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Jean-Charles Passieux · Julien Réthoré · Anthony Gravouil · Marie-Christine

Baietto

Received: date / Accepted: date

Abstract A Local/Global non-intrusive coupling algorithm

is proposed for the analysis of mixed-mode crack propa-

gation. It is based on a three scale multigrid and extended

finite element method, that was proposed recently for the

direct estimation of stress intensity factors of static cracks.

The algorithm couples a linear elastic global model (possi-

bly performed by a industrial software) with an enhanced

local model capable of modeling a crack and accurately es-

timating SIFs (performed by a separate research code). It is

said non-intrusive since it does not modify the global mesh,

its connectivity and solver. For the global model, the contri-

bution of the local patch consists in additional nodal efforts

near the crack, which makes it compatible with most soft-

wares. Further the shape of the domain over which the local

model is applied is automatically adapted during propaga-

tion.

Keywords nested models · mixed mode · localized

multigrid · williams · stress intensity factors

1 Introduction

The question of the inclusion of a crack and its propaga-

tion in a finite element model initially not expected for this,

is a question which is still today the subject of numerous
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studies. The latter does not only aim at accurately simulat-

ing the presence and propagation of cracks. Indeed, a special

effort is dedicated to the development of tools increasingly

generic, flexible and simple to implement and to use in a

constrained environment.

The extended finite element method (X-FEM [27]) was

originally developed to overcome the high intrusiveness of

remeshing based methods [10] that may have meshing con-

straints near the the crack front singularity [2]. X-FEM can

account for both the displacement discontinuity across the

crack faces and the near-tip crack singularities, by adding

analytical enrichment functions to the classical finite ele-

ment approximation subspace. It is then possible to model

a crack with a mesh which does not conform to it. For crack

growth simulation, remeshing is also no longer required at

each propagation step. In this sense, X-FEM has achieved a

first step towards clearly less intrusive simulation of fracture

problems.

To go a step forward, an alternative method (HAX-FEM)

was proposed recently [37,29]. It is based on X-FEM far

from the crack tip. Only the singular enrichment near the

crack tip differs. The idea consists in unactivating the stan-

dard finite element interpolation around the crack tip and

replace it by analytical modes taken from the linear elas-

tic crack tip asymptotic fields [40]. The latter provide di-

rectly reliable estimates of the stress intensity factors (SIF)

and higher order terms. The coupling between X-FEM and

analytical models is performed by an overlapping Arlequin

coupling [37] or a Mortar like integral matching on the in-

terface [29]. This method is able to accurately estimate SIF

without resorting to a posteriori recorvery techniques like

least-squares, energy integrals (i.e. interaction integrals) or

configurational forces [31].

A problem of industrial practical importance and of large

impact is that the initial CAD mesh is such that there is more

than one order of magnitude between the characteristic di-
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mensions of the structure and the crack. It this case, even

with the introduction of singular and discontinuous enrich-

ments, the initial mesh may not be fine enough to simulate

accurately the presence of the crack [35]. For that purpose,

many multiscale techniques have been developed to couple

the scale of the structure (and its initial mesh) to the scale

of the crack. For instance, coupling algorithms are based on

domain decomposition [19,26,4], on multigrid algorithms

[35,15], on extended/generalized finite elements [24,32], on

multiscale projection [21], on patch methods through Ar-

lequin coupling [37,3] or on integral matching [9,29]. The

latter has the advantage to avoid blending elements. Sim-

ilarly, HAX-FEM method was associated with a localized

multigrid algorithm in [29].

However, these innovative methods are generally very

intrusive, which represents an obstacle to their deployment

to large scale industrial applications.

To reduce this high intrusiveness, a new family of non-

intrusive coupling algorithms has recently been pioneered

by Gendre et al. [12]. Theses methods are dedicated for

global (possibly large scale) finite element model, integrated

within a commercial software, in which a local phenomenon

exists, but that the global model is not able to account for.

It may be just a local loading requiring local mesh refine-

ment [16,25,26], but also the occurrence of a local nonlin-

earity (plasticity [12]). The idea is to develop a local/global

coupling algorithm while avoiding any modification of the

industrial code used to handle the global problem. Nei-

ther the mesh nor the solver are modified. This constraint,

though restrictive, nevertheless allows one to couple indus-

trial sofware with research demonstrator code [1].

These iterative methods are based on algorithms orig-

inally developed for domain decomposition (DD) [12,13].

The purpose of this paper is to propose, respecting the con-

straint of non-intrusiveness of the global problem, an alter-

native algorithm based on a localised multigrid algorithm

for the simulation of mixed-mode crack propagation. It is

shown how to use both X-FEM or DEK-FEM in a globally

linear elastic finite element model processed by a code con-

sidered as a black box. Curvilinear crack propagation is also

considered. The shape of the domain over which the local

model is applied is automatically updated as well as the ad-

ditional enrichments whereas the global model remains the

same, with identical connectivity, operator and solver during

propagation.

The paper is organized as follows. Section 1 presents

the proposed multigrid-based coupling algorithm in compar-

ison with the DD-based non-intrusive solver of [12]. In this

section only FEM/FEM coupling is considered. Section 2

is devoted to the extension of the method to achieve global

FEM/local X-FEM non-intrusive coupling, with different in-

tergrid operators. It is also shown that the stress intensity

factor estimation can be obtained directly by the addition

of an optional third analytical grid. A static straight crack

synthetic example (sec.3) and two curvilinear crack propa-

gation realistic simulations (sec. 4 and 5) are proposed to

illustrate the accuracy of the method and the interest of non-

intrusiveness in the context of the correlation between nu-

merical simulation and experimentation.

2 Localized multigrid and non-intrusive coupling

In this section, the localised multigrid algorithm is shown to

be a good candidate for local/global non-intrusive coupling.

In order to make comparisons, this section is limited to the

analysis of the coupling of two linear elastic FEM models.

2.1 Localized multigrid solver (LMS)

Multigrid methods [7,28] are based on the fact that for many

iterative solvers (Jacobi, Gauss-Seidel, Krylov solvers...),

the short-varying part of the solution is captured after very

few iterations, whereas it usually takes much more itera-

tions to get the large variations accurately. This is the so-

called error smoothing property. To accelerate this second

convergence phase, multigrid algorithms propose to trans-

fer the residual on a hierarchy of coarser grids which are

more likely to compute the low frequency part of the so-

lution. This process is completed until the mesh is coarse

enough for a direct solver to be used. Then, the solution on

the finer grids are successively improved with the smooth

corrections (prolongation operation), in order to accelerate

the convergence of the iterative algorithm on finer grids.

This scheme, called the multigrid cycle, is completed once

per iteration until convergence. A prolongation operator P

(resp. restriction R) is introduced to transfer the displace-

ment (resp. residual) from the coarse mesh to the fine (resp.

fine to coarse). Their construction is particularly trivial when

using nested meshes [28].

For the sake of simplicity, let us consider a two-level Lo-

calized MultiGrid (LMG) algorithm defined on the grids of

Figure 1, made of one global coarse mesh MG and one lo-

MG

MG|L

ΓL

ML

Fig. 1 A 2-grid hierarchy: Global coarse mesh MG and local fine mesh

ML

calized fine mesh ML. The region overlapped by the local
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model in the global mesh is denoted MG|L. The intersec-

tion between its boundary and MG reduces to an interface

ΓL. The quantity �G (resp. �L) is the discretization of � on

Mesh MG (resp. ML). The quantity �G|L defines the dis-

cretization of � on MG|L and padded with zeros, such that

�G and �G|L have the same size.

One multigrid iteration is made of three sub-stages:

1. The global coarse problem which reads:

KGUk+1
G = FG −PT KLUk

L +KG|LUk
G (1)

where K stands for the stiffness matrix, U the dof vector

and F the generalized force vector. The right-hand-side

of this problem involves the loading FG and two addi-

tional terms whose role is to inactivate the coarse stiff-

ness KG|LUk
G and replace it by the restriction of the fine

KLUk
L. This global problem is solved exactly.

2. The local solution Uk
L is improved by the prolongation

of the coarse correction:

Uk
L = Uk

L +P(Uk+1
G −Uk

G) (2)

3. This corrected solution is then smoothed by few itera-

tions (usually less than five) of the following fine local

problem:

KLUk+1
L = FL with Uk+1

L |ΓL
= P Uk+1

G |ΓL
(3)

with the coarse displacement UG prescribed on its

boundary ΓL.

These 3 steps are performed until convergence. For more

details, the reader is referred to [28,35]. This algorithm

yields the solution of the global coarse model in which its

local part MG|L is replaced by the fine local model ML.

2.2 Comparison with non-intrusive coupling

Let us imagine that the coarse grid stands for a global model

and the finer grid for a local model. Thus, one can notice that

this LMS can be used for non-intrusive coupling since the

different global solutions (1) are performed with the same

operator KG. Indeed, the global problem only involves a

special right hand side, which can be seen, for a commer-

cial code, as an additional nodal loading localized on MG|L
as performed in [12]. The two sub-stages (2) and (3) can be

achieved using another code. Note that at this stage, the lo-

calized multigrid algorithm can be seen as a non-intrusive

refinement method.

In order to compare the algorithms proposed by [12] and

the LMS one, let us consider a case for which both local

and global models are assumed linear elastic, with the same

interpolations (so that we can no longer speak of fine and

coarse meshes, but of local and global ones). The only dif-

ference concerning the LMS algorithm is that the prolonga-

tion and restriction operators are identity matrices. In this

case, both algorithms are very similar, but some differences

remain:

1. The supplementary loading added to the right hand side

of the global problem is defined at the degrees of free-

dom located at the interface only in [12], whereas it may

be defined over the whole overlapped region using the

localized multigrid algorithm.

2. The local problem is solved exactly in [12] (at least in

its basic version), whereas only few smoothing iterations

are performed in the case of a multigrid solver.

Both differences come from the nature of the underlying al-

gorithm, domain decomposition in [12] and multigrid in the

second.

Finally, the LMS can be seen as an alternative to the

work of Gendre et al. [12] for non-intrusive coupling. It has

the advantage to be ready for nested models, as multigrid

solvers generally involve more than two grids. In the follow-

ing section we propose to investigate the use of the localized

multigrid solver DEK-FEM [29] to perform non-intrusive

simulation of mixed-mode crack propagation.

3 Non-intrusive coupling based on X-FEM

Up to now, the models used on both domains are based on

classical FEM.

In this section, the LMS is used for the non-intrusive

coupling between a FEM model holding over MG global

domain with a X-FEM model holding over ML local do-

main. This aims at solving large-scale problems by splitting

the scales with appropriate models and refinements.

Let us consider a problem with a small propagating

crack. A FEM-based model is employed over the global do-

main, which plays the role of the coarser grid (see Fig. 2).

The coarse grid involves only standard finite elements. An

(a) (b)

Global model (standard solver) Local model (X-FEM)

Fig. 2 X-FEM Multigrid-based non-intrusive coupling technique. The

iterative scheme involves global resolution with a standard solver

(blue) and few smoothing iterations on the local X-FEM model (or-

ange)
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X-FEM based model is then introduced over the localized

domain, the finer grid, to describe the crack. It is obviously

located around the crack and its shape depends on the crack

geometry as we will see in Section 3.3. Like any other local-

ized multigrid algorithm, the finer grids replace the coarser

ones in the model such that, after convergence, the multi-

scale solution at a point x is defined by the displacement

fields associated with the finest grid existing at that point x.

Like [12], it is more a model substitution rather than a local

model enrichment [16].

Remark. In [35], it is shown that if one wants to min-

imize the number of multigrid iterations, the grids whose

elements are larger than the size of the crack should use

standard FEM only. The choice made here to enrich the

local grid, but not the global one, is driven by the non-

intrusiveness condition and may therefore not be optimal in

that sense.

The prolongation and restriction operators are described

in section 3.1.

3.1 Restriction and prolongation operators

The multigrid iterations used to perform the X-FEM multi-

grid algorithm are the same as the ones presented in section

2. An iteration is divided into three sub-stages

1. (1) a global standard FE based problem,

2. (2) one update of the local solution,

3. (3) and one local X-FEM based problem.

The only difference introduced by the X-FEM use lies in the

expression of the restriction and prolongation operators. The

collocation method presented in details in [36,35] is here

followed. Some of the main aspects are recalled in this sec-

tion.

The prolongation operator transfers nodal displacements

from the coarse mesh MG to the fine grid ML. If the latter

are nested and if standard FE are used on both meshes, then

an exact transfer is obtained thanks to:

uL
n = ∑uG

i NG
i (xn) (4)

where xL
n is the position of the node associated with the de-

gree of freedom uL
n in the fine (or local) mesh. NG

i denotes

the coarse (or global) shape function and uG
i the associated

dof.

According to X-FEM, the displacement interpolation

reads [27]:

uL(x) = ∑
i∈N

uL
i NL

i (x)+ ∑
i∈Nh

aL
i NL

i (x)H(x)

+ ∑
i∈Ns

4

∑
j=1

bL
i jN

L
i (x)Fj(x) (5)

where N, Nh and Ns define the whole set of nodes, the set

of nodes with heaviside enrichment H and the set of nodes

with singular enrichment functions Fj, respectively. uL
i , aL

i

and bL
i j denote the regular degrees of freedom and those as-

sociated with heaviside and singular enrichments functions,

respectively.

Since M G is based on FEM and ML on X-FEM, it is

not always possible to define an exact collocation transfer

everywhere. In this case, relation (4) becomes:

uL
n +aL

i H(xn)+
4

∑
j=1

bL
i jFj(xn) = ∑uG

i NG
i (xn) (6)

In this situation, and more generally, when at least one grid

supports enrichments, the empirical method proposed in

[36] is followed. It consists in performing a separate transfer

of the degrees of freedom. For instance, if a node is enriched

on the local model and not in the global one, the correspond-

ing degrees of freedom are set to zero. In [36], it is shown

that the transfert errors, as compared to a mortar tranfer op-

erator, are small and localized in small regions close to en-

richments. The error introduced has then a high frequency

content which is corrected after few smoothing iterations.

This approximate collocation method is used is the sequel

as it is more convenient and very less time consuming than

the Mortar method and it provides substantially the same re-

sults [35].

In this section, we considered the coupling of a global

FEM model with a local model based on standard X-FEM.

In fact, any enhanced X-FEM models (for instance with con-

tact of the lips [33]) can be coupled to a global FEM model

with the very same technique. In the next section, it is shown

that an X-FEM variant [30], that include direct SIF estima-

tion, can be used by simply adding a special grid around the

tip.

3.2 Direct estimation of SIFs

Most propagation laws are based on stress intensity factors

(SIFs). Unfortunately, classical X-FEM is not able to pro-

vide directly reliable estimates of SIFs. The latter usually

require post-processing techniques (least square, energy re-

lated techniques... ). In [37] an alternative tip enrichment

technique was proposed to provide directly accurate esti-

mates of the stress intensity factors and higher order terms.

In this section, this technique is used in a non-intrusive way,

based on the algorithm of [29], by the addition of a third grid

localized at the crack tip.

The method consists in desactivating the regular shape

functions and replacing them by an analytical reduced basis

taken from the linear elastic fracture mechanics, known as

the Williams’ expansion.
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Let us consider a linear elastic isotropic 2D domain with

a semi-infinite straigh crack where r and θ define the lo-

cal co-ordinates at the crack tip. Then the displacement field

u(r,θ) can be written as the following double series [40]:

u(r,θ) = ∑
i=I,II

∞

∑
n=0

an
i Φn

i (r,θ) (7)

where an
i are the coefficients associated with the crack tip

asymptotic fields Φn
i whose expression reads:

Φn
I (r,θ) = rn/2

∣

∣

∣

∣

∣

(

κ + n
2
+(−1)n

)

cos nθ
2
− n

2
cos

(n−4)θ
2

(

κ − n
2
− (−1)n

)

sin nθ
2
+ n

2
sin

(n−4)θ
2

(8)

Φn
II(r,θ) = rn/2

∣

∣

∣

∣

∣

(

−κ − n
2
+(−1)n

)

sin nθ
2
+ n

2
sin

(n−4)θ
2

(

κ − n
2
+(−1)n

)

cos nθ
2
+ n

2
cos

(n−4)θ
2

(9)

in which the Kolossov constant κ is equal to κ = 3− 4ν

in plane strain and κ = ((3 − ν)/(1 + ν)) in plane stress

condition. ν denotes the Poisson’s ratio.

These asymptotic modes have some remarkable proper-

ties. On the one hand, coefficients a0
I , a0

II and a2
II are the rigid

body modes and correspond respectively to the translation

along the crack direction, translation in the orthogonal di-

rection and the rotation with respect to the crack tip. On the

other hand, a2
I is linked to the T -stress component in mode

I. Last, the first order coefficients (n = 1) a1
I and a1

II are pro-

portional to the stress intensity factors (SIF), such that:

a1
I =

KI

2µ
√

2π
and a1

II =
KII

2µ
√

2π
(10)

where µ is the second Lamé’s coefficient.

This interpolation is used on a little patch correspond-

ing to a small set of elements in the near-tip region denotes

MW . It is seen as a second local/global relationship between

the local model ML and the patch MW . Thus, the notations

�W , �L|W of a quantity � and ΓW are defined analogously.

As mentionned before, the idea is to remove standard finite

elements in this zone and replace them by a Williams’ ex-

pansion. More precisely, the infinite sum is obviously not re-

quired, the expansion is truncated to m terms. In this paper,

orders 0 ≤ n ≤ m = 7 are used. The effect of this truncation

on the accuracy of SIF extraction has been adressed in [37,

29]. The remaining X-FEM model and the patch are coupled

thanks to Arlequin method [3] over an overlapping area [37]

or integral matching on the interface [29]. In [29], it was

also shown that it is possible to couple, in a non-intrusive

way, this patch to a classical X-FEM model without mod-

ifying the X-FEM model. The coupling algorithm is based

on coupling algorithm similar to [12,25]. It is formulated as

follows [29]:

After the initialization phase U0
L = 0, U0

W = 0, Λ0 =

0,k = 0, one iteration of the Algorithm 2 is made of the two

following steps:

1. X-FEM model on the whole local domain ML:

KLUk+1
L = FL −CT

LΛ
k +KL|W Uk

L (11)

2. Analytical reduced order model on the patch MW :

[

KW −CT
W

−CW 0

][

Uk+1
W

Λ
k+1

]

=

[

0

CLUk+1
L

]

(12)

3. convergence indicator: η = ‖Uk+1
W −Uk

W‖/‖Uk+1
W ‖

where CL and CW are Mortar operators and Λ is the La-

grange multiplier used to apply the boundary conditions on

the patch MW (interpolated as described in [29]).

Here, the problem of step 2 (on the analytical patch) is

solved exactly, since it is only a 2nW × 2nW linear system

where nW is the size of Williams’ basis (usually less than

15). This algorithm was proved to converge to the exact

monoscale (or intrusive) solution [29].

In [29], this algorithm was coupled to the localized

multigrid-X-FEM solver [35] thanks to a W -multigrid cycle.

Following this, the multigrid-based non-intrusive coupling

technique for crack propagation simulation can be seen as

the association of three models, in order to get direct SIF es-

timation (Fig. 3). This is typically the case of a nested model.

(a) (b)

Global model Local model (DEK-FEM)

Fig. 3 DEK-FEM-based non-intrusive coupling technique for curvi-

linear crack growth simulation. The iterative scheme made of global

resolution with a standard solver (blue) and few smoothing iterations

on the local DEK-FEM model (orange). The local model involves an

analytical patch at the crack top (black)

Remark. In this particular case, this association of the

two algorithms can be made easier, by noticing that equation

(12) can be reformulated as

Λ
k+1 =−C−T

W KW C−1
W CLUk+1

L =−LW Uk+1
L (13)

were LW is a kind of Schur complement which yields the

reaction force distribution Λ
k+1 of MW to a prescribed

displacement Uk+1
L on ΓW . It is computationally affordable

since it corresponds to the inversion of a nW × nW matrix.
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Next it can be introduced in the coarse problem (11), which

reads:

(

KL −KL|W +CT
L LW

)

Uk+1
L = FL (14)

The three-grid W -cycle can then be replaced by a two-grid

standard V -cycle, since both X-FEM and analytical models

are solved concurrently by few iterations of the smoothing

algorithm on equation (14) within the local model. At the

end of the multigrid iterations, one has to compute the dis-

placement in the patch UW with equation (12). For the user,

this technique avoids the choice of the parameter of the W -

cycle (number of sub-cycles on the local patch per multi-

grid cycle), while ensuring optimal convergence of the algo-

rithm. According to our numerical tests, the computational

time of one multigrid cycle is significantly reduced.

3.3 Adaptivity of the local model during propagation

The domain over which the local model is applied, i.e where

the grid has to be refined, must surround the crack. In this

section we propose to use the level-set representation to

adapt the shape of the local model domain versus the crack

geometry during propagation.

Two level-sets are used for the implicit description of the

crack , following [17]. The first one denoted φ (called crack

level set) is used to represent the discontinuity. The second

denoted ψ (called front level set) is used to define the posi-

tion of the crack tip (Fig. 4). Both level sets are discretized

(a) (b) (c) iso-zeros

Fig. 4 Crack representation by level sets on a regular grid: (a) crack φ ,

(b) front ψ and (c) iso-zero of φ (blue and black) and ψ (red) defining

the crack geometry (black)

using finite differences on an auxilary regular grid following

[34], rather than on the finite element meshes for the follow-

ing reasons: (a) it is possible to use a localized grid around

the crack since there is no need to define the level set over the

entire domain. (b) one can use a structured grid on which ex-

isting optimized solvers (like the projection methods of [14]

used herein) can be used to perform propagation, (c) since

more than one mesh is used in the same area, one would face

up to different level sets defined on different grids because

of numerical errors.

φ
=
−δ

φ
=

0

φ
=

δ

ψ =
δ

ψ =
0

cr
ac

k

tip→

Fig. 5 Level sets based definition of the shape of local model (gray).

The local model corresponds to values of φ ranging from φ = −δ to

φ = δ (green lines) and values of ψ lower than δ (pink line).

The local domain is defined such as few elements form

a layer on each side of the crack. Again, level sets is a very

convenient tool to play that role. A geometric parameter δ is

defined as half the width of the local domain. This parameter

depends on the element size near the crack. In practice it is

choosen as twice the characteristic element size. Finally, the

local domain is defined by the set of elements whose center

xc satisfies −δ ≤ φ(xc)≤ δ and ψ(xc)≤ δ , as shown figure

5. Let us notice that even when the enrichments and shape

of the local model are updated, the operator and solver of

the global model remain the same.

4 A first static crack analysis: edge crack plate under

uniaxial stress

In this section we first consider a static mode I straight crack

problem in order to study the convergence of the proposed

non-intrusive method. We analyse an edge-cracked plate, as

shown in Figure 6(a), subjected to a uniform tensile stress

σ = 10MPa. The plate has a length L = 17mm and width

w = 7mm. A rather small crack size a = 1mm is considered.

The problem has thus two different scales. The structure is

considered to be in plane strain conditions, with a Poisson’s

ratio equal to ν = 0.3 and Young’s modulus E = 200GPa.

The initial global model has a regular mesh made of 25×
59 bilinear quadrangular elements, with a Gauss quadrature

following [29]. The shape of domain for the local model is

parametrized using the geometric parameter δ = 2h (h being

the element size). The global fem mesh and the local model

are respectively plotted in Figures 6(b) and 6(c). For such a

problem, the value of KI can be accurately approximated by

the one that holds for an infinite plate, corrected by a factor
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(a) (b)

(c)

σ

σ

L

w

y

x

a

Fig. 6 Edge crack plate under uniaxial stress: (a) geometry and load-

ing; (b) global FEM model (the local region in gray) and (c) local

model including and X-FEM grid (crack in red) and the analytical

patch (black)

depending on the ratio a
w

[8]:

K
re f
I = σ

√
aπ

[

1.12−0.231
a

w
+10.55

a

w

2

−21.72
a

w

3
+30.39

a

w

4
]

= 0.70154 MPa
√

m (15)

K
re f
II = 0 MPa

√
m (16)

First the global FEM problem is solved without ac-

counting for the crack, using the global solver alone. The

corresponding solution is independent from the x-axis as

shown in Figure 7(a). Next, the problem is solved using the

proposed local/global non-intrusive coupling. The resulting

Stress Intensity Factors (SIFs) are accurately estimated, with

a relative error of 0.0689% on KI with respect to K
re f
I ref-

erence values. The associated global and local displacement

fields are respectively plotted in figure 7(b) and 7(c). The so-

lution resulting from this local/global strategy corresponds

to the union of the local model and the global model exclud-

ing the local part of the global model, as show Figure 7(d).

One can notice that even if the crack has mainly a local ef-

fect, it still causes a stress redistribution at the scale of the

global model, which can not be taken into account with one-

way zoom approaches [11]. With such a local/global cou-

pling, the global solution is exact far from the crack. Fur-

thermore, it is achieved without modifying the mesh nor the

solver of the global model. Such methods may be of great

interest for engineers, as it yields a quasi exact solution with-

out resorting to a specialized solver throughout the model.

The convergence is now analysed thanks to two indica-

tors. First a stagnation relative error on both models, which

only consists in a measure of the distance between the so-

lutions of two consecutive iterations. This basic stagnation

Fig. 7 Vertical displacement (in m) of: the global model without (a)

and with (b) the coupling with the local model; the local model (c) and

the local/global solution which corresponds to the substitution of the

local model in the global one (d). (warp ampl. factor: 103)

indicator was shown to be a good error indicator in a previ-

ous study [29]. Next, as mode I and mode II stress intensity

factor reference values exist, an exact error measure can be

defined as:

e2
SIF =

‖s− sre f ‖2

‖sre f ‖2
with s=

[

KI

KII

]

and sre f =

[

K
re f
I

K
re f
II

]

These indicators are plotted as a function of the itera-

tion number in Figure 8. The exact error reaches an asymp-

totic value, which corresponds to the fact that the exact er-

ror includes the finite element approximation error, the er-

ror caused by the truncation in the William’s expansion and

by the size of the analytical patch (see [37,29] for a deeper

analysis). One can notice that after 20 iterations, the solution

has almost converged. Let us recall that an iteration of the

multigrid solver consists in one full resolution on the global

model with the standard solver and a few smoothing itera-
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Fig. 8 Convergence of the non-intrusive local/global coupling.

tions (5 or 6) of an iterative solver (here Conjugate Gradi-

ent) on the local model. Obviously the number of iterations

to convergence strongly depends on the problem, and more

precisely on the separability of the scales of the global and

local models. The more the scales are distinct, the less iter-

ations it takes to converge. Finally, the stagnation indicators

on both models (which is definitely not resource demanding)

still remain reliable convergence indicators in the context of

a multigrid solver. In the sequel, a stopping criteria based of

these stagnation indicators is used.

5 Curvilinear crack propagation simulation: Ingraffea

and Grigoriu’s experiment

In this section, the ability of the proposed non-intrusive

coupling technique to simulate the propagation of a curved

mixed mode crack is studied. A non intrusive simulation of

Ingraffea and Grigoriu tests [22] is performed for this pur-

pose. A Polymethyl methacrylate (PMMA) plate with an

initial notch is considered under three point bending test.

The hypothesis of plane stress is assumed. The crack path is

modified by the presence of open holes see Fig.9.

a

b
10

φ5

100
P

140

200

8020

20

y

x

12.5

Fig. 9 Definition of the geometry, loading and initial notch

It additionally depends on the location and size of the

initial notch. Therefore two different notch geometries are

considered: case (1) a = 10, b = 15 and case (2) a = 20,

b = 10. A brittle fracture criterion is used for propagation.

The crack grows of an increment set to da = 1 per iteration.

The direction is determined by the maximum hoop stress

criterion, which reads:

θC = 2 tan−1





1

4





KI

KII

− sign(KII)

√

(

KI

KII

)2

+8









For the simulation, an unstructured mesh of three-node, lin-

ear triangular elements is considered for the global FEM

model. Figure 10 presents the crack path computed using the

proposed non-intrusive method (in red) as compared to the

experimental observations provided by [22] (in black). One

Fig. 10 Comparison of the simulated crack path with the experimental

observations: case 1 (left) and case 2 (right)

can see that the crack path is very accurately predicted, even

with a rather coarse unstructured initial mesh. One must

mention that, in Case 1, the crack does not hit the second

hole as it seems to be the case experimentally. In practice,

the second hole is avoided by the crack in most simulations

that the authors found in the wide literature studying this

classical benchmark [39,19,20,14].

Remark. Because of the holes, the crack path has a com-

plex non rectilinear geometry, especially in case 1. In the

local model, an arbitrary geometry of the crack path is eas-

ily handled by X-FEM. However, the fields used in the an-

alytical patch are those holding for a small straight segment

located at the near-tip of the crack (see (8) and (9)) In the ex-

amples here, it is assumed that the crack path in the region

of the patch is chosen to be the secant line joining the crack

tip to the intersection of the crack path with the boundary of

the patch. If the radius of curvature of the crack could not

be neglected within the analytical patch, two possibilities

exist that can take into account the curvature of the crack.
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The first one consists in computing and adding a correction

to the Williams’ expansion, so that it is correct for curved

cracks, as described in [38]. Another way to better describe

curvilinear crack, is to refine the mesh. Here, the method is

based on multigrid solver. As it was shown in [29], one can

consider the size of the analytical patch as small as neces-

sary, without remeshing, and without reducing the accuracy

of the SIF estimation. Indeed, one has just to build additional

finer grids until the first hypothesis (straight crack) is law-

fulacceptable inside the analytical patch. Such an adaptive

refinement approach remains to be developed, and needs a

deeper analysis. Finally, one can notice that the same limi-

tation stands for standard X-FEM simulations, since tip en-

richments functions and interaction integral SIF extraction

are based on the same assumptions.

The solution at the 31th propagation step is illustrated in

Figure 11. The horizontal displacement of the global FEM

(a)

(c)

(b)

Fig. 11 Graphical representation of the converged solutions at the 31th

propagation step: (a) the solution of the global FEM model; (b) the

local model based on DEK-FEM, with the analytical patch (in black)

for direct estimation of SIFs and (c) the solution resulting from the

substitution of solution of the local model in the initial mesh.

model is plotted in Figure 11(a). The local/global coupling

makes the global model behave as if it was able to account

for the crack. At least outside the local zone, in which the

valid solution is that of the local model 11(c), as depicts Fig-

ure 11(c).

The shape definition based on levelsets and described in

section 3.3 is used to automatically uptdate the geometry of

the domain over which the local model applies during prop-

agation. The characteristic element size of the global mesh

being h = 4.7mm, the local model geometric parameter δ

is thus set to δ = 2h = 9.4mm. The shape and mesh of the

local model and its analytical domain are plotted in Figure

12 for differents propagation steps (1, 7, 13, 19, 25 and 31).

According to this technique, the question of the definition

1st step 7th step 13th step

19th step 25th step 31th step

Fig. 12 Levelset-based adaptivity of the grid geometries during propa-

gation: in black, the shape of the analytical patch for direct SIF extrac-

tion.

of geometries of global and local domains, which remains

an open question for other types of local phenomena, is for

fracture problem easily solved.

6 Experimental/numerical study of an open hole plate

in compression.

In this section, we show that the non-intrusiveness condi-

tion is not only an advantage for the code development or

code coupling. It is also an advantage that improves, for

instance, the link between numerical simulations and ex-

perimental observations. An open hole PMMA plate under

uniaxial compression is studied to illustrate this point, see

Fig.13. This specimen was initially used for the analysis of

dynamic mixed mode crack propagation in [18]

Experimental results for this plate have been obtained

at LaMCoS (INSA de Lyon). The quasi-static propagation

from a notch in the open hole is recorded by a digital camera.
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40 70

140

π/6

y

x

20

20

Fig. 13 Definition of the geometry and loading of the studied test case

(in mm).

The surface of the plate is covered by a Black/White paint

pattern, in order to measure the experimental displacement

field by digital image correlation (DIC). A finite element-

based DIC is performed as described in [5], with a global bi-

linear quadrilateral mesh presented in Figure 14. In this fig-

Fig. 14 x-component of the experimental displacement field (in m)

measured with a FE-DIC method.

ure the experimental displacement field is represented. Only

a basic FE-DIC is performed, which explains the smoothed

discontinuity of the displacement.

In a second step, the non intrusive coupling is used to

simulate this problem, with the same mesh. A brittle frac-

ture criterion is used again. A crack growth increment of

da = 1mm and the aforementioned maximum hoop stress

criterion are considered. Using the same mesh for DIC and

simulation has the advantage that one can easily prescribe

the experimental boundary conditions for the simulation, ex-

pressed here directly using the measured experimental dis-

placement along the boundaries. This is further performed

directly without interpolation and without modifying the de-

grees of freedom connectivity.

Figure 15 presents the local/global solution (including

the global, the local and the full solution) after 15 propa-

gation steps. Qualitatively, one can notice that the simulated

displacement on the global model is very similar to the mea-

sured one. One can also compare the crack paths, which are

well predicted by the local/global simulation with respect to

the experimental images, see Fig. 16.

Fig. 15 Graphical representation of the solution algorithm: (a) non-

intrusive solves on the initial mesh; (b) the local model based on DEK-

FEM and (c) the solution resulting from the substitution of solution of

the local model in the initial mesh.

Fig. 16 Superposition of the crack path on the deformed digital image.

But here, one can go a step further, since the meshes are

identical, with the same connectivity. It is therefore possi-

ble to directly compare simulated and measured displace-

ment maps to quantify the accuracy of the simulation with

respect to experiments, either by a global error measure

e(Ug,Umeas) in the L2 norm, and also by a relative discrep-

ancy map d(Ug,Umeas)
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e(Ug,Umeas) =
‖UG −Umeas‖

‖Umeas‖
(17)

d(Ug,Umeas) =
|UG −Umeas|
max(|Umeas|)

(18)

These indicators are only computed over the local region of

the global model. Indeed, after convergence, we know that

the global solution under the local model is not physical. It

is therefore logical that the high levels of error in the lo-

cal region (top). If the elements that are in the local region,

are not considered (bottom), the relative error quantifies the

distance between simulated and experimental displacement

fields. For the same step, the global error measure e is equal

Fig. 17 Direct numerical/experimental displacement field comparison:

relative discrepancy map d on the x-component of the displacement

with (top) and without (bottom) considering the local region.

to 0.0342. One can easily imagine extensions of such a work

to identification.

Non-intrusive techniques not only simplify coding con-

cerns, but it also provides a lot of flexibility for the user. As

an example, we showed it may facilitate the dialogue be-

tween experimental and numerical analysis.

7 Conclusion

In this paper a local/global non-intrusive coupling method

was proposed for the analysis a local cracking and its prop-

agation using a global linear elastic model not intended for

that purpose. The proposed algorithm is based on a multi-

grid and extended finite element method proposed recently

in [35,29]. It is said non-intrusive since neither the connec-

tivity, nor the solver of the global model are modifyed dur-

ing propagation. From the viewpoint of the global model,

the contribution of the local model (and thus the crack) only

consists in additional nodal efforts which make it compati-

ble with a large number of softwares.

Although the method can be applied to a standard X-

FEM method, it is here applied to a variant which has the

advantage to yield directly the stress intensity factors and

higher order terms [29]. Therefore, the model involves at

least three nested models: the global model, the local model

and the analytical patch based on a truncated William’s ex-

pansion. It was shown, in this paper, that the multigrid W -

cycle proposed in [29] to combine these 3 models, can be

replaced by a two-grid V -cycle which makes one parame-

ter less. An automatic adaptive shape of the local domain

is proposed, based on the level set based crack description.

The non-intrusivness is preserved even when the crack prop-

agates and when the shape of doamin of the local model

evolves

As a short term perspective, it could be interesting to

used such a method to truly couple a real commercial FEA

software and a reasearch piece of code, as it was done in

[12]. As mentionned before, another extension of this work

would be to develop an adaptativity of the grid hierarchy,

following [6].

The extension of this word to 3D crack growth with a

standard X-FEM does not presents theoretical difficulties, as

X-FEM multigrid as already be extended to 3D [35]. Con-

cerning the sif extraction, it is less straightforward. Indeed,

the definition of the williams’ modes are more complicated.

They need to be defined in each plane orthogonal to the

crack front, and based on a 1D finite element interpolation

(mesh + shape functions) of the generalized SIF along the

crack front, which may require further developments.

Finally, since the global displacement does not model

the evolving discontinuity, the proposed algorithm could

also be used to locally enhance a global reduced order model

[23].
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