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Abstract

An orientation of an undirected graph G has weak diameter k if, for every pair
{u, v} of vertices of G, there is a directed path with length at most k joining
u and v in either direction. We show that deciding whether a graph admits an
orientation with weak diameter k is NP-complete whenever k ≥ 2.
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1. Introduction

Let G be a simple undirected graph with vertex set V (G) and edge set E(G).
By orienting every edge uv of G, either from u to v or from v to u, one obtains

an orientation
−→
G of G. This oriented graph

−→
G has the same vertex set as G,

i.e. V (
−→
G) = V (G), and, for every edge uv ∈ E(G), we have either −→uv ∈ E(

−→
G)

or −→vu ∈ E(
−→
G) depending on the orientation assigned to uv.

The distance dist(G, u, v) from u to v in an undirected graph G is the mini-
mal length of a path joining u and v. We refer to the maximum distance between
two vertices of G as its diameter, and denote it diam(G). These definitions can
be naturally adapted to the context of oriented graphs. A k-dipath −−−−−−−→v1v2...vk+1

of
−→
G is a sequence of k + 1 distinct vertices such that −−−→vivi+1 ∈ E(

−→
G) for every

i ∈ {1, 2, ..., k}. The directed distance dist(
−→
G, u, v) from u to v in

−→
G is the min-

imal length of a dipath starting from u and ending at v. Note that, contrary to

the undirected case, we may have dist(
−→
G, u, v) 6= dist(

−→
G, v, u). Therefore, two

definitions of the oriented diameter can be adopted.
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Let distw(
−→
G, u, v) and dists(

−→
G, u, v) be min{dist(

−→
G, u, v), dist(

−→
G, v, u)} and

max{dist(
−→
G, u, v), dist(

−→
G, v, u)}, respectively. The weak diameter of

−→
G , de-

noted diamw(
−→
G), is the maximum value of distw(

−→
G, u, v) taken over all pairs

{u, v} of vertices of
−→
G . The strong diameter of

−→
G , denoted diams(

−→
G), is the

maximum value of dists(
−→
G, u, v) taken over all pairs {u, v} of vertices of

−→
G .

An orientation of G is k-weak (resp. k-strong) if it has weak (resp. strong)
diameter at most k. We only deal with k-weak orientations in this paper, our
motivations being mainly supported by the case k = 2 which is related to some
graph colouring notions as explained below. A proper k-colouring of G is a
partition of V (G) into k parts such that each colour class is a stable. The least
number of colours used by a proper colouring of G is referred to as the chromatic
number of G, denoted χ(G). Clearly, we have χ(G) = |V (G)| if and only if G
is a complete graph.

Now consider similar notions but for oriented graphs. A proper oriented k-

colouring of
−→
G is a partition of V (

−→
G) into k parts such that each colour class

is a stable, and all arcs between two colour classes have the same direction. As

usually, the least number of colours used by a proper oriented colouring of
−→
G

is defined as the oriented chromatic number of
−→
G , denoted χo(

−→
G). Contrary

to the undirected case, an oriented graph whose oriented chromatic number is
exactly its order is not necessarily a tournament. As an illustration of that

claim, remark that χo(
−→
C5) = 5, where

−→
C5 is the circuit on 5 vertices.

Oriented cliques (or o-clique for short) were introduced as the analogues of
cliques regarding proper oriented colouring. In other words, o-cliques are those
oriented graphs whose oriented chromatic number is exactly their order. O-
cliques have been mainly studied regarding the extremal theory point of view.
The interested reader may refer to [1, 3, 5, 9] for interesting results regarding
the size of o-cliques, and to [4, 7] for results on the maximum order of planar
o-cliques.

The oriented chromatic number can also be defined for undirected graphs [8].
If G is an undirected graph, then χo(G) is defined as

χo(G) = max{χo(
−→
G),
−→
G is an orientation of G}.

Hence, we have χo(G) = |V (G)| if and only if G admits an orientation which
is an o-clique. It follows from the definition that an oriented graph is an o-
clique if and only if it has weak diameter at most 2 [4]. Therefore, we get that
χo(G) = |V (G)| if and only if G admits a 2-weak orientation, and finding 2-weak
orientations of graphs becomes of interest.

From the algorithmic point of view, the complexity of deciding whether an
undirected graph admits a 2-weak orientation was still unknown. Note that
the analogous question for 2-strong orientations was settled by Chvátal and
Thomassen, who showed this problem to be NP-complete [2]. We here settle
this question by studying the following decision problem.
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Orientation with Weak Diameter k - k-OWD
Instance: A graph G.
Question: Does G admit a k-weak orientation?

A graph admits a 1-weak orientation if and only if it is a complete graph.
Therefore, 1-OWD is in P. In this work, we show the following.

Theorem 1. k-OWD is NP-complete for every k ≥ 2.

Regarding our motivations above, we also deduce the following hardness
result as an immediate corollary of the NP-completeness of 2-OWD.

Corollary 2. Deciding whether χo(G) = |V (G)| for an undirected graph G is
NP-complete.

2. Proof of Theorem 1

The problem k-OWD is in NP for every k since one can, given an orientation−→
G of G, check whether diamw(

−→
G) ≤ k. For this purpose, one just has to

check, for every possible pair {u, v} of distinct vertices of G, whether either u
and v are adjacent, or there exist k′ ≤ k − 1 vertices w1, w2, ..., wk′ such that
−−−−−−−−−→uw1w2...wk′v or −−−−−−−−−→vw1w2...wk′u is a dipath of

−→
G . This naive witness algorithm

runs in polynomial time with respect to the order of G.
Let k ≥ 2 be fixed. We show that k-OWD is NP-hard by reduction from

the following problem, which is shown to be NP-complete in [6].

2-Vertex-Colouring of 3-Uniform Hypergraphs - 2COL
Instance: A 3-uniform hypergraph H.
Question: Is H 2-colourable, i.e. can we colour each vertex of H either blue or
red so that each edge of H has at least one blue and one red vertex?

Throughout this paper, we denote the vertices and edges of any hypergraph
H with order n and size m by x1, x2, ..., xn and E1, E2, ..., Em, respectively. For
every i ∈ {1, 2, ..., n}, we further denote by ni ≥ 1 the number of distinct edges
of H which contain the vertex xi. From a 3-uniform hypergraph H, we produce
a graph GH such that H is 2-colourable if and only if GH admits a k-weak

orientation
−→
GH . This reduction is achieved in polynomial time regarding the

size of H.
We first describe the core Gc

H of GH , i.e. the subgraph of GH from which the
equivalence with H follows. The subgraph Gc

H does not have diameter k, but
GH will be augmented later so that it has diameter k, and this without altering
the equivalence. The core Gc

H has the following vertices (see Figure 1). With
each vertex xi of H, we associate ni+2 vertices ui, u

′
i, and vi,j1 , vi,j2 , ..., vi,jni

in
Gc

H , where j1, j2, ..., jni are the distinct indices of the edges of H which contain
xi. We now associate additional vertices in Gc

H with each edge Ej of H, where
j ∈ {1, 2, ...,m}. This association depends on the parity of k.

• If k is even, then add two vertices aj and a′j to Gc
H .
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u1 u′1 v1,1

a′1

u2 u′2 v2,1 a1

v3,1
u3 u′3

v3,2

u4 u′4 v4,1 a2

u5 u′5 v5,1

a′2

(a) Case k is even. Dashed paths have
length k

2
.

a′1

b′1

c′1
u1 u′1 v1,1 a1

u2 u′2 v2,1
b1

v3,1 c1u3 u′3

v3,2

u4 u′4 v4,1

u5 u′5 v5,1

a2

b2

c2

a′2

b′2

c′2

(b) Case k is odd. Dashed (resp. dotted)
paths have length b k

2
c (resp. d k

2
e).

Figure 1: The core subgraph Gc
H of GH obtained assuming H has two edges E1 = {x1, x2, x3}

and E2 = {x3, x4, x5}.

• Otherwise, if k is odd, then add two cycles ajbjcjaj and a′jb
′
jc
′
ja
′
j with

length 3 to Gc
H .

We now link the vertices of Gc
H by means of several vertex-disjoint paths.

By “joining a pair of vertices {u, v} by a path”, we mean that we identify the
endvertices of a new path with u and v, respectively. Since this operation is
used at most once for joining any pair {u, v} of Gc

H , we use the notation uPv
to denote the resulting path (if any). First, join every pair {ui, u′i} by a path
with length bk2 c. Then also join every pair {u′i, vi,j} by a path with length dk2 e.
Now consider each edge Ej = {xi1 , xi2 , xi3} of H, and add the following paths
to Gc

H .

• If k is even, join every pair of {vi1,j , vi2,j , vi3,j} × {aj , a′j} by means of a

path with length k
2 .

• Otherwise, if k is odd, then join every pair of {vi1,j} × {aj , a′j}, {vi2,j} ×
{bj , b′j}, and {vi3,j} × {cj , c′j} by a path with length bk2 c.
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Note that, by construction, exactly one pair {vi,j , s(vi,j)} (resp. {vi,j , s′(vi,j)})
was joined by a path with length bk2 c, where s(vi,j) (resp. s′(vi,j)) is a vertex
of the form aj , bj or cj (resp. a′j , b

′
j or c′j). The notation s(vi,j) and s′(vi,j) are

used throughout this section. In particular, observe that if k is even, then we
have s(vi1,j) = s(vi2,j) = s(vi3,j) = aj for every edge Ej = {xi1 , xi2 , xi3} of H.
We analogously have s′(vi1,j) = s′(vi2,j) = s′(vi3,j) = a′j .

A pair {u, v} of distinct vertices of Gc
H is said representative whenever it

matches one of the following forms.

1. {ui, vi,j} where i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m}, and xi ∈ Ej .

2. {u′i, s(vi,j)} where i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m}, and xi ∈ Ej .

3. {vi1,j , vi2,j} where i1, i2 ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m}, and xi1 , xi2 ∈ Ej .

An orientation of Gc
H is good if two vertices forming a representative pair

are linked by a k-dipath in either direction. Note that, in this definition, there
is no requirement on the oriented distance between two vertices which are at
distance at least k + 1. A representative pair is a pair of vertices which are
not adjacent in GH , and for which there are at most two paths with length at
most k joining it. All of these paths belong to Gc

H so that the existence of a
k-weak orientation of GH depends on the existence of a good orientation of Gc

H .
We prove below that we have an equivalence between finding a proper 2-

vertex-colouring of H and a good orientation of Gc
H . The proof relies on the

following claims.

Claim 1. Suppose the vertex xi belongs to the edges Ej1 , Ej2 , ..., Ejni
of H.

Then, in any good orientation
−→
Gc

H of Gc
H ,
−−−−−−−−−−−−−−→
uiPu

′
iPvi,jPs(vi,j) is a dipath for

every j ∈ {j1, j2, ..., jni
}, or

−−−−−−−−−−−−−−→
s(vi,j)Pvi,jPu

′
iPui is a dipath for every j ∈

{j1, j2, ..., jni}.

Proof. Note that because uiPu
′
iPvi,j1 is the only path with length at most k

joining ui and vi,j1 in Gc
H , either

−−−−−−−−→
uiPu

′
iPvi,j1 or

−−−−−−−−→
vi,j1Pu

′
iPui must be a dipath

of
−→
Gc

H . Assume
−−−−−−−−→
uiPu

′
iPvi,j1 is a dipath of

−→
Gc

H . Since
−−−→
uiPu

′
i is now a dipath of

−→
Gc

H ,
−−−−→
u′iPvi,j must also be a dipath for every j ∈ {j1, j2, ..., jni} since uiPu

′
iPvi,j

is the only path with length at most k joining ui and vi,j in Gc
H .

Similarly, since, for every j ∈ {j1, j2, ..., jni
}, the only path with length at

most k joining u′i and s(vi,j) in Gc
H is u′iPvi,jPs(vi,j), and

−−−−→
u′iPvi,j is a dipath

of
−→
Gc

H , then
−−−−−−−→
vi,jPs(vi,j) has to be a dipath of

−→
Gc

H . Thus,
−−−−−−−−−−−−−−→
uiPu

′
iPvi,jPs(vi,j)

belongs to
−→
Gc

H for every j ∈ {j1, j2, ..., jni} assuming that
−−−−−−−−→
uiPu

′
iPvi,j1 belongs

to the orientation. The claim follows analogously from the assumption that−−−−−−−−→
vi,j1Pu

′
iPui is a dipath of

−→
Gc

H .

Claim 2. Suppose k is even, and Ej = {xi1 , xi2 , xi3} is an edge of H. Then,

in any good orientation
−→
Gc

H of Gc
H , either

−−−−−−−→
vi,jPs(vi,j) or

−−−−−−−→
s(vi,j)Pvi,j is a dipath

for every i ∈ {i1, i2, i3}. Furthermore, these three dipaths cannot be all directed
from or towards the s(vi,j)’s.
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Proof. Recall that s(vi1,j) = s(vi2,j) = s(vi3,j) = aj and s′(vi1,j) = s′(vi2,j) =
s′(vi3,j) = a′j when k is even. Note further that there are only two paths with
length at most k joining any two of vi1,j , vi2,j , and vi3,j . These include aj
and a′j , respectively. If the statement of the claim is not fulfilled, then there

is no k-dipath of
−→
Gc

H joining any two of vi1,j , vi2,j , and vi3,j including aj . So
there must be three k-dipaths joining these vertices including a′j , but this is
impossible.

Claim 3. Suppose k is odd, and Ej = {xi1 , xi2 , xi3} is an edge of H. Then, in

any good orientation
−→
Gc

H of Gc
H , either

−−−−−−−→
vi,jPs(vi,j) or

−−−−−−−→
s(vi,j)Pvi,j is a dipath

for every i ∈ {i1, i2, i3}. Besides these three dipaths cannot be all directed from
or towards the s(vi,j)’s.

Proof. Similarly as for previous Claim 2, if the statement of the claim is not

fulfilled by
−→
Gc

H , then there is no dipath with length at most k joining any two
of vi1,j , vi2,j , and vi3,j including the s(vi,j)’s. Then there cannot be three k-
dipaths, including the s′(vi,j)’s, joining every pair of these vertices, and this no
matter how the paths vi1,js

′(vi1,j), vi2,js
′(vi2,j) and vi3,js

′(vi3,j) are oriented,
and how the edges of the cycles ajbjcjaj and a′jb

′
jc
′
ja
′
j are oriented.

Regarding previous Claims 2 and 3, remark that if two of the dipaths ob-
tained by orienting the paths vi1,jPs(vi1,j), vi2,jPs(vi2,j) and vi3,jPs(vi3,j) have
the same direction, i.e. from or towards the s(vi,j)’s while the third one is ori-
ented in the opposite direction, then we can obtain three k-dipaths joining any

two of vi1,j , vi2,j , and vi3,j . Suppose e.g. that
−−−−−−−−−→
vi1,jPs(vi1,j),

−−−−−−−−−→
vi2,jPs(vi2,j) and

−−−−−−−−−→
s(vi3,j)Pvi3,j are dipaths of

−→
Gc

H . So far, note that there are two k-dipaths start-
ing from vi1,j and vi2,j , respectively, and ending at vi3,j (when k is odd, these

are obtained by adding
−−−−−−−−−−→
s(vi1,j)s(vi3,j) and

−−−−−−−−−−→
s(vi2,j)s(vi3,j) to E(

−→
Gc

H)). The last
k-dipath starting from vi1,j and ending at vi2,j can be obtained e.g. by orient-

ing the edges of Gc
H in such a way that

−−−−−−−−−→
vi1,jPs

′(vi1,j) and
−−−−−−−−−→
s′(vi2,j)Pvi2,j are

dipaths, and
−−−−−−−−−−−→
s′(vi1,j)s

′(vi2,j) is an arc when k is odd.

According to Claims 1, 2 and 3, we have an equivalence between finding a
proper 2-vertex-colouring of H and a good orientation of Gc

H . Indeed, assume

that having the dipath
−−−→
uiPu

′
i (resp.

−−−→
u′iPui) in an orientation of Gc

H simulates
that the vertex xi of H is coloured blue (resp. red), and that having the dipath
−−−−−−−→
vi,jPs(vi,j) (resp.

−−−−−−−→
s(vi,j)Pvi,j) simulates the fact that the vertex xi is counted

as a blue (resp. red) vertex in Ej . Claim 1 reflects the fact that if xi is coloured,
say, blue by a proper 2-vertex-colouring of H, then xi counts as a blue vertex
in every edge which contains it. Claims 2 and 3 depict the fact that all vertices
from a single edge of H cannot have the same colour. Thus, from a proper 2-
vertex-colouring of H we can deduce a good orientation of Gc

H , and vice-versa.

We now augment GH with additional vertices so that there is a path with
length at most k joining every two non-adjacent vertices of Gc

H that do not form
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s3u

s2u

s1u

p3u

p2u

p1u

u

eu,v
s3v

s2v

s1v

p3v

p2v

p1v

v

(a) Case k = 6.

s3u

s2u

s1u

p3u

p2u

p1u

u

z

s3v

s2v

s1v

p3v

p2v

p1v

v

(b) Case k = 7.

Figure 2: The gadgets Gu and Gv obtained for a pair {u, v} which is not representative.

a representative pair. This is done in such a way that there is an orientation
of the edges of E(GH) − E(Gc

H) so that every two vertices of GH that do not
form a representative pair are joined by a dipath with length at most k. In this
way, the existence of a k-weak orientation of GH only relies on the existence of
a good orientation of Gc

H .
The augmentation consists in associating a gadget Gv with each vertex v

of Gc
H , and then connecting all the resulting gadgets in such a way there is

a path with length at most k between any two vertices from different gadgets
Gu and Gv. In the case where {u, v} is not a representative pair, we add a
shortcut between Gu and Gv, i.e. an alternative shorter path for joining two
vertices of Gu and Gv. This is done in such a way that every vertex u′ of
Gu is at distance at most k from any vertex v′ of Gv, unless u′ = u, v′ = v
and {u, v} is a representative pair. However, in the situation where {u, v} is
not representative, there is a path with length k joining u and v that uses the
shortcut between Gu and Gv.

Set x = bk2 c. For every i ∈ {1, 2, ..., x}, add two new vertices siv and piv to
Gv. These two vertices form the ith level of Gv, and are said to be i-vertices.
Next, for every i ∈ {1, 2, ..., x − 1}, add all possible edges between the i- and
(i + 1)-vertices of Gv so that two consecutive levels of Gv form a clique on 4
vertices. Finally, add an edge between v and every 1-vertex of Gv.

We finish the construction of GH by adding some connection between the
gadgets. We distinguish two cases depending on the parity of k.

• If k is even, then we turn the subgraph induced by all x-vertices of GH

into a clique. Next, for every pair {u, v} of vertices of Gc
H which is not

representative, add a shortcut vertex eu,v to the clique constructed just
before. Finally, add every edge between eu,v and the vertices from the
(x− 1)th levels of Gu and Gv if k ≥ 4, or the edges ueu,v and eu,vv when
k = 2.

• Otherwise, if k is odd, then add a new vertex z to GH , and add all possible
edges between z and x-vertices. For every pair {u, v} of Gc

H that is not

7



representative, also add the shortcut edges sxup
x
v and pxus

x
v to GH .

This construction is illustrated in Figure 2 for k = 6 and k = 7. Note that
no new path with length at most k between two vertices composing a repre-
sentative pair of GH arose from the modifications. Therefore, the equivalence
between finding a proper 2-vertex-colouring of H and a good orientation of Gc

H

is preserved. We finally show that there is an orientation of the edges we just
added so that every pair of vertices of GH which is not representative is joined
by a k-dipath in either direction.

Define an arbitrary ordering σ = (v1, v2, ..., v|V (Gc
H)|) over all vertices of

Gc
H , and consider the following partial orientation. First, for every vertex v

of Gc
H , let

−→
vs1v and

−→
p1vv be arcs. Then, for every level i ∈ {1, 2, ..., x} of Gv,

let
−−→
pivs

i
v be an arc. Next, for every i ∈ {1, 2, ..., x − 1}, add the arcs

−−−−→
sivs

i+1
v ,

−−−−→
pi+1
v piv,

−−−−→
pivs

i+1
v and

−−−−→
pi+1
v siv to the partial orientation. The partial orientation is

completed depending on the parity of k.

• If k is even, then, for every shortcut vertex e of GH , add the arcs
−→
sxve and

−→
epxv . Next, for every i < j consider

−−−→
sxvis

x
vj ,
−−−→
sxvip

x
vj ,
−−−→
pxvis

x
vj and

−−−→
pxvip

x
vj as arcs

of the partial orientation. Additionally, if {vi, vj} is not a representative

pair, then let
−−−−−−→
sx−1vj evi,vj ,

−−−−−−→
evi,vjp

x−1
vi ,

−−−−−−→
sx−1vi evi,vj , and

−−−−−−→
evi,vjp

x−1
vj be arcs if

k ≥ 4, or −−−−→vievi,vj
and −−−−→evi,vj

vj be arcs when k = 2.

• If k is odd, then let
−−→
sxviz and

−−→
zpxvi be arcs. Finally, if {vi, vj} is not

representative, then let
−−−→
sxvip

x
vj and

−−−→
sxvjp

x
vi be arcs.

Note that, under the partial orientation given above, any vertex u′ from a
gadget Gu can directly “access” the upper or lower level of Gu. Besides, there is
a dipath with length at most k joining u′ and any vertex v′ from another gadget
Gv, unless u′ = u, v′ = v, and {u, v} is a representative pair. Such a path
typically goes up across Gu, then exits Gu to enter Gv (either directly from the
xth levels or via z), and finally goes down across Gv. Because the gadgets have
x = bk2 c levels, the length of such a path does not exceed k. Finally observe
that if {u, v} is representative, then there is no path with length at most k
joining u and v going across the gadgets. On the contrary, if {u, v} is not a
representative pair, then there is a path with length exactly k joining u and v.
This path necessarily includes the shortcut between Gu and Gv, i.e. the vertex
eu,v if k is even or an edge linking the xth levels of Gu and Gv otherwise.

Hence, GH admits a k-weak orientation if and only if Gc
H admits a good ori-

entation. Besides, Gc
H admits a good orientation if and only if H is 2-colourable.

By transitivity, we get that GH admits a k-weak orientation if and only if H is
2-colourable, and thus that k-OWD is NP-complete.
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We would like to thank Professor Éric Sopena for bringing the problem investi-
gated in this paper to our attention, and for his valuable comments on the first
drafts of this paper.

8



References

[1] B. Bollobás and A. D. Scott. Separating systems and oriented graphs of
diameter two. J. Combin. Theory, Ser. B, 97:193–203, 2007.
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