HAL
open science

The complexity of deciding whether a graph admits an orientation with fixed weak diameter

Julien Bensmail, Romaric Duvignau, Sergey Kirgizov

To cite this version:

Julien Bensmail, Romaric Duvignau, Sergey Kirgizov. The complexity of deciding whether a graph admits an orientation with fixed weak diameter. 2013. hal-00824250v2

HAL Id: hal-00824250
https://hal.science/hal-00824250v2
Submitted on 22 May 2013 (v2), last revised 16 Aug 2016 (v6)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The complexity of deciding whether a graph admits an orientation with fixed weak diameter

Julien Bensmail ${ }^{1}$, Romaric Duvignau ${ }^{1}$, and Sergey Kirgizov ${ }^{2}$
${ }^{1}$ CNRS and Univ. Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
${ }^{2}$ CNRS and Univ. Pierre et Marie Curie, LIP6, UMR 7606, 75252 Paris, France

Abstract

An orientation of an undirected graph G has weak diameter k if, for every pair $\{u, v\}$ of vertices of G, there is a directed path with length at most k joining u and v in either direction. In this work, we show that deciding whether a graph admits an orientation with weak diameter k is NP-complete whenever $k \geq 2$.

1 Introduction

Let G be a simple undirected graph with vertex (resp. edge) set $V(G)$ (resp. $E(G)$). By orienting every edge $u v$ of G, either from u to v or from v to u, one obtains an orientation \vec{G} of G. This oriented graph \vec{G} has the same vertex set as G, i.e. $V(\vec{G})=V(G)$, and, for every edge $u v \in E(G)$, we have either $\overrightarrow{u v} \in E(\vec{G})$ or $\overrightarrow{v u} \in E(\vec{G})$ depending on the orientation assigned to $u v$.

The distance $\operatorname{dist}(G, u, v)$ from u to v in G is the minimal length of a path joining u and v. We refer to the maximum distance between two vertices of G as its diameter, and denote it $\operatorname{diam}(G)$. These definitions can be naturally adapted to the context of oriented graphs. A k-dipath $\overrightarrow{v_{1} v_{2} \ldots v_{k+1}}$ of \vec{G} is a sequence of $k+1$ distinct vertices such that $\overrightarrow{v_{i} v_{i+1}} \in E(\vec{G})$ for every $i \in\{1, \ldots, k\}$. The directed distance $\operatorname{dist}(\vec{G}, u, v)$ from u to v in \vec{G} is the minimal length of a dipath starting from u and ending at v. Note that, contrary to the undirected case, we may have $\operatorname{dist}(\vec{G}, u, v) \neq \operatorname{dist}(\vec{G}, v, u)$. Therefore, two definitions of the oriented diameter can be adopted.

On the one hand, one can consider that two vertices u and v of \vec{G} are close when one of $\operatorname{dist}(\vec{G}, u, v)$ and $\operatorname{dist}(\vec{G}, v, u)$ is small. In other words, we consider that two vertices are close if there is a dipath with small length joining them in \vec{G} regardless of its direction. Let $\operatorname{dist}_{w}(\vec{G}, u, v)$ be $\min \{\operatorname{dist}(\vec{G}, u, v), \operatorname{dist}(\vec{G}, v, u)\}$. The weak diameter of \vec{G}, denoted $\operatorname{diam}_{w}(\vec{G})$, is the maximum $\operatorname{dist}_{w}(\vec{G}, u, v)$ taken over all pairs $\{u, v\}$ of vertices of \vec{G}.

On the other hand, note that the existence of a dipath with small length from u to v in \vec{G} does not guarantee that there is a short way from v to u. For this reason, the weak diameter of \vec{G} may not be representative of its oriented distances. Let $\operatorname{dist}_{s}(\vec{G}, u, v)=\max \{\operatorname{dist}(\vec{G}, u, v), \operatorname{dist}(\vec{G}, v, u)\}$. The strong diameter of \vec{G}, denoted $\operatorname{diam}_{s}(\vec{G})$, is the maximum $\operatorname{dist}_{s}(\vec{G}, u, v)$ regarding all possible pairs $\{u, v\}$ of vertices of \vec{G}.

An orientation of G is k-weak (resp. k-strong) if it has weak (resp. strong) diameter at most k. We only deal with k-weak orientations in this paper, mainly with the case $k=2$ which is related to some graph colouring notions as explained below. A k-colouring of G is a partition of $V(G)$ into k parts such that two vertices of a same colour class are not adjacent. The least number of colours used by a colouring of G is referred to as the chromatic number of G, denoted $\chi(G)$. Clearly, we have $\chi(G)=|V(G)|$ if and only if G is a complete graph.

Now consider similar notions but for oriented graphs. An oriented k-colouring of \vec{G} is a partition of $V(\vec{G})$ into k parts such that two arcs between two colour classes have the same direction. Note that this property implies that any two vertices from a same colour class cannot be adjacent. As usually, the least number of colours used by an oriented colouring of \vec{G} is defined as the oriented chromatic number of \vec{G}, denoted $\chi_{o}(\vec{G})$. Contrary to the undirected case, an oriented graph whose oriented chromatic number is exactly its order is not necessarily a tournament. As an illustration of that claim, remark that $\chi_{o}\left(\overrightarrow{C_{5}}\right)=5$, where $\overrightarrow{C_{5}}$ is the circuit on 5 vertices.

The observation above led to the introduction of oriented cliques (or o-clique for short), which are the analogues of cliques regarding oriented colouring. In other words, o-cliques are those oriented graphs whose oriented chromatic number is exactly their order. O-cliques have been mainly studied regarding the extremal theory point of view. The interested reader may refer to [1], [3], [4], [5] and [6] for interesting results regarding the order or the size of o-cliques.

By now extending the notion of oriented chromatic number to undirected graphs, finding 2 -weak orientations of graphs becomes of some interest. If G is an undirected graph, then $\chi_{o}(G)$ is defined as

$$
\chi_{o}(G)=\max \left\{\chi_{o}(\vec{G}), \vec{G} \text { is an orientation of } G\right\}
$$

Hence, we have $\chi_{o}(G)=|V(G)|$ if and only if G admits an orientation which is an o-clique. An important result due to Klostermeyer and MacGillivray states that an oriented graph is an o-clique if and only if it has weak diameter at most 2 [4]. Therefore, we get that $\chi_{o}(G)=|V(G)|$ if and only if G admits a 2-weak orientation.

From the algorithmic point of view, the complexity of deciding whether an undirected graph admits a 2 -weak orientation was still unknown. Note that the analogous question for 2-strong orientations was settled down by Chvátal and Thomassen, who showed this problem to be NP-complete [2]. We here settle this question by studying the following decision problem.
Orientation with Weak Diameter $k-k$-OWD
Instance: A graph G.
Question: Does G admit a k-weak orientation?
Clearly, a graph admits a 1-weak orientation if and only if it is a complete graph. Therefore, 1-OWD is in P. In this work, we show that k-OWD is NPcomplete for every $k \geq 2$. For this purpose, we first give the proof for the case $k=2$ in Section 2. We then explain how to generalize this result in Section 3.

2 Main result

We prove the following complexity result.
Theorem 1. 2-OWD is $N P$-complete.
Proof. k-OWD is in NP for every k since one can, given an orientation \vec{G} of G, check whether $\operatorname{diam}_{w}(\vec{G}) \leq k$. For this purpose, one just has to check, for every possible pair $\{u, v\}$ of distinct vertices of G, whether either u and v are adjacent, or there exist $k^{\prime} \leq k-1$ vertices $w_{1}, \ldots, w_{k^{\prime}}$ such that $\overline{u w_{1} \ldots w_{k^{\prime}} v}$ or $\overline{v w_{1} \ldots w_{k^{\prime}} u}$ is a dipath of \vec{G}. This witness algorithm runs in polynomial time with respect to the order of G.

We now show that 2-OWD is NP-hard by reduction from the following NPcomplete problem.

Not-All-Equal 3-SAT - NAE-3SAT
Instance: A 3CNF formula F over variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and clauses $\left\{C_{1}, \ldots, C_{m}\right\}$. Question: Is F nae-satisfiable, i.e. is there a truth assignment of the variables of F such that no clause of F has its three literals having the same truth value?

The interesting property of NAE-3SAT is that it remains NP-complete even if none of its clauses contains a negated variable (MONOTONE NAE-3SAT). Note further that if a clause of F is of the form $\left(x_{i} \vee x_{i} \vee x_{i}\right)$, then F cannot be naesatisfied. It is thus understood that F meets these two properties throughout this proof. From F, we produce a graph G_{F} such that F is nae-satisfiable if and only if G_{F} admits a 2-weak orientation $\overrightarrow{G_{F}}$. This reduction is achieved in polynomial time regarding the size of F.

For every $i \in\{1, \ldots, n\}$ we denote by n_{i} the number of distinct clauses that contain the variable x_{i} in F, and by c_{j} the number of distinct variables in the clause C_{j} for every $j \in\{1, \ldots, m\}$. Clearly, we have $n_{i} \geq 1$ and $c_{j} \in\{2,3\}$ for every such integers.

We first describe the core G_{F}^{c} of G_{F}, i.e. the subgraph of G_{F} from which the equivalence with F follows. The subgraph G_{F}^{c} does not have diameter 2, but G_{F} will be augmented later so that it has diameter 2 , and this without altering the equivalence. With each variable x_{i} of F, we associate $n_{i}+2$ vertices u_{i}, u_{i}^{\prime}, and $v_{i, j_{1}}, \ldots, v_{i, j_{n_{i}}}$ in G_{F}^{c}, where $j_{1}, \ldots, j_{n_{i}}$ are the distinct indices of the clauses of F that contain x_{i}. These vertices are joined in G_{F}^{c} in such a way that they form a star whose central vertex is u_{i}^{\prime}. Now, with every clause C_{j} in F, we associate a vertex w_{j} in G_{F}^{c}. In the case where $c_{j}=3$, we also add a vertex w_{j}^{\prime} to G_{F}^{c}. Finally, whenever a variable x_{i} belongs to a clause C_{j} in F, we add an edge linking $v_{i, j}$ and w_{j} in G_{F}^{c}, and, if $c_{j}=3$, an edge linking $v_{i, j}$ and w_{j}^{\prime}.

This construction is depicted in Figure 1 (a). A pair $\{u, v\}$ of distinct vertices of G_{F}^{c} is representative if it matches one of the following forms.

1. $\{u, v\}=\left\{u_{i}, v_{i, j}\right\}$ where $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$.
2. $\{u, v\}=\left\{u_{i}^{\prime}, w_{j}\right\}$ where $i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}$, and $x_{i} \in C_{j}$.
3. $\{u, v\}=\left\{v_{i_{1}, j}, v_{i_{2}, j}\right\}$ where $i_{1} \neq i_{2}, j \in\{1, \ldots, m\}$, and $x_{i_{1}}, x_{i_{2}} \in C_{j}$.

Fig. 1. Subgraphs obtained while constructing the reduced graph G_{F}

An orientation of G_{F}^{c} is good if two vertices forming a representative pair are linked by a 2-dipath in either direction. Note that, in this definition, there is no requirement on the oriented distance between two vertices which are at distance at least 3. A representative pair is a pair of vertices which are not adjacent in G_{F}, and for which there are only a few paths with length at most 2 between them. All of these paths belong to G_{F}^{c} so that the existence of a 2-weak orientation of G_{F} depends on the existence of a good orientation of G_{F}^{c}.

We claim that we have an equivalence between nae-satisfying F and finding a good orientation of G_{F}^{c}. This relies on the following three observations.

Claim 1. Suppose x_{i} belongs to the clauses $C_{j_{1}}, \ldots, C_{j_{n_{i}}}$ of F. Then, in any good orientation $\overrightarrow{G_{F}^{c}}$ of $G_{F}^{c}, \overrightarrow{u_{i} u_{i}^{\prime} v_{i, j} w_{j}}$ is a 3-dipath for every $j \in\left\{j_{1}, \ldots, j_{n_{i}}\right\}$, or $\overrightarrow{w_{j} v_{i, j} u_{i}^{\prime} u_{i}}$ is a 3-dipath for every $j \in\left\{j_{1}, \ldots, j_{n_{i}}\right\}$.

Proof. Suppose $\overrightarrow{u_{i} u_{i}^{\prime}} \in E\left(\overrightarrow{G_{F}^{c}}\right)$. Because u_{i} is at distance 2 from the $v_{i, j}$'s in G_{F}^{c} and u_{i}^{\prime} is the only neighbour of u_{i}, we have to add $\overrightarrow{u_{i}^{\prime} v_{i, j_{1}}}, \ldots, \overrightarrow{u_{i}^{\prime} v_{i, j_{n_{i}}}}$ to $E\left(\overrightarrow{G_{F}^{c}}\right)$ so that there are 2-dipaths joining u_{i} and the $v_{i, j}$'s in $\overrightarrow{G_{F}^{c}}$. Similarly, because $v_{i, j}$ is the only vertex joining u_{i}^{\prime} and w_{j} in G_{F}^{c}, and $\overrightarrow{u_{i}^{\prime} v_{i, j}}$ belongs to $E\left(\overrightarrow{G_{F}^{c}}\right)$ for every $j \in\left\{j_{1}, \ldots, j_{n_{i}}\right\}$, we have to add $\overrightarrow{v_{i, j_{1}} w_{j_{1}}}, \ldots, \overrightarrow{v_{i, j_{n_{i}}} w_{j_{n_{i}}}}$ to $E\left(\overrightarrow{G_{F}^{c}}\right)$ so that there are 2 -dipaths joining u_{i}^{\prime} and the w_{j} 's. The claim follows similarly from the assumption $\overrightarrow{u_{i}^{\prime} u_{i}} \in E\left(\overrightarrow{G_{F}^{c}}\right)$.

Claim 2. Suppose C_{j} has only two distinct variables $x_{i_{1}}$ and $x_{i_{2}}$ in F. Then, in any good orientation $\overrightarrow{G_{F}^{c}}$ of G_{F}^{c}, either $\overrightarrow{v_{i_{1}, j} w_{j} v_{i_{2}, j}}$ or $\overrightarrow{v_{i_{2}, j} w_{j} v_{i_{1}, j}}$ is a 2-dipath.

Proof. The claim follows from the fact that $v_{i_{1}, j} w_{j} v_{i_{2}, j}$ is the only path with length at most 2 joining $v_{i_{1}, j}$ and $v_{i_{2}, j}$ in G_{F}^{c}.

Claim 3. Suppose C_{j} has three distinct variables $x_{i_{1}}, x_{i_{2}}$ and $x_{i_{3}}$ in F. Then, in any good orientation $\overrightarrow{G_{F}^{c}}$ of G_{F}^{c}, the three edges $v_{i_{1}, j} w_{j}, v_{i_{2}, j} w_{j}$ and $v_{i_{3}, j} w_{j}$ cannot be all directed from or towards w_{j}.

Proof. Note that there are only two paths with length at most 2 joining any two of $v_{i_{1}, j}, v_{i_{2}, j}$, and $v_{i_{3}, j}$. These pass through w_{j} and w_{j}^{\prime}, respectively. Note thus that if one of the two situations of the claim occurs, then there is no 2-dipath of $\overrightarrow{G_{F}^{c}}$ joining two of these vertices which passes by w_{j}. So there must be three 2-dipaths joining these vertices passing by w_{j}^{\prime}, but this is impossible.

Remark that if two of the edges $v_{i_{1}, j} w_{j}, v_{i_{2}, j} w_{j}$ and $v_{i_{3}, j} w_{j}$ have the same direction while the third one is oriented in the opposite direction, e.g. suppose that $\overrightarrow{v_{i_{1}, j} w_{j}}, \overrightarrow{v_{i_{2}, j} w_{j}}$ and $\overrightarrow{w_{j} v_{i_{3}, j}}$ are edges of $\overrightarrow{G_{F}^{c}}$, then we can obtain three 2 dipaths joining any two of $v_{i_{1}, j}, v_{i_{2}, j}$, and $v_{i_{3}, j}$. So far, note that there are two 2-dipaths starting from $v_{i_{1}, j}$ and $v_{i_{2}, j}$, respectively, and ending at $v_{i_{3}, j}$. The last 2-dipath starting from $v_{i_{1}, j}$ and ending at $v_{i_{2}, j}$ can be obtained by orienting the edges incident with w_{j}^{\prime}, e.g. by adding $\overrightarrow{v_{i_{1}, j} w_{j}^{\prime}}$ and $\overrightarrow{w_{j}^{\prime} v_{i_{2}, j}}$ to $E\left(\overrightarrow{G_{F}^{c}}\right)$.

According to Claims 1, 2 and 3, we have an equivalence between nae-satisfying F and finding a good orientation of G_{F}^{c}. Indeed, assume that adding $\overrightarrow{u_{i} u_{i}^{\prime}}$ (resp. $\left.\overrightarrow{u_{i}^{\prime} u_{i}}\right)$ to $E\left(\overrightarrow{G_{F}^{c}}\right)$ simulates an assignment of the variable x_{i} to true (resp. false). Claim 1 reflects the fact that, in a truth assignment of the variables of F, the variable x_{i} has the same truth value in every clause it appears in. Claims 2 and 3 depict the fact that all variables of a clause cannot have the same truth value. Thus, from a satisfying truth assignment of the variables of F we can deduce a good orientation of G_{F}^{c}, and vice-versa.

We now augment G_{F} with additional vertices so that there is a path with length 2 joining every two non-adjacent vertices of G_{F}^{c} that do not form a representative pair. This is done in such a way that there is an orientation of the edges of $E\left(G_{F}\right)-E\left(G_{F}^{c}\right)$ so that every two vertices of G_{F} that do not form a representative pair are joined by a 2-dipath. In this way, the existence of a 2-weak orientation of G_{F} only relies on the existence of a good orientation of G_{F}^{c}.

First, for every vertex v of G_{F}^{c}, add two new vertices s_{v} and p_{v}, and the edges $v s_{v}$ and $v p_{v}$. Then, for every non-representative pair $\{u, v\}$ of G_{F}^{c}, add a new vertex $e_{u, v}$, and the edges $u e_{u, v}$ and $v e_{u, v}$. Finally, turn the subgraph of G_{F} induced by $\bigcup_{v \in V\left(G_{F}^{c}\right)}\left\{s_{v}, p_{v}\right\} \cup \bigcup_{\{u, v\} \in N R}\left\{e_{u, v}\right\}$ into a clique, where $N R$ denotes the set of non-representative pairs of G_{F}^{c}. This construction is depicted in Figure 1 (b).

Note that, thanks to our modifications, there is an orientation of the edges of G_{F} such that every two vertices u and v of G_{F} that do not form a representative pair of G_{F}^{c} are joined by a 2-dipath. This may be obtained for instance as follows. Define an arbitrary ordering $\sigma=\left(v_{1}, \ldots, v_{\left|V\left(G_{F}^{c}\right)\right|}\right)$ of the vertices of G_{F}^{c}. Now for every vertex v_{i} of G_{F}^{c}, let $\overrightarrow{v_{i} s v_{i}}$ and $\overrightarrow{p_{v_{i}} v_{i}}$ be arcs. Moreover, for every vertex v_{j} such that $i<j$ (if any), let $\overrightarrow{s_{v_{i}} s_{v_{j}}}, \overrightarrow{s_{v_{i}} p_{v_{j}}}, \overrightarrow{p_{v_{i}} s_{v_{j}}}$ and $\overrightarrow{p_{v_{i}} p_{v_{j}}}$ be arcs. If the pair
$\left\{v_{i}, v_{j}\right\}$ is non-representative, then let also $\overrightarrow{v_{i} e_{v_{i}, v_{j}}}$ and $\overrightarrow{e_{v_{i}, v_{j}} v_{j}}$ be arcs of the partial orientation. Finally, for every other vertex v_{k} such that $i<j, k$ (resp. $\underset{j, k<i}{ })$ and $\left\{v_{j}, v_{k}\right\}$ is a non-representative pair, let $\overrightarrow{s_{v_{i}} e_{v_{j}, v_{k}}}$ and $\overrightarrow{p_{v_{i}} e_{v_{j}, v_{k}}}$ (resp. $\overrightarrow{e_{v_{j}, v_{k} S} S}$ and $\overrightarrow{e_{v_{j}, v_{k}} p_{v_{i}}}$) be arcs. Any other edge can be oriented arbitrarily.

It is easy to check that, under the orientation given above, there is a dipath with length at most 2 joining every two non-adjacent vertices u and v that do not form a representative pair of G_{F}. First suppose that $u=v_{i}$ and $v=v_{j}$ are such vertices. Then, note that $\overline{u e_{u, v}}$ b belongs to the orientation. Now, if $u=v_{i} \in V\left(G_{F}^{c}\right)$ and $v \notin V\left(G_{F}^{c}\right)$, then v is a vertex from the clique and is adjacent to some vertex $v_{j} \neq v_{i}$ of G_{F}^{c}. Then, note that either $\overrightarrow{u s_{u} v}$ or $\overrightarrow{v p_{u} u}$ is a 2-dipath of G_{F} assuming that $i<j$ or $i>j$, respectively.

Finally remark that, for every representative pair $\{u, v\}$ of G_{F}, there is no new path with length 2 joining u and v passing through new vertices resulting from the modification. Indeed, such a path would have to start from u, enter the clique, cross the clique, and end at v. Thus, such a path has length at least 3 . It follows that the distances between vertices from representative pairs of G_{F} are not altered by the modifications, and thus that the equivalence between naesatisfying F and finding a good orientation of G_{F}^{c} is preserved. Therefore, F is nae-satisfiable if and only if G_{F} admits a 2 -weak orientation.

3 Generalisation

Although our motivations for restricting our intention on 2-OWD are supported by a colouring problem, one could naturally ask about the complexity of any problem k-OWD with $k \geq 3$.

In what follows, we explain how to generalize the reduction we gave for the case $k=2$ to any fixed $k \geq 3$. From a 3CNF formula F, we first produce the core G_{F}^{c} of G_{F} and define an orientation of G_{F}^{c} to be good if and only if some (representative) pairs of vertices of G_{F}^{c} are linked by a dipath with length exactly k in either direction. The structure of G_{F}^{c} is representative of the structure of F so that a good orientation of G_{F}^{c} implies a nae-assignment of F, and vice-versa. We then augment G_{F} with additional gadgets so that there is an orientation of the new edges under which every two vertices from a nonrepresentative pair of G_{F} are joined by a dipath with length at most k in either direction. This is done in such a way that the existence of a good orientation of G_{F}^{c} does not depend of the edges resulting from the modifications.

This augmentation consists mainly in rooting a gadget G_{v} in each vertex v of G_{F}^{c}. All gadgets of G_{F} are connected in a specific way. In the case where $\{u, v\}$ is not a representative pair, we add a shortcut between G_{u} and G_{v}, i.e. an alternative shorter path for joining two vertices of G_{u} and G_{v}. Typically, every vertex u^{\prime} of G_{u} is at distance at most k from any vertex v^{\prime} of G_{v}, unless $u^{\prime}=u$, $v^{\prime}=v$ and $\{u, v\}$ is a representative pair. In the proof of Theorem 1, i.e. for the case $k=2$, the gadget G_{v} is the triangle induced by v, s_{v}, and p_{v}, and, assuming $\{u, v\}$ is not representative, the shortcut between G_{u} and G_{v} is the vertex $e_{u, v}$.

Typically, the regular path between u and v, i.e. the one passing though the clique, has length 3 , while the path passing by the shortcut $e_{u, v}$ has length 2 .

Let $k \geq 3$ be fixed. The core G_{F}^{c} has the following vertices. Similarly as in the case $k=2$, let $u_{i}, u_{i}^{\prime}, v_{i, j}$ be vertices for every $i \in\{1, \ldots, n\}$ and $j \in\left\{i_{1}, \ldots, i_{n_{i}}\right\}$, where $i_{1}, \ldots, i_{n_{i}}$ are the distinct indices of the clauses of F that contain the variable x_{i}. The remaining vertices of G_{F}^{c} depend on the parity of k. If k is even, then, for every $j \in\{1, \ldots, m\}$, add the vertex w_{j}, and additionally w_{j}^{\prime} when $c_{j}=3$, as in the case $k=2$. Otherwise, if k is odd, then, for every $j \in\{1, \ldots, m\}$, proceed as follows. First, if $c_{j}=2$, then just add an edge $a_{j} b_{j}$ to G_{F}^{c}. Otherwise, if $c_{j}=3$, then add two cycles $a_{j} w_{j} b_{j} a_{j}$ and $a_{j}^{\prime} w_{j}^{\prime} b_{j}^{\prime} a_{j}^{\prime}$ with length 3 to G_{F}^{c}.

By joining two vertices u and v by a path, we mean that we identify the endvertices of a new path with u and v, respectively. We now link all the vertices of G_{F}^{c} by means of several vertex-disjoint paths. First, join every pair $\left\{u_{i}, u_{i}^{\prime}\right\}$ by a path with length $\left\lfloor\frac{k}{2}\right\rfloor$. Then, join every pair $\left\{u_{i}^{\prime}, v_{i, j}\right\}$ by a path with length $\left\lceil\frac{k}{2}\right\rceil$. Now, for every $j \in\{1, \ldots, m\}$, add the following paths to G_{F}^{c}.

- If $c_{j}=2$, and $x_{i_{1}}$ and $x_{i_{2}}$ are the distinct variables of C_{j}, then join each of $\left\{v_{i_{1}, j}, w_{j}\right\}$ and $\left\{v_{i_{2}, j}, w_{j}\right\}$ by a path with length $\frac{k}{2}$ if k is even, or join each of $\left\{v_{i_{1}, j}, a_{j}\right\}$ and $\left\{v_{i_{2}, j}, b_{j}\right\}$ by a path with length $\left\lfloor\frac{k}{2}\right\rfloor$ otherwise.
- If $c_{j}=3$, and $x_{i_{1}}, x_{i_{2}}$ and $x_{i_{3}}$ are the variables of C_{j}, then, if k is even, join every vertex among $\left\{v_{i_{1}, j}, v_{i_{2}, j}, v_{i_{3}, j}\right\}$ and each vertex in $\left\{w_{j}, w_{j}^{\prime}\right\}$ by means of a path with length $\frac{k}{2}$. Otherwise, if k is odd, then join $v_{i_{1}, j}$ and both a_{j} and $a_{j}^{\prime}, v_{i_{2}, j}$ and both w_{j} and w_{j}^{\prime}, and $v_{i_{3}, j}$ and both b_{j} and b_{j}^{\prime} by a path with length $\left\lfloor\frac{k}{2}\right\rfloor$ otherwise.

A pair of vertices of G_{F}^{c} is representative whenever it is of the form $\left\{u_{i}, v_{i, j}\right\}$, $\left\{u_{i}^{\prime}, s\right\}$, where s is of the form a_{j}, b_{j}, or w_{j} such that there is a path with length
$\left\lfloor\frac{k}{2}\right\rfloor$ between a vertex $v_{i, j}$ and s, or $\left\{v_{i_{1}, j}, v_{i_{2}, j}\right\}$. An orientation of G_{F}^{c} is good if every two vertices of G_{F}^{c} composing a representative pair are joined by a k dipath in either direction. Note that, by construction, every two such vertices are at distance exactly k in G_{F}^{c}, and that the possibilities for joining them by a k-dipath are quite limited. For these reasons, Claims 1,2 and 3 introduced in the proof of Theorem 1 can be derived for the general case. We get that nae-satisfying F is equivalent to finding a good orientation of G_{F}^{c}.

We finally augment G_{F} so that every two of its vertices are at distance at most k. This is done by adding a gadget G_{v} to G_{F} for every vertex v of G_{F}^{c} as explained above. Set $x=\left\lfloor\frac{k}{2}\right\rfloor$. For every $i \in\{1, \ldots, x\}$, add two new vertices s_{v}^{i} and p_{v}^{i} to G_{v}. These two vertices form the $i^{\text {th }}$ level of G_{v}, and are said to be i-vertices. Next, for every $i \in\{1, \ldots, x-1\}$, add all possible edges between the i - and $(i+1)$-vertices of G_{v} so that two consecutive levels of G_{v} form a clique on 4 vertices. Finally, add an edge between v and every 1-vertex of G_{v}.

We finish the construction of G_{F} by adding some connection between the gadgets. We distinguish two cases depending on the parity of k.

- If k is even, then we turn the subgraph induced by all x-vertices of G_{F} into a clique. Next, for every non-representative pair $\{u, v\}$ of G_{F}^{c}, add a shortcut

Fig. 2. The gadgets G_{u} and G_{v} obtained for a non-representative pair $\{u, v\}$ and $k=6$
vertex $e_{u, v}$ to the clique constructed just before. Finally, add every edge between $e_{u, v}$ and the vertices from the $(x-1)^{t h}$ levels of G_{u} and G_{v}.

- Otherwise, if k is odd, then add a new vertex z to G_{F}, and add all possible edges between z and x-vertices. For every non-representative pair $\{u, v\}$ of G_{F}^{c}, also add the shortcut edges $p_{u}^{x} s_{v}^{x}$ and $s_{u}^{x} p_{v}^{x}$ to G_{F}.

This construction is depicted in Figure 2. Note that no new path with length at most k between two vertices composing a representative pair of G_{F} arose from the modifications. Therefore, the equivalence between nae-satisfying F and finding a good orientation of G_{F}^{c} is still correct. We claim, as in the case $k=$ 2, that there is an orientation of the edges we just added so that every nonrepresentative pair of vertices of G_{F} is joined by a k-dipath.

To see that claim, define an arbitrary ordering $\sigma=\left(v_{1}, \ldots, v_{\left|V\left(G_{F}^{c}\right)\right|}\right)$ over all vertices of G_{F}^{c}, and consider the following partial orientation. First, for every vertex v of G_{F}^{c}, let $\overrightarrow{v s_{v}^{1}}$ and $\overrightarrow{p_{v}^{v}}$ be arcs. Then, for every level $i \in\{1, \ldots, x\}$ of G_{v},
 $\overrightarrow{p_{v}^{i} s_{v}^{i+1}}$ and $\overrightarrow{p_{v}^{i+1} s_{v}^{i}}$ to the partial orientation. Now, on the one hand, if k is even, then, for every shortcut vertex e of G_{F}, add the $\operatorname{arcs} \overrightarrow{s_{v}^{x}}$ and $\overrightarrow{e p_{v}^{x}}$. Next, for every $i<j$ consider $\overrightarrow{s_{v_{i}}^{x} s_{v_{j}}^{x}}, \overrightarrow{s_{v_{i}}^{x} p_{v_{j}}^{x}}, \overrightarrow{p_{v_{i}}^{x} s_{v_{j}}^{x}}$ and $\overrightarrow{p_{v_{i}}^{x} p_{v_{j}}^{x}}$ as arcs of the partial orientation. Additionally, if $\left\{v_{i}, v_{j}\right\}$ is a representative pair, then let $\overrightarrow{s_{v_{j}}^{x-1} e_{v_{i}, v_{j}}}, \overrightarrow{e_{v_{i}, v_{j}} p_{v_{i}}^{x-1}}$, $\overrightarrow{s_{v_{i}}^{x-1} e_{v_{i}, v_{j}}}$, and $\overrightarrow{e_{v_{i}, v_{j}} p_{v_{j}}^{x-1}}$ be arcs. On the other hand, if k is odd, then let $\overrightarrow{s_{v_{i}}^{x} z}$ and $\overrightarrow{z p_{v_{i}}^{x}}$ be arcs. Finally, if $\left\{v_{i}, v_{j}\right\}$ is representative, then let $\overrightarrow{s_{v_{i}}^{x} p_{v_{j}}^{x}}$ and $\overline{s_{v_{j}}^{x} p_{v_{i}}^{x}}$ be arcs. Orient all the remaining edges arbitrarily.

Note that, under the partial orientation given above, any vertex from a gadget can directly access the upper or lower level of the same gadget. Besides, any such non-root vertex can also reach or be reached by any other vertex from another gadget by means of a dipath with length at most k. As in the case $k=2$, such a path typically goes up across a first gadget, then exits the first gadget to enter the second one (either directly from the $x^{t h}$ level or via z), and finally goes down across the second gadget. Because the gadgets have $x=\left\lfloor\frac{k}{2}\right\rfloor$ levels, the length of such a path does not exceed k. Finally observe that if $\{u, v\}$ is representative, then there is no path with length at most k joining u and v passing across the
gadgets. On the contrary, if $\{u, v\}$ is non-representative, then there is a path with length exactly k joining u and v. This path necessarily passes through the shortcut between G_{u} and G_{v}.

Acknowledgements

We would like to thank Professor Éric Sopena for his valuable comments on the first drafts of this paper, and for bringing the problem investigated in this paper to our attention.

References

1. B. Bollobás and A. D. Scott. Separating systems and oriented graphs of diameter two. J. Combin. Theory, Ser. B, 97:193-203, 2007.
2. V. Chvátal and C. Thomassen. Distances in orientations of graphs. J. Combin. Theory, Ser. B, 24(1):61-75, 1978.
3. Z. Fredi, P. Horak, C. M. Pareek, and X. Zhu. Minimal oriented graphs of diameter 2. Graphs Comb., 14:345-350, 1998.
4. W. F. Klostermeyer and G. MacGillivray. Analogues of cliques for oriented coloring. Discuss. Math. Graph Theory, 24:373-387, 2004.
5. S. Sen. Maximum order of a planar oclique is 15 . In S. Arumugam and W. F. Smyth, editors, IWOCA, volume 7643 of Lecture Notes in Computer Science, pages 130-142. Springer, 2012.
6. E. Sopena. Complete oriented colourings and the oriented achromatic number. Submitted preprint, 2012.
