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2 CNRS and Univ. Pierre et Marie Curie, LIP6, UMR 7606, 75252 Paris, France

Abstract. An orientation of an undirected graph G has weak diameter k
if, for every pair {u, v} of vertices of G, there is a directed path with
length at most k joining u and v in either direction. In this work, we
show that deciding whether a graph admits an orientation with weak
diameter k is NP-complete whenever k ≥ 2.

1 Introduction

Let G be a simple undirected graph with vertex (resp. edge) set V (G) (resp.
E(G)). By orienting every edge uv of G, either from u to v or from v to u, one

obtains an orientation
−→
G of G. This oriented graph

−→
G has the same vertex set as

G, i.e. V (
−→
G) = V (G), and, for every edge uv ∈ E(G), we have either −→uv ∈ E(

−→
G)

or −→vu ∈ E(
−→
G) depending on the orientation assigned to uv.

The distance dist(G, u, v) from u to v in G is the minimal length of a path
joining u and v. We refer to the maximum distance between two vertices of G as
its diameter, and denote it diam(G). These definitions can be naturally adapted

to the context of oriented graphs. A k-dipath −−−−−−−→v1v2...vk+1 of
−→
G is a sequence

of k + 1 distinct vertices such that −−−→vivi+1 ∈ E(
−→
G) for every i ∈ {1, ..., k}. The

directed distance dist(
−→
G, u, v) from u to v in

−→
G is the minimal length of a dipath

starting from u and ending at v. Note that, contrary to the undirected case, we
may have dist(

−→
G, u, v) 6= dist(

−→
G, v, u). Therefore, two definitions of the oriented

diameter can be adopted.
On the one hand, one can consider that two vertices u and v of

−→
G are close

when one of dist(
−→
G, u, v) and dist(

−→
G, v, u) is small. In other words, we consider

that two vertices are close if there is a dipath with small length joining them in
−→
G

regardless of its direction. Let distw(
−→
G, u, v) be min{dist(−→G, u, v), dist(

−→
G, v, u)}.

The weak diameter of
−→
G , denoted diamw(

−→
G), is the maximum distw(

−→
G, u, v)

taken over all pairs {u, v} of vertices of
−→
G .

On the other hand, note that the existence of a dipath with small length
from u to v in

−→
G does not guarantee that there is a short way from v to u. For

this reason, the weak diameter of
−→
G may not be representative of its oriented

distances. Let dists(
−→
G, u, v) = max{dist(−→G, u, v), dist(

−→
G, v, u)}. The strong di-

ameter of
−→
G , denoted diams(

−→
G), is the maximum dists(

−→
G, u, v) regarding all

possible pairs {u, v} of vertices of
−→
G .



An orientation of G is k-weak (resp. k-strong) if it has weak (resp. strong)
diameter at most k. We only deal with k-weak orientations in this paper, mainly
with the case k = 2 which is related to some graph colouring notions as explained
below. A k-colouring of G is a partition of V (G) into k parts such that two
vertices of a same colour class are not adjacent. The least number of colours
used by a colouring of G is referred to as the chromatic number of G, denoted
χ(G). Clearly, we have χ(G) = |V (G)| if and only if G is a complete graph.

Now consider similar notions but for oriented graphs. An oriented k-colouring
of
−→
G is a partition of V (

−→
G) into k parts such that two arcs between two colour

classes have the same direction. Note that this property implies that any two
vertices from a same colour class cannot be adjacent. As usually, the least number
of colours used by an oriented colouring of

−→
G is defined as the oriented chromatic

number of
−→
G , denoted χo(

−→
G). Contrary to the undirected case, an oriented

graph whose oriented chromatic number is exactly its order is not necessarily a
tournament. As an illustration of that claim, remark that χo(

−→
C5) = 5, where

−→
C5

is the circuit on 5 vertices.
The observation above led to the introduction of oriented cliques (or o-clique

for short), which are the analogues of cliques regarding oriented colouring. In
other words, o-cliques are those oriented graphs whose oriented chromatic num-
ber is exactly their order. O-cliques have been mainly studied regarding the
extremal theory point of view. The interested reader may refer to [1, ?,?,?,?] for
interesting results regarding the order or the size of o-cliques.

By now extending the notion of oriented chromatic number to undirected
graphs, finding 2-weak orientations of graphs becomes of some interest. If G is
an undirected graph, then χo(G) is defined as

χo(G) = max{χo(
−→
G),
−→
G is an orientation of G}.

Hence, we have χo(G) = |V (G)| if and only if G admits an orientation which
is an o-clique. An important result due to Klostermeyer and MacGillivray states
that an oriented graph is an o-clique if and only if it has weak diameter at
most 2 [4]. Therefore, we get that χo(G) = |V (G)| if and only if G admits a
2-weak orientation.

From the algorithmic point of view, the complexity of deciding whether an
undirected graph admits a 2-weak orientation was still unknown. Note that the
analogous question for 2-strong orientations was settled down by Chvátal and
Thomassen, who showed this problem to be NP-complete [2]. We here settle this
question by studying the following decision problem.

Orientation with Weak Diameter k - k-OWD
Instance: A graph G.
Question: Does G admit a k-weak orientation?

Clearly, a graph admits a 1-weak orientation if and only if it is a complete
graph. Therefore, 1-OWD is in P. In this work, we show that k-OWD is NP-
complete for every k ≥ 2. For this purpose, we first give the proof for the case
k = 2 in Section 2. We then explain how to generalize this result in Section 3.



2 Main result

We prove the following complexity result.

Theorem 1. 2-OWD is NP-complete.

Proof. k-OWD is in NP for every k since one can, given an orientation
−→
G of G,

check whether diamw(
−→
G) ≤ k. For this purpose, one just has to check, for every

possible pair {u, v} of distinct vertices of G, whether either u and v are adjacent,
or there exist k′ ≤ k − 1 vertices w1, ..., wk′ such that −−−−−−−→uw1...wk′v or −−−−−−−→vw1...wk′u
is a dipath of

−→
G . This witness algorithm runs in polynomial time with respect

to the order of G.
We now show that 2-OWD is NP-hard by reduction from the following NP-

complete problem.

Not-All-Equal 3-SAT - NAE-3SAT
Instance: A 3CNF formula F over variables {x1, ..., xn} and clauses {C1, ..., Cm}.
Question: Is F nae-satisfiable, i.e. is there a truth assignment of the variables of
F such that no clause of F has its three literals having the same truth value?

The interesting property of NAE-3SAT is that it remains NP-complete even
if none of its clauses contains a negated variable (MONOTONE NAE-3SAT).
Note further that if a clause of F is of the form (xi∨xi∨xi), then F cannot be nae-
satisfied. It is thus understood that F meets these two properties throughout
this proof. From F , we produce a graph GF such that F is nae-satisfiable if
and only if GF admits a 2-weak orientation

−→
GF . This reduction is achieved in

polynomial time regarding the size of F .
For every i ∈ {1, ..., n} we denote by ni the number of distinct clauses that

contain the variable xi in F , and by cj the number of distinct variables in the
clause Cj for every j ∈ {1, ...,m}. Clearly, we have ni ≥ 1 and cj ∈ {2, 3} for
every such integers.

We first describe the core Gc
F of GF , i.e. the subgraph of GF from which the

equivalence with F follows. The subgraph Gc
F does not have diameter 2, but GF

will be augmented later so that it has diameter 2, and this without altering the
equivalence. With each variable xi of F , we associate ni + 2 vertices ui, u

′
i, and

vi,j1 , ..., vi,jni
in Gc

F , where j1, ..., jni
are the distinct indices of the clauses of F

that contain xi. These vertices are joined in Gc
F in such a way that they form

a star whose central vertex is u′i. Now, with every clause Cj in F , we associate
a vertex wj in Gc

F . In the case where cj = 3, we also add a vertex w′j to Gc
F .

Finally, whenever a variable xi belongs to a clause Cj in F , we add an edge
linking vi,j and wj in Gc

F , and, if cj = 3, an edge linking vi,j and w′j .
This construction is depicted in Figure 1 (a). A pair {u, v} of distinct vertices

of Gc
F is representative if it matches one of the following forms.

1. {u, v} = {ui, vi,j} where i ∈ {1, ..., n} and j ∈ {1, ...,m}.
2. {u, v} = {u′i, wj} where i ∈ {1, ..., n}, j ∈ {1, ...,m}, and xi ∈ Cj .
3. {u, v} = {vi1,j , vi2,j} where i1 6= i2, j ∈ {1, ...,m}, and xi1 , xi2 ∈ Cj .
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two clauses C1 = (x1 ∨
x2 ∨ x3) and C2 = (x3 ∨
x3 ∨ x4)

u v

su pu pvsveu,v

(b) Clique regarding a non-representative pair {u, v}

Fig. 1. Subgraphs obtained while constructing the reduced graph GF

An orientation of Gc
F is good if two vertices forming a representative pair are

linked by a 2-dipath in either direction. Note that, in this definition, there is no
requirement on the oriented distance between two vertices which are at distance
at least 3. A representative pair is a pair of vertices which are not adjacent in GF ,
and for which there are only a few paths with length at most 2 between them.
All of these paths belong to Gc

F so that the existence of a 2-weak orientation of
GF depends on the existence of a good orientation of Gc

F .
We claim that we have an equivalence between nae-satisfying F and finding

a good orientation of Gc
F . This relies on the following three observations.

Claim 1. Suppose xi belongs to the clauses Cj1 , ..., Cjni
of F . Then, in any

good orientation
−→
Gc

F of Gc
F ,
−−−−−−−→
uiu
′
ivi,jwj is a 3-dipath for every j ∈ {j1, ..., jni},

or
−−−−−−−→
wjvi,ju

′
iui is a 3-dipath for every j ∈ {j1, ..., jni

}.

Proof. Suppose
−−→
uiu
′
i ∈ E(

−→
Gc

F ). Because ui is at distance 2 from the vi,j ’s in Gc
F

and u′i is the only neighbour of ui, we have to add
−−−−→
u′ivi,j1 , ...,

−−−−→
u′ivi,jni

to E(
−→
Gc

F )

so that there are 2-dipaths joining ui and the vi,j ’s in
−→
Gc

F . Similarly, because

vi,j is the only vertex joining u′i and wj in Gc
F , and

−−−→
u′ivi,j belongs to E(

−→
Gc

F ) for

every j ∈ {j1, ..., jni}, we have to add −−−−−→vi,j1wj1 , ...,
−−−−−−→vi,jni

wjni
to E(

−→
Gc

F ) so that
there are 2-dipaths joining u′i and the wj ’s. The claim follows similarly from the

assumption
−−→
u′iui ∈ E(

−→
Gc

F ).

Claim 2. Suppose Cj has only two distinct variables xi1 and xi2 in F . Then, in

any good orientation
−→
Gc

F of Gc
F , either −−−−−−−→vi1,jwjvi2,j or −−−−−−−→vi2,jwjvi1,j is a 2-dipath.

Proof. The claim follows from the fact that vi1,jwjvi2,j is the only path with
length at most 2 joining vi1,j and vi2,j in Gc

F .



Claim 3. Suppose Cj has three distinct variables xi1 , xi2 and xi3 in F . Then,

in any good orientation
−→
Gc

F of Gc
F , the three edges vi1,jwj, vi2,jwj and vi3,jwj

cannot be all directed from or towards wj.

Proof. Note that there are only two paths with length at most 2 joining any two
of vi1,j , vi2,j , and vi3,j . These pass through wj and w′j , respectively. Note thus
that if one of the two situations of the claim occurs, then there is no 2-dipath
of
−→
Gc

F joining two of these vertices which passes by wj . So there must be three
2-dipaths joining these vertices passing by w′j , but this is impossible.

Remark that if two of the edges vi1,jwj , vi2,jwj and vi3,jwj have the same
direction while the third one is oriented in the opposite direction, e.g. suppose
that −−−−→vi1,jwj , −−−−→vi2,jwj and −−−−→wjvi3,j are edges of

−→
Gc

F , then we can obtain three 2-
dipaths joining any two of vi1,j , vi2,j , and vi3,j . So far, note that there are two
2-dipaths starting from vi1,j and vi2,j , respectively, and ending at vi3,j . The last
2-dipath starting from vi1,j and ending at vi2,j can be obtained by orienting the

edges incident with w′j , e.g. by adding
−−−−→
vi1,jw

′
j and

−−−−→
w′jvi2,j to E(

−→
Gc

F ).

According to Claims 1, 2 and 3, we have an equivalence between nae-satisfying

F and finding a good orientation of Gc
F . Indeed, assume that adding

−−→
uiu
′
i (resp.−−→

u′iui) to E(
−→
Gc

F ) simulates an assignment of the variable xi to true (resp. false).
Claim 1 reflects the fact that, in a truth assignment of the variables of F , the
variable xi has the same truth value in every clause it appears in. Claims 2 and
3 depict the fact that all variables of a clause cannot have the same truth value.
Thus, from a satisfying truth assignment of the variables of F we can deduce a
good orientation of Gc

F , and vice-versa.

We now augment GF with additional vertices so that there is a path with
length 2 joining every two non-adjacent vertices of Gc

F that do not form a rep-
resentative pair. This is done in such a way that there is an orientation of the
edges of E(GF ) − E(Gc

F ) so that every two vertices of GF that do not form
a representative pair are joined by a 2-dipath. In this way, the existence of a
2-weak orientation of GF only relies on the existence of a good orientation of
Gc

F .
First, for every vertex v of Gc

F , add two new vertices sv and pv, and the
edges vsv and vpv. Then, for every non-representative pair {u, v} of Gc

F , add a
new vertex eu,v, and the edges ueu,v and veu,v. Finally, turn the subgraph of
GF induced by

⋃
v∈V (Gc

F
){sv, pv} ∪

⋃
{u,v}∈NR{eu,v} into a clique, where NR

denotes the set of non-representative pairs of Gc
F . This construction is depicted

in Figure 1 (b).
Note that, thanks to our modifications, there is an orientation of the edges of

GF such that every two vertices u and v of GF that do not form a representative
pair of Gc

F are joined by a 2-dipath. This may be obtained for instance as follows.
Define an arbitrary ordering σ = (v1, ..., v|V (Gc

F
)|) of the vertices of Gc

F . Now for
every vertex vi of Gc

F , let −−→visvi and −−→pvivi be arcs. Moreover, for every vertex vj
such that i < j (if any), let −−−→svisvj , −−−→svipvj , −−−→pvisvj and −−−→pvipvj be arcs. If the pair



{vi, vj} is non-representative, then let also −−−−→vievi,vj and −−−−→evi,vj
vj be arcs of the

partial orientation. Finally, for every other vertex vk such that i < j, k (resp.
j, k < i) and {vj , vk} is a non-representative pair, let −−−−−→svievj ,vk and −−−−−→pvievj ,vk (resp.
−−−−−→evj ,vk

svi and −−−−−→evj ,vkpvi) be arcs. Any other edge can be oriented arbitrarily.

It is easy to check that, under the orientation given above, there is a dipath
with length at most 2 joining every two non-adjacent vertices u and v that do
not form a representative pair of GF . First suppose that u = vi and v = vj
are such vertices. Then, note that −−−−→ueu,vv belongs to the orientation. Now, if
u = vi ∈ V (Gc

F ) and v 6∈ V (Gc
F ), then v is a vertex from the clique and is

adjacent to some vertex vj 6= vi of Gc
F . Then, note that either −−→usuv or −−−→vpuu is

a 2-dipath of GF assuming that i < j or i > j, respectively.

Finally remark that, for every representative pair {u, v} of GF , there is no
new path with length 2 joining u and v passing through new vertices resulting
from the modification. Indeed, such a path would have to start from u, enter the
clique, cross the clique, and end at v. Thus, such a path has length at least 3.
It follows that the distances between vertices from representative pairs of GF

are not altered by the modifications, and thus that the equivalence between nae-
satisfying F and finding a good orientation of Gc

F is preserved. Therefore, F is
nae-satisfiable if and only if GF admits a 2-weak orientation.

3 Generalisation

Although our motivations for restricting our intention on 2-OWD are supported
by a colouring problem, one could naturally ask about the complexity of any
problem k-OWD with k ≥ 3.

In what follows, we explain how to generalize the reduction we gave for the
case k = 2 to any fixed k ≥ 3. From a 3CNF formula F , we first produce
the core Gc

F of GF and define an orientation of Gc
F to be good if and only

if some (representative) pairs of vertices of Gc
F are linked by a dipath with

length exactly k in either direction. The structure of Gc
F is representative of the

structure of F so that a good orientation of Gc
F implies a nae-assignment of

F , and vice-versa. We then augment GF with additional gadgets so that there
is an orientation of the new edges under which every two vertices from a non-
representative pair of GF are joined by a dipath with length at most k in either
direction. This is done in such a way that the existence of a good orientation of
Gc

F does not depend of the edges resulting from the modifications.

This augmentation consists mainly in rooting a gadget Gv in each vertex v
of Gc

F . All gadgets of GF are connected in a specific way. In the case where
{u, v} is not a representative pair, we add a shortcut between Gu and Gv, i.e. an
alternative shorter path for joining two vertices of Gu and Gv. Typically, every
vertex u′ of Gu is at distance at most k from any vertex v′ of Gv, unless u′ = u,
v′ = v and {u, v} is a representative pair. In the proof of Theorem 1, i.e. for the
case k = 2, the gadget Gv is the triangle induced by v, sv, and pv, and, assuming
{u, v} is not representative, the shortcut between Gu and Gv is the vertex eu,v.



Typically, the regular path between u and v, i.e. the one passing though the
clique, has length 3, while the path passing by the shortcut eu,v has length 2.

Let k ≥ 3 be fixed. The core Gc
F has the following vertices. Similarly as in the

case k = 2, let ui, u
′
i, vi,j be vertices for every i ∈ {1, ..., n} and j ∈ {i1, ..., ini

},
where i1, ..., ini

are the distinct indices of the clauses of F that contain the
variable xi. The remaining vertices of Gc

F depend on the parity of k. If k is
even, then, for every j ∈ {1, ...,m}, add the vertex wj , and additionally w′j when
cj = 3, as in the case k = 2. Otherwise, if k is odd, then, for every j ∈ {1, ...,m},
proceed as follows. First, if cj = 2, then just add an edge ajbj to Gc

F . Otherwise,
if cj = 3, then add two cycles ajwjbjaj and a′jw

′
jb
′
ja
′
j with length 3 to Gc

F .
By joining two vertices u and v by a path, we mean that we identify the

endvertices of a new path with u and v, respectively. We now link all the vertices
of Gc

F by means of several vertex-disjoint paths. First, join every pair {ui, u′i} by
a path with length bk2 c. Then, join every pair {u′i, vi,j} by a path with length dk2 e.
Now, for every j ∈ {1, ...,m}, add the following paths to Gc

F .

– If cj = 2, and xi1 and xi2 are the distinct variables of Cj , then join each of
{vi1,j , wj} and {vi2,j , wj} by a path with length k

2 if k is even, or join each

of {vi1,j , aj} and {vi2,j , bj} by a path with length bk2 c otherwise.
– If cj = 3, and xi1 , xi2 and xi3 are the variables of Cj , then, if k is even, join

every vertex among {vi1,j , vi2,j , vi3,j} and each vertex in {wj , w
′
j} by means

of a path with length k
2 . Otherwise, if k is odd, then join vi1,j and both aj

and a′j , vi2,j and both wj and w′j , and vi3,j and both bj and b′j by a path

with length bk2 c otherwise.

A pair of vertices of Gc
F is representative whenever it is of the form {ui, vi,j},

{u′i, s}, where s is of the form aj , bj , or wj such that there is a path with length
bk2 c between a vertex vi,j and s, or {vi1,j , vi2,j}. An orientation of Gc

F is good
if every two vertices of Gc

F composing a representative pair are joined by a k-
dipath in either direction. Note that, by construction, every two such vertices
are at distance exactly k in Gc

F , and that the possibilities for joining them by
a k-dipath are quite limited. For these reasons, Claims 1, 2 and 3 introduced
in the proof of Theorem 1 can be derived for the general case. We get that
nae-satisfying F is equivalent to finding a good orientation of Gc

F .
We finally augment GF so that every two of its vertices are at distance at

most k. This is done by adding a gadget Gv to GF for every vertex v of Gc
F as

explained above. Set x = bk2 c. For every i ∈ {1, ..., x}, add two new vertices siv
and piv to Gv. These two vertices form the ith level of Gv, and are said to be
i-vertices. Next, for every i ∈ {1, ..., x − 1}, add all possible edges between the
i- and (i + 1)-vertices of Gv so that two consecutive levels of Gv form a clique
on 4 vertices. Finally, add an edge between v and every 1-vertex of Gv.

We finish the construction of GF by adding some connection between the
gadgets. We distinguish two cases depending on the parity of k.

– If k is even, then we turn the subgraph induced by all x-vertices of GF into a
clique. Next, for every non-representative pair {u, v} of Gc

F , add a shortcut



u

s1u

s2u

p1u

v

s1v p1v

p2v

eu,v

p2u s2v

s3u p3vp3u s3v

Fig. 2. The gadgets Gu and Gv obtained for a non-representative pair {u, v} and k = 6

vertex eu,v to the clique constructed just before. Finally, add every edge
between eu,v and the vertices from the (x− 1)th levels of Gu and Gv.

– Otherwise, if k is odd, then add a new vertex z to GF , and add all possible
edges between z and x-vertices. For every non-representative pair {u, v} of
Gc

F , also add the shortcut edges pxus
x
v and sxup

x
v to GF .

This construction is depicted in Figure 2. Note that no new path with length
at most k between two vertices composing a representative pair of GF arose
from the modifications. Therefore, the equivalence between nae-satisfying F and
finding a good orientation of Gc

F is still correct. We claim, as in the case k =
2, that there is an orientation of the edges we just added so that every non-
representative pair of vertices of GF is joined by a k-dipath.

To see that claim, define an arbitrary ordering σ = (v1, ..., v|V (Gc
F
)|) over all

vertices of Gc
F , and consider the following partial orientation. First, for every

vertex v of Gc
F , let

−→
vs1v and

−→
p1vv be arcs. Then, for every level i ∈ {1, ..., x} of Gv,

let
−−→
sivp

i
v be an arc. Next, for every i ∈ {1, ..., x− 1}, add the arcs

−−−−→
sivs

i+1
v ,
−−−−→
pi+1
v piv,−−−−→

pivs
i+1
v and

−−−−→
pi+1
v siv to the partial orientation. Now, on the one hand, if k is even,

then, for every shortcut vertex e of GF , add the arcs
−→
sxve and

−→
epxv . Next, for every

i < j consider
−−−→
sxvis

x
vj

,
−−−→
sxvip

x
vj ,
−−−→
pxvis

x
vj and

−−−→
pxvip

x
vj as arcs of the partial orientation.

Additionally, if {vi, vj} is a representative pair, then let
−−−−−−→
sx−1vj evi,vj ,

−−−−−−→
evi,vjp

x−1
vi ,

−−−−−−→
sx−1vi evi,vj , and

−−−−−−→
evi,vjp

x−1
vj be arcs. On the other hand, if k is odd, then let

−−→
sxviz

and
−−→
zpxvi

be arcs. Finally, if {vi, vj} is representative, then let
−−−→
sxvip

x
vj and

−−−→
sxvjp

x
vi

be arcs. Orient all the remaining edges arbitrarily.
Note that, under the partial orientation given above, any vertex from a gadget

can directly access the upper or lower level of the same gadget. Besides, any such
non-root vertex can also reach or be reached by any other vertex from another
gadget by means of a dipath with length at most k. As in the case k = 2, such a
path typically goes up across a first gadget, then exits the first gadget to enter
the second one (either directly from the xth level or via z), and finally goes down
across the second gadget. Because the gadgets have x = bk2 c levels, the length
of such a path does not exceed k. Finally observe that if {u, v} is representative,
then there is no path with length at most k joining u and v passing across the



gadgets. On the contrary, if {u, v} is non-representative, then there is a path
with length exactly k joining u and v. This path necessarily passes through the
shortcut between Gu and Gv.
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