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HIGHER ORDER SCHRÖDINGER AND HARTREE-FOCK

EQUATIONS

RÉMI CARLES AND EMMANUEL MOULAY

Abstract. In this article, we extend the domain of validity of the higher order
Schrödinger equations to the use of a Coulomb potential. Then we develop the
higher order Hartree-Fock equations with bounded and Coulomb potentials.

1. Introduction

The higher order Schrödinger equations have been developed in [5, 25]. They are
Schrödinger type equations involving a higher order Schrödinger operator [10, 16,

21, 23] and dedicated to particles whose norm of their velocity vector is below c/
√
2.

They are an interpolation between Schrödinger and relativistic equations, valid in
the semi-relativistic domain between non-relativistic and ultra-relativistic extremes.
The fundamental Schrödinger equation was published in 1926 by Erwin Schrödinger
in [39]. The semi-relativistic equation is studied for instance in [19, 20]. The
existence of a solution of the higher order Schrödinger equations is studied without
potential for free particles in [5, 25]. The case of bounded potential (particles in
finite potential wells) and of linear potentials (neutrons in free fall in the gravity
field and electrons accelerated by an electric field) is treated in [5]. Moreover, the
higher order Schrödinger operator with quasi-periodic potentials in dimension two
is developed in [23].

The Hartree equation was developed by Douglas Rayner Hartree in the 20s [12].
It arises in the mean-field limit of large systems of identical bosons, as for instance
the Gross-Pitaevskii equation in a Bose-Einstein condensate [18, 33], by taking
into account the self interaction between bosons. A semi-relativistic version of the
Hartree equation was developed in [11, 27] for modeling boson stars. The Hartree-
Fock equation was also developed by Vladimir Aleksandrovich Fock [13]. It is dedi-
cated to large systems of identical fermions with applications in electronic structure
theory by taking into account the self interaction between charged fermions plus an
exchange term which is a consequence of the Pauli principle. A semi-relativistic ver-
sion of the Hartree-Fock equation was developed in [14] for modeling white dwarfs.
The Hartree equation is also used for fermions as an approximation of the Hartree-
Fock equation where spin effects are neglected. The Hartree and Hartree-Fock
equations are used for several applications in many-particle physics [31, Section
2.2].

The first idea of this article is to extend the scope of the higher order Schrödinger
equations to the Coulomb potential by using a perturbation theory. The Coulomb
potential has been widely studied for the Schrödinger equation, see for instance
[17, 26, 38, 35, 44]. It is possible to use the higher order Schrödinger equations
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with a Coulomb potential for the alpha particles which are fast charged semi-
relativistic particles coming from the alpha decay and composed of two protons
and two neutrons [30]. Maximum alpha particle velocities are on the order of one-
tenth of the speed of light [40, 42]. The second idea of this article is to develop
higher order Hartree-Fock equations with bounded and Coulomb potentials which
are able to take into account some relativistic effects in many-particle physics, as
for instance the electrons of heavy atoms in quantum chemistry [22, 34, 43], the
semi-relativistic electron gas in a finite potential well [32, Section 4.2], the metal
clusters [31, Section 2.2.1] or the modeling of white dwarfs [14].

The paper is organized as follows. After some notations and definitions given
in Section 2, the case of the higher order Schrödinger equations with a Coulomb
potential is studied in Section 3. The Section 4 is devoted to the Cauchy problem
of the higher order Hartree-Fock equations with a bounded potential. The Cauchy
problem of the higher order Hartree-Fock equations with a Coulomb potential is
addressed in Section 5. Finally, a conclusion is given in Section 6.

2. Notations and definitions

The wave function of a particle is denoted by ψ(t, x) where x is the position of
the particle and t the time. Moreover, ψ stands for ψ(t, x). ∆ := ∇2 denotes the
Laplace operator.

For x ∈ R3, |x| denotes the Euclidean norm of x. The notation ∗ stands for the
convolution

(2.1) (f ∗ g) (x) =
∫

R3

f(x− y)g(y)dy.

By using the following approximation

(2.2) EJ = mc2



1 +

J∑

j=1

(−1)j+1α(j)
p2j

m2jc2j





of the energy

(2.3) E =
√
p2c2 +m2c4

of a particle of mass m and of momentum p, and the correspondence principle [3]

(2.4) E ↔ i~
∂

∂t
p ↔ −i~ ∂

∂x
= −i~∇,

we obtain the higher order Schrödinger equations

(2.5) i~
∂ψ

∂t
= −

J∑

j=0

α(j)~2j

m2j−1c2j−2
∆jψ + V ψ,

where V is an external potential, J ∈ N
∗, ~ = h

2π is the reduced Planck constant
and

(2.6) α(j) =
(2j − 2)!

j!(j − 1)!22j−1
,

with α(0) = −1. See [5] for more details.
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Let us introduce the integro-differential Hartree and Hartree-Fock equations
given for instance in [14, 31, 32]. The Hartree equation of N particles is defined by

(2.7) i~
∂

∂t
ψk = − ~

2

2m
∆ψk +

N∑

ℓ=1

(
κ

|x| ∗ |ψℓ|2
)
ψk + V ψk

with V an external bounded potential, κ a positive constant and k = 1, . . . , N . The
Hartree term

Hk =

N∑

ℓ=1

(
κ

|x| ∗ |ψℓ|2
)

describes the self interaction between charged particles as a repulsive force. The
Hartree-Fock equation of N particles is given by

(2.8) i~
∂

∂t
ψk = − ~

2

2m
∆ψk +Hkψk −

N∑

ℓ=1

(
κ

|x| ∗ ψℓψk

)
ψℓ + V ψk.

The Fock term

(2.9) F (ψk) =
N∑

ℓ=1
ℓ 6=k

(
κ

|x| ∗ (ψℓψk)

)
ψℓ

is an exchange term which is a consequence of the Pauli principle. It is non zero
for fermions which have a non zero spin.

The semi-relativistic Hartree equation is given by

(2.10) i~
∂

∂t
ψk =

√
−c2~2∆+m2c4 ψk +Hkψk + V ψk,

and the semi-relativistic Hartree-Fock equation by

(2.11) i~
∂

∂t
ψk =

√
−c2~2∆+m2c4 ψk +Hkψk − F (ψk) + V ψk,

with k = 1, . . . , N . Both equations (2.10) and (2.11) are studied for instance in
[1, 9, 14]. The main difficulty of these equations leads in the use of a non local

pseudo-differential operator
√
−c2~2∆+m2c4, see for instance [28, Chapter 7].

Indeed, it causes problem for practical simulations on a bounded domain where an
infinite number of boundary conditions are necessary.

For J ∈ N∗, we have the following higher order Hartree-Fock equations

(2.12) i~
∂

∂t
ψk = −

J∑

j=0

α(j)~2j

m2j−1c2j−2
∆jψk +Hkψk − F (ψk) + V ψk

with k = 1, . . . , N and V an external potential.

3. Higher order Schrödinger equations with a coulomb potential

It is proved in [5] that equations (2.5) have a unique solution without external
potential, and for a bounded or linear (in x) potential V . The main objective of
this section is to prove that this is also true with a Coulomb potential.

For J ∈ N
∗, let us consider the higher order Schrödinger equations

(3.1) i~
∂ψ

∂t
= −

J∑

j=0

α(j)~2j

m2j−1c2j−2
∆jψ + Vαψ; ψ(x, 0) = ψ0(x),
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where

(3.2) Vα(x) =
α

|x|
is the Coulomb potential with α a positive constant. We can prove the existence of
a solution of Equation (3.1) by using perturbative arguments based on the Kato-
Rellich theorem.

Theorem 3.1. Let ψ0 ∈ L2(R3). Equation (3.1) has a unique solution ψ ∈
C(R;L2(R3)), given by ψ(x, t) = ei

t
~
HJψ0(x) where

(3.3) HJ = −
J∑

j=0

α(j)~2j

m2j−1c2j−2
∆j + Vα.

In addition, the following conservation holds,

d

dt
‖ψ(t)‖2L2(R3) = 0.

Proof. First, let us prove that we can apply the Kato-Rellich Theorem. By using
2J integration by parts, it is easy to prove that he Hamiltonian

(3.4) H0J = −
J∑

j=0

α(j)~2j

m2j−1c2j−2
∆j

is essentially self-adjoint. We will show that Vα is H0-bounded

(3.5) ‖Vαψ‖L2(R3) 6 a‖H0Jψ‖L2(R3) + b‖ψ‖L2(R3), ∀ψ ∈ S(R3),

with a < 1, and where S denotes the Schwartz space. By using the Kato-Rellich
Theorem (see e.g. [37, Theorem X.12]), we deduce that the Hamiltonian

HJ = H0J + Vα

is a self adjoint operator and D(HJ ) = W 2,2(R3) = H2(R3). Then, we apply the
Stone Theorem (see e.g. [37]) to conclude that for ψ0 ∈ L2(R3), the Schrödinger
type equation

i~
∂ψ

∂t
= HJψ

has a unique solution given by ψ(x, t) = ei
t
~
HJψ0(x), and ‖ψ(t)‖L2 = ‖ψ0‖L2 for

all time t. We are left with the proof of (3.5). From Hardy inequality (see e.g. [2]),
there exists C > 0 such that

‖Vαψ‖L2(R3) 6 C‖∇ψ‖L2(R3).

An integration by parts and Cauchy–Schwarz inequality yield

‖Vαψ‖L2(R3) 6 C‖ψ‖1/2L2(R3)‖∆ψ‖
1/2
L2(R3) 6

C

ε
‖ψ‖L2(R3) + Cε‖∆ψ‖L2(R3),

where we have used the Young inequality 2ab 6 a2 + b2 for the last estimate, and
ε > 0 is to be fixed later. By considering EJ as a polynomial in p, and distinguishing
the small values of p from the large values of p, we readily check that there exist
CJ > 0 such that

p2 6 CJ

(
1 + E2

J

)
.

Using Plancherel identity, we infer

‖∆ψ‖L2(R3) 6 CJ

(
‖ψ‖L2(R3) + ‖H0Jψ‖L2(R3)

)
, ∀ψ ∈ S(R3).
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Gathering all the estimates together, we obtain

‖Vαψ‖L2(R3) 6

(
C

ε
+ CJCε

)
‖ψ‖L2(R3) + CJCε‖H0Jψ‖L2(R3), ∀ψ ∈ S(R3).

Choosing ε sufficiently small, we conclude that Vα is H0J -bounded, with a relative
bound a < 1. �

Example 3.2. The alpha decay is modeled by the equation

(3.6) A+4
Z+2X → A

ZY+ α

where Z is the atomic number of the residual nucleus Y , A the mass number of
the residual nucleus Y and α denotes the alpha particle composed of 2 protons and
2 neutrons. Let us suppose that the origin is taken at the center of the mother
nucleus. For |x| > R with R the radius of the residual nucleus, the potential of an
alpha particle after its decay is given by

(3.7) Vα(x) =
α̃

|x| ,

where α̃ = 2Ze2

4πǫ0
with e the elementary charge and ǫ0 the vacuum permittivity

[15, 36]. The alpha particle is a semi-relativistic particle whose maximum velocity
is of the order of one-tenth of the speed of light [40, 42]. It can be described by the
Schrödinger equation

(3.8) i~
∂ψ

∂t
= − ~

2

2mα
∆ψ + Vαψ,

where mα is the mass of the alpha particle after its quantum tunnelling out of the
mother nucleus X [41, Section 3.6]. By using a 2−order Schrödinger equation, we
obtain the following equation

(3.9) i~
∂ψ

∂t
=

(
mαc

2 + Vα
)
ψ − ~

2

2mα
∆ψ − ~

4

8m3
αc

2
∆2ψ,

for an alpha particle after its quantum tunnelling out of the mother nucleus X .
It has been shown in [5, Example 3.3] that the accuracy is improved with several
orders of magnitudes by taking into account a 2−order Schrödinger equation rather
than the Schrödinger equation.

4. Higher order Hartree-Fock equations with a bounded external
potential

In this section, we study the Cauchy problem associated to (2.12), in the case
where V is a bounded potential. We denote by

UJ(t) = e−itH0J

the propagator corresponding to the case Hk = F = V = 0, where we recall that
H0J is defined in (3.4). Given ψ01, . . . , ψ0N ∈ L2(R3), we rewrite the Cauchy
problem (2.12) with ψk|t=0 = ψ0k in an integral form (Duhamel’s principle): for
k = 1, . . . , N ,

(4.1)

ψk(t) = UJ(t)ψ0k − i

∫ t

0

UJ(t− s) (Hkψk) (s)ds

+ i

∫ t

0

UJ(t− s) (F (ψk)) (s)ds− i

∫ t

0

UJ(t− s) (V ψk) (s)ds.
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In the case J = 1 (Hartree-Fock equation), the existence and uniqueness of a so-
lution has been established in [8] (see also [4] for a proof using more recent tools).
Therefore, we shall focus our presentation on the case J > 2. We emphasize a dif-
ference with previous results: when J = 1, the H2-regularity of the solution to (2.8)
is proven by showing that ψk and ∂tψk belong to C([0, T ];L2(R3)), and using the
equation (2.8) to infer that ∆ψk ∈ C([0, T ];L2(R3)), hence ψk ∈ C([0, T ];H2(R3)).
This is so even in the linear case, see the proof on Lemma 2.1 in [44] (a property
which is used also in [4]). In the case of (2.12), this method can be adapted to pass
from an L2-regularity to an H2J -regularity: this may correspond to a rather large
regularity, and we choose to present a different approach.

Theorem 4.1. Let J > 2, V ∈ L∞(R3), ψ01, . . . , ψ0N ∈ L2(R3). Then (4.1) has

a unique, global, solution

(ψ1, . . . , ψN ) ∈
(
C(R;L2(R3)) ∩ L4J/3

loc

(
R;L∞(R3)

))N

.

In addition, the following conservations hold, for all ℓ, k ∈ {1, . . . , N}:

(4.2)
d

dt

∫

R3

ψℓ(t, x)ψk(t, x)dx = 0.

Remark 4.2. The space L
4J/3
loc

(
R;L∞(R3)

)
is mentioned in order to guarantee

uniqueness. Other spaces based on the Strichartz type estimates presented below
would do the job as well.

4.1. Dispersive estimates and consequences. From [25, Theorem 4.1], we have
the following local in time diseprsive estimate. There exists C > 0 such that

‖UJ(t)‖L1(R3)→L∞(R3) 6
C

|t|3/(2J) , 0 < |t| 6 1.

This estimate is the same as the one associated to the usual Schrödinger group eit∆

(J = 1) on Rn, with n = 3/J . This remark is purely algebraic, since n need not
be an integer. Large time decay properties for UJ(t) (with a different rate) are also
established in [25, Theorem 4.1], but we shall not need them here. Invoking [24,
Theorem 1.2], we infer the following lemma.

Lemma 4.3 (Local Strichartz estimates). Let J > 2, and (q1, r1), (q2, r2) be ad-

missible pairs, in the sense that they satisfy

(4.3)
2

q
= n

(
1

2
− 1

r

)
, 2 6 r 6 ∞, n =

3

J
.

Let I be some finite time interval, of length at most one, |I| 6 1.
1. There exists C = C(r1) such that for all φ ∈ L2(R3),

(4.4) ‖U(·)φ‖Lq1(I;Lr1(R3)) 6 C‖φ‖L2(R3).

2. If I contains the origin, 0 ∈ I, denote

DI(f)(t, x) =

∫

I∩{s6t}

U(t− s)f(s, x)ds.

There exists C = C(r1, r2) such that for all f ∈ Lq′2(I;Lr′2),

(4.5) ‖DI(f)‖Lq1(I;Lr1(R3)) 6 C ‖f‖
Lq′

2

(

I;Lr′
2(R3)

) ,
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where p′ stands for the Hölder conjugate exponent of p,
1

p
+

1

p′
= 1.

Remark 4.4. The value r = ∞ is always allowed in the present context, because we
morally consider a Schrödinger equation in space dimension n < 2.

4.2. The fixed point argument. In order to unify the treatment of the terms
Hk and F in (4.1), consider the trilinear operator

T(φ1, φ2, φ3) =

(
1

|x| ∗ (φ1φ2)
)
φ3.

Lemma 4.5. There exists C > 0 such that for all φ1, φ2, φ3 ∈ C∞
0 (R3),

‖T(φ1, φ2, φ3)‖L2(R3) 6 C‖φ1‖L24/11(R3)‖φ2‖L24/11(R3)‖φ3‖L4(R3).

Proof. Hölder inequality yields

‖T(φ1, φ2, φ3)‖L2(R3) 6

∥∥∥∥
1

|x| ∗ (φ1φ2)
∥∥∥∥
L4(R3)

‖φ3‖L4(R3).

Since x ∈ R3, Hardy-Littlewood-Sobolev inequality (see e.g. [2]) yields
∥∥∥∥
1

|x| ∗ (φ1φ2)
∥∥∥∥
L4(R3)

6 C‖φ1φ2‖L12/11(R3),

and the lemma follows from Hölder inequality. �

Lemma 4.6. Let ψ01, . . . , ψ0N ∈ L2(R3). There exists T > 0 depending on

ψ01, . . . , ψ0N only through ‖ψ01‖L2, . . . , ‖ψ0N‖L2 such that (4.1) has a unique solu-

tion

(ψ1, . . . , ψN ) ∈
(
C([0, T ];L2(R3)) ∩ L4J/3

(
[0, T ];L∞(R3)

))N

.

Proof. Denote by Φk(ψ1, . . . , ψL) the right hand side of (4.1), and for T > 0, let

XT = {(ψ1, . . . , ψN ) ∈ L∞([0, T ];L2(R3))N ; ‖ψk‖L∞([0,T ];L2(R3)) 6 2‖ψ0k‖L2 ,

‖ψk‖L4J/3([0,T ];L∞(R3)) 6 2C∞‖ψ0k‖L2, k = 1, . . . , N},
where the constant C∞ stems from (4.4) in the case r1 = ∞. The lemma follows
from a standard fixed point argument: for T > 0 sufficiently small (depending on
‖ψ01‖L2, . . . , ‖ψ0N‖L2), all the Φk’s leave XT invariant, and are contractions on
that space.

From Lemma 4.3, and denoting by Lq
TL

r = Lq([0, T ];Lr(R3)), we have

‖Φk‖L∞
T L2 6 ‖ψ0k‖L2 + C‖Hkψk‖L1

TL2 + C‖F (ψk)‖L1
TL2 + ‖V ψk‖L1

TL2 .

Lemma 4.5 and the boundedness of V yield

‖Φk‖L∞
T L2 6 ‖ψ0k‖L2 + C

N∑

ℓ=1

∥∥∥‖ψk(t)‖L24/11‖ψℓ(t)‖L24/11‖ψℓ(t)‖L4

∥∥∥
L1

T

+ C‖ψk‖L1
TL2 .

The last term is readily estimated by CT ‖ψk‖L∞
T L2 . Each term of the sum is

controlled by
∥∥∥‖ψk(t)‖1/12L∞ ‖ψk(t)‖11/12L2 ‖ψℓ(t)‖1/12L∞ ‖ψℓ(t)‖11/12L2 ‖ψℓ(t)‖1/2L∞‖ψℓ(t)‖1/2L2

∥∥∥
L1

T
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Neglecting the indices k and ℓ, which are irrelevant at this step of the analysis,
Hölder inequality in time yields

∥∥∥‖ψ(t)‖2/3L∞‖ψ(t)‖7/3L2

∥∥∥
L1

T

6 ‖ψ‖7/3L∞
T L2‖ψ‖2/3

L
4J/3
T L∞

T 3(2J−1)/4,

and we come up with an estimate of the form

‖Φk‖L∞
T L2 6 ‖ψ0k‖L2 + C (‖ψ01‖L2, . . . , ‖ψ0N‖L2)

(
T + T 3(2J−1)/4

)
.

Choosing T > 0 sufficiently small, the right hand side does not exceed 2‖ψ0k‖L2,
uniformly in k. Similarly, Lemma 4.3 yields

‖Φk‖L4J/3
T L∞ 6 C∞‖ψ0k‖L2 + C‖Hkψk‖L1

TL2 + C‖F (ψk)‖L1
TL2 + ‖V ψk‖L1

TL2 ,

and so, XT is invariant under the action of Φ provided that T > 0 is sufficiently
small.

Up to diminishing T , contraction follows readily, since T is a trilinear operator.
So there exists a unique (in XT ) fixed point for Φ, that is, a solution to (4.1).

Uniqueness in the larger space
(
C([0, T ];L2(R3)) ∩ L4J/3

(
[0, T ];L∞(R3)

))N
fol-

lows from the same estimates. �

Since the L2 norm of ψk, k = 1, . . . , N is invariant under the flow of (2.12) (like
in the case J = 1), the above local existence result can be iterated indefinitely in
order to cover any arbitrary time interval, and Theorem 4.1 follows.

4.3. Higher order regularity. We infer the propagation of higher order Sobolev
regularity, which essentially reflects the fact that (2.12) is L2-subcritical, and the
nonlinearity is smooth. Roughly speaking, the point is to differentiate (4.1) with
respect to the space variable (such derivatives commute with UJ), and use the fact
that the nonlinearity is a trilinear operator, along with Sobolev embedding.

Corollary 4.7. Let s ∈ N. Suppose that V ∈ W s,∞(R3), and that ψ0k ∈ Hs(R3),
k = 1, . . . , N . Then the solution to (2.12) provided by Theorem 4.1 satisfies

ψk ∈ C(R;Hs(R3)), k = 1, . . . , N.

If s > J , then we have in addition:

ψk ∈ L∞(R;HJ(R3)), k = 1, . . . , N.

Proof. We refer to the proof of [6, Theorem 8.1] for precise details concerning the
proof of the first statement. In the case s > J , we take advantage of the Hamiltonian
structure of (2.12). The quantity

E =

N∑

k=1

〈ψk,H0Jψk〉+
∫

R3

V (x)ρΨ(x)dx

+
κ

2

∫∫

R3×R3

ρΨ(x)ρΨ(y)− |ρΨ(x, y)|2
|x− y| dxdy,

is formally independent of time, where

(4.6) ρΨ(x, y) =

N∑

k=1

ψk(x)ψk(y), and ρΨ(x) = ρΨ(x, x),
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and we recall that we have denoted

H0J = −
J∑

j=0

α(j)~2j

m2j−1c2j−2
∆j = −

J∑

j=0

(−1)j
α(j)~2j

m2j−1c2j−2
(−∆)j ,

where the last equality is here to stress the fact that −∆ is a positive operator. In
view of Cauchy-Schwarz inequality, the integral on R3 ×R3 in E is non-negative.
At leading order (in terms of regularity),

〈ψk,H0Jψk〉 = (−1)J+1 α(J)~2J

m2J−1c2J−2
‖(−∆)J/2ψk‖2L2 + l.o.t.

In view of the conservation of the L2 norm, we infer that if (−1)J+1 and κ have
the same sign, then the conservation of E yields an a priori bound of the form

(4.7) ψk ∈ L∞(R;HJ(R3)), k = 1, . . . , N.

In passing, we have used the following interpolation estimates, for 0 6 s 6 J :

‖(−∆)s/2ψ‖L2 6 C‖ψ‖1−θ
L2 ‖(−∆)J/2ψ‖θL2 , θ = 1− s

J
.

If (−1)J+1 and κ have different signs, we recall from [29] the estimate

∫∫

R3×R3

ρΨ(x)ρΨ(y)

|x− y| dxdy 6 C

(∫

R3

ρΨ(x)dx

)2/3 (∫

R3

ρ
4/3
Ψ (x)dx

)

6 C

N∑

k=1

‖ψk‖8/3L8/3(R3)
6 C

N∑

k=1

‖ψk‖8/3H3/8(R3)
,

where we have used the conservation of the L2-norm and Sobolev embedding, suc-
cessively. Therefore, the leading order in the “kinetic” part always dominates the
potential part (J > 3/8), and (4.7) is always true. Finally, the conservation of E
can be rigoroulsy established by following classical arguments (see e.g. [7]). �

5. Higher order Hartree-Fock equations with a Coulomb potential

In the case where the external potential V in (2.12) is a Coulomb potential (3.2),
we prove:

Theorem 5.1. Let J > 2, V given by (3.2), ψ01, . . . , ψ0N ∈ L2(R3). Then (4.1)
has a unique, global, solution

(ψ1, . . . , ψN ) ∈
(
C(R;L2(R3)) ∩ L4J/3

loc

(
R;L∞(R3)

))N

.

In addition, the following conservations hold, for all ℓ, k ∈ {1, . . . , N}:

(5.1)
d

dt

∫

R3

ψℓ(t, x)ψk(t, x)dx = 0.

If moreover ψ01, . . . , ψ0N ∈ H2J(R3), then

ψk ∈ C(R;H2J(R3)) ∩ L∞(R;HJ(R3)), k = 1, . . . , N,



10 R. CARLES AND E. MOULAY

and the energy

E =

N∑

k=1

〈ψk,H0Jψk〉+
∫

R3

V (x)ρΨ(x)dx

+
κ

2

∫∫

R3×R3

ρΨ(x)ρΨ(y)− |ρΨ(x, y)|2
|x− y| dxdy

is independent of time, where ρΨ is defined in (4.6).

Sketch of the proof. The global exsitence at the L2 level follows the same lines as
in the previous section. The only difference is that the term V ψk must be handled
differently. Since the pair (4J/3,∞) is admissible, we may write

‖Φk‖L∞
T L2 6 ‖ψ0k‖L2 + C‖Hkψk‖L1

TL2 + C‖F (ψk)‖L1
TL2

+ ‖V1ψk‖L4J/(4J−3)
T L1 + ‖V2ψk‖L1

TL2 ,

where we have decomposed the Coulomb potential as the sum of a singular potential
with compact support and a bounded potential,

V1(x) =
α

|x|1|x|<1, V2(x) =
α

|x|1|x|>1.

Since V2 ∈ L∞(R3), the last term is treated like in the previous case. We also have,
in view of Cauchy-Schwarz inequality (in x),

‖V1ψk‖L4J/(4J−3)
T L1 6 ‖V1‖L2(R3)‖ψk‖L4J/(4J−3)

T L2

6 T (4J−3)/(4J)‖V1‖L2(R3)‖ψk‖L∞
T L2 ,

and we can conclude like in the proof of Lemma 4.6, and Theorem 4.1, successively,
to obtain the first part of the theorem.

For the second part, we follow the same stategy as in [44] and [4]: the above
fixed point argument can be repeated in

YT = {(ψ1, . . . , ψN ) ∈ L∞([0, T ];HJ(R3))N ; ‖ψk‖L∞([0,T ];L2(R3)) 6 2‖ψ0k‖L2,

‖ψk‖L4J/3([0,T ];L∞(R3)) 6 2C∞‖ψ0k‖L2 ,

‖∂tψk‖L∞([0,T ];L2(R3)) 6 2K0k,

‖∂tψk‖L4J/3([0,T ];L∞(R3)) 6 2C∞K0k, k = 1, . . . , N},
where K0k corresponds morally to ‖∂tψk|t=0‖L2 . Since the time variable is charac-
teristic, this quantity is given by the equation, and we can take

~K0k =
∑

j=0

|α(j)|~2j
m2j−1c2j−2

‖ψ0k‖Ḣ2j + ‖Hkψ0k‖L2 + ‖F (ψ0k)‖L2 + ‖V ψ0k‖L2.

The sum of the right hand side is finite by assumption, the nonlinear terms are
finite by Sobolev embedding, and the last term is controlled by ‖∇ψ0k‖L2 thanks
to Hardy inequality (see e.g. [2]).

The fixed point argument performed in XT is readily adapted to the case of YT ,
hence

ψk ∈ C([0, T ];H2J(R3)), k = 1, . . . , N.

Since T depends on the L2 norms of the initial data, and not of higher order norms,
this local argument can be repeated in order to cover any given time interval, hence

ψk ∈ C(R;H2J (R3)), k = 1, . . . , N.
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The conservation of the energy E follows from standard arguments, and the proof of
Corollary 4.7 can be repeated to obtain the global boundedness of theHJ norm. �

6. Conclusion

In this article, we have shown that the higher order Schrödinger equations are
compatible with the Coulomb potential. These kind of equations can be used for
instance for alpha particles. Moreover, we have expande the scope to the higher
order Hartree-Fock equations with bounded and Coulomb potentials which can be
used in many-particle physics.
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France

E-mail address: Remi.Carles@math.cnrs.fr
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