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ABSTRACT

This paper gives a simple approximate solution for obtaining the effective behavior of linear visco-
elastic heterogeneous media for the case of elastic inclusions immersed within a viscoelastic matrix.
The solution in the Laplace—Carson space is obtained by the Generalized self-consistent model and the
simplification is in an explicit expression of the inverse Laplace transform. It is shown that the solution
in Laplace—Carson space can be approximated by a convenient rational fraction which is given
explicitly as a function of viscoelastic parameters. This provides an easy way to perform the inverse
Laplace transform. Examples of typical composites, including possibly void and rigid inclusions, are
provided and show that the procedure provides reasonably accurate results. In addition, a complete
rheological representation can be provided in some cases for describing the behavior of the effective

medium.
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1. Introduction

Modeling the effective viscoelastic behavior of composite
materials by using homogenization methods has been effected by
different ways. A classical way is to combine the use of the corre-
spondence principle (Mandel, 1966) with homogenization solu-
tions for elastic composite media. Then, the behavior of the
viscoelastic composite is obtained by effecting the inverse Laplace
transform (Lee, 1955). Such results were obtained for the Mori and
Tanaka (1973) scheme by Wang and Weng (1992), Brinson and Lin
(1998), Le et al. (2007) etc. However, it is well known that the
Mori—Tanaka's model cannot be used for high concentration of
inclusions. In this case, the Generalized self-consistent model is
generally preferred. The Generalized self-consistent scheme (Herve
and Zaoui, 1993; Christensen and Lo, 1979) was used by Rougier
et al. (1994), Beurthey and Zaoui (2000), Masson et al. (2012). The
main problem in this last case is that performing the inverse Lap-
lace transform becomes arduous because the expressions of the
effective properties in the Laplace space are not rational fractions as
functions of the Laplace variable. In this case, more sophisticated
means must be used to perform the inverse transform. For example,
Padé’s approximation was used by Selivanov and Chernoivan
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(2007), the collocation method by Schapery (1962) followed by
others (Rekik and Brenner, 2011), while a method for obtaining the
relaxation spectra by using Bromwich integration contour was
provided by Rougier et al. (1994). The inverse Laplace transform
can be also performed by using a semi-analytical computation
(Donolato, 2002).

In this paper, a simple, straightforward method is presented in
Section 3 for obtaining a suitable approximation of the effective
behavior in the Laplace—Carson space, allowing to perform easily
the inverse Laplace transform. The classical solution of the Gener-
alized self-consistent scheme is recalled in Section 2. The approx-
imate solution in Laplace space is presented in Section 3. Section 4
is devoted to the presentation of different results in the case of
composites containing elastic inclusions within a viscoelastic
matrix. Results are compared with those obtained by the semi-
analytical method of Donolato (2002) and with those obtained
from Bromwich integration contour (Rougier et al., 1994).

2. Generalized self-consistent scheme and its solution in
Laplace—Carson space

2.1. Constitutive equations for an isotropic viscoelastic medium
In the following, a viscoelastic composite material is studied

where the phases are non-aging viscoelastic materials or elastic ones.
The constitutive stress—strain relation for a non-aging viscoelastic



material is given classically (Christensen and Freund, 1984; Salengon,
2009) by a Stieljes integral as:

t
o(t) = /IR(t—r) :%dz =R(: ®)e (1)
0
or reversely:
t
g(t) = /J(t—r):%r =J:®)o (2)
0

where R, J are tensorial relaxation and creep functions. The convo-
lution of two functions f and g, denoted by “f®g”, is defined by:

+®
fog)x) = / fix— ng(t)de 3)

For a viscoelastic isotropic material, tensor R depends only on
two scalar functions Ry (t) and Ry (t) which are relaxation functions
for compression and shear. The behavior of the material can be
expressed by using the following form:

o(t) = Re(t)®tre(t)1 + 2R, (t) ®e(t) (4)
where e is the deviator of strain tensor.

2.2. Laplace—Carson transform

The Laplace—Carson transform f* (s) of a real function f(t), t > 0
is obtained from its Laplace transform f(s) by:

%

£s) = sfs) = s / et f(t)dt (5)

0

Effecting the Laplace—Carson transform of the first expression in
(4) leads to:

.

o' (s) = Ry(s)tre’(s)1 + 2R, (s)e" (s) (6)

which provides also:

" 1 . 1 .
€(s) = Wm (s)1 +ms (s) (7)

where s is the variable in Laplace—Carson space.

These expressions show that for any fixed value of s, the stress—
strain relation in Laplace—Carson space is formally equivalent to
the elasticity constitutive equation of an isotropic linearly elastic
material.

2.3. The inverse Laplace transform

The most sophisticated way to perform the inverse Laplace
transform off(s) is to use the Bromwich integration contour (when
possible). This method can be avoided in the case where f(s) is
a rational function. In this case, the expression of the inverse Lap-
lace transform is recalled in Appendix A. An approximate semi-
analytical solution which can be used for any expression of f(s) is
presented by Donolato (2002). For a real function f(t),t > 0 and its
Laplace—Carson transform f* (s), the approximate expression of the
inverse transform is given by:

1 d

mm[“ng(u)] (8)

falt) =

where n is the order of derivation, u = t/n + 1 and function g (u) is
obtained by the change of variable s = 1/u into function f* (s).

The main problem in the use of this explicit expression is that
the solution is obtained at convergence for large values of n, while
the complexity of derivations increases strongly when the order
of derivation is higher, which prevents practically the use of the
method for too high orders. This method is called in the following
“Differential method”.

2.4. The Generalized self-consistent scheme

The Generalized self-consistent scheme is based on a composite
spherical inclusion immersed into an infinite domain Q. This
composite inclusion is multi-layered as shown in Fig. 1 and char-
acterized by the radii of the spheres rj, i € [1, n] and by the prop-
erties of the constituting materials, namely the incompressibility
and shear moduli. All media are considered thereafter as isotropic
and characterized by the incompressibility and shear moduli (k;, w;).

Obtaining the effective moduli from the Generalized self-
consistent scheme rests on a fundamental result due to Eshelby
(1956) which has shown that the difference of elastic energy
between the elastic medium U of the medium with inclusion and
the energy Up of the medium without inclusion is given by:

U=U-1 /(l"u"“ — e 1u) ds )
N

where S is the interface between inclusion and matrix, t° and u® are
the traction and displacement on the surface without inclusion
while t"* " and u™ * ! are the same quantities for the medium with
inclusion. Then, the composite inclusion has the same energy as
a volume of material having the effective properties if there is no
difference between both energies, leading to:

/(tou"“ —t10)ds = 0 (10)

This result was used by Christensen and Lo (1979), leading to
the effective moduli given thereafter. In addition, the limit values of
the effective moduli obtained when the inclusion is voided or rigid
are given.

2.4.1. Effective modulus in Laplace—Carson space : general case
Applying the corres‘pondence principle, the effective incom-
pressibility modulus Rx(e") of a n-phase medium is given from

ion of the h
alized self-consistent scheme.

Fig. 1. Schematic r

spherical layers in the Gener-



the properties R,:(i’ and R;(i) (i = 1,2...,n) of the constitutive
media by:

*(n) *(n)\ H(n-1)
Rl _ prn) _ (3R“ +4R, )QZ]
K o K

(an)
i)

where matrix Q" ~ " is given in Appendix B.1.
The effective shear modulus R;“’"’ is the positive root of the
quadratic equation:

o REDND (R
A'(s) (ﬁ) +B (s)(#) +C'(s) =0 (12)
i 1

where the “coefficients” A* (s), B* (s) et C* (s) are given as functions
of sin Appendix B.2. Under this form, the coefficients of the second
order equation are terms in which geometrical parameters and
elastic properties are mixed. In the following subsection, another
formis provided which allows to write the coefficient of the second
order equation as polynomials in the Laplace variable s.

2.4.2. A convenient form for the coefficients of the second order
equation governing the effective modulus in Laplace—Carson space:
case of two phases

It is shown in Appendix B that the previous recurrence relation
provides the linear system involving the normalized effective
modulus Teg:

’)’0+3Cé A’{

Yo — 2C} B!
e =T (13)
ueff(YO - ]2C3) 0
Terr (Yo +8C3) 0

where all coefficients are unknown constants and where the
transfer matrix T is given below as a function of the ratio & = r3/ry
(through matrices €, and C; given in Appendix B.2) and of the
elastic properties of the matrix and of the inclusions.

T = (kCe(a) + uCy(e)) (W1 + g Wo)Ly (X7) (14)

where x; is a function of the elastic properties of the inclusion
and where the pseudo-elastic coefficients k, u of the matrix were
introduced. The determinant of this homogeneous linear system for
unknowns yq, G, A7, Bf must be null for having a non-zero
solution, which leads to a second order equation where the over-
all normalized shear modulus fg is obtained by

Afier)*+Besr + € = 0 (15)
with:
A=4Ap
B = Ay — 2A13 + 3024 —2Ay4 (16)
C = —A34

where Ay is determined from the coefficients of the transfer
matrix by:

T T,

A, — k1 RZ‘ 17

kl T“ TIZ ( )

Replacing the pseudo-elastic coefficients of the matrix by
transforms of the relaxation functions produces:

*

T'(s) = (R;<2'(S)Cx(a)+ R;(Z](S)Cu(a))
x ((R;‘Z](s)w, + R;‘“wo)l.] (xl)) (18)

Under this form, it appears that the coefficients of the second-
order equation are known polynomials of s, as soon as the relaxa-
tion functions R;(Z’(s) and R;m(s) are polynomials or rational
fractions.

a) Voided inclusion

For voided inclusions (ky, uy) < (k;, ) for [i = 2:n], matrix T' (s)
in (18) is replaced by Tg(s):

To(s) = R'? (5)Cu(@) + Ry (5)Cul) (19)

b) Rigid inclusion

For rigid inclusions, (ky, gy ) => (k;. ;) for [i = 2:n]. Therefore, the
transfer matrix becomes:

T.6) = (RSP 6)Ck(e) + R (5)Cu(e)) P (20)

where P is a permutation matrix, given by (B.59). The detailed
method for providing T:) et T; is explained in Appendix B.2.

3. An approximate solution in real space

Except in very specific cases, providing closed-form expressions
of the inverse Laplace-transform of the values of R} (s) and R;(s) is
not possible. The use of Bromwich integration contour is possible,
as shown by Rougier et al. (1994). The construction of the poly-
nomials in the Laplace variable appearing in the expression of the
effective modulus would be a significant help for constructing such
solutions for various viscoelastic properties. However, its use needs
a careful analysis of poles appearing in the expression of the
effective modulus and a numerical integration on some parts of the
Bromwich contour. So, a more direct approximate solution was
preferred in this paper.

Indeed, from another point of view, providing the inverse Lap-
lace transform of a rational fraction of s is possible through alge-
braical operations. Therefore, a practical way to build the inverse
Laplace Transform is to obtain approximations of the previous
functions by rational functions. This led for example to use the
Padé’s approximation, which allows to build an approximation of
the Laplace transform by a continued series of rational fractions.
This is obviously possible, but the rational fractions contain quickly
many terms, which prevents its use at any wished accuracy. The
solution which is built thereafter is obtained by using the specific
forms of the expressions of Ri(s) and Ry(s) provided by the
composite sphere model.

The effective incompressibility modulus is given in the Laplace—
Carson space by a rational fraction of s and its inverse transform can
be obtained from the results of Appendix B.1.

However, the effective shear modulus is given by the solution of
a quadratic Equation (12) and has therefore the form:

=B(s) £ VA(S) oy

RLV(s) = == Ris) @n

where A (s), B (s), C (s) are polynomials in s given in (B.50) and
A(s) = B(s)2 —4A(s)C(s) is also a polynomial in s.



'Ehen this function will be approached by the approximant

R'(E (s) which has the form of a rational fraction:
“(eff) o\ _pef) . P(s)
R,V (s)=R, " (s) = G (22)

where P (s) and Q (s) are both polynomials in s. First, it must be
noticed that this approximate function must comply with both
conditions for extremal values of s:

The initial value condition:

(E)

(eff
IlmR €M) = I| im R,

(s) (23)
The ultimate value condition:

Jim Ry (oM (g) — Jlim R;(em(s) (24)

The construction of P (s) is achieved by looking for an approxi-
mate value of A (s) under a polynomial form. Thus A(s)=T2(s),
where:

T(s) = ap +a15+ ... + ams™ (25)

The initial value and ultimate value conditions are satisfied if:

. T(s) ) A(S) *m)
ler%M(S)R“ (s) s‘%m’au (s) (26)
and:
- T(S) e A(s) pom)
A A O = i gy e @7
where
= Ag+As+ ...+ ApsP (p =2m) (28)

The coefficients A; are always positive for any s. So, the initial
value and ultimate value conditions are satisfied if:

ap = VAo
(29)
{a,,. =By

All the coefficients of T (s) are then obtained as follows: ideally,
the square of the polynomial T (s) should approximate A. So:

P .
T(s)*= > bis'=A(s) (30)
i-0
leading to a sequence of p + 1 equations:

i
Z araiy  (i<m)
Aj=b; = ; (31)
Z arq;_, (i>m)
r=i-m
Obviously, it is not possible to comply with these equations
in totality, because the system is overdetermined. Taking into
account that two of these equations are verified by the initial value
and ultimate value conditions, m — 1 supplementary equations can
be used to provide the coefficients of T (s). Different strategies can
be adopted, either pseudo-inverse solutions or using only a set of
equations having a number equal to the one of unknown terms. The
use of pseudo-inverse does not respect the initial and ultimate
value conditions and therefore it was not efficient. Different tests

Q

Fig. 2. A two-phase composite inclusion.

were effected and a simple way producing satisfying solutions,
when compared with the solution provided by the Bromwich
contour, was to use the equations coming from higher terms and
lower terms of A (s) in equal quantity if the number of coefficients
of T(s) is even. If the number of terms is odd, one more term is kept,
chosen as the one producing the solution nearest to the solution of
second-order equations between the subsequent higher term and
the subsequent lower term.

It means that initial and ultimate conditions are verified upto
the highest possible order in the asymptotic expansion. This
leads (for a degree m of T (s) being even, which was the case for
all examples of this paper) to use the first set of Equation (31) for
i = 0...1my (withmy =m/2 —1 or my =m/2) and the second set of
equations for i = my...2m (with mz = 3m/2 or my = 3m/2 + 1).

In the following, the approximate solution using the procedure
described in this section based on a Rational Fraction (RF) will be
called “RF approximate solution”.

4. Application for a composite containing a matrix made of
a Maxwell viscoelastic material

The application is performed in this section in the case of elastic
inclusions surrounded by a matrix which is made of a Maxwell
viscoelastic material for which the relaxation functions in the
Laplace—Carson space are given by Equation (C.10) of Appendix C:

R = K1,

K+ 1S (32)
R P
TR

The Generalized self-consistent scheme is therefore used with
the two-phase composite inclusion given in Fig. 2.

The mechanical properties of the components used for this
example are given in Table 1.

The results obtained by the proposed method will be compared
with the solution of the differential method of Donolato and with
the solution of Beurthey and Zaoui obtained from the Bromwich

Table 1

Volume fractions and material properties of the constituents of a 2-phase visco-
elastic composite with one constituent of Maxwell type. Phase 1 contains the
inclusions while phase 2 contains the matrix.

Material phases Phase 1 Phase 2
Volume fraction (%) 37 63
Elastic properties
Bulk modulus « (GPa) 100 15
Shear modulus u (GPa) 20 2
Viscous properties
Bulk viscosity 7, (GPa.day) 0 24
Shear viscosity 7, (GPa.day) 0 18




contour integral (Beurthey and Zaoui, 2000; Rougier et al., 1994).
The effective shear modulus which is given by (21) is split into two
parts:

R = [1(9) £505) (33)
with
. B
F5) =~ 3
(34)

. Als)
) = ‘2/;((:)) R2(s)

where the first term f,‘ (s) is a rational fraction in s, so that, fi (t) is
given by Appendix A. A (s), A(s) are fourth-order and second-order
polynomials, defined by Appendix B.2, which can be rewritten as:

(35)

where —1/7;,—1/¢; are the distinct real roots of A (s) and A (s),
respectively, which are numerically determined.

The inverse Laplace transform using the Bromwich integral for
[z‘ is written in Beurthey and Zaoui (2000), Rougier et al. (1994)
under the form of the sum of exponential terms and of real inte-
grals on bounded intervals which are functions of 7; and ¢;. The
solution using the Bromwich integral is considered as an “exact
solution” since the integral on a finite interval can be easily
computed upto any wished accuracy.

The quality of the RF approximate solution depends obviously
on the ability of RF expression to approximate the solution of the
second order equation (exact solution) in Laplace—Carson space. So,
Fig. 3 shows the comparison between the shear moduli obtained in
the Laplace—Carson space from the exact solution and from the
approximate solution while Fig. 4 shows the relative difference
between both expressions given by the relation

R‘leﬁ](s) _ R‘(eﬁ)(s)
Err = £ R“e"'(:) (36)
m
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Fig. 3. Comparison between the exact solution and the RF approximate solution in
Laplace—Carson's space for a Maxwell viscoelastic matrix containing elastic inclusions.
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Fig. 4. Error evaluation coming from the RF approximate method in Laplace—Carson’s
space for a Maxwell viscoelastic matrix containing elastic inclusions.

These figures show that the approximate RF solution allows to
recover the solution in the Laplace—Carson space with an error
around 1-1074,

This comparison shows that the relaxation function coming
from rational fraction approximates correctly the solution in
Laplace—Carson space. So, a comparison is now made in the real
space after performing the inverse Laplace transform. This inverse
Laplace transform has been effected by using the RF approximate
solution, the exact solution using the integral on Bromwich contour
(Beurthey and Zaoui, 2000; Rougier et al., 1994) and the differential
method at different orders.

Fig. 5 shows the relaxation functions coming after Laplace
inverse from these different procedures. It can be seen that the RF
approximate solution is very close to the exact solution, while
a difference with the solution coming from the differential method
persists even for an order of derivation n = 5 in the differential
method, which is at the limit of the use of such a method for the
considered problem.

It implies that the RF approximate solution is clearly better than
the solution coming from the differential method. This result can be
confirmed by comparing the Laplace inverse of the RF solution with
the one coming from the Laplace inverse computed by using the

* RF approximate solution |:
] Differential method n=2
) T P + Differential method n=3
- — - Differential method n=5
—— Exact solution
3 T T T

Effective relaxation function (GPa)

0 20 40 60 80 100
Time (days)

Fig. 5. Relaxation function in real space for a Maxwell viscoelastic matrix containing
elastic inclusions.



4| * RF approximate solution

4 & + Differential method on RF approximate solution n=5

Effective relaxation function (GPa)

; i
0 20 40 60 80 100
Time (days)

Fig 6. Relaxation function obtained by the differential method on the RF approximate
solution compared to the exact Laplace inverse performed on the RF approximate
solution and exact solution for a Maxwell type viscoelastic matrix containing elastic
inclusions.

differential method. Indeed, there is no error coming from the
Laplace inverse of the RF solution, this one being a rational fraction.

Fig. 6 displays such a comparison. In addition, the exact solution
of Fig. 5 has also been reported again. This figure shows clearly
again that the error coming from the inversion by the differential
method is larger than the difference between the RF approximate
solution and the exact solution.

The conclusion coming from these results is that the RF
approximate solution produces results which are closer to the exact
solution than the differential method upto n = 5.

In the following, the applications are performed for Kelvin—
Voigt materials where the solution using Bromwich contour are
no more available. It is no more possible to assess the correctness of
results directly as for Maxwell type materials. However, two
comparisons can be still used to qualify the results: the comparison
between exact and RF approximate solution in Laplace space and
the comparison between exact Laplace inverse of the RF solution
with the Laplace inverse of the RF solution coming from the
differential method.

5. Application for a composite containing a matrix made of
a Kelvin—Voigt viscoelastic material

The method described in the previous sections is now used
for obtaining the effective properties of a two-phase composite
material made of a viscoelastic matrix of the Kelvin—Voigt type
containing elastic inclusions. Three cases were studied. The first
one is an intermediate case where the contrasts between elastic

Table 2

Volume fractions and material properties of the constituents of a 2-phase composite,
one constituent being a Kelvin—Voigt viscoelastic material. Phase 1 corresponds to
the inclusions and phase 2 to the matrix.

Material phases Phase 1 Phase 2
Volume fraction (%) 40 60
Elastic properties
Bulk modulus « (GPa) 70 0.1
Shear modulus g (GPa) 10 0.0375
Viscous properties
Bulk viscosity 7, (GPa.day) 0 5
Shear viscosity 7, (GPa.day) 0 1
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Fig. 7. Comparison between the exact solution and the approximate solution in
Laplace—Carson’s space for a Kelvin—Voigt viscoelastic matrix containing elastic
inclusions.

properties of the matrix and of the inclusion are finite. Next, the
case of matrix containing rigid inclusions is presented and finally,
the case of voided inclusions is studied.

5.1. Intermediate case

In this case, the inclusions are made of a linear elastic material
characterized by the incompressibility modulus k; and by the shear
modulus g,. The matrix is made of a Kelvin—Voigt viscoelastic
material for which the relaxation functions in the Laplace—Carson
space are given by Equation (C.10) of Appendix C:

{R:, = K+1S

* (37)
R, = n+mns

where k, u are the instantaneous incompressibility and shear
moduli. 9, n, are the bulk and shear viscosities, s is the Laplace—
Carson variable.

All physical parameters used for the application are assembled
in Table 2.

Error (%)

0 i i ; 4 ' '

0 50 100 150 200 250 300
Variable s

Fig. 8. Evaluation of the relative difference coming from the RF approximate method

in Laplace—Carson's space for a Kelvin—Voigt viscoelastic matrix containing elastic
inclusions.
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Fig. 9. Relaxation function in real space for the case of a Kelvin—Voigt viscoelastic
matrix containing elastic inclusions.

5.1.1. The shear problem

With the previous data, the coefficients A*(s), B (s), C* (s) within
the quadratic polynomial giving the effective shear modulus in
Laplace—Carson space are given by the fourth-order polynomials:

A'(s) = 1.4263-107s* +1.6118-10 45> + 0.0408s2
+0.4107s + 1

B'(s) = —3.2260-10"8s% — 1.1227-1074s> — 0.0689s>
~0.6621s — 1.4502

C*(s) = —9.5305-10"9s* — 6.1597-10 553 — 0.0583s2
— 0.8568s — 3.1101 (38)

The comparison between the exact solution and the RF
approximate solution in the Laplace—Carson space is given in Fig. 7
which shows a very good agreement. The level of approximation in
the Laplace—Carson’s space can be estimated by the values of the
relative difference, as previously.

The relative difference induced by the use of RF approximate
solution in Laplace—Carson space is displayed in Fig. 8 which shows
that this difference reaches 5% at its maximum.

— — — RF approximate solution
| * Differential method on RF approximate solution n

Effective relaxation function (GPa)

0 05 1 15 2 25 3 35 4
Time (days)
Fig. 10. Relaxation function obtained by the differential method on the RFapproximate

solution compared to the exact Laplace inverse performed on the RF approximate
solution for a Kelvin—Voigt viscoelastic matrix containing elastic inclusions.

| —RF approximate solution i
- — —Differential method n=2
————— Differential method n=3

+ Differential method n=5

Effective creep function (GPa_1)

0 50 100 150 200 250 300
Time (days)

Fig. 11. Creep function in real space of a Kelvin—Voigt viscoelastic matrix containing
elastic inclusions.

As previously, the question is now to evaluate the quality of the
RF approximate solution in the real space. To this aim, a comparison
is made with results given by the differential method of Donolato
(2002) described in Section 2. As explained before, the quality
depends of the level of the order of differentiation used in the
differential method summarized in (8). Fig. 9 shows that the
differential method used at orders 2,3 and 5 gives similar results,
both being, as in the previous section, significantly different from
those given by the RF approximate method of Section 3.

As in the previous section, the examination of the quality of the
solution coming from the differential method is performed by
comparing in real space the results coming from this method when
applied to the RF solution with those coming from the direct
inverse of the RF solution. Fig. 10 shows this comparison. The
results are similar to those obtained for the Maxwell material: the
curves are similar and the results coming from the differential
method become closer to the RF solution when the degree of
differentiation increases. There is however still a notable difference
between both solutions for the degree 5, which is the highest
degree of differentiation.

The effective creep function which is finally obtained is illus-
trated in Fig. 11. The results corresponding to the RF approximate
solution and those obtained by the differential method are pre-
sented, showing again for this new function that a gap appears
between both solutions.

From another point of view, due to the structure of its expres-
sion, the RF approximate solution presents another advantage: it
makes it possible to characterize a rheological model allowing to
recover the macroscopic behavior. This rheological model is shown
in Fig. 12. Determining the coefficients of the rheological model is
indeed given by:

2 1
[
Ri (39)
oS
11— Ri
E[ E, E; Ey Es
S AR A S A AR E
ni n2 n3 n4 ns

Fig. 12. Rheological model associated with the macroscopic shear behavior.



Table 3
Macroscopics viscoelastics properties of the rheological model associated with the
macroscopique shear behavior.

Element Shear modulus Viscosity
(GPa) (GPa.day)

1 15.78 053

2 16.98 5.66

3 0.19 5.05

4 0.26 8.09

5 1.08 47.05

where the coefficients R;, S; are obtained from the decomposition:

- (40)

*(eff) 1 Q(s) a
S) = = =
]u (s) R“(eff](s) P(s) lzl

The values which were so obtained are given in Table 3.
5.2. Case of the voided inclusion

In this first extreme case, the model contains a central hole
which is surrounded by a matrix with the same behavior of
viscoelastic Kelvin—Voigt type as previously. The mechanical
properties of each phase are found in Table 4.

As before, the comparison is made between the solution of
the second order equation and the RF approximate solution in
the Laplace—Carson’s space in Fig. 13. Both results correspond to
straight lines, indicating that the overall behavior is also close to
a model of “Kelvin—Voigt” type, corresponding to the behavior
of the matrix. Several authors have indeed found that the type of
behavior is identical to the behavior of the matrix, in the case of
rigid inclusions or voids. For example, the study by homogenizing
the behavior of damaged (containing voids) viscoelastic materials
comprising a matrix of type “Burgers” is also of “Burgers” type
(Nguyen et al., 2010).

The difference between both curves of Fig. 13 is shown in Fig. 14.
On this new example, the difference is less than 1-10~4, which
shows a good quality of the RF approximate model. The effective
relaxation function is plotted in Fig. 15, where the results obtained
by the differential method are also deferred. There remains a gap
with the differential method as in the previous result, but the
results of the differential method come nearer to the RF solution for
increasing values. Finally, Fig. 16 shows the creep functions ob-
tained by the differential method and by the RF approximate
method, showing the same trends as previously.

5.3. Case of rigid inclusions

In this case, inclusions are assumed rigid and the matrix is again
assumed of the Kelvin—Voigt viscoelastic type. All physical prop-
erties are given in Table 5. As shown before, the case of isotropic
stress loading corresponds to a rational fraction. Then, in the
following, only the case of shear loading will be studied.

Table 4
Volume fractions and material properties of the constituents of a 2-phase composite
containing voided inclusions.

Material phases Phase 1 Phase 2

Volume fraction (%) 67 33
Elastic properties
Bulk modulus « (GPa) 100
Shear modulus u (GPa) 0 20
Viscous properties
Bulk viscosity 7, (GPa.day)
Shear viscosity 7, (GPa.day)
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Fig. 13. Comparison between the exact solution and the RF approximate solution in
Laplace—Carson's space for a Kelvin—Voigt viscoelastic matrix containing voided
inclusions.

Fig. 17 provides again the comparison between the RF approxi-
mate values of the shear modulus in Laplace—Carson space with the
exact value, showing again a good agreement. As for the case of
voided inclusions, both results are located along a straight line,
showing that the effective behavior is still of Kelvin—Voigt type, as
for voided inclusions.

The relative error between exact and RF approximate solution in
Laplace—Carson space is provided by Fig. 18, showing that the
maximal error reaches now around 8-10~4,

The values of the relaxation function obtained by the RF
approximate solution and by the solution coming from the differ-
ential method are shown in Fig. 19. The results show again that the
solution coming from the differential method over-evaluates the
relaxation function.

Finally, Fig. 20 provides also the creep function obtained for the
effective material, which is another quantity of interest.

6. Evaluation of the accuracy of the RF approximate method

The difference between the RF approximate solution and the
exact solution of the Generalized self-consistent scheme depends
of the properties of the constituents. This section intends to assess
the error introduced by the RF approximate solution when using
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Error (%)

0.004
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0 i “"—ﬁi*#QA-AA ~
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Fig. 14. Evaluation of the error coming from the RF approximate method in Laplace—
Carson's space for a Kelvin—Voigt viscoelastic matrix containing voided inclusions.
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Fig. 16. Creep function in real space for a Kelvin—Voigt viscoelastic matrix containing
voided inclusions.

different physical parameters. Given the number of parameters
involved, the evaluation of this error will be performed assuming
that the “Poisson’s ratio” of the viscoelastic part is constant. Obvi-
ously, this assumption is not physically realistic. However, in
numerous studied physical cases, it was observed that the error
induced by the RF solution can be estimated by the one obtained for
extremal values of the true Poisson’s ratio over the physical range of
this parameter. So, this approximation allows to evaluate the error
coming from the approximate solution in the most general case.
In the most general case, the normalized effective modulus g
depends on the transfer matrix [T] (Equation (B.48)). Given the
assumption of “constant Poisson’s ratio”, this transfer matrix, for

Table 5
Volume fractions and material properties of the constituents of a 2-phase composite
with rigid inclusions.

Material phases Phase 1 Phase 2
Volume fraction (%) 67 33
Elastic properties
Bulk modulus « (GPa) © 100
Shear modulus g (GPa) ® 20
Viscous properties
Bulk viscosity 1, (GPa.day) 0 45
Shear viscosity n, (GPa.day) 0 30
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Fig. 17. Comparison between the exact solution and the RF approximate one
in Laplace—Carson’s space for a Kelvin—Voigt viscoelastic matrix containing rigid
inclusions.
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Fig. 18. Evaluation of the error coming from the RF approximate method in Laplace—
Carson's space for a Kelvin—Voigt viscoelastic matrix containing rigid inclusions.
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the Kelvin—Voigt model, depends on five independent parameters:
[ vm, vy, v, £, whose last two ones are given by:

’Y —
(41)

oy

EISE|=

where fj is the concentration of inclusions, vy and »; are the Pois-
son's ratios of the phases, u is the elastic part in the viscoelastic
shear modulus of the matrix, w; is the shear modulus of the
inclusion and 7, is the viscosity in the rheological model related to
shear.

In the following, three different values of Poisson’s ratio are
used: 0.1, 0.3, and 0.45.

Fig. 21 displays, for a Kelvin—Voigt behavior of the matrix,
the maximal errors (for values of y and ¢ between 0 and 1000)
in Laplace’s space coming from the RF approximate model as
a function of the concentration and for various values of the Pois-
son's ratio of the phases. Similarly, Fig. 22 provides the results of the
same systematic study for Maxwell type viscoelastic matrices.
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Fig. 21. Evaluation of the maximal errors coming from the RF approximate method
when using various physical parameters for Kelvin—Voigt viscoelastic materials.
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Fig. 22. Evaluation of the maximal errors coming from the RF approximate method
applied to various physical parameters for Maxwell type viscoelastic materials.

It is found that the error decreases with »; at vy constant and
inversely increases with »y at vy constant. For Poisson’s ratios being
comparable in both phases and for Kelvin—Voigt's model, an error
of less than 0.05 is provided for concentrations below 0.6. For
the Maxwell's model, an error of less than 10~* is provided for
concentrations below 0.6.

7. Conclusion

The Generalized self-consistent scheme is often used for pre-
dicting the behavior of matrix-inclusion composites. Using the
correspondence principle allows the use of all computations per-
formed for elastic materials for providing the values of effective
parameters in Laplace—Carson space. The main difficulty is in
providing the inverse Laplace transform. This paper has shown
a simple way to provide an approximate solution by construction of
a rational function which approximates the effective parameters
in Laplace Carson’s space. The method of construction allows to
comply with both initial value and final value conditions. The
results which were presented in the case of a viscoelastic matrix
containing elastic inclusions have shown that this new approxi-
mate method provides satisfying solutions for Maxwell type and
Kelvin—Voigt type materials.

Appendix A. Inverse Laplace transform of a rational
fractional function

Solving the viscoelastic problem makes it necessary to inverse
the Laplace transform from the Laplace space to real space. Let us
consider the function in the Laplace space F (s) which is a rational
fraction having the numerator P (s) and the denominator Q (s) such
that the degree of P (s) is less than the degree of Q (s). Q (s) has n
distinct zeros ay, k = 1,2,3,..., n. Then:

In the case where Q(s) = 0 has a multiple root of order p, while
the other roots, f4,02,....6, are simple, the rational fraction
becomes:

(A1)

P n B

Q(S) P D '<+‘+Z(s—ﬂ;)

k=1l

(A2)



Then, the inverse of the Laplace transform becomes:

P r
L’{ } {zAtP }+zBreBI (A3)
Q(s =1 r
where:
1 gk
A = I gt {6~ @) (Ad)
_ P@By)
=6 ()

Appendix B. Solutions of the Generalized self-consistent
model for two-phase media

Appendix B.1. The bulk modulus

Let us consider the volume Q defined in Fig. 1, Ry is the radius of
the phase k. On the boundary 8Q, the following displacement
condition related to a homogeneous deformation is applied:

Ux) = gx (B.1)
with ¢ constant and symmetric.

The displacement and stress fields solutions in each phase k are
sought with the form:

uld = Akr+%

oy = 3K —ﬂBk (82)
oy = 3KkAk+ Fkp, .
oo

The conditions of continuity of displacement and traction at the
interphase between a phase k and a phase (k + 1) can be written:

(k+l| Ry) = ulk‘(R )
{0~ ®3)
Urr (Rk) = o' (Ry)
which gives:
A A
Jea®Ro(31) = nero () (B4)
k+1 k
where the matrix J; (R;) is given by:
R; R2
(R — ) J
3 (k) {%‘_ _4yi,§73] (B5)

For the first phase (k = 1) and for the effective medium (k =n + 1
and Ry41— =), the value of strain field at the boundary and the
condition for having a finite displacement at the center of the
composite inclusion provide:

By =0

An+l =0

In addition, writing that the elastic energy inside the composite
inclusion is the same as the elastic energy within an inclusion

(B.6)

containing a material having the properties of the effective medium
(energetic neutrality) provides:
By =0 (B.7)

Relation B.4 can be considered as a recurrence relation.
Combining the recurrence relations for all layers provides:

bk () = ko () (B8)
with:
Qn—l — rﬁ Nn—k+l

P (B.9)
N = Jid) (R Dk (Ry)

Relation (B.8) leads to a system allowing the computation of keft
(which corresponds to kp 4 1):

R R Ri* | qppt!
n )fo = 4u, Ay (B.10)
(3Keff 3K,| —R—?I" Qérl—l
which provides:
3nRAQY " — 4y Y (B.11)
Keff = 3 n-1) .
3R )

where the matrix involved in the calculation of the incompressi-
bility modulus is given explicitly by:

Ay g1 — l‘n—k)R;_ak
3Kn ki1 + Ahn_ki1
3Kn_ks1 + Bk

3Kn—k+l + 4V'n—k+l

(B.12)

3Kn_k + An g1
Q(nil' _ rﬁ 3Kn_ks1 + Aln_ks1
k=1 3(Kn_k+1 _Kn—k)R,%,k
3Kn—k+l + 4l‘n—k+l

Appendix B.2. Shear modulus
Appendix B2.1. General case

The displacement field is sought in every solid phase k in the
form:

u® = u®(r)sin #2cos2¢

uf = UM (r)sin fcos fcos2p (B.13)
u;k' = Ug"(r)sin fsin2¢
UM () = Agr — K= 2k p 13 +3C“+3""+“"ﬂ
r 'k I Lk r2
U = Agr - B8t g 13 2ck+2D‘< (B.14)
0 k 3y
U = —U“;‘ (r)

The integration constants (A, By, Cy, Dy) are obtained as previ-
ously from the conditions at interfaces. For interfaces between



phases k and k + 1 with k = 2...n, we can write the classical
continuity relations of traction and displacement:

/;ku 'gk
L1 (R kel | = Lp(R k B.15
ke1(Ry) Cin k(Ry) G (B.15)
Dk+l Dk
where:
—r (3K — 213 3 3 (K + 1) ]
T 2
M 4 T
, (15K + My )rd -2 2
oK+ T =2 =
L(r) = ™ r4 r
i (3kk — 2m)r? —12p (9K +4py)
k P 5 3
(24K + 5m)r? 8y 3Ky
_”" 35 e ]
(B.16)

For the first phase (k = 1) and for the effective medium
(k = n + 1), the condition for obtaining a finite value of displace-
ment at the center and the condition of energetic neutrality
provide:

Ani1 = Yo

Bn+l =0

=0

Dy =0, Dpy1 =0

(B.17)

which gives:

Yo Ay

0 B

=M mB M| >
Cn+l 0
0 0

(B.18)

Yo Ay
0 _pr| B

= B.19
Cn+l 0 ( )
0

with:

n
P — Mn—k+l
kH1 (B.20)

M* = L L (RoL(Ry)

This homogeneous system of equations in vy, G, 4 1, Ay, By has
a non-zero solution if its determinant is null, which provides
a second order equation in gef:

2
A(“L") +B(’L“—") +C=0

B.21
Hn n ( )

where the coefficients are functions of elastic and geometric
properties. However, in the values of A, B, C, all elastic coefficients
are mixed. In order to replace the elastic coefficients by their
viscoelastic counterparts in Laplace space, a different form of this
system is written in the case of two phases, the new shape of
relation allowing to express the coefficients as polynomials in the
elastic properties.

Appendix B.2.2. Polynomial expression in elastic properties for the
case of two phases (n = 2)

As explained previously, the objective of the following is to split
the contribution to the effective properties of the geometry and of
the elastic properties of phases in the case of 2 phases. The conti-
nuity conditions of traction and displacement provide:

Yo Ay
0 B
Leg (R2) = MPL(Ry) | (B.22)
C3 0
0 0
This leads to:
R 3R;4C
270 + 3K7C3 A
R270 — 2R2_4C3 , Bl
= M2L;(R B.23
ueﬁ(70_12R£5C3) 1( 1) 0 ( )
#err(Yo + SRESQ) 0
Set u = 2, X = Kka/u2, the matrix Ly (r) can be written:
Ly(r) = Ng(r, wLyNg(r) (B.24)
with:
1 2—3x11 3 3+3x
1 -5 -3 -2 2
L=11 341 _12 —ox-4 (B25)
2
1 _8x_§ 8 3«
1.0 0 0
0100
Ng(r,w) = |0 0 g 0 (B.26)
000 %
T
r (% 0 0
0 r 0 0
Na() =g o 4 o (B27)
00 0 r2
then:
Lo(Ry)La(Ry) ™" = Ng(Ra, )Ly x Ng(@)[L] 'Ng(Ry,p) ™"
(B.28)
with & = Ro/R;
The computation of the inverse of matrix L;. is given explicitly by:
18x+8 —9x 6x+6 6
24 24 6 _6
L= 1|7 7 7 7
5(3x+4) 3x—-2 —24x-5 6x—-4 15x+11
7 7 7 7
2 3 -2 -3

(B29)



from which:

_ Ge(a)x + Cu(a)

. .1
LyNg(a)(Ly) = Sd(Gx14) (B.30)

where each matrix C; () and C, () is given by polynomials in
« with constant matrix coefficients:

C(a) = Co+ Cpa? + C50® + Cppa? (B.31)
with | =k, u
and:
3 1
3| 2 -8
CGo=3| 12(®]3 (B.32)
8 5
M1 2
0 3
Ca=3| 5|e| 5 (B.33)
L1 -3
B 6
Gs =3 : ® _23 (B.34)
L1 0
(6 -4
3
Co=2" el 4 (B35)
16 1
3 -2
-2 -5
Go==|_12|®| 2 (B.36)
| 8 11
3 2
2 3
Co=| 4l (B.37)
0 -3
1 4
R IHEIE (B.38)
1 3
-6 -4
2|11 4
=35 ®|5 (B.39)
5 1
We deduce:
Yo+ 3R2_5C3
Yo— 2R35C3 1
T (10~ 1285°Cs) | = Stz g (@) T HG)
e (70 + SRESQ)
Ay
By
% (UW7 + R{Wp)L1(Ry) 0
0

(B.40)

with:
T = Leff (B.41)
1]
1 0 0 0]
~lo1 00
Wi=100 0 0 (B.42)
0 0 0 0]
0 0 0 0]
000 O0
Wy = 001 0 (B.43)
0 00 1)
Set ¢4 = R3°Cy and A} = Ay /5uaRy(3k + 4u):
70+3C§
o (KCx(@) + HCul@)
_ | = (KC(@) + pCula
Tlerr (Yo — ]2C3)
Trerr (Yo + 8C3)
M
BI
* (WWy + RyWo)Ly (Ry) (B.44)

0

Similarly, set x; = «q/u; the matrix Ly (Ry) can also be split into:

Li(Ry) = Ng(u1,Ri)Ly (x1)Ng(Ry) (B.45)
The matrix Ng (Ry) is diagonal which provides:
Al Al
By | _ |Bf
NgR) [0 | = |G (B.46)
0 0
with: A7 = RyA} et B] = R3B]
As a result:
Yo + 3C§ A"’
bt - 2C B
IR I g (B.47)
Terr (o — 12C5) 0
ﬁeﬂ"('YO + ch) 0
where:
T = (KCx() + uCy(0)) (W + g Wo)Lj (Xy) (B.48)

The determinant of this system for unknowns vo, G, . A, Bf
must be null for having a non-zero solution, which leads to a second
order equation where the overall modulus normalized shear T is
obtained by:

ABegr)? + Bleg +C = 0 (B.49)
with:

A = 4Ap

B = Ayz —2A13 + 304 — 244 (B.50)

C= Ay



where Ay is determined from the coefficients of the transfer
matrix by:

_ T T '

= B.51
W T, T (B51)

For a material where the matrix is viscoelastic of Kelvin—Voigt
type, the pseudo-elastic coefficients in Laplace—Carson space are:

*(2) _ ]
{Rx (s) = K(1+ ws) (B52)

R (s) = G(1+1,5)

where K and G are the elastic moduli of spring, 7, and 7, are the
relaxation times of the dashpot in compression and shear
respectively.

In this case, we find that the matrix T' (s) has degree 2, then Ay
has degree 4 in s. Then we deduce that A* (s), B* (s), C* (s) are
polynomials of degree 4 in s.

Appendix B.2.3. Voided inclusion (n = 2)
In the case of voided inclusion (u; = 0), the transfer matrix T
becomes:

T = (KCe(@) + €y (@) kW1 L] (x1) (B.53)
Then the latter product is equal to:
AY C
Wi [ 1] = [P (B.54)
0 0
0 0

The treatment is identical to the previous case with the transfer
matrix :

To = KCe() + 1Cu(@)

For the Kelvin—Voigt viscoelastic material, T:,(s) has degree 1.
Then A* (s), B* (s), C* (s) are polynomials of degree 2 in s.

(B55)

Appendix B.2.4. Rigid inclusion (n = 2)
For this case, u; >>u the transfer matrix becomes:

To = (KCo(@) + pCu(a))py Wl (x1) (B.56)
The final product becomes:
Al 0
. |By 0
WLy (x) ol = |k (B.57)
0 F

An alternative is to keep the same procedure as before with the
construction from 4 in (B.51) by adopting the matrix:

Te = (KCi(@) + uCy(a))P (B.58)
where the matrix P is the permutation matrix:
0010
P=(9020, (B.59)
0100

For the Kelvin—Voigt viscoelastic material, T(', (s) has degree 1.
Then A* (s), B* (s), C* (s) have degree 2 in s.

Appendix C. Decomposition of elasticity and viscoelasticity
tensors for a Kelvin—Voigt material

Appendix C.1. Elastic behavior
Let us consider a material having an isotropic elastic behavior,
defined by the shear moduli x and by the incompressibility . Then,

the stiffness tensor C and the compliance tensor S are determined
(see for example (Zaoui and Ecole polytechnique, 1998)) by:

C = 2ulK + 3kJ
S iK +lJJ

2u 3k

(C.1)

where the fourth-order tensors < and J are spherical and devia-
toric parts, respectively, and defined by:

1. .
J =
§l®l
K=101-J
i and [ being the second-order and fourth-order identity tensors.
The fourth-order tensors < and J have the following properties:

(C2)

I:0 =1 K: K=K J:J
K:J=0 l:i=J:i=1 K:i
J:K=0 K:e=e

J
]0 (C3)
J:e = §tr(z)i

where the tensor e is the deviator of a second order symmetric
tensor &

Appendix C.2. Viscoelastic constitutive equations for the Kelvin—
Voigt's viscoelastic material

The viscoelastic Kelvin—Voigt constitutive equations are given
by:

0= C:ie4n:é (C4)

where 9 is the fourth-order tensor, defined by:

n = 3n.J+ 20K (C5)
In the Laplace—Carson’s space, this can be written:

¢ = (C+ns):¢ (C6)

which gives:

o = [3(x+nxs)J+2(u+nus) K] e (C.7)

or:

o =R :¢ (C8)

with:

R" = 3R,J + 2R, K (C9)

and:

(B

where 7y, 1, are the shear and compression viscosities.



Appendix C.3. Viscoelastic behavior of the Maxwell’s model

The viscoelastic behavior of Maxwell type is given by:

i=Clio+n':0o (C.11)
This provides in Laplace—Carson’s space:
* IR S *
e = (C +;n ro (C12)
which gives:
N 1 1 1 1 .
or:
g =R :¢ (C14)
where:
R = K1,S
s C.15)
R — MMy (c
By
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