HAL
open science

The complexity of deciding whether a graph admits an orientation with fixed weak diameter

Julien Bensmail, Romaric Duvignau, Sergey Kirgizov

To cite this version:

Julien Bensmail, Romaric Duvignau, Sergey Kirgizov. The complexity of deciding whether a graph admits an orientation with fixed weak diameter. 2013. hal-00824250v4

HAL Id: hal-00824250
https://hal.science/hal-00824250v4
Submitted on 20 Nov 2013 (v4), last revised 16 Aug 2016 (v6)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The complexity of deciding whether a graph admits an orientation with fixed weak diameter

Julien Bensmail ${ }^{\text {a,b,* }}$, Romaric Duvignau ${ }^{\text {a,b }}$, Sergey Kirgizov ${ }^{\text {c,d }}$
${ }^{a}$ Univ. Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
${ }^{b}$ CNRS, UMR 5800, 33400 Talence, France
${ }^{c}$ Univ. Pierre et Marie Curie, LIP6, UMR 7606, 75252 Paris, France
${ }^{d}$ CNRS, UMR 7606, 75252 Paris, France

Abstract

An orientation of an undirected graph G has weak diameter k if, for every pair $\{u, v\}$ of vertices of G, there is a directed path with length at most k joining u and v in either direction. We show that deciding whether a graph admits an orientation with weak diameter k is NP-complete whenever $k \geq 2$.

Keywords: oriented graph, weak diameter, complexity

1. Introduction

Let G be a simple undirected graph with vertex set $V(G)$ and edge set $E(G)$. By orienting every edge $u v$ of G, either from u to v or from v to u, one obtains an orientation \vec{G} of G. This oriented graph \vec{G} has the same vertex set as G, i.e. $V(\vec{G})=V(G)$, and, for every edge $u v \in E(G)$, we have either $\overrightarrow{u v} \in E(\vec{G})$ or $\overrightarrow{v u} \in E(\vec{G})$ depending on the orientation assigned to $u v$.

The distance $\operatorname{dist}(G, u, v)$ from u to v in an undirected graph G is the minimal length of a path joining u and v. We refer to the maximum distance between two vertices of G as its diameter, and denote it $\operatorname{diam}(G)$. These definitions can be naturally adapted to the context of oriented graphs. A k-dipath $\overrightarrow{v_{1} v_{2} \ldots v_{k+1}}$ of \vec{G} is a sequence of $k+1$ distinct vertices such that $\overrightarrow{v_{i} v_{i+1}} \in E(\vec{G})$ for every $i \in\{1,2, \ldots, k\}$. The directed distance $\operatorname{dist}(\vec{G}, u, v)$ from u to v in \vec{G} is the minimal length of a dipath starting from u and ending at v. Note that, contrary to the undirected case, we may have $\operatorname{dist}(\vec{G}, u, v) \neq \operatorname{dist}(\vec{G}, v, u)$. Therefore, two definitions of the oriented diameter can be adopted.

[^0]Let $\operatorname{dist}_{w}(\vec{G}, u, v)$ and $\operatorname{dist}_{s}(\vec{G}, u, v)$ be $\min \{\operatorname{dist}(\vec{G}, u, v), \operatorname{dist}(\vec{G}, v, u)\}$ and $\max \{\operatorname{dist}(\vec{G}, u, v), \operatorname{dist}(\vec{G}, v, u)\}$, respectively. The weak diameter of \vec{G}, denoted $\operatorname{diam}_{w}(\vec{G})$, is the maximum value of $\operatorname{dist}_{w}(\vec{G}, u, v)$ taken over all pairs $\{u, v\}$ of vertices of \vec{G}. The strong diameter of \vec{G}, denoted $\operatorname{diam}_{s}(\vec{G})$, is the maximum value of $\operatorname{dist}_{s}(\vec{G}, u, v)$ taken over all pairs $\{u, v\}$ of vertices of \vec{G}.

An orientation of G is k-weak (resp. k-strong) if it has weak (resp. strong) diameter at most k. We only deal with k-weak orientations in this paper, our motivations being mainly supported by the case $k=2$ which is related to some graph colouring notions as explained below. A proper k-colouring of G is a partition of $V(G)$ into k parts such that each colour class is a stable. The least number of colours used by a proper colouring of G is referred to as the chromatic number of G, denoted $\chi(G)$. Clearly, we have $\chi(G)=|V(G)|$ if and only if G is a complete graph.

Now consider similar notions but for oriented graphs. A proper oriented k colouring of \vec{G} is a partition of $V(\vec{G})$ into k parts such that each colour class is a stable, and all arcs between two colour classes have the same direction. As usually, the least number of colours used by a proper oriented colouring of \vec{G} is defined as the oriented chromatic number of \vec{G}, denoted $\chi_{o}(\vec{G})$. Contrary to the undirected case, an oriented graph whose oriented chromatic number is exactly its order is not necessarily a tournament. As an illustration of that claim, remark that $\chi_{o}\left(\overrightarrow{C_{5}}\right)=5$, where $\overrightarrow{C_{5}}$ is the circuit on 5 vertices.

Oriented cliques (or o-clique for short) were introduced as the analogues of cliques regarding proper oriented colouring. In other words, o-cliques are those oriented graphs whose oriented chromatic number is exactly their order. Ocliques have been mainly studied regarding the extremal theory point of view. The interested reader may refer to $[1,3,5,9]$ for interesting results regarding the size of o-cliques, and to [4, 7] for results on the maximum order of planar o-cliques.

The oriented chromatic number can also be defined for undirected graphs [8]. If G is an undirected graph, then $\chi_{o}(G)$ is defined as

$$
\chi_{o}(G)=\max \left\{\chi_{o}(\vec{G}), \vec{G} \text { is an orientation of } G\right\}
$$

Hence, we have $\chi_{o}(G)=|V(G)|$ if and only if G admits an orientation which is an o-clique. It follows from the definition that an oriented graph is an oclique if and only if it has weak diameter at most 2 [4]. Therefore, we get that $\chi_{o}(G)=|V(G)|$ if and only if G admits a 2-weak orientation, and finding 2-weak orientations of graphs becomes of interest.

From the algorithmic point of view, the complexity of deciding whether an undirected graph admits a 2 -weak orientation was still unknown. Note that the analogous question for 2 -strong orientations was settled by Chvátal and Thomassen, who showed this problem to be NP-complete [2]. We here settle this question by studying the following decision problem.

Orientation with Weak Diameter $k-k$-OWD
Instance: A graph G.
Question: Does G admit a k-weak orientation?
A graph admits a 1-weak orientation if and only if it is a complete graph. Therefore, 1-OWD is in P. In this work, we show the following.

Theorem 1. k-OWD is NP-complete for every $k \geq 2$.
Regarding our motivations above, we also deduce the following hardness result as an immediate corollary of the NP-completeness of 2-OWD.

Corollary 2. Deciding whether $\chi_{o}(G)=|V(G)|$ for an undirected graph G is NP-complete.

2. Proof of Theorem 1

The problem k-OWD is in NP for every k since one can, given an orientation \vec{G} of G, check whether $\operatorname{diam}_{w}(\vec{G}) \leq k$. For this purpose, one just has to check, for every possible pair $\{u, v\}$ of distinct vertices of G, whether either u and v are adjacent, or there exist $k^{\prime} \leq k-1$ vertices $w_{1}, w_{2}, \ldots, w_{k^{\prime}}$ such that $\overrightarrow{u w_{1} w_{2} \ldots w_{k^{\prime}} v}$ or $\overrightarrow{v w_{1} w_{2} \ldots w_{k^{\prime}}} \vec{u}$ is a dipath of \vec{G}. This naive witness algorithm runs in polynomial time with respect to the order of G.

Let $k \geq 2$ be fixed. We show that k-OWD is NP-hard by reduction from the following problem, which is shown to be NP-complete in [6].
2-Vertex-Colouring of 3-Uniform Hypergraphs - 2COL Instance: A 3-uniform hypergraph H.
Question: Is $H 2$-colourable, i.e. can we colour each vertex of H either blue or red so that each edge of H has at least one blue and one red vertex?

Throughout this paper, we denote the vertices and edges of any hypergraph H with order n and size m by $x_{1}, x_{2}, \ldots, x_{n}$ and $E_{1}, E_{2}, \ldots, E_{m}$, respectively. For every $i \in\{1,2, \ldots, n\}$, we further denote by $n_{i} \geq 1$ the number of distinct edges of H which contain the vertex x_{i}. From a 3 -uniform hypergraph H, we produce a graph G_{H} such that H is 2 -colourable if and only if G_{H} admits a k-weak orientation $\overrightarrow{G_{H}}$. This reduction is achieved in polynomial time regarding the size of H.

We first describe the core G_{H}^{c} of G_{H}, i.e. the subgraph of G_{H} from which the equivalence with H follows. The subgraph G_{H}^{c} does not have diameter k, but G_{H} will be augmented later so that it has diameter k, and this without altering the equivalence. The core G_{H}^{c} has the following vertices (see Figure 1). With each vertex x_{i} of H, we associate $n_{i}+2$ vertices u_{i}, u_{i}^{\prime}, and $v_{i, j_{1}}, v_{i, j_{2}}, \ldots, v_{i, j_{n_{i}}}$ in G_{H}^{c}, where $j_{1}, j_{2}, \ldots, j_{n_{i}}$ are the distinct indices of the edges of H which contain x_{i}. We now associate additional vertices in G_{H}^{c} with each edge E_{j} of H, where $j \in\{1,2, \ldots, m\}$. This association depends on the parity of k.

- If k is even, then add two vertices a_{j} and a_{j}^{\prime} to G_{H}^{c}.

Figure 1: The core subgraph G_{H}^{c} of G_{H} obtained assuming H has two edges $E_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $E_{2}=\left\{x_{3}, x_{4}, x_{5}\right\}$.

- Otherwise, if k is odd, then add two cycles $a_{j} b_{j} c_{j} a_{j}$ and $a_{j}^{\prime} b_{j}^{\prime} c_{j}^{\prime} a_{j}^{\prime}$ with length 3 to G_{H}^{c}.

We now link the vertices of G_{H}^{c} by means of several vertex-disjoint paths. By "joining a pair of vertices $\{u, v\}$ by a path", we mean that we identify the endvertices of a new path with u and v, respectively. Since this operation is used at most once for joining any pair $\{u, v\}$ of G_{H}^{c}, we use the notation $u P v$ to denote the resulting path (if any). First, join every pair $\left\{u_{i}, u_{i}^{\prime}\right\}$ by a path with length $\left\lfloor\frac{k}{2}\right\rfloor$. Then also join every pair $\left\{u_{i}^{\prime}, v_{i, j}\right\}$ by a path with length $\left\lceil\frac{k}{2}\right\rceil$. Now consider each edge $E_{j}=\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ of H, and add the following paths to G_{H}^{c}.

- If k is even, join every pair of $\left\{v_{i_{1}, j}, v_{i_{2}, j}, v_{i_{3}, j}\right\} \times\left\{a_{j}, a_{j}^{\prime}\right\}$ by means of a path with length $\frac{k}{2}$.
- Otherwise, if k is odd, then join every pair of $\left\{v_{i_{1}, j}\right\} \times\left\{a_{j}, a_{j}^{\prime}\right\},\left\{v_{i_{2}, j}\right\} \times$ $\left\{b_{j}, b_{j}^{\prime}\right\}$, and $\left\{v_{i_{3}, j}\right\} \times\left\{c_{j}, c_{j}^{\prime}\right\}$ by a path with length $\left\lfloor\frac{k}{2}\right\rfloor$.

Note that, by construction, exactly one pair $\left\{v_{i, j}, s\left(v_{i, j}\right)\right\}$ (resp. $\left.\left\{v_{i, j}, s^{\prime}\left(v_{i, j}\right)\right\}\right)$ was joined by a path with length $\left\lfloor\frac{k}{2}\right\rfloor$, where $s\left(v_{i, j}\right)$ (resp. $s^{\prime}\left(v_{i, j}\right)$) is a vertex of the form a_{j}, b_{j} or c_{j} (resp. $a_{j}^{\prime}, b_{j}^{\prime}$ or $\left.c_{j}^{\prime}\right)$. The notation $s\left(v_{i, j}\right)$ and $s^{\prime}\left(v_{i, j}\right)$ are used throughout this section. In particular, observe that if k is even, then we have $s\left(v_{i_{1}, j}\right)=s\left(v_{i_{2}, j}\right)=s\left(v_{i_{3}, j}\right)=a_{j}$ for every edge $E_{j}=\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ of H. We analogously have $s^{\prime}\left(v_{i_{1}, j}\right)=s^{\prime}\left(v_{i_{2}, j}\right)=s^{\prime}\left(v_{i_{3}, j}\right)=a_{j}^{\prime}$.

A pair $\{u, v\}$ of distinct vertices of G_{H}^{c} is said representative whenever it matches one of the following forms.

1. $\left\{u_{i}, v_{i, j}\right\}$ where $i \in\{1,2, \ldots, n\}, j \in\{1,2, \ldots, m\}$, and $x_{i} \in E_{j}$.
2. $\left\{u_{i}^{\prime}, s\left(v_{i, j}\right)\right\}$ where $i \in\{1,2, \ldots, n\}, j \in\{1,2, \ldots, m\}$, and $x_{i} \in E_{j}$.
3. $\left\{v_{i_{1}, j}, v_{i_{2}, j}\right\}$ where $i_{1}, i_{2} \in\{1,2, \ldots, n\}, j \in\{1,2, \ldots, m\}$, and $x_{i_{1}}, x_{i_{2}} \in E_{j}$.

An orientation of G_{H}^{c} is good if two vertices forming a representative pair are linked by a k-dipath in either direction. Note that, in this definition, there is no requirement on the oriented distance between two vertices which are at distance at least $k+1$. A representative pair is a pair of vertices which are not adjacent in G_{H}, and for which there are at most two paths with length at most k joining it. All of these paths belong to G_{H}^{c} so that the existence of a k-weak orientation of G_{H} depends on the existence of a good orientation of G_{H}^{c}.

We prove below that we have an equivalence between finding a proper 2 -vertex-colouring of H and a good orientation of G_{H}^{c}. The proof relies on the following claims.

Claim 1. Suppose the vertex x_{i} belongs to the edges $E_{j_{1}}, E_{j_{2}}, \ldots, E_{j_{n_{i}}}$ of H. Then, in any good orientation $\overrightarrow{G_{H}^{c}}$ of $G_{H}^{c}, \overrightarrow{u_{i} P u_{i}^{\prime} P v_{i, j} P s\left(v_{i, j}\right.}$ is a dipath for every $j \in\left\{j_{1}, j_{2}, \ldots, j_{n_{i}}\right\}$, or $\overrightarrow{s\left(v_{i, j}\right) P v_{i, j} P u_{i}^{\prime} P u_{i}}$ is a dipath for every $j \in$ $\left\{j_{1}, j_{2}, \ldots, j_{n_{i}}\right\}$.

Proof. Note that because $u_{i} P u_{i}^{\prime} P \xrightarrow{v_{i, j_{1}}}$ is the only path with length at most k joining u_{i} and $v_{i, j_{1}}$ in G_{H}^{c}, either $\overrightarrow{u_{i} P u_{i}^{\prime} P v_{i, j_{1}}}$ or $\overrightarrow{v_{i, j_{1}} P u_{i}^{\prime} P u_{i}}$ must be a dipath of $\overrightarrow{G_{H}^{c}}$. Assume $\overrightarrow{u_{i} P u_{i}^{\prime} P v_{i, j_{1}}}$ is a dipath of $\overrightarrow{G_{H}^{c}}$. Since $\overrightarrow{u_{i} P u_{i}^{\prime}}$ is now a dipath of $\overrightarrow{G_{H}^{c}}, \overrightarrow{u_{i}^{\prime} P v_{i, j}}$ must also be a dipath for every $j \in\left\{j_{1}, j_{2}, \ldots, j_{n_{i}}\right\}$ since $u_{i} P u_{i}^{\prime} P v_{i, j}$ is the only path with length at most k joining u_{i} and $v_{i, j}$ in G_{H}^{c}.

Similarly, since, for every $j \in\left\{j_{1}, j_{2}, \ldots, j_{n_{i}}\right\}$, the only path with length at most k joining u_{i}^{\prime} and $s\left(v_{i, j}\right)$ in G_{H}^{c} is $u_{i}^{\prime} P v_{i, j} P s\left(v_{i, j}\right)$, and $\overrightarrow{u_{i}^{\prime} P v_{i, j}}$ is a dipath of $\overrightarrow{G_{H}^{c}}$, then $\overrightarrow{v_{i, j} P s\left(v_{i, j}\right)}$ has to be a dipath of $\overrightarrow{G_{H}^{c}}$. Thus, $\overrightarrow{u_{i} P u_{i}^{\prime} P v_{i, j} P s\left(v_{i, j}\right)}$ belongs to $\overrightarrow{G_{H}^{c}}$ for every $j \in\left\{j_{1}, j_{2}, \ldots, j_{n_{i}}\right\}$ assuming that $\xrightarrow[u_{i} P u_{i}^{\prime} P v_{i, j_{1}}]{\text { belongs }}$ to the orientation. The claim follows analogously from the assumption that $\overrightarrow{v_{i, j_{1}} P u_{i}^{\prime} P u_{i}}$ is a dipath of $\overrightarrow{G_{H}^{c}}$.

Claim 2. Suppose k is even, and $E_{j}=\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ is an edge of H. Then, in any good orientation $\overrightarrow{G_{H}^{c}}$ of G_{H}^{c}, either $\overrightarrow{v_{i, j} P s\left(v_{i, j}\right)}$ or $\overrightarrow{s\left(v_{i, j}\right) P v_{i, j}}$ is a dipath for every $i \in\left\{i_{1}, i_{2}, i_{3}\right\}$. Furthermore, these three dipaths cannot be all directed from or towards the $s\left(v_{i, j}\right)$'s.

Proof. Recall that $s\left(v_{i_{1}, j}\right)=s\left(v_{i_{2}, j}\right)=s\left(v_{i_{3}, j}\right)=a_{j}$ and $s^{\prime}\left(v_{i_{1}, j}\right)=s^{\prime}\left(v_{i_{2}, j}\right)=$ $s^{\prime}\left(v_{i_{3}, j}\right)=a_{j}^{\prime}$ when k is even. Note further that there are only two paths with length at most k joining any two of $v_{i_{1}, j}, v_{i_{2}, j}$, and $v_{i_{3}, j}$. These include a_{j} and a_{j}^{\prime}, respectively. If the statement of the claim is not fulfilled, then there is no k-dipath of $\overrightarrow{G_{H}^{c}}$ joining any two of $v_{i_{1}, j}, v_{i_{2}, j}$, and $v_{i_{3}, j}$ including a_{j}. So there must be three k-dipaths joining these vertices including a_{j}^{\prime}, but this is impossible.

Claim 3. Suppose k is odd, and $E_{j}=\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ is an edge of H. Then, in any good orientation $\overrightarrow{G_{H}^{c}}$ of G_{H}^{c}, either $\overrightarrow{v_{i, j} P s\left(v_{i, j}\right)}$ or $\overrightarrow{s\left(v_{i, j}\right) P v_{i, j}}$ is a dipath for every $i \in\left\{i_{1}, i_{2}, i_{3}\right\}$. Besides these three dipaths cannot be all directed from or towards the $s\left(v_{i, j}\right)$'s.

Proof. Similarly as for previous Claim 2, if the statement of the claim is not fulfilled by $\overrightarrow{G_{H}^{c}}$, then there is no dipath with length at most k joining any two of $v_{i_{1}, j}, v_{i_{2}, j}$, and $v_{i_{3}, j}$ including the $s\left(v_{i, j}\right)$'s. Then there cannot be three k dipaths, including the $s^{\prime}\left(v_{i, j}\right)$'s, joining every pair of these vertices, and this no matter how the paths $v_{i_{1}, j} s^{\prime}\left(v_{i_{1}, j}\right), v_{i_{2}, j} s^{\prime}\left(v_{i_{2}, j}\right)$ and $v_{i_{3}, j} s^{\prime}\left(v_{i_{3}, j}\right)$ are oriented, and how the edges of the cycles $a_{j} b_{j} c_{j} a_{j}$ and $a_{j}^{\prime} b_{j}^{\prime} c_{j}^{\prime} a_{j}^{\prime}$ are oriented.

Regarding previous Claims 2 and 3, remark that if two of the dipaths obtained by orienting the paths $v_{i_{1}, j} P s\left(v_{i_{1}, j}\right), v_{i_{2}, j} P s\left(v_{i_{2}, j}\right)$ and $v_{i_{3}, j} P s\left(v_{i_{3}, j}\right)$ have the same direction, i.e. from or towards the $s\left(v_{i, j}\right)$'s while the third one is oriented in the opposite direction, then we can obtain three k-dipaths joining any two of $v_{i_{1}, j}, v_{i_{2}, j}$, and $v_{i_{3}, j}$. Suppose e.g. that $\overrightarrow{v_{i_{1}, j} P s\left(v_{i_{1}, j}\right)}, \overrightarrow{v_{i_{2}, j} P s\left(v_{i_{2}, j}\right)}$ and $\overrightarrow{s\left(v_{i_{3}, j}\right) P v_{i_{3}, j}}$ are dipaths of $\overrightarrow{G_{H}^{c}}$. So far, note that there are two k-dipaths starting from $v_{i_{1}, j}$ and $v_{i_{2}, j}$, respectively, and ending at $v_{i_{3}, j}$ (when k is odd, these are obtained by adding $\overrightarrow{s\left(v_{i_{1}, j}\right) s\left(v_{i_{3}, j}\right)}$ and $\overrightarrow{s\left(v_{i_{2}, j}\right) s\left(v_{i_{3}, j}\right)}$ to $\left.E\left(\overrightarrow{G_{H}^{c}}\right)\right)$. The last k-dipath starting from $v_{i_{1}, j}$ and ending at $v_{i_{2}, j}$ can be obtained e.g. by orienting the edges of G_{H}^{c} in such a way that $\overrightarrow{v_{i_{1}, j} P s^{\prime}\left(v_{i_{1}, j}\right)}$ and $\overrightarrow{s^{\prime}\left(v_{i_{2}, j}\right) P v_{i_{2}, j}}$ are dipaths, and $\overrightarrow{s^{\prime}\left(v_{i_{1}, j}\right) s^{\prime}\left(v_{i_{2}, j}\right)}$ is an arc when k is odd.

According to Claims 1, 2 and 3, we have an equivalence between finding a proper 2-vertex-colouring of H and a good orientation of G_{H}^{c}. Indeed, assume that having the dipath $\overrightarrow{u_{i} P u_{i}^{\prime}}$ (resp. $\overrightarrow{u_{i}^{\prime} P u_{i}}$) in an orientation of G_{H}^{c} simulates that the vertex x_{i} of H is coloured blue (resp. red), and that having the dipath $\overrightarrow{v_{i, j} P s\left(v_{i, j}\right)}$ (resp. $\left.\overrightarrow{s\left(v_{i, j}\right) P v_{i, j}}\right)$ simulates the fact that the vertex x_{i} is counted as a blue (resp. red) vertex in E_{j}. Claim 1 reflects the fact that if x_{i} is coloured, say, blue by a proper 2 -vertex-colouring of H, then x_{i} counts as a blue vertex in every edge which contains it. Claims 2 and 3 depict the fact that all vertices from a single edge of H cannot have the same colour. Thus, from a proper 2-vertex-colouring of H we can deduce a good orientation of G_{H}^{c}, and vice-versa.

We now augment G_{H} with additional vertices so that there is a path with length at most k joining every two non-adjacent vertices of G_{H}^{c} that do not form

Figure 2: The gadgets G_{u} and G_{v} obtained for a pair $\{u, v\}$ which is not representative.
a representative pair. This is done in such a way that there is an orientation of the edges of $E\left(G_{H}\right)-E\left(G_{H}^{c}\right)$ so that every two vertices of G_{H} that do not form a representative pair are joined by a dipath with length at most k. In this way, the existence of a k-weak orientation of G_{H} only relies on the existence of a good orientation of G_{H}^{c}.

The augmentation consists in associating a gadget G_{v} with each vertex v of G_{H}^{c}, and then connecting all the resulting gadgets in such a way there is a path with length at most k between any two vertices from different gadgets G_{u} and G_{v}. In the case where $\{u, v\}$ is not a representative pair, we add a shortcut between G_{u} and G_{v}, i.e. an alternative shorter path for joining two vertices of G_{u} and G_{v}. This is done in such a way that every vertex u^{\prime} of G_{u} is at distance at most k from any vertex v^{\prime} of G_{v}, unless $u^{\prime}=u, v^{\prime}=v$ and $\{u, v\}$ is a representative pair. However, in the situation where $\{u, v\}$ is not representative, there is a path with length k joining u and v that uses the shortcut between G_{u} and G_{v}.

Set $x=\left\lfloor\frac{k}{2}\right\rfloor$. For every $i \in\{1,2, \ldots, x\}$, add two new vertices s_{v}^{i} and p_{v}^{i} to G_{v}. These two vertices form the $i^{\text {th }}$ level of G_{v}, and are said to be i-vertices. Next, for every $i \in\{1,2, \ldots, x-1\}$, add all possible edges between the i - and $(i+1)$-vertices of G_{v} so that two consecutive levels of G_{v} form a clique on 4 vertices. Finally, add an edge between v and every 1-vertex of G_{v}.

We finish the construction of G_{H} by adding some connection between the gadgets. We distinguish two cases depending on the parity of k.

- If k is even, then we turn the subgraph induced by all x-vertices of G_{H} into a clique. Next, for every pair $\{u, v\}$ of vertices of G_{H}^{c} which is not representative, add a shortcut vertex $e_{u, v}$ to the clique constructed just before. Finally, add every edge between $e_{u, v}$ and the vertices from the $(x-1)^{t h}$ levels of G_{u} and G_{v} if $k \geq 4$, or the edges $u e_{u, v}$ and $e_{u, v} v$ when $k=2$.
- Otherwise, if k is odd, then add a new vertex z to G_{H}, and add all possible edges between z and x-vertices. For every pair $\{u, v\}$ of G_{H}^{c} that is not
representative, also add the shortcut edges $s_{u}^{x} p_{v}^{x}$ and $p_{u}^{x} s_{v}^{x}$ to G_{H}.
This construction is illustrated in Figure 2 for $k=6$ and $k=7$. Note that no new path with length at most k between two vertices composing a representative pair of G_{H} arose from the modifications. Therefore, the equivalence between finding a proper 2-vertex-colouring of H and a good orientation of G_{H}^{c} is preserved. We finally show that there is an orientation of the edges we just added so that every pair of vertices of G_{H} which is not representative is joined by a k-dipath in either direction.

Define an arbitrary ordering $\sigma=\left(v_{1}, v_{2}, \ldots, v_{\left|V\left(G_{H}^{c}\right)\right|}\right)$ over all vertices of G_{H}^{c}, and consider the following partial orientation. First, for every vertex v of G_{H}^{c}, let $\overrightarrow{v s_{v}^{1}}$ and $\overrightarrow{p_{v}^{1} v}$ be arcs. Then, for every level $i \in\{1,2, \ldots, x\}$ of G_{v}, let $\overrightarrow{p_{v}^{i} s_{v}^{i}}$ be an arc. Next, for every $i \in\{1,2, \ldots, x-1\}$, add the $\operatorname{arcs} \overrightarrow{s_{v}^{i} s_{v}^{i+1}}$, $\overrightarrow{p_{v}^{i+1} p_{v}^{i}}, \overrightarrow{p_{v}^{i} s_{v}^{i+1}}$ and $\overrightarrow{p_{v}^{i+1} s_{v}^{i}}$ to the partial orientation. The partial orientation is completed depending on the parity of k.

- If k is even, then, for every shortcut vertex e of G_{H}, add the $\operatorname{arcs} \overrightarrow{s_{v}^{x} e}$ and $\overrightarrow{e p_{v}^{x}}$. Next, for every $i<j$ consider $\overrightarrow{s_{v_{i}}^{x} s_{v_{j}}^{x}}, \overrightarrow{s_{v_{i}}^{x} p_{v_{j}}^{x}}, \overrightarrow{p_{v_{i}}^{x} s_{v_{j}}^{x}}$ and $\overrightarrow{p_{v_{i}}^{x} p_{v_{j}}^{x}}$ as arcs of the partial orientation. Additionally, if $\left\{v_{i}, v_{j}\right\}$ is not a representative pair, then let $\overrightarrow{s_{v_{j}}^{x-1} e_{v_{i}, v_{j}}}, \overrightarrow{e_{v_{i}, v_{j}} p_{v_{i}}^{x-1}}, \overrightarrow{s_{v_{i}}^{x-1} e_{v_{i}, v_{j}}}$, and $\overrightarrow{e_{v_{i}, v_{j}} p_{v_{j}}^{x-1}}$ be arcs if $k \geq 4$, or $\overrightarrow{v_{i} e_{v_{i}, v_{j}}}$ and $\overrightarrow{e_{v_{i}, v_{j}} v_{j}}$ be arcs when $k=2$.
- If k is odd, then let $\overrightarrow{s_{v_{i}}^{x} z}$ and $\overrightarrow{z p_{v_{i}}^{x}}$ be arcs. Finally, if $\left\{v_{i}, v_{j}\right\}$ is not representative, then let $\overrightarrow{s_{v_{i}}^{x} p_{v_{j}}^{x}}$ and $\overrightarrow{s_{v_{j}}^{x} p_{v_{i}}^{x}}$ be arcs.
Note that, under the partial orientation given above, any vertex u^{\prime} from a gadget G_{u} can directly "access" the upper or lower level of G_{u}. Besides, there is a dipath with length at most k joining u^{\prime} and any vertex v^{\prime} from another gadget G_{v}, unless $u^{\prime}=u, v^{\prime}=v$, and $\{u, v\}$ is a representative pair. Such a path typically goes up across G_{u}, then exits G_{u} to enter G_{v} (either directly from the $x^{t h}$ levels or via z), and finally goes down across G_{v}. Because the gadgets have $x=\left\lfloor\frac{k}{2}\right\rfloor$ levels, the length of such a path does not exceed k. Finally observe that if $\{u, v\}$ is representative, then there is no path with length at most k joining u and v going across the gadgets. On the contrary, if $\{u, v\}$ is not a representative pair, then there is a path with length exactly k joining u and v. This path necessarily includes the shortcut between G_{u} and G_{v}, i.e. the vertex $e_{u, v}$ if k is even or an edge linking the $x^{t h}$ levels of G_{u} and G_{v} otherwise.

Hence, G_{H} admits a k-weak orientation if and only if G_{H}^{c} admits a good orientation. Besides, G_{H}^{c} admits a good orientation if and only if H is 2-colourable. By transitivity, we get that G_{H} admits a k-weak orientation if and only if H is 2 -colourable, and thus that k-OWD is NP-complete.

Acknowledgements

We would like to thank Professor Éric Sopena for bringing the problem investigated in this paper to our attention, and for his valuable comments on the first drafts of this paper.

References

[1] B. Bollobás and A. D. Scott. Separating systems and oriented graphs of diameter two. J. Combin. Theory, Ser. B, 97:193-203, 2007.
[2] V. Chvátal and C. Thomassen. Distances in orientations of graphs. J. Combin. Theory, Ser. B, 24(1):61-75, 1978.
[3] Z. Füredi, P. Horak, C. M. Pareek, and X. Zhu. Minimal oriented graphs of diameter 2. Graphs Comb., 14:345-350, 1998.
[4] W. F. Klostermeyer and G. MacGillivray. Analogues of cliques for oriented coloring. Discuss. Math. Graph Theory, 24:373-387, 2004.
[5] A. V. Kostochka, T. Łuczak, G. Simonyi, and E. Sopena. On the minimum number of edges giving maximum oriented chromatic number. In Dimacs/Dimatia conference "Contemporary Trends in Discrete Mathematics", Stirin, Czech Rep., May 1997, Dimacs Series in Discrete Math. and Theoret. Comput. Sci, 49:179-182, 1999.
[6] L. Lovász. Coverings and coloring of hypergraphs. Proceedings of the Fourth South-eastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, Florida, page 3-12, 1973.
[7] S. Sen. Maximum order of a planar oclique is 15. In S. Arumugam and W. F. Smyth, editors. Proc IWOCA. Lecture Notes in Comput. Sci., 7643:130-142, 2012.
[8] E. Sopena. Oriented graph coloring. Discrete Math., 229:359-369, 2001.
[9] E. Sopena. Complete oriented colourings and the oriented achromatic number. Preprint, 2012. Available online at http://www.labri.fr/perso/sopena/Publications.

[^0]: *Corresponding author. Mail: julien.bensmail@labri.fr. Phone: +33-(0)5-40-00-35-47. Fax: +33-(0)5-40-00-66-69

 Email addresses: julien.bensmail@labri.fr (Julien Bensmail), romaric.duvignau@labri.fr (Romaric Duvignau), sergey.kirgizov@lip6.fr (Sergey Kirgizov)

