the transfor-

mation of the LR images as a composition of rotations and



translations. We will consider the finite discrete case :

A : (CML×ML) → (CL×L)N

u → (SRiTiu)i=1,N

Here, the Ti and Ri are the translations and rotations by

Shannon interpolation. A is a linear map on the vector space

of discrete images. Thus, perfect recovery is possible if

N ≥ M2 and A is full rank.

We now show that N ≥ M2 is a sufficient condition under a

hypothesis on the transformations. Let us name the following

sampling grids: Γhr = [1, ML]2 ⊂ Z2 and Γ = M.[1, L]2.
Γc is the complement of Γ in Γhr, i.e. the support of images

in the kernel of S. We write ri the rotation on the coordi-

nates for LR image i and ti the value of its translation. The

following theorem states a sufficient condition for A to be

invertible: none of the displacement coordinates between two

different transform of two points of Γc should be an integer.

Theorem 4.1. If N ≥ M2 and ∀pi, pj ∈ Γc, 1 ≤ k1 < k2 ≤
N, ||r−1

k1
pi−r−1

k2
pj +(tk1−tk2)mod 1||0 = 2 , A is injective.

Proof. We show by induction over N that adding a LR image

decreased the dimension of the kernel of the function A by

a factor L2. We demonstrated the necessary lemmas in the

appendix for clarity purpose. Let:

An : (CML×ML) → (CL×L)

u → SRnTnu

We prove : ∀1 < n ≤ M2, dim∩k=1,nkerAk = (M2−n)L2

For n = 2: let pi ∈ Γc. Let vi = 1pi
. Let ui = T−1

1 R−1
1 vi.

We have Svi = 0. Consequently A1ui = 0 and ui ∈ kerA1.

We just defined (M2 − 1)L2 independent ui generating

kerA1: span(ui)i=1,(M2−1)L2 = kerA1. Similarly we

construct span(u′
i)i=1,(M2−1)L2 = kerA2. We calcu-

late the dimension of the intersection with Lemma A.2

(kerA1 + kerA2 = CML×ML):

dim(kerA1 ∩ kerA2) =

dim(kerA1) + dim(kerA2) − dim(kerA1 + kerA2)

= 2(M2 − 1)L2 − dim(kerA1 + kerA2)

= (M2 − 2)L2

Let n > 2. Let us suppose that dim∩k=1,n kerAk = (M2 −
n)L2. We use Lemma A.3: (∩k=1,nkerAk) + kerAn+1 =
CML×ML. By using the same dimensions relation as for n =
2, we get the result.

The hypothesis on the transformation is not a necessary

condition. In the proof, we imposed the invertibility in both

spatial directions, which is stronger than necessary (e.g. the

case of regular sampling is excluded but is already known),

but the space of excluded motion parameters has measure 0.

5. LOCAL CONDITIONING IN A

ROTATION-TRANSLATION SET UP

The fusion of rotated-translated grids is a sampling grid which

is generally not periodic. We expect local variations of the

spatial distribution of samples leading to a spatial variability

in the noise generated by the inversion of the system. In this

section, we show that we can predict this conditioning when

rotations are small (which would be a reasonable hypothesis

for a hand held camera), and use this prediction to regularize

adaptively with respect to local conditioning.

We study the conditioning in the critical case N = M2

where the problem is invertible (from the previous section).

We compare the reconstruction noise nrec of the system and

the reconstruction noise of a pure translational model at each

location. When LR images are contaminated by a noise n, the

reconstruction noise is nrec = A−1n.

We calculate the power of this noise locally. We restrict

the image space of the application A−1 to one LR pixel in the

HR image space to study its local behavior. Let x0 = [x0, y0].
Let x ∈ [x0, x0 + M − 1] × [y0, y0 + M − 1] = D ⊂ Z2.

Let 1x be the indicator function x ∈ D in the HR image. We

now consider the mapping:

A−1
x0

: E = A(span((1x)x∈D) → F = span((1x)x∈D)

w → A−1w

We call local conditioning at position x0, the conditioning

of A−1
x0

. This conditioning is the ratio of the bounds of the

quantity (greatest and smallest singular values):

||A−1
x0

w||, ||w|| = 1

We can calculate equivalently the bounds of ||Ax0u||, ||u|| =
1. Let u =

∑

bk1xk
∈ F with ||u|| = 1. We have :

||Ax0u||
2 = ||

∑

bkA1xk
||2

=
∑

k1,k2

b̄k1bk2(1xk1
)HAHA1xk2

=
∑

k1,k2

b̄k1bk2

∑

i=1,N

∑

y∈Γ

sincd(y − τi,k1)sincd(y − τi,k2)

where sincd is the finite discrete Shannon interpolator and

τi,k = ri(xk − ti). Because sincd is differentiable, we can

use the mean value theorem to compare this expression to a

pure translational one and obtain an expression of the form:

|||Ax0u||
2 − ||Atr

x0
u||2| ≤ K||t− ttr||

where t = (τi,k)i,k is the set of translations induced by the

motion, ttr is t averaged over the HR pixel (over index k) and

Atr
x0

is the translational SR operator associated with ttr and

K is a constant which does not depend on x0. Thus, for small

rotations, the noise of the system will behave as in a pure

translational case. Experiments showed that for rotations in



a small range (-5,+5 degrees), we can use κ(x0) = cond(R)
as a local conditioning measure, with R defined as in section

3 with the translations ttr. This measure can be calculated a

priori because it only depends on motion parameters, M and

the size of the image.

We propose a local total variation regularization scheme

where our local conditioning measure defines weights for the

TV term. We minimize the function:

J2(ũ) = J(ũ) + H(ũ)

H(ũ) =

∫

α.|∇ũ|

where α(x) = λlog(κ(x)). The choice of the logarithm was

driven by experiments where other increasing functions were

tested (identity, square-root). λ is the regularization param-

eter. Conventional TV regularization is achieved by taking

α(x) = λ. The selection of an optimal λ is an issue which is

not adressed here. In the following experiments, we choose

the λ achieving the best reconstruction in the L2 sense for

global TV regularization and local TV regularization. We

show in Fig.3 how we predict local conditioning. We gen-

erate 9 noisy LR images from a 240 × 240 HR image (SR

with M = 3, rotations between −5 and 5 degrees, transla-

tion distributed in [0, M ]2) and perform the inversion of the

system (1) without regularization. The amplitude of the re-

construction noise and the corresponding prediction of the lo-

cal conditioning show a good spatial correlation. The fusion

of the points of the 9 grids also illustrates the spatially vary-

ing nature of the sampling density. In Fig.4, SR interpola-

tion without regularization, with a global TV regularization or

with our local regularization scheme are compared. In Fig.4,

reconstruction without regularization is perfect in well con-

ditioned areas. Global TV regularization does not take into

account the spatial variations of the sampling density. Thus,

the regularization parameter λ is a trade-off. A large value for

λ would be needed to fill parts where holes are big (because

of the bad local conditioning of the data fit part) and a small

one for well conditioned areas. Consequently, the resulting

image is smoothed excessively in well conditioned areas and

not enough in badly conditioned areas. With local regulariza-

tion, smoothing occurs only in badly conditioned areas. Dif-

ferences are mostly noticeable in the images of the residuals

(Fig.4 (e) (f) displayed at the same scale).

6. CONCLUSION

We have studied super-resolution interpolation under several

aspects. We showed that the conditioning depends on the

number of images: if many LR images are available, the like-

lihood of a bad conditioning decreases. Avoiding regular-

ization accordingly would lead to SR interpolation without

hypothesis on the nature of the image. For more complex

motions (rotations + translations), we showed that the critical
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Fig. 3. Local conditioning of the SR problem. (a) Zoom on

the fusion of the 9 LR grids (40×40 pixels upper left corner).
(b) one LR image. (c) Amplitude of the reconstruction error

normalized by the input noise variance. (d) Local condition-

ing 2
√

κ(x).
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Fig. 4. Local TV regularization for critical SR. (a) HR image.

(b) Reconstruction without regularization, PSNR=11.38db.

(c) Reconstruction with best global TV regularization,

PSNR=27.11db. (d) Reconstruction with our local regular-

ization, PSNR=29.23db. (e) Reconstruction error with best

global TV regularization. (f) Reconstruction error with our

local regularization.



condition on the number of images still holds and is suffi-

cient almost surely. To fill the gap between well conditioned

invertible and ill-posed SR, we propose a way to regularize

locally the reconstruction problem when camera rotation is

small. With these developments, this paper completes the

available set of SR interpolation methods to the well posed

and badly conditioned invertible cases.
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A. APPENDIX

Lemma A.1. For 1 ≤ i ≤ N , let ui ∈ Cn×n, ui(r, s) =
xr

i y
s
i , we call ui 2D Vandermonde vectors with seed [xi, yi]. If

∀1 ≤ i < j ≤ N, xi 6= xj , yi 6= yj , dim(span(ui)i=1,N ) =
min(N, n2).

Proof. We show that the ui are linearly independent if N ≤
n2. Let us suppose

∑

λiui = 0. Let ui(s) = Xiy
s
i with

Xi = (xr
i )r. ∀s,

∑

λiui(s) =
∑

λiXiy
s
i = 0. The Xi form

an independent family of 1D Vandermonde vectors. It implies

∀s,
∑

λiy
s
i = 0 which we rewrite

∑

λiYi = 0, but the Yi are

also independent. Consequently, λi = 0.

Lemma A.2. If ∀pi, pj ∈ Γc, ||r−1
1 pi − r−1

2 pj + (t1 −
t2)mod 1||0 = 2, kerA1 + kerA2 = CML×ML.

Proof. We can construct a basis of kerA1 and kerA2 by tak-

ing the inverse transformations of the indicator functions of

the pixels zeroed by the subsampling. In the Fourier domain,

these bases are:

ûi(ω) = e−j<ω,r
−1
1 pi+t1>, û′

i(ω) = e−j<ω,r
−1
2 pi+t2>

which are 2DVandermondevectorswith seed [e−j<ex,r
−1
k

pi+tk>,

e−j<ey ,r
−1
k

pi+tk>]. We use Lemma A.1: kerA1 + kerA2 =
span((ûi), (û

′
i)) = CML×ML (the seeds are all different be-

cause ∀pi, pj , ||r
−1
1 pi − r2p

−1
j + t1 − t2 mod 1||0 = 2).

Lemma A.3. Let N < M2.If ∀pi, pj ∈ Γc, 1 ≤ k1 < k2 ≤
N, ||r−1

k1
pi − r−1

k2
pj + (tk1 − tk2)mod 1||0 = 2 and

dim(∩k=1,nkerAk) = (M2 − n)L2 then ∩k=1,nkerAk +
kerAn+1 = CML×ML.

Proof. Let (ei) be a basis of ∩k=1,nkerAk of size (M2 −
n)L2. In the basis (uj)j=1,n of kerA1,:

ei =
∑

αi,juj

Let u′
i a basis of kerAn. With the hypothesis, any linear

combination of ei, u
′
i is a linear combination of independent

Vandermonde vectors. Therefore, dim(span((êi), (û
′
i))) =

min((ML)2, (M2 − n)L2 + (M2 − 1)L2) = (ML)2.
Thus, we have ∩k=1,nkerAk + kerA2 = span((êi), (û

′
i)) =

C
ML×ML.


