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Abstract

It was shown in [1], cited in the sequel as DRHM, that upon a correct
use of the respective statistical data, the celebrated Bell inequalities
cannot be violated by quantum systems. This paper presents in more
detail the surprisingly elementary, even if rather subtle related basic
argument in DRHM, and does so together with a few comments which,
hopefully, may further facilitate its wider understanding.

1. Introduction

The paper [1], cited in the sequel as DRHM, presents an argument
which shows that the violation of the celebrated Bell inequalities in
quantum mechanics is due only to a rather elementary, even if some-
what subtle error made in the way the statistical data are handled. In
this regard, it is particularly useful and timely for a proper pursuit,
and thus understanding, of quantum mechanics to become aware of
the following :

• There is a growing literature, as also pointed out in DRHM,
which presents dissent with the celebrated result of Bell, [2].
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• In quantum mechanics, quite unlike in other branches of physics,
there are well established rather important facts which hap-
pen not to be widely enough known, and consequently, opinions
denying them still flourish in many quarters. One such example
is the urban legend that there cannot be hidden variables, since
von Neumann proved that back in the early 1930s. And yet in
1935, Grete Hermann discovered an error in it which invalidates
that proof, [3]. Another example is the 1995 rather well known
and often cited book of Asher Peres, [5], which clearly indicates
on the back cover that “It makes no use of the uncertainty prin-
ciple or other ill-defined notions.” And till today, a much limited
awareness of that fact can be experienced in the quantum com-
munity, not to mention the lack of any more serious study which
would look into the relationship between the uncertainty prin-
ciple and quantum mechanics. On the contrary, that principle
is still widely seen as being foundational, and countless conse-
quences of it are deduced inside and outside of the realms of
the quanta. And if another example may be needed, one can
mention the 1935 statement of von Neumann, [6], that “I would
like to make a confession which may seem immoral: I do not
believe in Hilbert space anymore.” Nevertheless, the Quantum
Mechanics 101 texts still introduce and build the whole theory
on Hilbert spaces.

In view of such a state of affairs, it may be appropriate to approach
the result in DRHM in a way less usual nowadays when, due to in-
formation overload, one simply and instantly tends to disregard many
things, and do so being further impelled by what one likes to consider
ones very good and highly reliable “physical intuition”.

Last, and not least, the result in DRHM is in fact of extreme impor-
tance. Indeed, the alleged violation of the Bell inequalities by quantum
systems attained from the start its celebrity status, and consequently
shook up considerably the realms of quantum foundations after four
decades of sole supremacy of the Copenhagen Interpretation, due to
what was seen as their obvious implications regarding such funda-
mental quantum related issues as locality, realism, and so on. In this
regard there were some who even saw the Bell inequalities as a first in
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the history of science and philosophy, when basic philosophical prin-
ciples could effectively be subjected to empirical verification.

But now, in view of DRHM, all such thinking has to fall away since
the Bell inequalities turn out to fail to be violated by quantum sys-
tems. It is in this sense, therefore, that the Bell inequalities can be
considered quite irrelevant.

2. Experimental Data Collection and Processing

We are, in physics, on various occasions interested in obtaining, and
then processing data from measurements. The first aspect one has to
take into account is how the data is collected, and the second one is
post-measurement analysis, that is, how this data is processed. These
two stages may interact and thus condition one another. Also, often
they seem so trivially obvious, and thus quite automatically satisfied
in our practice that - as it turns out in the case of the Bell inequali-
ties - not sufficient care is exhibited in each and every situation when
dealing with data.

In the situation relevant for the Bell inequalities, as dealt with in
DRHM and detailed here, the data from measurements and their sub-
sequent processing have several specific features which will, step by
step, be made apparent in the sequel.

First, we start with sets of individual data S each of which will always
only take one of two values. For convenience, these two values can
be chosen as 1 and −1. Thus for these individual data we have S ∈
{−1, 1}.
These data S are organized in n-tuples (S1, . . . , Sn), where n ≥ 1 can
in principle be any integer, although regarding the Bell inequalities
it will be sufficient to consider only n = 1, 2, 3, 4. Any individual
measurement we perform leads to such an n-tuple. The number of
such measurements can be given by any integer number M ≥ 1, thus
leading to the following organization of data

Y (n) = { (S1, α, . . . , Sn, α ) | α = 1, . . . ,M } (1)
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where we recall that Si, α = ±1.

It is sometime convenient to see each such Y (n) in (1) as the corre-
sponding M × n matrix

Y (n) =



S1, 1 · · · Sn, 1

S1, 2 · · · Sn, 2

...
S1,M · · · Sn,M


(2)

When different runs of measurements of type (1), (2) of the same ex-
periment are performed, subsequent runs can respectively be denoted
by

Ŷ (n) = { ( Ŝ1, α, . . . , Ŝn, α ) | α = 1, . . . ,M }

Ỹ (n) = { ( S̃1, α, . . . , S̃n, α) | α = 1, . . . ,M }

and so on.

Now, as a step in the post-measurement analysis, one may be interested
in subsets of a data set Y (n) = { (S1, α, . . . , Sn, α ) | α = 1, . . . ,M },
subsets corresponding only to m < n data Si, α in each n-tuple in
(S1, α, . . . , Sn, α ). Thus from the respective n-tuples one removes n−m
data Si, α.
One way to do that is to choose m < n columns 1 ≤ i1 < . . . < im ≤ n
from the matrix (2), and thus obtain the M ×m matrix

Γ
(n)
i1, i2,..., im

=



Si1, 1 · · · Sim, 1

Si1, 2 · · · Sim, 2

...
Si1,M · · · Sim,M


(3)

instead of Y (n) in the matrix (2).
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For instance, let us consider n = 3 and a corresponding Y (3) =
{ (S1, α, S2, α, S3, α ) | α = 1, . . . ,M }, according to (1), (2).

Let us now take m = 1, that is, we shall only select one single Si, α
which corresponds to one certain given column i ∈ {1, 2, 3}, from each
triple (S1, α, S2, α, S3, α ) in Y (3). According to (3), we denote then by

Γ
(3)
i the set of reduced data thus obtained, which is given by only one

of the three outcomes in each triple (S1, α, S2, α, S3, α ), namely, Si, α,
where α = 1, . . . ,M . It follows that the other two data Sj, α in each
triple, with j ∈ {1, 2, 3}, j 6= i, are removed in this specific example.
In this way

Γ
(3)
i = {Si, α | α = 1, . . . ,M }. (4)

Similarly, if i, j ∈ {1, 2, 3}, with i < j, then according to (3) we have

Γ
(3)
ij given by the set of pairs of data chosen out of the triples in Y (3),

as follows

Γ
(3)
ij = { (Si, α, Sj, α ) | α = 1, . . . ,M }. (5)

As it happens, however, related to the Bell inequalities, there is no
need to go beyond (4) and (5) in the above kind of pre-processing of
data.

As for the general situation in (1) - (3), in the particular case when

m = n, then clearly i1 = 1, . . . , in = n, and we simply have Γ
(n)
i1, ..., in

=

Y (n).

When on the other hand m < n in the general situation in (1) - (3),

then every given particular Γ
(n)
i1,...,im

can, of course, be seen as being

itself some specific Y (m).

3. A Crucially Important Fact in Processing Data

Let us illustrate the source of one of the possible errors made in the
processing of measurement data, namely, the particular error which
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has so far led to the wrong conclusion that quantum systems violate
the Bell inequalities. In general terms, this error in processing mea-
surement data is in the typically inadmissible relationship which turns
out to be assumed between the set

Γ
(n)
i1,...,im

, 1 ≤ i1 < . . . < im ≤ n (6)

with a given m < n, a set selected out from a given and well defined
Y (n), and on the other hand, a presumed to exist set

Y (m), Ŷ (m), Ỹ (m), . . . (7)

Of relevance for the Bell inequalities, it is crucially important to note
the particular case of the above inadmissible relationship in (6), (7),
namely, when n = 3 and m = 2, and one consequently deals with a
set of Γ

(3)
ij , 1 ≤ i < j ≤ 3, a set obtained according to (3) from a well

defined, given Y (3), and on the other hand with certain presumed to
exist Y (m), Ŷ (m), Ỹ (m).

In some more detail, suppose we are given an experiment and data are
collected so as to form the set of triplets Y (3). Suppose further that,
according to (3), we extract from Y (3) the three sets of pairs

Γ
(3)
12 , Γ

(3)
13 , Γ

(3)
23 (8)

Now, this step in (8) may at first, and without sufficient care, appear
to be equivalent to having collected three sets of pairs of data

Y (2), Ŷ (2), Ỹ (2) (9)

The rather elementary and simple error in such an assumption, how-
ever, is in the fact that, in general, the data in (8) came from one
single Y (3), that is, from M triplets of data

S1, α, S2, α, S3, α, 1 ≤ α ≤M

while on the other hand, the data in (9) may in general come from no
less than M sextuples of data, namely
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S1, α, S2, α, Ŝ1, α, Ŝ2, α, S̃1, α, S̃2, α, 1 ≤ α ≤M

thus the latter data may in general contain more information than the
former ones.

For the sake of clarity related to the above rather elementary and sim-
ple error in identifying (8) with (9), an error which for long has been
missed, let us for a moment elaborate on it in some further detail,
even if a more complicated notation is needed for that purpose.

Suppose given a certain system Ω. We perform M times on Ω the fol-
lowing procedure. Each time we make three measurements, and the
successive results we denote by

S3
1, α, S

3
2, α, S

3
3, α

where α = 1, . . . ,M . In this way we obtain the data, see (1), in
Y (3) = { (S3

1, α, S
3
2, α, S

3
3, α ) | α = 1, . . . ,M }.

Now independently of Ω, and according to (3), for each pair (i, j), with
1 ≤ i < j ≤ 3, we perform on the Y (3) obtained above the following
M selection procedures. From each triplet (S3

1, α, S
3
2, α, S

3
3, α ) we select

the pair

(S3
i, α, S

3
j, α )

Thus we obtain the three sets of pairs, see (8)

Γ
(3)
ij = { (S3

i, α, S
3
j, α ) | α = 1, . . . ,M }, 1 ≤ i < j ≤ 3 (10)

This means that we have, in general, three different sets of pairs.
However, in view of the way they have been obtained, they cannot
in general be completely independent, since the six columns in their
three M × 2 matrices which form them, see (3), come from only the
three columns of Y (3), see (2).

On the other hand, as far as (9) is concerned, the situation is as
follows. First, Y (2) is obtained from the system Ω, by performing
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M times two measurements, and the successive results we denote by
S2
1, α, S

2
2, α, where α = 1, . . . ,M . In this way, we obtain

Y (2) = {(S2
1, α, S

2
2, α) | α = 1, . . . ,M} (11)

So far, we only have one set of pairs, and thus it is necessary to
perform two further runs, similar to that which gave us Y (2). These
two additional runs we denote by

Ŷ (2) = {(Ŝ2
1, α, Ŝ

2
2, α) | α = 1, . . . ,M} (12)

Ỹ (2) = {(S̃2
1, α, S̃

2
2, α) | α = 1, . . . ,M} (13)

Clearly, (11) - (13) may in general contain more information about
the system Ω, than (10).

And as shown in DRHM, and seen also in the sequel, it is the error in
equating three pairs (10)) selected from one and the same set of triples,
with pairs selected from three different sets of pairs (11) - (13), which
leads to the wrong conclusion that quantum systems violate the Bell
inequalities.

4. Averages

The Bell inequalities, as well as their extensions considered in DRHM,
involve averages of data defined as follows. Suppose given Y (n) =
{(S1, α, . . . , Sn, α) | α = 1, . . . ,M}, then we consider the corresponding
average

F (n) = (
∑

1≤α≤M

(S1, α . . . Sn, α ) )/M (14)

while for m < n and 1 ≤ i1 < . . . < im ≤ n, we consider the average

F
(n)
i1, ..., im

= (
∑

1≤α≤M

(Si1, α . . . Sim, α ) )/M (15)
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5. The Boole Inequalities

It was shown in [7] by Boole that in every experiment in which one
collects a data set of triples Y (3) and then associates with them the
data sets of pairs Γ

(3)
12 ,Γ

(3)
13 and Γ

(3)
23 , the following inequalities will hold

|F (3)
ij ± F

(3)
ik | ≤ 1± F (3)

jk (16)

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2, ).

Of course, (16) comes from the very simple property of every triplet
(S1, S2, S3), with Si ∈ {−1, 1}, for 1 ≤ i ≤ 3, namely

|SiSj ± SiSk | ≤ 1± SjSk (17)

with (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2, ).

Fundamental Remark

The inequalities (17) are purely mathematical. In particular, their
proof depends in absolutely no way on anything else, except the math-
ematical properties of the set Z of positive and negative integers, set
seen as a linearly ordered ring, [9].

As for the inequalities (16), they are a direct mathematical conse-
quence of the inequalities (17), and thus again, their proof depends in
absolutely no way on anything else, except the mathematical proper-
ties of the set R of real numbers, set seen as a linearly ordered field, [9].

It is, therefore, bordering on the amusing tinted with the ridiculous,
when any sort of so called “physical” meaning or arguments are en-
forced upon these inequalities - be it regarding their proof, or their
connections with issues such as realism and locality in physics - and
are so enforced due to a mixture of lack of understanding of rather el-
ementary and quite obviously simple mathematics, to which is added
an irresistible tendency among physicists to use their “infallible phys-
ical intuition” in absolutely every realm possible ...
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In this regard, it is one of the major merits of DRHM to have pointed
out clearly and repeatedly, even if in terms less hard than above, the
essential and so far hardly known fact that the EBBI inequalities such
as (17) simply cannot be violated either by classical, or by quantum
physics. And they cannot be violated, precisely due to the fact that
they only depend on mathematics, and of course, logic.

As a consequence, since as seen later, the EBBI contain as particu-
lar cases the Bell inequalities, these inequalities cannot be violated by
classical or quantum physics.

Therefore, the Bell inequalities turn out to be irrelevant to physics,
be it classical or quantum, for that matter.

6. A Mathematical Comment

At first, it may look quite strange, if not rather incomprehensible,
that inequalities like those in (16) hold under such general conditions.
Added to that one may wonder how can one ever come up with them ?

However, as seen next, there is a certain rather simple heuristic argu-
ment which may point in their direction.

Let us, in this regard, start with the general setup in (1) - (3) which
can be written in the following equivalent form. Let Kn = {−1, 1}n
the set of vertices of the n-dimensional cube [−1, 1]n in Rn. Then
every Y (n) = { (S1, α, . . . , Sn, α ) | α = 1, . . . ,M} in (1) is in fact but
a vector valued mapping of the set {1, . . . ,M} into the set of vertices
Kn which is of course a subset of Rn, namely

{1, . . . ,M} 3 α 7−→ Vα = (S1, α, . . . , Sn, α ) ∈ Kn. (18)

Clearly, Kn has 2n elements, thus there are (2n)M different possible
Y (n).

Given now 1 ≤ m < n, there are Cn
m different possible choices 1 ≤

i1 < . . . < im ≤ n. And to each of them there corresponds a Γ
(n)
i1, ..., im

,
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each of them being a vector valued mapping of the set {1, . . . ,M} into
the set of vertices Km which this time is a subset of Rm, namely

{1, . . . ,M} 3 α 7−→ Wα, i1, ..., im = (Si1, α, . . . , Sim, α ) ∈ Km (19)

It follows that there are Cn
m(2m)M such different possible Γ

(n)
i1, ..., im

.

Now, the particularity of the vector valued mappings (18), (19) is
obvious when compared, for instance, with arbitrary mappings of
{1, . . . ,M} into Rn, respectively, into Rm.
Therefore, one can expect that these mappings may satisfy certain
properties, and do so individually, or in certain of their combinations,
or possibly, transformations.

Two questions, therefore, arise here : what relations they may satisfy,
and in which of their combinations, or possibly, transformations they
may satisfy them.

The simplest relations would, of course, be equalities. However, in
view of the fact that the mappings (18), (19) are arbitrary between
the respective domains and ranges, it is not likely that the specific
properties those mappings may be captured by equalities.
And then, inequalities are the natural immediately more general pos-
sible relations to consider.

As for the second question above, again, in view of the fact that the
mappings (18), (19) are arbitrary between the respective domains and
ranges, it is not likely that those mappings in themselves may be
involved in inequalities. Rather, one may expect that certain trans-
formations of those mappings could possibly do so. And then, one of
the simplest and most natural such transformations are various aver-
ages. In particular, the mappings (18) lead to the averages (14). And
then, as particular cases, the mappings (19) lead to the averages (15).

Thus the Boole inequalities may impress rather by the fact that they
give expression to the particularity of the mappings (18) and (19) in
the simplest nontrivial possible way : through inequalities of averages.
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7. EBBI : the Extended Boole Bell Inequalities

The inequalities in section 5 are not sufficient for the proper study of
the Bell inequalities, and for that purpose they have to be generalized
to inequalities involving non-negative functions of binary variables, as
is done next. This is how we are led in this section to what are called
the Extended Boole Bell Inequalities, or in short, EBBI.

Once again, and quite regrettably as far as many in the physics com-
munity are concerned, it cannot be overemphasized that the inequal-
ities in section 5, as much as those in the present section, are purely
mathematical, and as such, they have absolutely no need for any kind
of so called “physical” considerations in their proofs.

Therefore, let us repeat once more that it is one of the major merits of
DRHM to have pointed out so clearly the essential and so far hardly
known fact that the inequalities in section 5, as well as those in this
section, simply cannot be violated either by classical, or by quantum
physics. And they cannot be violated, precisely due to the fact that
they only depend on mathematics, and of course, logic.

In the next subsections 7.1.-7.4., we recall, according to DRHM, a
number of inequalities regarding non-negative real valued functions of
two, respectively, three binary variables. These inequalities are char-
acterized by necessary and sufficient conditions. In view of that it
becomes perfectly clear when those inequalities hold, and on the con-
trary, when they do not hold. Consequently, it becomes equally clear
when certain inequalities are true, or for that matter false, for three
pairs of data extracted from three data, see the Comments in subsec-
tion 7.4.

In this way, the customary error in claiming that the Bell inequalities
are violated in the quantum context is pointed out.

7.1. Inequalities with a Function of Two Binary Variables
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First we start with functions of two binary variables, and with real
values, namely

f (2) : K2 3 (S1, S2) 7−→ f (2)(S1, S2) ∈ R (20)

and note that each such function can be represented as

f (2)(S1, S2) = (E
(2)
0 + S1E

(2)
1 + S2E

(2)
2 + S1S2E

(2) )/4 (21)

for (S1, S2) ∈ K2, where

E
(2)
0 =

∑
S1=±1

∑
S2=±1

f (2)(S1, S2) (22)

E
(2)
1 =

∑
S1=±1

∑
S2=±1

S1 f
(2)(S1, S2) (23)

E
(2)
2 =

∑
S1=±1

∑
S2=±1

S2 f
(2)(S1, S2) (24)

E(2) =
∑
S1=±1

∑
S2=±1

S1 S2 f
(2)(S1, S2) (25)

Theorem 7.1.

Given any function f (2) : K2 3 (S1, S2) 7−→ f (2)(S1, S2) ∈ R, then

f (2) ≥ 0 (26)

if and only if

E
(2)
0 ≥ 0, |E(2)

1 ± E
(2)
2 | ≤ E

(2)
0 ± E(2) (27)

7.2. Inequalities with a Function of Three Binary Variables

Let us now consider functions of three binary variables, and with real
values, namely

f (3) : K3 3 (S1, S2, S3) 7−→ f (3)(S1, S2, S3) ∈ R (28)

then again, each such function can be represented as
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f (3)(S1, S2, S3) = (E
(3)
0 + S1E

(3)
1 + S2E

(3)
2 + S3E

(3)
3 +

+S1S2E
(2)
12 + S1S3E

(2)
13 + S2S3E

(2)
23 + (29)

+S1S2S3E
(3)
123 )/8

for (S1, S2, S3) ∈ K3, where

E
(3)
0 =

∑
S1=±1

∑
S2=±1

∑
S3=±1

f (3)(S1, S2, S3) (30)

E
(3)
i =

∑
S1=±1

∑
S2=±1

∑
S3=±1

Si f
(3)(S1, S2, S3) (31)

E
(3)
ij =

∑
S1=±1

∑
S2=±1

∑
S3=±1

Si Sj f
(3)(S1, S2, S3) (32)

E(3) =
∑
S1=±1

∑
S2=±1

∑
S3=±1

S1 S2 S3 f
(3)(S1, S2, S3) (33)

with i = 1, 2, 3 and (i, j) = (1, 2), (1, 3), (2, 3).

Theorem 7.2.

Given any function f (3) : K3 3 (S1, S2, S3) 7−→ f (3)(S1, S2, S3) ∈ R.
Then

f (3) ≥ 0 (34)

implies the inequalities

|E(3)
ij ± E

(3)
jk | ≤ E

(3)
0 ± E

(3)
jk (35)

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2).

Conversely, given any four real numbers E
(3)
0 , E

(3)
12 , E

(3)
13 , E

(3)
23 ∈ R, such

that the inequalities

|E(3)
ij | ≤ E

(3)
0 (36)

and
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|E(3)
ij ± E

(3)
jk | ≤ E

(3)
0 ± E

(3)
jk (37)

hold for (i, j) = (1, 2), (1, 3), (2, 3), then exists a function

f (3) : K3 3 (S1, S2, S3) 7−→ f (3)(S1, S2, S3) ∈ R (38)

for which

f (3) ≥ 0 (39)

and

E
(3)
0 =

∑
S1=±1

∑
S2=±1

∑
S3=±1

f (3)(S1, S2, S3) (40)

as well as

E
(3)
ij =

∑
S1=±1

∑
S2=±1

∑
S3=±1

Si Sj f
(3)(S1, S2, S3) (41)

with (i, j) = (1, 2), (1, 3), (2, 3).

7.3. Inequalities with Three Functions of Two Binary
Variables

Theorem 7.3.

Let

f (2) : K2 3 (S1, S2) 7−→ f (2)(S1, S2) ∈ R
f̂ (2) : K2 3 (S1, S2) 7−→ f̂ (2)(S1, S2) ∈ R (42)

f̃ (2) : K2 3 (S1, S2) 7−→ f̃ (2)(S1, S2) ∈ R

defined by, see (22), (25)

f (2)(S1, S2) = (E
(2)
0 + S1 S2E

(2) )/4

f̂ (2)(S1, S2) = ( Ê
(2)
0 + S1 S2 Ê

(2) )/4 (43)

f̃ (2)(S1, S2) = ( Ẽ
(2)
0 + S1 S2 Ẽ

(2) )/4
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If

f (2), f̂ (2), f̃ (2) ≥ 0 (44)

then the inequalities hold

|E(2) ± Ê(2) | ≤ 3E
(2)
0 − | Ẽ(2) |

|E(2) ± Ẽ(2) | ≤ 3E
(2)
0 − | Ê(2) | (45)

| Ẽ(2) ± Ê(2) | ≤ 3E
(2)
0 − |E(2) |

Theorem 7.4.

Let

f (2) : K2 3 (S1, S2) 7−→ f (2)(S1, S2) ∈ R
f̂ (2) : K2 3 (S1, S2) 7−→ f̂ (2)(S1, S2) ∈ R (46)

f̃ (2) : K2 3 (S1, S2) 7−→ f̃ (2)(S1, S2) ∈ R

defined by, see (22) - (25)

f (2)(S1, S2) = (E
(2)
0 + S1E

(2)
1 + S2E

(2)
2 + S1 S2E

(2) )/4

f̂ (2)(S1, S2) = ( Ê
(2)
0 + S1 Ê

(2)
1 + S2 Ê

(2)
2 + S1 S2 Ê

(2) )/4 (47)

f̃ (2)(S1, S2) = ( Ẽ
(2)
0 + S1 Ẽ

(2)
1 + S2 Ẽ

(2)
2 + S1 S2 Ẽ

(2) )/4

Then

I) There exists a function

f (3) : K3 3 (S1, S2, S3) 7−→ f (3)(S1, S2, S3) ∈ R (48)

such that
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f (2)(S1, S2) =
∑
S3=±1

f (3)(S1, S2, S3)

f̂ (2)(S1, S3) =
∑
S2=±1

f (3)(S1, S2, S3) (49)

f̃ (2)(S2, S3) =
∑
S1=±1

f (3)(S1, S2, S3)

if and only if

E
(2)
0 = Ê

(2)
0 = Ẽ

(2)
0 , E

(2)
1 = Ê

(2)
1 , E

(2)
2 = Ẽ

(2)
1 , Ê

(2)
2 = Ẽ

(2)
2 (50)

II) If in (47) we have

f (2), f̂ (2), f̃ (2) ≥ 0 (51)

and in addition, the relations, see (50)

E
(2)
0 = Ê

(2)
0 = Ẽ

(2)
0 , E

(2)
1 = Ê

(2)
1 , E

(2)
2 = Ẽ

(2)
1 , Ê

(2)
2 = Ẽ

(2)
2 (52)

together with the inequalities

|E(2) ± Ê(2) | ≤ E
(2)
0 ± Ẽ(2)

|E(2) ± Ẽ(2) | ≤ E
(2)
0 ± Ê(2) (53)

| Ẽ(2) ± Ê(2) | ≤ E
(2)
0 ± E(2)

hold, then there exists a function

f (3) : K3 3 (S1, S2, S3) 7−→ f (3)(S1, S2, S3) ∈ R (54)

such that

f (3) ≥ 0 (55)

and, see (49)
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f (2)(S1, S2) =
∑
S3=±1

f (3)(S1, S2, S3)

f̂ (2)(S1, S3) =
∑
S2=±1

f (3)(S1, S2, S3) (56)

f̃ (2)(S2, S3) =
∑
S1=±1

f (3)(S1, S2, S3)

III) If for the function

f (3) : K3 3 (S1, S2, S3) 7−→ f (3)(S1, S2, S3) ∈ R (57)

we have

f (3) ≥ 0 (58)

then the corresponding functions in (49) satisfy

f (2), f̂ (2), f̃ (2) ≥ 0 (59)

and in addition, we have the inequalities, see (53), (47)

|E(2) ± Ê(2) | ≤ E
(2)
0 ± Ẽ(2)

|E(2) ± Ẽ(2) | ≤ E
(2)
0 ± Ê(2) (60)

| Ẽ(2) ± Ê(2) | ≤ E
(2)
0 ± E(2)

7.4. Comments

In view of Theorem 7.4. the following becomes obvious. If and only
if three non-negative real valued functions of two binary variables

f (2)(S1, S2), f
(2)(S1, S3), f

(2)(S2, S3) ≥ 0 (61)

can be derived - through (49) - from one single non-negative function
of three binary variables

f (3)(S1, S2, S3) ≥ 0 (62)
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then, and only then, one can replace in the EBBI (35) the superscript
(3) with the superscript (2).

In other words, the inequalities

|E(3)
ij ± E

(3)
jk | ≤ E

(3)
0 ± E

(3)
jk (63)

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), do not imply for f (2)(S1, S2)
the inequality, see (27)

|E(2)
1 ± E

(2)
2 | ≤ E

(2)
0 ± E(2) (64)

and the similar two inequalities for f (2)(S1, S3), f
(2)(S2, S3), unless

(61) can be derived from (62) through (49).

7.5. Application to quantum physics

Using the results summarized in subsection 7.4, it is not difficult to
see why quantum systems cannot violate (63). The quantum theoret-
ical description of an experiment which involves measurements on n
different objects, usually called spin-1/2 particles, yields the probabil-
ities (in Kolmogorov’s sense) P (n)(S1, . . . , Sn) to observe a particular
realization of the two-valued variables {S1, . . . , Sn} where, by conven-
tion, Sk = ±1 for 1 ≤ k ≤ n [8, 1]. Obviously, these probabilities
are non-negative functions and therefore all the results derived above
apply.

Taking n = 3, we immediately conclude that inequalities (63) must
hold always. Furthermore, repeating the argument given in Section
7.4, unless P (2)(S1, S2), P

(2)(S1, S3) and P (2)(S2, S3) can be derived
from P (3)(S1, S2, S3) by summing over S3, S2 and S1, respectively (as
is the case when the quantum system is described by a so-called sep-
arable state [8, 1]), there simply is no inequality of the type (63) that
puts constraints on the values of the E(2)’s that are obtained from
P (2)(S1, S2), P

(2)(S1, S3) and P (2)(S2, S3).
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