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Abstract. We consider the stability in the inverse problem consisting in the
determination of an electric potential q, appearing in a Dirichlet initial-boundary
value problem for the wave equation ∂2

t u − ∆u + q(x)u = 0 in an unbounded
wave guide Ω = ω × R with ω a bounded smooth domain of R2, from boundary
observations. The observation is given by the Dirichlet to Neumann map
associated to a wave equation. We prove a Hölder stability estimate in the
determination of q from the Dirichlet to Neumann map. Moreover, provided
that the gap between two electric potentials rich its maximum in a fixed bounded
subset of Ω, we extend this result to the same inverse problem with measurements
on a bounded subset of the lateral boundary (0, T ) × ∂Ω.
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Introduction

We consider the wave guide Ω = ω × R, where ω is a C∞ bounded connected domain
of R2. We set Σ = (0, T ) × ∂Ω and Q = (0, T ) × Ω. Consider the following initial-
boundary value problem (IBVP in short) for the wave equation ∂2

t u−∆u+ q(x′, x3)u = 0, t ∈ (0, T ), x′ ∈ ω, x3 ∈ R,
u(0, ·) = 0, ∂tu(0, ·) = 0, in Ω,
u = f, on Σ.

(0.1)

Recall that ∂Ω = ∂ω×R. Since ∂Ω is not bounded, for all s > 0 we give the following
definition of the the space Hs(∂Ω):

Hs(∂Ω) = Hs(Rx3 ;L2(∂ω)) ∩ L2(Rx3 ;Hs(∂ω)).

Then, we introduce the usual space

Hr,s((0, T )×X) = Hr(0, T ;L2(X)) ∩ L2(0, T ;Hs(X))

where X = Ω or X = ∂Ω. Set the space

L =

{
f ∈ H 3

2 ,
3
2 (Σ) : f|t=0 = 0, ∂tf, ∂τf, ∂x3

f ∈ L2

(
Σ; dσ(x)

dt

t

)}
with ‖‖L defined by

‖f‖2L = ‖f‖2
H

3
2
, 3
2 (Σ)

+

∫
Σ

|∂tf |2 + |∂τf |2 + |∂x3f |
2

t
dσ(x)dt.

Here, we denote by ∂τ a tangential derivative with respect to ∂ω. We denote by ν
the unit outward normal vector to ∂Ω. Notice that for ν1 the unit outward normal
vector to ∂ω, we have ν = (ν1, 0). We prove (see Theorem 4.1 in the appendix) that
for q ∈ L∞(Ω) and f ∈ L the IBVP (0.1) has a unique solution

uq ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω))

such that ∂νuq ∈ L2(Σ). In addition, for any positive constant M , there exists a
positive constant C depending only of Ω, T and M , such that for all q ∈ L∞(Ω) with
‖q‖L∞(Ω) 6M , the following estimate holds

‖u‖C([0,T ];H1(Ω)) + ‖u‖C1([0,T ];L2(Ω)) + ‖∂νuq‖L2(Σ) 6 C ‖f‖L .
In particular the following operator, usually called the Dirichlet to Neumann (DN map
in short),

Λq : L → L2(Σ),

f 7→ ∂νuq

is bounded.
In the present paper, we consider the inverse problem which consists in

determining the electric potential q from the DN map Λq. We establish a stability
estimate for this inverse problem. For 0 < α < 1 and h ∈ C(Ω), we set

[h]α = sup

{
|h(x)− h(y)|
|x− y|α

: x, y ∈ Ω, x 6= y

}
and we consider the space

Cαb (Ω) = {h ∈ C(Ω) ∩ L∞(Ω) : [h]α <∞}
with the norm

‖h‖Cαb (Ω) = ‖h‖L∞(Ω) + [h]α.

Our first main result can be stated as follows.
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Theorem 0.1 Let M > 0, 0 < α < 1 and let BM be the ball centered at 0 and of
radius M of Cαb (Ω). Then, for T > Diam(ω) and q1, q2 ∈ BM , we have

‖q1 − q2‖L∞(Ω) 6 C ‖Λq1 − Λq2‖
min(2α,1)α

3(2α+2)(min(4α,2)+21) (0.2)

with C depending of M , T and Ω. Here ‖Λq1 − Λq2‖ is the norm of Λq1 − Λq2 with
respect to B

(
L,L2(Σ)

)
.

Let us remark that in this result we consider the full DN map. This means that
we determine the coefficient q from measurements on the whole lateral boundary Σ
which is an unbounded set. This is due to the fact that we consider a large class
of coefficients q without any restriction on their behavior outside a compact set (we
only assume that the coefficients are uniformly bounded and Hölderian). In order to
extend this result to the determination of q from measurements in a bounded subset
of Σ, we need more informations about q. Namely, we need that the gap between two
coefficients q1, q2 reach its maximum in a fixed bounded subset of Ω. More precisely,
let R > 0 and consider the spaces LR which consists of functions f ∈ L satisfying

f(t, x′, x3) = 0, t ∈ (0, T ), x′ ∈ ∂ω, |x3| > R.

Let us introduce the partial DN map defined by

ΛRq : LR → L2((0, T )× ∂ω × (−R,R)),

f 7→ ∂νuq |(0,T )×∂ω×(−R,R).

Our second result is the following.

Theorem 0.2 Let M > 0, 0 < α < 1 and let BM be the ball centered at 0 and of
radius M of Cαb (Ω). Let T > Diam(ω), q1, q2 ∈ BM and assume that there exists r > 0
such that

‖q1 − q2‖L∞(Ω) = ‖q1 − q2‖L∞(ω×(−r,r)) . (0.3)

Then, for all R > r we have

‖q1 − q2‖L∞(Ω) 6 C
∥∥ΛRq1 − ΛRq2

∥∥ min(2α,1)α
3(2α+2)(min(4α,2)+21) (0.4)

with C depending of M , T , Ω and R. Here
∥∥ΛRq1 − ΛRq2

∥∥ is the norm of ΛRq1 −ΛRq2 with

respect to B
(
LR, L

2((0, T )× ∂ω × (−R,R))
)
.

Clearly condition (0.3) will be fulfilled if we assume that q1, q2 are compactly
supported. Let us remark that this condition can also be fulfilled in more general
cases. For example, consider the condition

v(x′, x3 + 2r) = v(x′, x3), x′ ∈ ω, x3 ∈ R. (0.5)

Let g : R → R be a non negative continuous even function which is decreasing in
(0,+∞). Then, condition (0.3) will be fulfilled if we assume that q1, q2 are lying in
the set

Ag = {q : q(x′, x3) = g(x3)v(x′, x3), v ∈ C(Ω) ∩ L∞(Ω), v satisfies (0.5)}.
In recent years the problem of recovering time-independent coefficients for

hyperbolic equations in a bounded domain from boundary measurements has attracted
many attention. In [RS1], the authors proved that the DN map determines uniquely
the time-independent electric potential in a wave equation and [RS2] has extended this
result to the case of time-dependent potential. Isakov [Is] considered the determination
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of a coefficient of order zero and a damping coefficient. Note that all these results are
concerned with measurements on the whole boundary. The uniqueness by local DN
map has been considered by [E1] and [E2]. The stability estimate in the case where
the DN map is considered on the whole lateral boundary were treated by Stefanov and
Uhlmann [SU]. The uniqueness and Hölder stability estimate in a subdomain were
established by Isakov and Sun [IS] and, assuming that the coefficients are known in
a neighborhood of the boundary, Bellassoued, Choulli and Yamamoto [BCY] proved
a log-type stability estimate in the case where the Neumann data are observed in
an arbitrary subdomain of the boundary. In [BJY1], [BJY2] and [R90] the authors
established results with a finite number of data of DN map.

Let us also mention that the method using Carleman inequalities was first
considered by Bukhgeim and Klibanov [BK]. For the application of Carleman estimate
to the problem of recovering time-independent coefficients for hyperbolic equations we
refer to [B], [IY] and [K].

Let us observe that all these results are concerned with wave equations in
a bounded domain. Several authors considered the problem of recovering time-
independent coefficients in an unbounded domain from boundary measurements. Most
of them considered the half space or the infinite slab. In [R93], Rakesh considered
the problem of recovering the electric potential for the wave equation in the half
space from Neumann to Dirichlet map. Applying a unique continuation result for
the timelike Cauchy problem for the constant speed wave equation and the result
of X-ray transform obtained by Hamaker, Smith, Solmon, Wagner in [HSSW], he
proved a uniqueness result provided that the electric potentials are constant outside
a compact set. In [Nak], Nakamura extended this work to more general coefficients.
In [E3], Eskin proved uniqueness modulo gauge invariance of magnetic and electric
time-dependent potential with respect to the DN map for the Schrödinger equation
in a simply-connected bounded or unbounded domain. In [Ik] and [SW], the authors
considered the inverse problem of identifying an embedded object in an infinite slab.
In [LU], the authors considered the problem of determining coefficients for a stationary
Schrödinger equation in an infinite slab. Assuming that the coefficients are compactly
supported, they proved uniqueness with respect to Dirichlet and Neumann data of
the solution on parts of the boundary. This work was extended to the case of a
magnetic stationary Schrödinger equation by [KLU]. In [CS], the authors considered
the problem of determining the twisting for an elliptic equation in an infinite twisted
wave guide. Assuming that the first derivative of the twisting is sufficiently close
to some a priori fixed constant, they established a stability estimate of the twisting
with respect to the DN map. To our best knowledge, with the one of [CS], this
paper is the first where one establishes a stability estimate for the inverse problem of
recovering a coefficient in an infinite domain with DN map without any assumption
on the coefficient outside a compact set.

The main ingredient in the proof of the stability estimates (0.2) and (0.4) are
geometric optic solutions. The novelty in our approach comes from the fact that we
take into account the cylindrical form of the infinite wave guide and we use suitable
geometric optic solutions for this geometry.

This paper is organized as follows. In Section 1 we introduce the geometric optic
solutions for our problem and, in a similar way to [RS1] (see also Section 2.2.3 of [Ch]),
we prove existence of such solutions. Using these geometric optic solutions, in Section
2 we prove Theorem 0.1 and in Section 3 we prove Theorem 0.2. In the appendix,
we treat the direct problem. We prove existence of solutions and we define the DN
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map. Let us remark that in the case of a bounded domain Ω, applying some results
of [LLT], [BCY] have treated the direct problem. Since in this paper we consider an
unbounded domain Ω, it was necessary to treat this problem.

1. Geometric optic solutions

The goal of this section is to construct geometric optic solutions for the inverse
problem. Let us recall that every variable x ∈ Ω take the form x = (x′, x3) with
x′ ∈ ω and x3 ∈ R. Using this representation we can split the differential operator
∂2
t − ∆ defined on Q into two differential operator [∂2

t − ∆x′ ] + [−∂2
x3

] defined on
Q. Keeping in mind this decomposition, we will construct geometric optic solutions
u ∈ H2(Q) which are solutions in Q of the equation ∂2

t u−∆u+ qu = 0 and take the
form

u(t, x′, x3) = Φ(x′ + tθ)h(x3)e±iρ(x
′·θ+t) + Ψ±(t, x′, x3; ρ), t ∈ (0, T ), x′ ∈ ω, x3 ∈ R

with h ∈ S(R), Φ ∈ C∞0 (R2), θ ∈ S1 = {y ∈ R2 : |y| = 1}, ρ > 0 a parameter and Ψ±

a remainder term that satisfies∥∥Ψ±(.; ρ)
∥∥
L2(Q)

6
C

ρ
.

Our result is the following.

Lemma 1.1 Let q ∈ L∞(Ω), h ∈ S(R), Φ ∈ C∞0 (R2), θ ∈ S1, ρ > 0 be arbitrary
given. Then the equation

∂2
t u−∆u+ qu = 0

has solutions u± ∈ H2(Q) of the form

u±(t, x′, x3) = Φ(x′ + tθ)h(x3)e±iρ(x
′·θ+t) + Ψ±(t, x′, x3; ρ), t ∈ (0, T ), x′ ∈ ω, x3 ∈ R.

Here Ψ± satisfies

Ψ±(t, x; ρ) = 0, (t, x) ∈ Σ,

∂tΨ
+
|t=0 = Ψ+

|t=0 = 0,

∂tΨ
−
|t=T = Ψ−|t=T = 0

and

ρ
∥∥Ψ±(.; ρ)

∥∥
L2(Q)

+
∥∥∇xΨ±(.; ρ)

∥∥
L2(Q)

6 C ‖h‖H2(R) ‖Φ‖H3(R2) ,(1.6)

where C depends only on T , Ω and M > ‖q‖L∞(Ω).

Proof. We show existence of u+. The existence of u− follows from similar arguments.
Let ∆x′ be the Laplacian in ω and recall that

[∆f ](x′, x3) = [∆x′f ](x′, x3) + [∂2
x3
f ](x′, x3), f ∈ C2(Ω), (x′, x3) ∈ Ω.

Notice that

(∂2
t −∆x′)

[
Φ(x′ + tθ)h(x3)eiρ(x

′·θ+t)
]

= eiρ(x
′·θ+t) [(∂2

t −∆x′)Φ(x′ + tθ)h(x3)
]

and

−∂2
x3

[
Φ(x′ + tθ)h(x3)eiρ(x

′·θ+t)
]

= eiρ(x
′·θ+t) [−∂2

x3
(Φ(x′ + tθ)h(x3))

]
.
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Therefore, we have

(∂2
t −∆ + q)

[
Φ(x′ + tθ)h(x3)eiρ(x

′·θ+t)
]

= eiρ(x
′·θ+t)H(t, x′, x3)

with H(t, x′, x3) = (∂2
t −∆ + q)Φ(x′ + tθ)h(x3) and Ψ+ must be the solution of ∂2

t Ψ−∆Ψ + qΨ = eiρ(x
′·θ+t)H(t, x′, x3), t ∈ (0, T ), x′ ∈ ω, x3 ∈ R,

Ψ(0, ·) = 0, ∂tΨ(0, ·) = 0, in Ω,
Ψ = 0, on Σ.

(1.7)

Since eiρ(x
′·θ+t)H(t, x′, x3) ∈ L2(Q), applying Theorem 8.1 in Chapter 3 of [LM1] (see

also Remark 4.4) we deduce the existence of Ψ+ ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω))

solution of (1.7). In addition, using the fact that eiρ(x
′·θ+t)H(t, x′, x3) ∈

H1(0, T ;L2(Ω)), we can apply Theorem 2.1 in Chapter 5 of [LM2] (see Remark 1.2)
and prove that in fact Ψ+ ∈ H2(Q).

Remark 1.2 In order to apply Theorem 2.1 in Chapter 5 of [LM2] we combine the
arguments introduced in Remark 4.4 with the fact that the operator A = −∆ + q
with Dirichlet boundary condition is a selfadjoint operator with domain D(A) =
H2(Ω) ∩ H1

0 (Ω). Then, we prove that Lemma 2.1 in Chapter 5 of [LM2] holds in
our case and by the same way Theorem 2.1 in Chapter 5 of [LM2].

Now let

W+(t, x′, x3) =

∫ t

0

Ψ+(s, x′, x3)ds, t ∈ (0, T ), x′ ∈ ω, x3 ∈ R.

Clearly W+ is the solution of ∂2
tW −∆W + qW =

∫ t
0
eiρ(x

′·θ+s)H(s, x′, x3)ds, t ∈ (0, T ), x′ ∈ ω, x3 ∈ R,
W (0, ·) = 0, ∂tW (0, ·) = 0, in Ω,
W = 0, on Σ.

From the energy estimate associated to the solution of this problem, we get∥∥Ψ+
∥∥
L2(Q)

=
∥∥∂tW+

∥∥
L2(Q)

6 C

∥∥∥∥∫ t

0

eiρ(x
′·θ+s)H(s, x′, x3)ds

∥∥∥∥
L2(Q)

.

Moreover, we have∫ t
0
eiρ(x

′·θ+s)H(s, x′, x3)ds = 1
iρ

∫ t
0
∂se

iρ(x′·θ+s)H(s, x′, x3)ds

= − 1
iρ

∫ t
0
eiρ(x

′·θ+s)∂sH(s, x′, x3)ds

+ eiρ(x
′·θ+t)H(t,x′,x3)−eiρ(x

′·θ)H(0,x′,x3)
iρ

and it follows ∥∥Ψ±(.; ρ)
∥∥
L2(Q)

6 C
‖h‖H2(R) ‖Φ‖H3(R2)

ρ
.

Combining this estimate with the energy estimate of (1.7) we deduce (1.6).
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2. Stability estimate

The goal of this section is to prove Theorem 0.1. Without lost of generality, we
can assume that 0 ∈ ω. From now on, we assume that T > Diam(ω), we fix

0 < ε < min
(

1, T−Diam(ω)
3

)
and we set

ωε = {x ∈ R2 \ ω : dist(x, ω) < ε}.
We shall need a stability estimate for the problem of recovering a function from X-ray
transform.

Lemma 2.1 Let q1, q2 ∈ L∞(Ω), with ‖qj‖L∞(Ω) 6M , j = 1, 2, and let q be equal to

q1 − q2 extended by 0 outside of Ω. Then, for all θ ∈ S1 and Φ ∈ C∞0 (ωε), h ∈ S(R)
we have∣∣∫

R
∫
R2

∫
R q(x

′, x3)Φ2(x′ + sθ)h2(x3)dsdx′dx3

∣∣
6 C

(
‖h‖2

H2(R)‖Φ‖
2
H3(R2)

ρ + ρ2 ‖h‖2H2(R) ‖Φ‖
2
H3(R2) ‖Λq1 − Λq2‖

)
, ρ > 1

(2.8)

with C > 0 depending only of ω, M and T .

Proof. In view of Lemma 1.1, we can set

u1(t, x′, x3; θ, ρ) = Φ(x′ + tθ)h(x3)eiρ(x
′·θ+t) + Ψ1(t, x′, x3; ρ) ∈ H2(Q),

u2(t, x′, x3; θ, ρ) = Φ(x′ + tθ)h(x3)e−iρ(x
′·θ+t) + Ψ2(t, x′, x3; ρ) ∈ H2(Q),

solutions of

∂2
t u1 −∆u1 + q1u1 = 0, ∂2

t u2 −∆u2 + q2u2 = 0

with Ψj ∈ H2(Q), j = 1, 2, satisfying

ρ ‖Ψj(.; ρ)‖L2(Q) + ‖∇xΨj(.; ρ)‖L2(Q) 6 C ‖h‖H2(R) ‖Φ‖H3(R2) , j = 1, 2, (2.9)

Ψj(.; ρ)|Σ = 0, j = 1, 2,

∂tΨ1|t=0 = Ψ1|t=0 = 0, ∂tΨ2|t=T = Ψ2|t=T = 0.

Since T > Diam(ω) + 3ε, we have

|tθ + x′ − y′| > t− |x′ − y′| > t−Diam(ω) > 2ε, x′, y′ ∈ ω, t > T − ε
and it follows

{tθ + x′ : θ ∈ S1, x′ ∈ ω} ⊂ {y′ ∈ R2 : dist(y′, ω) > 2ε} ⊂ R2 \ ωε, t > T − ε.
Combining this with the fact that suppΦ ⊂ ωε, we deduce

∂jtΦ(x′ + tθ)|t=s = 0, x′ ∈ ω, s = T or s = 0, j = 0, 1. (2.10)

Thus, we have

u1|t=0 = ∂tu1|t=0 = u2|t=T = ∂tu2|t=T = 0. (2.11)

Let fρ = u1|Σ and notice that

fρ(t, x
′, x3) = Φ(x′ + tθ)h(x3)eiρ(x

′·θ+t), t ∈ (0, T ), x′ ∈ ∂ω, x3 ∈ R.
In view of (2.10) and Theorem 2.2 in Chapter 4 of [LM2], we have fρ ∈ L and

‖fρ‖L 6 C
∥∥∥Φ(x′ + tθ)h(x3)eiρ(x

′·θ+t)
∥∥∥
H2(Q)

6 Cρ2 ‖h‖H2(R) ‖Φ‖H3(R2) . (2.12)
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Now let v ∈ H2(Q) be the solution of the IBVP ∂2
t v −∆v + q2v = 0, in Q,
v(0, ·) = 0, ∂tv(0, ·) = 0, in Ω,
v = fρ, on Σ.

We set u = v − u1 ∈ H2(Q) and we have ∂2
t u−∆u+ q2u = qu1, in Q,
u(0, ·) = 0, ∂tu(0, ·) = 0, in Ω,
u = 0, on Σ.

Applying (2.11) and integrating by parts, we find∫
Q

qu1u2dxdt = −
∫

Σ

∂νuu2dσ(x)dt.

Using the fact that fρ ∈ L, from this representation we get∫
Ω

∫ T

0

q(x′, x3)h2(x3)Φ2(x′+tθ)dtdx′dx3 =

∫
Q

Zρ−
∫

Σ

(Λq2fρ−Λq1fρ)u2dσ(x)dt(2.13)

with

Zρ(t, x
′, x3) = −q(x′, x3)[ Φ(x′ + tθ)h(x3)Ψ1(t, x′, x3)e−iρ(x

′·θ+t)

+Φ(x′ + tθ)h(x3)Ψ2(t, x′, x3)eiρ(x
′·θ+t)

+Ψ1(t, x′, x3)Ψ2(t, x′, x3)].

In view of (2.9), an application of the Cauchy-Schwarz inequality yields∫
Q

|Zρ|dxdt 6
2MC ‖h‖2H2(R) ‖Φ‖

2
H3(R2)

ρ
, ρ > 1

with C depending of ω, T . From the fact that

u2(t, x′, x3) = Φ(x′ + tθ)h(x3)e−iρ(x
′·θ+t), t ∈ (0, T ), x′ ∈ ∂ω, x3 ∈ R

and from (2.12), we obtain∣∣∫
Σ

(Λq1fρ − Λq2fρ)u2dσ(x)dt
∣∣ 6 ‖Λq1 − Λq2‖ ‖fρ‖L ‖Φ(x′ + tθ)h(x3)‖L2(Σ)

6 Cρ2 ‖Λq1 − Λq2‖ ‖h‖
2
H2(R) ‖Φ‖

2
H3(R2) .

Combining this estimates with (2.13) and using the fact that suppq ⊂ Ω we get∣∣∣∫R ∫R2

∫ T
0
q(x′, x3)h2(x3)Φ2(x′ + tθ)dtdx′dx3

∣∣∣
6 C

(
‖h‖2

H2(R)‖Φ‖
2
H3(R2)

ρ + ρ2 ‖h‖2H2(R) ‖Φ‖
2
H3(R2) ‖Λq1 − Λq2‖

)
, ρ > 1.

Then, using the fact that

x′ + tθ /∈ ωε, x′ ∈ ω, t > T, θ ∈ S1,

we find∣∣∣∫R ∫R2

∫ +∞
0

q(x′, x3)h2(x3)Φ2(x′ + tθ)dtdx′dx3

∣∣∣
6 C

(
‖h‖2

H2(R)‖Φ‖
2
H3(R2)

ρ + ρ2 ‖h‖2H2(R) ‖Φ‖
2
H3(R2) ‖Λq1 − Λq2‖

)
, ρ > 1.
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Repeating the above arguments with vj(t, x
′, x3; θ, ρ) = uj(t, x

′, x3;−θ, ρ), j = 1, 2,
we get∣∣∣∫R ∫R2

∫ 0

−∞ q(x′, x3)h2(x3)Φ2(x′ + tθ)dtdx′dx3

∣∣∣
6 C

(
‖h‖2

H2(R)‖Φ‖
2
H3(R2)

ρ + ρ2 ‖h‖2H2(R) ‖Φ‖
2
H3(R2) ‖Λq1 − Λq2‖

)
, ρ > 1

and we deduce (2.8).

Let δ < ε. From now on, we will set the following. First, we fix ϕ ∈ C∞0 (R2) real
valued, supported on the unit ball centered at 0 and satisfying ‖ϕ‖L2(R2) = 1. We
define

Φδ(x
′, y′) = δ−1ϕ

(
x′ − y′

δ

)
, x′, y′ ∈ R2.

We also define

hδ(x3, y3) = δ−
1
2h

(
x3 − y3

δ

)
, x3, y3 ∈ R

with h ∈ C∞0 (R) real valued, supported on [−1, 1] and satisfying ‖h‖L2(R) = 1. Finally,
we set

Rδ[q](y
′, y3) =

∫
R

∫
R2

Φ2
δ(x
′, y′)h2

δ(x3, y3)q(x′, x3)dx′dx3, y′ ∈ R2, y3 ∈ R

and we introduce the X-ray transform in R2 defined for all f ∈ L1(R2) by

[Xf ](θ, x′) =

∫
R
f(x′ + tθ)dt, x′ ∈ R2, θ ∈ S1.

We set also

TS1 = {(x, θ) ∈ R2 × R2 : θ ∈ S1, x ∈ θ⊥}.
Lemma 2.2 Let M > 0, 0 < α < 1 and let BM be the ball centered at 0 and of radius
M of Cαb (Ω). Let q1, q2 ∈ BM and let q be equal to q1− q2 extended by 0 outside of Ω.
Then, for δ∗ = ε

4 , we have

‖Rδ[q]]‖L∞
(
Ry3 ;L2

(
R2
y′

)) 6 C

(
δ−

21
2

ρ
+ ρ2δ−

21
2 ‖Λq1 − Λq2‖

) 1
2

, 0 < δ < δ∗, ρ > 1(2.14)

with C > 0 depending only of ω, M and T .

Proof. Set

ω1 = {x′ ∈ R2 :
ε

4
< dist(x′, ω) <

3ε

4
},

ω2 = {x′ ∈ R2 : dist(x′, ω) <
ε

4
}

and let δ < δ∗. Then, for all x′ ∈ R2 satisfying |x′ − y′| 6 δ with y′ ∈ ω1 we have
x′ ∈ ωε. Thus, Φδ(., y

′) ∈ C∞0 (ωε) for all y′ ∈ ω1. In view of Lemma 2.1, replacing h
and Φ by hδ(., y3) and Φδ(., y

′) in (2.8), for all y′ ∈ ω1, y3 ∈ R, ρ > 1, we obtain∣∣∫
R
∫
R2

∫
R q(x

′, x3)Φ2
δ(x
′ + sθ, y′)h2

δ(x3, y3)dsdx′dx3

∣∣
6 C

(
‖hδ(.,y3)‖2

H2(R)‖Φδ(.,y′)‖
2

H3(R2)

ρ + ρ2 ‖hδ(., y3)‖2H2(R) ‖Φδ(., y′)‖
2
H3(R2) ‖Λq1 − Λq2‖

)
.
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Applying the Fubini’s theorem and the fact that Φ2
δ(x
′ + sθ, y′) = Φ2

δ(x
′, y′ − sθ), we

obtain∫
R
∫
R2

∫
R q(x

′, x3)Φ2
δ(x
′ + sθ, y′)h2

δ(x3, y3)dsdx′dx3

=
∫
R
∫
R
∫
R2 q(x

′, x3)Φ2
δ(x
′, y′ − sθ)h2

δ(x3, y3)dx′dx3ds =
∫
RRδ[q](y

′ − sθ, y3)ds

= X[Rδ[q](., y3)](y′, θ)

with Rδ[q](., y3) = y′ 7→ Rδ[q](y
′, y3). Combining this representation with the previous

estimate, for all ρ > 1, we find

|X[Rδ[q](., y3)](θ, y′)|

6 C

(
‖hδ(.,y3)‖2

H2(R)‖Φδ(.,y′)‖
2

H3(R2)

ρ + ρ2 ‖hδ(., y3)‖2H2(R) ‖Φδ(., y′)‖
2
H3(R2) ‖Λq1 − Λq2‖

)
.

One can easily check that

‖hδ(., y3)‖2H2(R) 6 Cδ−4, ‖Φδ(., y′)‖
2
H3(R3) 6 Cδ−6, y′ ∈ ω1, y3 ∈ R.

Thus, we find

|X[Rδ[q](., y3)](θ, y′)| 6 C

(
δ−10

ρ
+ ρ2δ−10 ‖Λq1 − Λq2‖

)
, ρ > 1, y′ ∈ ω1, y3 ∈ R(2.15)

with C > 0 depending only of ω, M and T . From our choice for δ∗ we get

ω + {x′ ∈ R2 : |x′| 6 δ} = {x1 + x2 : x1 ∈ ω, |x2| 6 δ} ⊂ ω2

and it follows

suppRδ[q](., y3) ⊂ ω2, y3 ∈ R. (2.16)

Let z′ ∈ ω2, θ ∈ S1 and consider the function F defined on R2 by F (x′) = dist(x′, ω).
One can easily check that F ({z′ + tθ : t ∈ R}) ⊃ [ ε4 ,+∞) which implies that
{z′+tθ : t ∈ R}∩ω1 6= ∅. Therefore, for all z′ ∈ ω2 and θ ∈ S1 there exist y′ ∈ ω1 and
t ∈ R such that z′ = y′+ tθ. Using the invariance property of the X-ray transform we
deduce that estimate (2.15) holds for all y′ ∈ ω2, y3 ∈ R and θ ∈ S1. Now let z′ ∈ R2

and θ ∈ S1. If {z′ + tθ : t ∈ R} ∩ ω2 = ∅, (2.16) implies X[Rδ[q](., , y3)](z′, θ) = 0.
On the other hand, if {z′ + tθ : t ∈ R} ∩ ω2 6= ∅ the invariance property of the X-ray
transform implies that (2.15) holds for (z′, θ). Thus, (2.15) holds for all y′ ∈ R2,
θ ∈ S1 and y3 ∈ R. Let R > 0 be such that ω2 ⊂ B(0, R) = {x′ ∈ R2 : |x′| 6 R}. For
all θ ∈ S1 we have

|y′ + tθ| > |y′| > R, y′ ∈ θ⊥ ∩ R2 \B(0, R), t ∈ R
and (2.16) implies

X[Rδ[q](., , y3)](θ, y′) = 0, y′ ∈ θ⊥ ∩ R2 \B(0, R).

It follows∫
TS1 |X[Rδ[q](., y3)]|2 dy′dθ =

∫
S1
∫
θ⊥
|X[Rδ[q](., y3)](θ, y′)|2 dy′dθ

=
∫
S1
∫
θ⊥∩B(0,R)

|X[Rδ[q](., y3)](θ, y′)|2 dy′dθ, y3 ∈ R

and (2.15) implies∫
TS1
|X[Rδ[q](., y3)]|2 dy′dθ 6 C

(
δ−10

ρ
+ ρ2δ−10 ‖Λq1 − Λq2‖

)2

.
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In view of this estimate, (2.16) and the well known properties of the X-ray transform
(see for example Theorem 5.1, p. 42 in [Nat]), for all y3 ∈ R, we obtain

‖Rδ[q](., y3)‖
H−

1
2 (R2)

6 C ‖X[Rδ[q](., y3)]‖L2(TS1)

6 C
(
δ−10

ρ + ρ2δ−10 ‖Λq1 − Λq2‖
)
.

(2.17)

Here C depends only on ω, M and T . By interpolation we get,

‖Rδ[q](., y3)‖L2(R2) 6 C ‖Rδ[q](., y3)‖
1
2

H
1
2 (R2)

‖Rδ[q](., y3)‖
1
2

H−
1
2 (R2)

, y3 ∈ R. (2.18)

Consider the following estimate.

Lemma 2.3 We have

‖Rδ[q](., y3)‖
H

1
2 (R2)

6 Cδ−
1
2 , y3 ∈ R (2.19)

with C depending only of ω and M .

Proof. Note that∫
R2

|Rδ[q](y′, y3)|2 dy′ =

∫
R2

∣∣∣∣∫
R2

Φ2
δ(x
′, y′)G(x′, y3, δ)dx

′
∣∣∣∣2 dy′

with

G(x′, y3, δ) =

∫
R
h2
δ(x3, y3)q(x′, x3)dx3.

An application of the Cauchy-Schwarz inequality yields∫
R2 |Rδ[q](y′, y3)|2 dy′

6
∫
R2

[(∫
R2 Φ2

δ(x
′, y′)dx′

) (∫
R2 Φ2

δ(x
′, y′)G2(x′, y3, δ)dx

′)] dy′.
Making the substitution u = x′−y′

δ , we obtain∫
R2

|Rδ[q](y′, y3)|2 dy′ 6
∫
R2

[(∫
R2

ϕ2(u)du

)(∫
R2

ϕ2(u)G2(y′ + δu, y3, δ)du

)]
dy′.

Then, applying the Fubini’s theorem and making the substitution v = y′+ δu, we get∫
R2 |Rδ[q](y′, y3)|2 dy′ 6

(∫
R2 ϕ

2(u)du
)2 (∫

R2 G
2(v, y3, δ)dv

)
6
∫
R2 G

2(v, y3, δ)dv.

(2.20)

Moreover, for all v ∈ R2, y3 ∈ R, applying the Cauchy-Schwarz inequality, we obtain

G2(v, y3, δ) 6

(∫
R
h2
δ(x3, y3)dx3

)(∫
R
h2
δ(x3, y3)q2(v, x3)dx3

)
and, making the substitution z3 = x3−y3

δ , we find

G2(v, y3, δ) 6

(∫
R
h2(z3)dz3

)(∫
R
h2(z3)q2(v, y3 + δz3)dz3

)
6

(∫
R
h2(z3)dz3

)2

4M2.

Therefore, since q = 0 outside of Ω, we have∫
R2

G2(v, y3, δ)dv 6 |ω|
∥∥G2(., y3, δ)

∥∥
L∞(R2)

6 4 |ω|M2

and combining this estimate with (2.20), we obtain

‖Rδ[q](., y3)‖L2(R2) 6 C, y3 ∈ R (2.21)
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with C depending of ω and M . Note that

∂y′Rδ[q](y
′, y3) =

∫
R2

δ−3G

(
x′ − y′

δ

)
G(x′, y3, δ)dx

′

with G(u) = ∂uϕ
2(u). Therefore, repeating the above arguments, we get

‖Rδ[q](., y3)‖H1(R2) 6 Cδ−1, y3 ∈ R (2.22)

with C a constant depending of ω and M . By interpolation, we obtain

‖Rδ[q](., y3)‖
H

1
2 (R2)

6 C ‖Rδ[q](., y3)‖
1
2

L2(R2) ‖Rδ[q](., y3)‖
1
2

H1(R2) , y3 ∈ R

and we deduce (2.19) from (2.21) and (2.22).

In view of estimates (2.17), (2.18) and (2.19), we find

‖Rδ[q](., y3)‖L2(R2) 6 C

(
δ−

21
2

ρ
+ ρ2δ−

21
2 ‖Λq1 − Λq2‖

) 1
2

, y3 ∈ R

which implies (2.14) since C is independent of y3 ∈ R.

Lemma 2.4 Let M > 0, 0 < α < 1 and let BM be the ball centered at 0 and of radius
M of Cαb (Ω). Let q1, q2 ∈ BM and let q be equal to q1− q2 extended by 0 outside of Ω.
Then, for δ∗ = ε

4 we have

‖Rδ[q]− q‖L∞
(
Ry3 ;L2

(
R2
y′

)) 6 Cδα̃, 0 < δ < δ∗ (2.23)

with C depending of ω, M and α̃ = min(α, 1
2 ).

Proof. Set

Sδ(y
′, y3) =

∫
R2

Φ2
δ(x
′, y′)q(x′, y3)dx′, y′ ∈ R2, y3 ∈ R.

Since q ∈ Cαb (Ω)), one can easily check that for all y3 ∈ R, q(., y3) = y′ 7→ q(y′, y3) ∈
Cα(ω). Thus, in view of Lemma 2.40 in [Ch], we have

‖Sδ[q](., y3)− q(., y3)‖L2(R2
y′ )

6 Cδα̃ ‖q(., y3)‖Cα(ω) , y3 ∈ R

with C depending only of ω, M and α. It follows

‖Sδ[q]− q‖L∞(Ry3 ;L2(R2
y′ ))

6 Cδα̃ sup
y3∈R

‖q(., y3)‖Cα(ω) 6 Cδα̃ ‖q‖Cαb (Ω) 6 2CMδα̃.(2.24)

In view of this estimate, it only remains to prove

‖Rδ[q]− Sδ[q]‖L∞(Ry3 ;L2(R2
y′ ))

6 Cδα̃. (2.25)

Notice that

Rδ[q](y
′, y3)− Sδ[q](y′, y3) = δ−1

∫
R
h2

(
x3 − y3

δ

)
[Sδ[q](y

′, x3)− Sδ[q](y′, y3)]dx3.

Making the substitution u = x3−y3
δ we find

Rδ[q](y
′, y3)− Sδ[q](y′, y3) =

∫
R
h2(u)[Sδ[q](y

′, y3 + δu)− Sδ[q](y′, y3)]du.
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In addition, for all y′ ∈ R2, y3, u ∈ R, we have

|Sδ[q](y′, y3 − δu)− Sδ[q](y′, y3)| 6
∫
R2 Φ2

δ(x
′, y′) |q(x′, y3 + δu)− q(x′, y3)| dx′

6
∫
ω

Φ2
δ(x
′, y′) |q(x′, y3 + δu)− q(x′, y3)| dx′

6 ‖q‖Cαb (Ω) (δ |u|)α
∫
ω

Φ2
δ(x
′, y′)dx′

6 ‖q‖Cαb (Ω) (δ |u|)α
∫
R2 Φ2

δ(x
′, y′)dx′

6 2M(δ |u|)α.
From this estimate we obtain

‖Rδ[q]− Sδ[q]‖L∞(R3) 6 2Mδα
∫
R
h2(u) |u|α du = Cδα

with C depending only of ω, M and α. Finally, since

suppRδ[q](., y3) ∪ suppSδ[q](., y3) ⊂ ω + {x′ ∈ R2 : |x′| 6 1}, y3 ∈ R,
for all y3 ∈ R we deduce

‖Rδ[q](., y3)− Sδ[q](., y3)‖L2(R2
y′ )

6 C ‖Rδ[q](., y3)− Sδ[q](., y3)‖L∞(R2
y′ )

6 C ‖Rδ[q]− Sδ[q]‖L∞(R3)

6 Cδα.

This last estimate implies (2.25) and we deduce (2.23).

Proof of Theorem 0.1 . Let q be equal to q1 − q2 extended by 0 outside of Ω. In
view of (2.14) and (2.23), for 0 < δ < δ∗, we have

‖q‖L∞(Rx3 ;L2(R2
x′))

6 C

δα̃ +

(
δ−

21
2

ρ
+ ρ2δ−

21
2 ‖Λq1 − Λq2‖

) 1
2

 , ρ > 1. (2.26)

By interpolation, we obtain

‖q(., y3)‖L∞(ω) 6 C ‖q(., y3)‖1−µCα(ω) ‖q(., y3)‖µL2(ω) 6 C(2M)1−µ ‖q(., y3)‖µL2(ω) , y3 ∈ R

with µ = 2α
2α+2 and C depending of ω, α. Combining this estimate with (2.26), we

obtain

‖q‖L∞(Ω) = ‖q‖L∞(Rx3 ;L∞(ω))

6 C

[
δα̃ +

(
δ−

21
2

ρ + ρ2δ−
21
2 ‖Λq1 − Λq2‖

) 1
2

]µ
, 0 < δ < δ∗, ρ > 1.

This estimate can also be rewritten

‖q‖L∞(Ω) 6 C2
µ
2

(
δ2α̃ + δ−

21
2

ρ + ρ2δ−
21
2 ‖Λq1 − Λq2‖

)µ
2

, 0 < δ < δ∗, ρ > 1. (2.27)

Now let γ = ‖Λq1 − Λq2‖ and set γ∗ = δ∗
3(21+4α̃)

2 . Then, for 0 < γ < γ∗ we can choose

ρ = γ−
1
3 , δ = γ

2
3(21+4α̃) and we obtain

‖q‖L∞(Ω) 6 Cγ
2α̃α

3(21+4α̃)(2α+2) , γ < γ∗.
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In addition, for γ > γ∗, we find

‖q‖L∞(Ω) 6
2M

γ∗
2α̃α

3(21+4α̃)(2α+2)

γ
2α̃α

3(21+4α̃)(2α+2) = Cγ
2α̃α

3(21+4α̃)(2α+2) .

Combining these two estimates we deduce (0.2).

3. Proof of Theorem 0.2

In this section we treat the special case introduced in Theorem 0.2 where condition
(0.3) is fulfilled. Like in the previous section, we assume that 0 ∈ ω, T > Diam(ω)

and we fix 0 < ε < min
(

1, T−Diam(ω)
3

)
. We start with the following.

Lemma 3.1 Let q1, q2 ∈ L∞(Ω), with ‖qj‖L∞(Ω) 6 M , j = 1, 2, and let q be equal

to q1 − q2 extended by 0 outside of Ω. Then, for all θ ∈ S1 and Φ ∈ C∞0 (ωε),
h ∈ C∞0 ((−R,R)) we have∣∣∫

R
∫
R2

∫
R q(x

′, x3)Φ2(x′ + sθ)h2(x3)dsdx′dx3

∣∣
6 C

(
‖h‖2

H2(R)‖Φ‖
2
H3(R2)

ρ + ρ2 ‖h‖2H2(R) ‖Φ‖
2
H3(R2)

∥∥ΛRq1 − ΛRq2
∥∥) , ρ > 1

(3.28)

with C > 0 depending of M , ω and T .

Proof. Repeating the arguments of Lemma 2.1, we define

u1(t, x′, x3; θ, ρ) = Φ(x′ + tθ)h(x3)eiρ(x
′·θ+t) + Ψ1(t, x′, x3; ρ) ∈ H2(Q),

u2(t, x′, x3; θ, ρ) = Φ(x′ + tθ)h(x3)e−iρ(x
′·θ+t) + Ψ2(t, x′, x3; ρ) ∈ H2(Q),

solutions of

∂2
t u1 −∆u1 + q1u1 = 0, ∂2

t u2 −∆u2 + q2u2 = 0

with Ψj ∈ H2(Q), j = 1, 2, satisfying

ρ ‖Ψj(.; ρ)‖L2(Q) + ‖∇xΨj(.; ρ)‖L2(Q) 6 C ‖h‖H2(R) ‖Φ‖H3(R2) , j = 1, 2,

Ψj(.; ρ)|Σ = 0, j = 1, 2,

such that

u1|t=0 = ∂tu1|t=0 = u2|t=T = ∂tu2|t=T = 0.

Let fj = uj |Σ, j = 1, 2, and notice that

fj(t, x
′, x3) = Φ(x′ + tθ)h(x3)e(−1)jiρ(x′·θ+t), t ∈ (0, T ), x′ ∈ ∂ω, x3 ∈ R,

which implies that fj ∈ LR, j = 1, 2. Now let v ∈ H2(Q) be the solution of the IBVP ∂2
t v −∆v + q2v = 0, t ∈ (0, T ), x′ ∈ ω, x3 ∈ R,
v(0, ·) = 0, ∂tv(0, ·) = 0, in Ω,
v = f1, on Σ.

Repeating the arguments of Lemma 2.1, for u = v − u1 we find∫
Q

qu1u2dxdt = −
∫

Σ

∂νuu2dσ(x)dt.
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Since f2 ∈ LR, we get∫
Σ

∂νuu2dσ(x)dt =

∫ T

0

∫ R

−R

∫
∂ω

∂νuf2dσ(x′)dx3dt

and since ∂νu = Λq2f1 − Λq1f1, with f1 ∈ LR, we obtain∫
Q

qu1u2dxdt = −
∫

Σ

∂νuu2dσ(x)dt = −
∫ T

0

∫ R

−R

∫
∂ω

[(ΛRq2 − ΛRq1)f1]f2dσ(x′)dx3dt.

Combining this representation with Lemma 2.1, we prove easily estimate (3.28).

Proof of Theorem 0.2. We consider the functions Φδ(x
′, y′), hδ(x3, y3),

Rδ[q](y
′, y3) introduced in the previous section and we extend q equal to q1 − q2

by 0 outside of Ω. Notice that for δ < min
(
ε
4 , R− r

)
and y′ ∈ ω1 (with ω1

introduced in the proof of Lemma 2.2), y3 ∈ (−r, r) we have Φδ(·, y′) ∈ C∞0 (ωε)
and hδ(·, y3) ∈ C∞0 ((−R,R)). Therefore, combining Lemma 3.1 with Lemma 2.2, we
obtain the estimate

‖Rδ[q]‖L∞(−r,r;L2(R2
y′ ))

6 C

(
δ−

21
2

ρ
+ ρ2δ−

21
2

∥∥ΛRq1 − ΛRq2
∥∥) 1

2

, 0 < δ < δ∗, ρ > 1(3.29)

with δ∗ = min( ε4 , R− r). In addition, in view of Lemma 2.4, we find

‖Rδ[q]− q‖L∞(−r,r;L2(R2
y′ ))

6 Cδα̃, 0 < δ < δ∗. (3.30)

Combining (3.29) and (3.30) with the arguments of Theorem 0.1, we obtain easily

‖q1 − q2‖L∞((−r,r)×ω) 6 C
∥∥ΛRq1 − ΛRq2

∥∥ min(2α,1)α
3(2α+2)(min(4α,2)+21) (3.31)

with C depending of R, M , Ω and T . Then, condition (0.3) implies (0.4).

4. Appendix

In this appendix we treat the direct problem. Our goal is to prove the following.

Theorem 4.1 Let q ∈ L∞(Ω) and f ∈ L. Then problem (0.1) admits a unique
solution u ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) such as ∂νu ∈ L2(Σ). Moreover, this
solution u satisfies

‖u‖C([0,T ];H1(Ω)) + ‖u‖C1([0,T ];L2(Ω)) + ‖∂νu‖L2(Σ) 6 C ‖f‖L . (4.32)

In the case of a bounded domain Ω, applying Theorem 2.1 of [LLT], [BCY] proved
this result for f ∈ H1(Σ). Since Ω is an unbounded domain, we can not apply the
analysis of [LLT]. Nevertheless, we can solve problem (0.1) by the classical argument
which comprises in transforming this problem into a problem with an inhomogeneous
equation and homogeneous boundary conditions. For this propose, we first need to
establish a result of lifting for Sobolev spaces in a wave guide.
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4.1. Result of lifting for Sobolev spaces

In this subsection we will show the following.

Theorem 4.2 For all f ∈ L, there exists w[f ] ∈ H2,2(Q) satisfying{
w[f ](0, x) = ∂tw[f ](0, x) = 0, x ∈ Ω,
∂νw[f ] = 0, w[f ] = f, on Σ

(4.33)

and

‖w[f ]‖H2,2(Q) 6 C ‖f‖L . (4.34)

For this purpose, we will establish more general result of lifting for Sobolev spaces.
Repeating the arguments of pages 38-40 in Chapter 1 of [LM1], by the mean of local
coordinates we can replace ω by R2

+, with R2
+ = {(x1, x2) ∈ R3 : x1 > 0}, and ∂ω

by R. Using the fact that Ω = ω × R and ∂Ω = ∂ω × R, with the same changes
applied only to x′ ∈ ω for any variable x = (x′, x3) ∈ Ω, we can replace Ω by R3

+,
with R3

+ = {(x1, x2, x3) ∈ R3 : x1 > 0}, ∂Ω by R2, ∂ν by −∂x1 and, without lost
of generality, we can assume T = ∞. Then, in our result we can replace Hr,r(Q)
(respectively Hr(Ω) and Hr,r(Σ)) by Hr,r((0,+∞) × R3

+) (respectively Hr(R3
+) and

Hr,r((0,+∞)× R2)). Let K1 be the space of (g0, g1, u0, u1) satisfying

gj ∈ Hrj ,rj ((0,+∞)× R2), rj = 2− j − 1

2
, j = 0, 1,

uk ∈ Hsk(R3
+), sk = 2− k − 1

2
, k = 0, 1

and the compatibility conditions

g0(0, x2, x3) = u0(0, x2, x3), (x2, x3) ∈ R2,∫
R
∫
R
∫ +∞

0

∣∣∂kt gj(., x2, x3)|t=r − ∂jx1
uk(., x2, x3)|x1=r

∣∣2 dr
r dx2dx3,

j, k ∈ N, j + k = 1,
(4.35)

∫
R
∫
R
∫ +∞

0

∣∣∣∂β(x2,x3)g0(., x2, x3)|t=r − ∂β(x2,x3)u0(., x2, x3)|x1=r

∣∣∣2 dr
r dx2dx3,

β ∈ N2, |β| = 1.
(4.36)

Conditions (4.35) and (4.36) are global compatibility conditions (see subsection 2.4 in
Chapter 4 of [LM2]). Let us also introduce the Hilbert space

K2 = {f ∈ H 3
2 ,

3
2 ((0,+∞)× R2) : f|t=0 = 0, t−

1
2∇(t,x2,x3)f ∈ L2((0,+∞)× R2)}

with the norm

‖f‖2K2
= ‖f‖2

H
3
2
, 3
2 ((0,+∞)×R×R)

+
∥∥∥t− 1

2∇(t,x2,x3)f
∥∥∥2

L2((0,+∞)×R2)
.

Using the above changes, we will deduce Theorem 4.2 from

Lemma 4.3 The operator

U : w 7−→ (w|x1=0, ∂x1
w|x1=0, w|t=0, ∂tw|t=0)

is continuous and subjective from H2,2((0,+∞)×R3
+) to K1. In addition, for f ∈ K2

there exists w ∈ H2,2((0,+∞)× R2
+ × R) satisfying

(w|x1=0, ∂x1w|x1=0, w|t=0, ∂tw|t=0) = (f, 0, 0, 0) (4.37)

with

‖w‖H2,2((0,+∞)×R3
+) 6 C ‖f‖K2

. (4.38)
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Proof. According to Theorem 2.3 in Chapter 4 of [LM2], the operator U
is continuous and subjective. Therefore, it only remains to prove the last part
of the lemma. For this purpose, let (g0, g1, u0, u1) = (f, 0, 0, 0) and remark that
(g0, g1, u0, u1) ∈ K1. In view of Theorem 4.2 in chapter 1 of [LM1] and the first part of
the proof of Theorem 2.1 in Chapter 4 of [LM2], there exists v[f ] ∈ H2,2((0,+∞)×R3

+)
such that

(v[f ]|x1=0, ∂x1
v[f ]|x1=0) = (f, 0)

and

‖v[f ]‖H2,2((0,+∞)×R3
+) 6 C ‖f‖

H
3
2
, 3
2 ((0,+∞)×R2)

. (4.39)

Consider Hs
0(R3

+), s > 0, the closure of C∞0 (R3
+) in Hs(R3

+) and let H
k+ 1

2
0,0 (R3

+),
k = 0, 1, be the spaces

H
1+ 1

2
0,0 (R3

+) = {v ∈ H1+ 1
2

0 (R3
+) : x

− 1
2

1 ∂xjv ∈ L2(R3
+), j = 1, 2, 3},

H
1
2
0,0(R3

+) = {v ∈ H
1
2
0 (R3

+) : x
− 1

2
1 v ∈ L2(R3

+)}.

According to Theorem 11.7 in Chapter 1 of [LM1], we have

[H2
0 (R3

+), L2(R3
+)] j+1

2
2

= H
2−j− 1

2
0,0 (R3

+), j = 0, 1, (4.40)

where [H2
0 (R3

+), L2(R3
+)] j+1

2
2

is the interpolation space of order
j+ 1

2

2 between H2
0 (R3

+)

and L2(R3
+). In view of (4.40) and Theorem 3.2 in Chapter 1 of [LM1], the operator

u 7−→ (u|t=0, ∂tu|t=0)

is continuous and subjective from the Hilbert space

L2(R+
t ;H2

0 (R3
+)) ∩H2(R+

t ;L2(R3
+)))

to the Hilbert space

H
3
2
0,0(R3

+)×H
1
2
0,0(R3

+).

Thus, for all ϕk ∈ H
k+ 1

2
0,0 (R3

+), k = 0, 1, we can find

u[ϕ] ∈ L2(R+
t ;H2

0 (R3
+))) ∩H2(R+

t ;L2(R3
+)))

such that (u[ϕ]|t=0, ∂tu[ϕ]|t=0) = ϕ = (ϕ1, ϕ2) and

‖u[ϕ]‖H2,2((0,+∞)×R3
+) 6 C ‖ϕ‖

H
3
2
0,0(R3

+)×H
1
2
0,0(R3

+)
. (4.41)

Notice that, for j + k = 1, we have∥∥∥(x1)−
1
2 ∂jx1

∂kt v[f ]|t=0

∥∥∥
L2(R3

+)

6
∥∥∥(x1)−

1
2 (∂kt gj |t=x1

)
∥∥∥
L2(R3

+)
+
∥∥∥(x1)−

1
2 (∂jx1

∂kt v[f ]|t=0 − ∂kt gj |t=x1
)
∥∥∥
L2(R3

+)
.

Clearly, for j + k = 1, we find∥∥∥(x1)−
1
2 (∂kt gj |t=x1

)
∥∥∥
L2(R3

+)
6 ‖f‖K2
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and, from Theorem 2.2 in Chapter 4 of [LM2], we get∥∥∥(x1)−
1
2 (∂jx1

∂kt v[f ]|t=0 − ∂kt gj |t=x1
)
∥∥∥
L2(R3

+)
6 C ‖v[f ]‖H2,2((0,+∞)×R3

+)

6 C ‖f‖
H

3
2
, 3
2 ((0,+∞)×R2)

.

From these two estimates we deduce that∥∥∥(x1)−
1
2 ∂jx1

∂kt v[f ]|t=0

∥∥∥
L2(R3

+)
6 C ‖f‖K2

.

In the same way we show that∥∥∥(x1)−
1
2 ∂β(x2,x3)v[f ]|t=0

∥∥∥
L2(R3

+)
6 C ‖f‖K2

, β ∈ N2, |β| = 1.

Combining these estimates with Theorem 2.1 in Chapter 4 of [LM2] and (4.39), we
deduce that

(v[f ]|t=0, ∂tv[f ]|t=0) ∈ H
3
2
0,0(R3

+)×H
1
2
0,0(R3

+)

and we obtain ∥∥(v[f ]|t=0, ∂tv[f ]|t=0)
∥∥
H

3
2
0,0(R3

+)×H
1
2
0,0(R3

+)
6 C ‖f‖K2

. (4.42)

In view of (4.39), (4.41) and (4.42), if we set w[f ] = v[f ] + u[ϕ] with ϕ =
(−v[f ]|t=0,−∂tv[f ]|t=0), conditions (4.37) and (4.38) will be fulfilled.

Proof of Theorem 4.2. Using local coordinate, in the same way as in the
beginning of this subsection (see also Section 7.2 and the proof of Theorem 8.3 in
Chapter 1 of [LM1]), we can replace the space L by K2. Then, we deduce Theorem
4.2 from the last part of Lemma 4.3.

4.2. Proof of Theorem 4.1

We will now go back to Theorem 4.1. First, using Theorem 4.2 we split u into two
terms u = v[F ] + w with w ∈ H2,2(Q) satisfying (4.33), (4.34) and v[F ] solution of ∂2

t v[F ]−∆v[F ] + qv[F ] = F, t ∈ (0, T ), x′ ∈ ω, x3 ∈ R,
v[F ](0, ·) = 0, ∂tv[F ](0, ·) = 0, in Ω,
v[F ] = 0, on Σ

(4.43)

with F = −(∂2
tw−∆w+qw) ∈ L2(Q). In view of Theorem 8.1 and 8.3 in Chapter 3 of

[LM1] problem (4.43) admits a unique solution v ∈ C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))

satisfying

‖v‖C([0,T ];H1
0 (Ω))+‖v‖C1([0,T ];L2(Ω)) 6 C ‖F‖L2(Q) 6 C ‖w‖H2,2(Q) .(4.44)

Remark 4.4 It is well known that the Laplacian in Ω with Dirichlet boundary
condition is a self adjoint operator associated to the sesquilinear closed coercive form
b with domain D(b) = H1

0 (Ω) and defined by

b(f, g) =

∫
Ω

∇f · ∇gdx.

Therefore, we can apply the theory introduced in Section 8 of Chapter 3 of [LM1], by
considering the sesquilinear form

a(u, v) =

∫
Ω

(∇xu · ∇xv + quv)dx

and the space V = H1
0 (Ω), H = L2(Ω).
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In view of Theorem 3.1 in Chapter 1 of [LM1] , we have

w ∈ H2,2(Q) ⊂ C([0, T ];H
3
2 (Ω)) ∩ C1([0, T ];H

1
2 (Ω))

⊂ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω))

and

‖w‖C([0,T ];H1(Ω)) + ‖w‖C1([0,T ];L2(Ω)) 6 C(‖w‖
C([0,T ];H

3
2 (Ω))

+ ‖w‖
C1([0,T ];H

1
2 (Ω))

)

6 C ‖w‖H2,2(Q) .

Therefore, u ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) and (4.34) implies

‖u‖C([0,T ];H1(Ω)) + ‖u‖C1([0,T ];L2(Ω)) 6 C ‖f‖L .

It remains to show that ∂νu ∈ L2(Σ) and ‖∂νu‖L2(Σ) 6 C ‖f‖L. For this purpose,

notice that ∂νu = ∂νv[F ]. Thus, in view of (4.34), the proof will be complete if we
show that for v[F ] solution of (4.43) we have ∂νv[F ] ∈ L2(Σ) and

‖∂νv[F ]‖L2(Σ) 6 C ‖F‖L2(Q) . (4.45)

In order to prove this result, we will first assume that q = 0 and F is smooth so that
v[F ] is sufficiently smooth. Then we will conclude by density and by repeating the
arguments of Theorem A.2 in [BCY]. Without lost of generality, we can also assume
that v = v[F ] is real valued.

Let γ1 ∈ C∞(ω,R2) be such that γ1 = ν1 on ∂ω with ν1 the unit outward normal
vector to ∂ω. We set γ ∈ C∞(Ω,R3)∩W∞,∞(Ω,R3) defined by γ(x′, x3) = (γ1(x′), 0),
x′ ∈ ω, x3 ∈ R and we obtain γ = ν on ∂Ω. We have∫

Q

(∂2
t v −∆v)γ · ∇vdxdt = 0. (4.46)

Integrating by parts in t we get∫ T
0

∫
Ω
∂2
t vγ · ∇vdxdt =

∫
Ω
∂tv(T, x)γ · ∇v(T, x)dx−

∫ T
0

∫
Ω
∂tvγ · ∇∂tvdxdt

=
∫

Ω
∂tv(T, x)γ · ∇v(T, x)dx− 1

2

∫ T
0

∫
Ω
γ · ∇(∂tv)2dxdt.

Now notice that γ · ∇(∂tv)2 = γ1 · ∇x′(∂tv)2. Therefore, applying the Green formula
in x′ ∈ ω we get∫ T

0

∫
Ω
γ · ∇v2

t dxdt =
∫ T

0

∫
R
∫
ω
γ1 · ∇x′(∂tv)2dx′dx3dt

=
∫ T

0

∫
R
∫
∂ω
v2
t dx′dx3dt−

∫ T
0

∫
R
∫
ω

div(γ)v2
t dx′dx3dt

=
∫

Σ
v2
t dσ(x)dt−

∫
Q

div(γ)v2
t dxdt.

Since v|∂Ω = 0 we deduce that ∂tv|∂Ω = 0 and it follows∫
Σ

v2
t dσ(x)dt = 0.

Thus we have∫ T

0

∫
Ω

∂2
t vγ · ∇vdxdt =

∫
Ω

∂tv(T, x)γ · ∇v(T, x)dx+
1

2

∫
Q

div(γ)v2
t dxdt. (4.47)

On the other hand, we get∫
Q

−∆vγ · ∇vdxdt =

∫
Q

−∆x′vγ · ∇vdxdt+

∫
Q

−∂2
x3
vγ · ∇vdxdt.
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Applying the Green formula in x′ ∈ ω, we find∫
Q
−∆x′vγ · ∇vdxdt

=
∫ T

0

∫
R
∫
ω
−∆x′vγ · ∇vdx′dx3dt

= −
∫ T

0

∫
R
∫
∂ω
|∂νv|2 dσ(x′)dx3dt+

∫ T
0

∫
R
∫
ω
∇x′v · ∇x′(γ · ∇v)dx′dx3dt

= −
∫

Σ
|∂νv|2 dσ(x)dt+

∫
Q
∇x′v · ∇x′(γ · ∇v)dxdt.

and integrating by parts in x3 ∈ R we obtain∫
Q

−∂2
x3
vγ · ∇vdxdt =

∫
Q

∂x3
v∂x3

(γ · ∇v)dxdt.

It follows∫
Q

−∆vγ · ∇vdxdt = −
∫

Σ

|∂νv|2 dσ(x)dt+

∫
Q

∇xv · ∇x(γ · ∇xv)dxdt.

Recall that

∇v · ∇(γ · ∇v) = (H∇v) · ∇v +
1

2
γ · ∇(|∇v|2)

where H = (∂xjγi)16i,j63 and γ = (γ1, γ2, γ3). Therefore we have∫
Q
−∆vγ · ∇vdxdt = −

∫
Σ
|∂νv|2 dσ(x)dt+

∫
Q

(H∇v) · ∇vdxdt

+ 1
2

∫
Q
γ · ∇(|∇v|2)dxdt.

The Green formula in x′ ∈ ω implies∫
ω
γ · ∇(|∇v|2)dx′ =

∫
ω
γ1 · ∇x′(|∇v|2)dx′ =

∫
∂ω
|∇v|2 dσ(x′)−

∫
ω

div(γ) |∇v|2 dx′.

Since v|∂Ω = 0, we obtain |∇v|2 = |∂νv|2 on Σ. It follows∫
Q

γ · ∇(|∇v|2)dxdt =

∫
Σ

|∂νv|2 dσ(x)dt−
∫
Q

div(γ) |∇v|2 dxdt

and we get∫
Q
−∆vγ · ∇vdxdt = − 1

2

∫
Σ
|∂νv|2 dσ(x)dt+

∫
Q

(H∇v) · ∇vdxdt

− 1
2

∫
Q

div(γ) |∇v|2 dxdt.
(4.48)

Combining (4.46), (4.47) and (4.48) we deduce that∫
Σ
|∂νv|2 dσ(x)dt = 2

∫
Q

(H∇v) · ∇vdxdt−
∫
Q

div(γ) |∇v|2 dxdt

+2
∫

Ω
∂tv(T, x)γ · ∇v(T, x)dx+

∫
Q

div(γ)v2
t dxdt

and it follows

‖∂νv‖L2(Σ)) 6 C(‖v‖C([0,T ];H1
0 (Ω)) + ‖v‖C1([0,T ];L2(Ω))) 6 C ‖F‖L2(Q) .

By density we can extend this result to F ∈ L2(Q) and, in view of Theorem A.2 in
[BCY], we deduce that this result holds for q 6= 0.
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