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On the Contributions of Pavel Andreevich Zhilin to Mechanics

H. Altenbach, V. A. Eremeyeyv, D. A. Indeitsev, E. A. Ivano¥a,M. Krivtsov

This paper is dedicated to the memory of Pavel A. Zhilin (324D5), the great Russian scientist in the field of
Rational Mechanics. He was educated and worked at the StdyeePhnical University in St. Petersburg (Russian
Federation), formerly known as the Polytechnical InsétuAs Head of the Department of Theoretical Mechanics
he supervised sixteen PhD theses (Candidate of Scien@sjteew six higher doctorates (Habilitations or Doctor
of Science theses), some of them are shown on Fig. 2. Hidificiémerests covered various branches of Me-
chanics and Theoretical Physics. In his research he strteguhve a way based on Rational Mechanics to areas
which are traditionally not associated with Mechanics, lsas Physics of Microstructures and Electrodynamics.
The paper gives a brief summary of the scientific biograpltytha main results obtained by Pavel A. Zhilin

1 Theory of Shells

Pavel A. Zhilin’s early publications, his Candidate of Sue and Doctor of
Science theses are devoted to the development of condiseany of shells.
When he started his research in this area, no general thesheti was avail-
able. For each class of shell-type structures there wet&pliar (and mostly
independent) theories: the theory of thin single-layelishile theory of struc-
tural anisotropic shells, the theory of ribbed shells, teoty of thin multi-
layered shells, the theory of perforated shells, the th@brgellular shells,
the theory of thick single-layer shells among others, sag, Baghdi (1972);
Grigolyuk and Kogan (1972); Grigolyuk and Seleznev (1978@)ithin each
theory there are differences in basic assumptions as well @sulting equa-
tions. The main motivations behind these theories were mpplications that
could not be described within the existing theories. Betw&@875 and 1984
Zhilin formulated the general non-linear theory of thertagéc simple shells.
Some parts of this theory differ fundamentally from the otlygproaches in the
shell theory discussed, for example, in Reissner (1985).

Figure 1: Pavel Andreevich
Zhilin (1942-2005)

Figure 2: Pavel Zhilin together with his wife Nina, his sclie Anton Krivtsov, Alexandr Sergeyev, his colleague
Vladimir Pal’'mov (from left to right second line) and his stars Elena Ivanova, Ekaterina Pavlovskaia, Sergei
Gavrilov and Elena Grekova (from left to right first line) (eogorsk, 1996)

1Some additional information can be found in Altenbach et €10@.



The basic definition of Zhilin’s theory is:

A simple shell is a two-dimensional continuum in which the interaction between neighboring parts is
due to forces and moments.

In addition, two assumptions are formulated:

The representation of the shell (for example, homogeneous or inhomogeneous in thickness direction)
is given by a deformable surface.

This assumption results in the concept of effective properties allowing to present various classes of shells by similar
equations, only the effective properties (e.g. stiffness) characterize each shell under consideration.

Each material point of the surface is an infinitesimal body with 6 independent degrees of freedom (3
translations and 3 rotations).

This assumption allows for the formulation of the shell theory with independent rotations instead of rotations which
are derivatives of the displacements. The theory established by Zhilin can be easily generalized for any shell-like
structure and can be applied to other problems in continuum mechanics. The basics and some discussions are
given in Zhilin (2006a). Several applications are presented in this journal in the early 80th, see Altenbach and
Shilin (1982).

Let us discuss briefly the basic features of Zhilin's theory of simple shells. The reference configuration (unde-
formed state) is defined by (¢!, ¢); di.(¢*, ¢)}, wherer(q!, ¢°) is the position vectody, (¢!, ¢*) are orthonor-

mal vectors, so-called directors. The actual configuration (deformed state) is giyé&idly ¢, t); Di.(q¢*, ¢%, 1)},

Dy, - D,, = 6. Thus, the motion of the directed surface is defined®y, t) and P(q,t) = D*(q,t) ® di.(q),
whereP(q,t) = P(q', ¢?,t) is the rotation tensofet P = +1. Finally, one obtains the linear and the angular
velocitiesv(q, t), w(g, t)

df

v=R, P=wxP, P(¢'¢0) =Py, f:E

The balances of linear momentum and moment of momentum yield the first and the second Euler equation of
motion

V- -T+pf =pv+67 - -w), V-M+T,+pl=pO;-v+60s -w) +pvx0] w (1)

with T = R, ® T the force tensor of Cauchy typg¢/ = R, ® M~ the moment tensor of Cauchy typg, !
the mass density of the external forces and momenis@1, p ©- the density, the first and the second tensor of
inertia,V = R*(¢*, ¢°, t)% the Nabla operator, arifl, = R, x T for any second rank tens.

In the case of elastic shells, the constitutive equations can be derived from the surface density of the stored energy
W =w({U, K), 2
whereU and K are Lagrangian strain measures

U-F.P, Klra®[PT~8P} : ©)
2 0q> |

andF = VR.
The tensor of forces and the tensor of moments can be calculated by the derivalives of

1FT.67W.pT T:(]*lFT.aiw.PT

T=J"
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(4)



where

e

Similar variants within the direct approach have been established, for example, in Eremeyev (2005); Eremeyev and
Zubov (2007, 2008); Shkutin (1985); Zubov (1997, 2001).

Let us note that Eqs (1) are formulated directly for the two-dimensional continuum, but they are in a good agree-
ment with the equations of the general nonlinear theory of shells, which can be deduced from the three-dimensional
theory and which are presented, for example, in Libai and Simmonds (1983, 19983cielewski et al. (2004);
Eremeyev and Pietraszkiewicz (2004, 2006). The deformation measures and the constitutive equations in these
theories are practically the same to (3), (2), (4).

The direct approach in the theory of shells has been suggested first by Ericksen and Truesdell (1958). The shell
is modeled as a deformable surface with a number of diredig!,¢?), k = 1...p. In this variant it was

not assumed that the directors are orthogonal and normalized. The theory was called Cosserat shell or Cosserat
surface theory. After this pioneering work various theories with one deformable director have been developed, see,
for example, Green et al. (1965); Green and Naghdi (1968, 1974); Naghdi (1972) and the monographs by Rubin
(2000) and Antman (2005). In addition to the traditional approaches, the thickness changes are taken into account.
However, the main problem of all these approaches is that the interaction between different parts of the shell are not
presented by forces and moments only. This means that all these theories contains higher order stress resultants.

In Zhilin (1982b); Altenbach and Zhilin (1988) the general theory with six degrees of freedom is transformed to

a theory of shells with five degrees of freedom (similar to the Reissner’s theory) introducing some constraints for
the deformations. The main constraint is, that one of the directors, for exdmplethe normal to the surface:

D3 = N. It must be underlined that the directéy can be assumed to be identical to the normal in the reference
configurationn. In this case rotations aboiits have no influence on the strain energy of the shell. It is physically

clear that such type of deformation is very small in comparison to the bending or tension deformations, especially
in the case of smooth surfaces. This invariance property results in a less number of independent components of the
strain measures (3). In this case the strain energy and the set of strain tensors can be given as it follows

W:W(gal(:a’Y)v &=

N | =

1 1
(U-U" —a), KzK-UT—§k~U-UT—§k~a, y=U-n,

wherea = F — n ® n is the two-dimensional unit tensor,

1, ody

The simplest example of the strain energy is the following quadratic form

1 1 1
W = 55..14..g+g..B..]C+§]C..C..]C+g..]:‘1.7+]C..]:‘2.fy+§'y..]f‘.fy.
Here A, B, C are fourth rank tensorg;,, I'; are third rank tensors, whilE is a second rank tensors,is the
double contraction product. The tensersB, C,I';,T's andI" reflect the individual properties of the shell. They
are named effective stiffness properties of the shell. Note that general expressions of the strain energy are discussed
in Zhilin (2006a).

This variant of the theory is discussed in Altenbach and Zhilin (2004); Altenbach (1987); Altenbach et al. (2005);
Zhilin (2006a); Altenbach (2000a,b); Altenbach and Eremeyev (2008a,b). In Grekova and Zhilin (2000, 2001)
the method presented in Zhilin (1982b); Altenbach and Zhilin (1988) is applied to the three-dimensional case. In
particular, the identification procedure of the effective stiffness tensors for various anisotropic shells is developed
in Zhilin (2006a); Altenbach (2000a,b).

1.1 Discretely Stiffened Thermoelastic Shells

The general theory of discretely stiffened thermoelastic shells has been developed between 1965 and 1970 (Zhilin,
1968, 1970) and applied to the following practical problems including the analysis of the high-pressure water



turbine spiral of the Nurek hydropower station (Zhilin andkhtev, 1968) and of the vacuum chamber of the
thermonuclear Tokamak-20 panel (Zhilin et al., 1982). 16@2hilin has proposed a modification of the SteKlov
Fubini® method for differential equations, the coefficients of whitave singularities of-function type. This
method allows forfinding the solution in an explicit form farproblem of axisymmetric deformations of a dis-
cretely stiffened cylindrical shell, see Zhilin (1966).

1.2 New Formulation of the Second Law of Thermodynamics Appéd to Deformable Surfaces

A new formulation of the second law of thermodynamics hamb@eposed in 1973, see, for example, Zhilin
(1975a,b, 1976), by means of the combination of two Claddiushen?-Truesdel type inequalities, e.g. Trues-
dell (1984); zhilin (2006a). This formulation is based oe #ssumption of a deformable oriented surface, each
side of which (top and bottom sides) has its own temperandesatropy. This means that the formulation contains
two entropies;, two internal temperature fields., and two external temperature field§t. Both inequalities
can be written as

%ffpm_da > jjp<ji]:;t Jr%Jr%:) d —/T—:ds,
d . g Q- ¢ °ra ©®)
&ffpn_da > jjp(Tcxt +ﬂ_+T_> do — Eds

Hereo — denotes an arbitrary part of the shell= Jo is its boundary ¢” the hear flux through the boundary,
q% the heat flux through the surfade )4 = —@Q)_ denotes the volume heat exchange between both sides of the
surface.

It should be noted that the formulation of the thermodynaniiie two-dimensional systems like shells is con-
nected with several difficulties. For example, in the casa simple material any material point is linked to one
temperature. For deformable surfaces this is not enough.pfblems are related to the presentation of a three-
dimensional temperature field by two-dimensional field ¢igna. In contrast to Zhilin (1975a,b, 1976), other
models with one temperature, see Murdoch (1976a,b) amdregsotor with one temperature field and an addi-
tional scalar field of the temperature gradient with respetie thickness, Green and M. (1970, 1979); Simmonds
(1984, 2005) are suggested. In Makowski and Pietraszke(2i@02) three temperature fields are suggested, two
temperature fields in Eremeyev and Zubov (2008). The use otéwperature fields is the more natural way in
comparison with the other approaches since the boundamditemrs and the constitutive equations can be pre-
sented by very simple expressions. This approach is sitailere representation of a two-component continuum
with the following properties: material points of both coomgnts can be located in the same position, but the
temperatures must be different, see, e.g., Bowen (196K And Crain (1976a,b).

Apart from the theory of shells, this elaboration of the settaw of thermodynamics is also useful for the Solid

State Physics when studying the influence of skin effecthermptoperties of solids, as well as for the description
of interfaces between different phases of a solid, seerZ(@007). A similar approach has been applied to the
modeling of fibre suspensions, see Altenbach et al. (2003b).

1.3 Generalisation of the Classical Theory of Symmetry of Tesors

In 1977 an important extension has been made to the tensebralgnamely the concept of oriented tensors,
i.e. tensor objects which depend on the orientation in dutttliree-dimensional space and in its subspaces. The
theory of symmetry formulated in Zhilin (1978, 1982b) isgeated for oriented tensors. It generalizes the classical
theory of symmetry, which can be applied to Euclidean tensaly. In Fig. 3 the definition of an axial vector (spin
vector) is visualized. Such a type of mathematical objeefgedds on the orientation of the reference system. On
the other hand, the spin vectors are necessary, for exafaptbe description of rotations or moments in statics or
rigid body dynamics. In addition, axial tensors play an im@ot role in the theory of shells or rods, if the direct
approach is applied.

2vladimir Andreevich Steklov (1864-1926); Soviet/Russiartmeanatician, mechanician and physicist
3Guido Fubini (1879-1943); Italian mathematician

4Rudolf Julius Emanuel Clausius (1822-1888); German physicis

5Pierre Maurice Marie Duhem (1861-1916); French physiaist ghilosopher of science

6Clifford Ambrose Truesdell I1l (1919-2000); American matheivian



a) b) C)

Figure 3: Oriented system of reference: a) Objec named spin vector, b) Straight arrow is the axial veator
corresponding ta in the right oriented system of reference, b) Straight arrow is the axial ve@ormresponding
to a in the left oriented system of reference,

Figures 4 and 5 show two types of vectors - the spin vector and the polar vector. The first one represents, for exam-
ple, a moment, the second one a force. The mirror symmetry can be mathematically described by the orthogonal
tensor@ = E — 2n ® n, whereE is the unit tensor and is the normal unit vector with respect to the mirror

plane. As shown in Fig. 4, only for the polar vect@relongs to the group of symmetry. The opposite situation

it obtained, if the vector is in the same direction like the normé@Fig. 5). It is shown that the application of the
classical theory, i.e. objects dependent on the orientation in the three-dimensional space, sometimes leads to wrong
conclusions, see Grekova and Zhilin (2001); Kolpakov and Zhilin (2002); Zhilin (2006e). The proposed theory

is necessary to obtain the constitutive equations for shells and other multi-polar media, as well as when studying
ionic crystals.

/T«P

Spin vector

;ﬁ———ﬁ

Polar vector

Q=E-2n®n Q=FE-2n®n
is not an element of symmetry is an element of symmetry

Figure 4: Spin and polar vectors (1)

Polar vector

Q=FE—-2n®n Q=E-2n®n
is an element of symmetry is not an element of symmetry

Figure 5: Spin and polar vectors (11)

The transformation rules for axial and polar tensors and vectors are different with respect to orthogonal transfor-
mations. This fact is very helpful in the formulation of local symmetry groups of the constitutive equations. This
has been pointed out in Zhilin (1982b); Altenbach and zhilin (1988) for shells. Another example is the so-called
micropolar theory of shells. The wryness tensor in the three-dimensional micropolar continuum and the bending
tensor (curvature change tensor) in the shell theory are axial tensors or so-called pseudo-tensors. They change the
sign under the mirror reflection transformation of the space. This fact is not taken into account in Kafadar and



Eringen (1976) considering a three-dimensional micrapatetinuum and in Murdoch and Cohen (1979, 1981)
where a local symmetry group for Cosserat shell theory isided. In Eremeyev and Pietraszkiewicz (2006);
Eremeyev and Zubov (2008) the stretch tensor is suggesteglagolar tensor while the bending tensor is an axial
one.

The theory of the symmetry for tensor functions is developgedew definition for tensor invariants was given in
Zhilin (2003b, 2005); Altenbach et al. (2006). This defimiticoincides with the traditional one only for Euclidean
tensors. It is shown that any invariant can be obtained asuico of a differential equation of first order. The
number of independent solutions of this equation detersiiime minimum number of invariants that are necessary
to fix the system of tensors as a solid unit.

1.4 General Nonlinear Theory of Thermoelastic Simple Shedl

The general non-linear theory of thermoelastic simplelsigformulated and established between 1975 and 1984.
The way of its formulation differs fundamentally from alléavn shell theories. The theory can be easily extended
to any shell-like structure and other objects of continuusthanics (for example, rods). Its key feature is that
it allows to study shell-like objects of a complex internalsture, when traditional methods are not applicable,
see, for example, Zhilin (1972, 1975a,b, 1976, 1978); Adsat and Shilin (1982); Zhilin (1982b); Altenbach and
Zhilin (1988). For shells of constant thickness made ofrigut material, the new method gives results that are in
accordance with those of the classical formulations anfibply coincide with the results of the three-dimensional
theory of elasticity for an arbitrary external loading mding point loads, see Zhilin and Skvorcov (1983); Zhilin
and Il'icheva (1980, 1984).

1.5 Paradox in the Problem of Bending Deflection of a CirculaPlate

The exact analytical solution is given for the problem oftérdisplacements of a circular plate, see Zhilin (1982a,
1984). The solution explains a well-known paradox that scdéed in handbooks and assumed that the deflection
of a membrane, i.e. a plate with zero bending stiffnesssistiean the deflection calculated with non-zero bending
stiffness. The problem considers a circular plate with figdde and loaded by transversal pressure. In this case,
for some pressure values the linear theory is no more ajpidicince it overestimates the deflection approximately
25 times. The theory published in Zhilin (1982a, 1984) haanhgsed in calculations of an electrodynamic gate,
see Venatovsky et al. (1987).

1.6 Final Remarks

The surveys of the theory of simple shells published by Adteth and Zhilin (1988); Zhilin (1992b, 1995¢) demon-
strate the capacity of the new theory in comparison with theitional ones. The main advantages are:

e a clear definition of the simple shell,
¢ an introduction of six independent degrees of freedom i @aaterial point of the surface,
e an application of the thinness-hypothesis as late as gdessib

e aconsequent application of the tensor analysis introguaiial and polar mathematical objects, which can
be oriented,

¢ an application of the theory of symmetry and the dimensiatyais to establish the constitutive equations,

e an introduction of the concept of effective properties.

The correctness of Zhilin’s theory is verified by indepertdesearch results including Kienzler (2002); Tovstik
and Tovstik (2007) and others. The extension to the visstielaase is discussed, for example, in Altenbach
(1987).



2 Theory of Rods

The dynamic theory of thin spatially curvilinear and naturally twisted rods is developed between 1987 and 2005.
By analogy to the theory of shells, the rod in Zhilin’s theory is modeled by a deformable line consisting of material
points with 6 independent degrees of freedom. The various classes of rods are described with the help of the
effective properties concept. The proposed theory includes all known variants of the theories of rods, but it has a
wider domain of application. A significant part of the publications in this field is devoted to the analysis of various
classical problems, including those the solutions of which have paradoxes. The main results of the theory of rods
and its applications are presented in the most complete way in Zhilin (2006b).

Like in the case of shells, Zhilin has presented the kinematics of the rod by three orthonormal difggtors

i = 1,2,3. This approach is firstly discussed in Ericksen and Truesdell (1958); Green et al. (1973); Naghdi and
Rubin (1984); Cohen and Sun (1992), see Rubin (2000) where the concept of the set of deformable directors is
applied. In contrast to other publications like Ericksen and Truesdell (1958); Green et al. (1973); Naghdi and
Rubin (1984); Cohen and Sun (1992); Rubin (2000), Zhilin’s approach is based again only on forces and moments.

2.1 General Nonlinear Theory of Rods and its Applications to the Solution of Particular Problems

Based on the methods developed for the theory of shells, the general non-linear theory of flexible rods is formulated
by Goloskokov and Zhilin (1987), where all the basic cases of deformation (bending, torsion, tension, transversal
shear) are taken into account. The introduction of the rotation (turn) tensor allows to write down the equations in
a compact form, convenient for the mathematical analysis. In contradiction to previous theories, the proposed one
describes the experimentally discovered Poyritiftect (the contraction of a rod under torsion, Backhaus (1983);
Billington (1986)), which is also discussed by Zhilin's supervisor Prof. 18uffég. 6). The developed theory is

Figure 6: Pavel Zhilin together with his supervisor Anatolii Lurie and his colleague Viadimir Pa’'mov (from left
to right, House of Scientists of the Leningrad Polytechnical Institute, 1971)

applied to the analysis of particular problems, see Zhilin and Tovstik (1995); Zhilin et al. (1997). A new method is
suggested in Zhilin (2006b, 2007, 2006c) for the formulation of the elastic stiffness tensors. In these publications a
new theory of symmetry of tensors, determined in the space with two independent orientations, is essentially used.
All stiffness constants are identified for plane curvilinear rods.

2.2 Euler's Elastica

The famous Euler%elastica problem is considered in Zhilin et al. (1997); Zhilin (1997b, 2006b, 2007, 2006c),
where it was shown that apart from the known static equilibrium configurations there exist also dynamic equilib-
rium configurations. In the latter case, the form of the elastic curve remains the same, and the bent rod rotates
about the axis orthogonal to the rod axis. The energy of deformation does not change in this motion. Note that this
is not the rigid motion of a rod, since the clamped end of the rod remains fixed. This means that the curvilinear

7John Henry Poynting (1852-1914); British physicist
8 Anatolii Isaakovich Lurie (1901-1980); Soviet mechanician
9Leonhard Euler (1707-1783); Swiss mathematician who worked in Berlin and St. Petersburg



Figure 7: Pavel Zhilin together with Dmitry Indeicev, Holniténbach and Alexandr Sergeyev (from left to right,
XXVIIith Summer School, Repino, 2000)

equilibrium configuration in the Euler’s elastica is und¢alsontrary to the common point of view. This conclusion
however has not been confirmed by experiments yet.

2.3 Nikolai's Paradox

Nikolai's'® paradox is analyzed in Zhilin and Sergeyev (1993a,b, 192@)in et al. (1997); Zhilin (2006b,c,
2007). The paradox appears when a rod is torsioned by meamsooflue applied to its end. The experiment
shows that the torsion torque stabilizes the rod, whichreolitts the theory. It was shown in Zhilin (2006c¢), that
one may avoid the mentioned paradox if a special consti@iuation for the torque is chosen. The torque has to
depend in a special way on the rotational velocity. This dédpece is not related to the existence (or absence) of
the internal friction in the rod.

2.4 Development of Mathematical Methods

An approach, which allows to analyze the stability of motiothe presence of spinor motions described by means
of rotation (turn) tensor is suggested in Zhilin (1995d).eTroblem is that the rotation tensors are not elements
of a linear space (unlike the displacement vectors). Thei®tjuations in variations have to be written down as a
system of equations, the right parts of which depend noatlpy®n the previous variations. However, the obtained

system of equations allows for the exact separation of bk$ai.e. the separation from the time variable.

3 Dynamics of Rigid Bodies

The advantage of Zhilin’s representation of the dynamicsigifi bodies is that it is consequently formulated
in terms of the direct tensor calculus. A new mathematiczthiéue is developed for the description of spinor
motions. This technique is based on the use of the rotation)(tensor and related concepts. The new results in
the dynamics of rigid bodies are mostly presented in Zh2id0(Lb,c, 2003c).

3.1 Development of Mathematical Methods

The general investigation of the rotation (turn) tensoriveig in Zhilin (1992a, 2001a, 2003c), where a new proof
of Euler’s kinematic equation was obtained. The old (andesty proof of the kinematic equation can be found in
the original publications of Euler and in some old TheomdtMechanics textbooks, but it is very tedious. In the
well-known book of Levi-Civita® and Amaldt? (see Levi-Civita and Amaldi (1926, 1927)) a new compact proo
is suggested, but it is incorrect. Later this proof is widdilstributed and repeated in almost all modern courses on
Theoretical Mechanics with exception of the book by Susi®4g). In Zhilin (1992a), the proof of a new theorem
on the composition of angular velocities, different fronegh cited in classical textbooks, is proposed. The new
equation, see Zhilin (1992a, 1997c¢, 2000, 2001c, 2003&teethe left angular velocity to the derivative of the
rotation vector. This equation is necessary to introdueectincept of potential torque. Apart from that it is very

10evgenij Leopoldovich Nikolai (1880-1950); Russian/Sdvieechanician
11Tullio Levi-Civita (1873-1941); Italian mathematician
12ygo Amaldi (1875-1957); Italian mathematician



e=mxn/lmxn|

Figure 8: Introduction of Eulerian angles with the help of the turn tensor

useful when solving numerically problems of dynamics of rigid bodies since there is no need to introduce either
systems of angles, or systems of parameters of the Rielamilton* type.

A new theorem on the representation of the rotation (turn) tensor composing turns about arbitrary fixed axes is
suggested in Zhilin (1995a, 1996b, 1998, 2001c, 2003c). All previously known representations of the rotation
(turn) tensors, or, more precisely, of their matrix analogues, via Eulerian angles (Fig. 8,BFgant® angles,

plane or ship angles, etc. (see, for example, Lurie (2002); Brommundt (2006)), are particular cases of this general
theorem, the role of which, however, is not only a simple generalization of these cases. Figure 8 is related to the
following theorem suggested by Zhilin:

Any arbitrary rotation@(¢) can be introduced as a composition of rotations about the arbitrary se-
lected and fixed at time axes andn

mxn
e=—,
|m x n|

where the anglesi(t), 9(t), ¢(t) are the angles of precession, nutation and eigen-rotatiomn H=
n, the anglesy(t), ¥(t), ¢(t) are the Eulerian angles, and the vectoiis selected arbitrary, but
orthogonal ton.

The most important fact is that one can introduce any traditional system of angles. However, one describes the
(unknown) rotation of a body in terms of turns about these axes. If this choice is made in an inefficient way or if

it is difficult to make an appropriate choice, the chances to integrate or even to analyze qualitatively the resulting
system of equations are very poor. Moreover, even in those cases when it is possible to integrate the system, the
obtained solution is often not of practical use, since it contains poles or indeterminacy of the type zero divided by
zero. Consequently, the numerical solution, even after the first pole or indeterminacy becomes very distorted. The
advantage and the purpose of the theorem under discussion is the fact that it allows to consider the axes of rotation
as principal variables and to determine them in the process of obtaining solution. As a result, one can obtain the
simplest (among all possible forms) solutions.

In Zhilin (1997c, 1998, 2000) an approach is proposed, which allows to analyze the stability of motion in the
presence of spinor rotations described by the rotation (turn) tensor. The method of perturbations for the group of
proper orthogonal tensors was developed.

13Felix Christian Klein (1849-1925); German mathematician

145ir William Rowan Hamilton (1805-1865); Irish mathematician

15peter Guthrie Tait (1831-1901); Scottish physicist and mathematician

16George Hartley Bryan (1864-1928); British mathematician and expert in aeronautics



3.2 New Solutions of Classical Problems

A new solution is obtained in Zhilin (1995a, 1996b) for the classical problem of the free rotation of a rigid body
about a fixed center of mass (Euler's case). It is shown that for each tensor of inertia, the entire domain of
initial values is divided into two sub-domains. It is known that there is no such a system of parameters, which
would allow to cover the entire domain of initial values by a unique map without poles. This fact is confirmed

in Zhilin (1996b), where in each sub-domain and at the boundary between them the body rotates about different
axes, depending only on the initial values. Stable rotations of the body correspond to the interior points of the
sub-domains mentioned above, and unstable rotations to the boundary points. When constructing the solution, the
theorem on the representation of the rotation (turn) tensor as described above plays an essential role. Finally, all
characteristics to be found can be expressed via one function, determined by a rapidly converging series of a simple
form. For this reason, no problem appears in the simulations. The propriety of the determination of the axes, about
which the body rotates, manifests in the fact that the velocities of the precession and the proper rotation have a
constant sign. Note that in all previously known solutions only the sign of the precession velocity is constant, i.e.
in these solutions only one axis of turns is correctly chosen. It follows from the solution, see Zhilin (1996b), that
stable solutions, however, may be unstable in practice, if a certain parameter is small enough. In this case the body
may jump from one stable rotational regime to another one under the action of arbitrarily small and short loads
(like, e.g., a percussion with a small meteorite).

A new solution for the classical problem of the rotation of a rigid body with a transversely-isotropic tensor of
inertia is obtained by Zhilin (1996d, 2006d) for a homogeneous gravity field (Lagrahgase). The solution of

this problem from the formal mathematical point of view has been known for a long time, and one can find it in
many monographs and textbooks. However, it is difficult to make a clear physical interpretation of this solution,
and some simple types of motion are described by it in an unjustifiably sophisticated way. In the case of a rapidly
rotating gyroscope an approximate solution in elementary functions is obtained. It is shown by Zhilin (2006d) that
the expression for the precession velocity, found by using the elementary theory of gyroscopes, gives an error in
the principal term.

In the frame of the dynamics of rigid bodies, the explanation of the fact that the velocity of the rotation of the earth

is not constant and the axis of the earth undergoes weak oscillations is given in Zhilin (2003c). Usually this fact is
explained by the argument that one cannot consider the earth as an absolutely rigid body. However, if the direction
of the dynamic spin differs slightly from the direction of the earth’s axis, the earth’s axis will make a precession
about the vector of the dynamic spin, and, consequently, the angle between the axis of the earth and the plane of
ecliptic will slightly change. In this case the alternation of day and night on the earth will not be determined by the
proper rotation of the earth about its axis, but by the precession of the axis.

3.3 New Models in the Frame of the Dynamics of Rigid Bodies

In the Newtoniat® dynamics an oscillator is a basic element. In the Eulerian mechanics, the analogous role plays a
rigid body on an elastic foundation, and this system can be namgitldoody oscillator(Fig. 9). The latter one is
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Figure 9: Rigid body on elastic foundatiok i the axis of rotation)

necessary when constructing the dynamics of multi-polar media, but in its general case it is neither investigated not

17joseph-Louis Lagrange (1736-1813); ltalian-French mathematician and astronomer (born as Giuseppe Lodovici/Luigi Lagrangia)
18sir Isaac Newton (1643-1727); English physicist, mathematician, astronomer, natural philosopher, and alchemist
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even described in the literature. Of course, its particular cases are considered, for instance, in the analysis of the
nuclear magnetic resonance, and also in many applied investigations, but only for infinitesimal angles of rotation.
A new statement of the problem of the dynamics of a rigid body for a non-linear elastic foundation is proposed by
Zhilin (1997c¢, 1998, 2000). The general definition of the potential of torque is introduced and some examples of
problem solutions are given.

For the first time, the mathematical statement for the problem of a two-rotor gyrostat on an elastic foundation
is given in Zhilin (1997c); Zhilin and Sorokin (1998); Zhilin (1999). The elastic foundation is described by
introducing the strain energy as a scalar function of the rotation vector. Finally, the problem is reduced to the
integration of a system of non-linear differential equations having a simple structure but a complex nonlinearity.
The difference of these equations from those traditionally used in the dynamics of rigid bodies is that for their
formulation it is not necessary to introduce any artificial parameters like the Eulerian angles or the'Cayley
Hamilton parameters. A new method of integration of the basic equations is described in Zhilin’s papers. The
solutions are obtained in quadratures for the isotropic non-linear elastic foundation.

The model of a rigid body is generalized in Zhilin (2003c) for the case of a body not consisting of mass points,
but of point-bodies of general kind. There is considered a model of a quasi-rigid body, consisting of the rotating
particles with distances between them remaining constant during the motion.

3.4 Dynamics of a Rigid Body on an Inertial Elastic Foundation

The problem of the construction of high-speed centrifuges with a rotational speed 120 000—200 000 rotations per
minute required the development of more accurate mechanical models. An example of such model is shown on
Fig. 10, where the motion is presented as a rigid body on elastic foundation. The parameters of the rotor and of
the elastic foundation do not allow to consider the elastic foundation as inertialess. There a method is proposed in
Zhilin and Tovstik (1995); lvanova and Zhilin (2002), allowing to reduce the problem to the solution of a relatively
simple integro-differential equation.

3.5 Coulomb Law of Friction and Paradoxes of Painle&

The application of the Coulomblaw has its own specifics related to the non-uniqueness of the solution for the
dynamic problems. It is shown that the Pairifévparadoxes (see, e.g. Le (2003)) appear because of a priori
assumptions about the character of motion and the character of the forces needed to induce this motion. The
correct statement of the problem requires either to determine the forces by the given motion or to determine the
motion by the given forces, see, e.g., Zhilin and Zhilina (1993); Wiercigroch and Zhilin (2000). The improved
analysis is based on the enlarged model shown in Fig. 11.

19Arthur Cayley (1821-1895); British mathematician
20Charles Augustin de Coulomb (1736-1806); French physicist
21paul Painle& (1863-1933); French mathematician and politician, served twice as prime minister of the Third Republic



Figure 11: Enlarged model with two degrees of freedemgpring stiffnessM - mass of the bodyy: - mass of
the frameworky, x - coordinates)

4 Fundamental Laws of Mechanics

The formulations of the basic principles and laws of Eulema@echanics are suggested in Zhilin (1994a, 1995b,
2001b, 2002a, 2003c) with an explicit introduction of spinmtions. All the laws are formulated for the "open
bodies”, i.e. bodies of a variable content, which appeab&textremely important when describing the interaction
of macrobodies with electromagnetic fields. Apart from thathese formulations the concept of a body itself
is changed. The body may contain not only particles, but edsmus fields. Namely, the latter ones makes it
necessary to consider bodies of variable content. The irapoe of spinor motions, in particular, is determined
by the fact that the true magnetism can be defined only viagim®smotions, contrary to the induced magnetism,
caused by Foucadh (eddy) currents, i.e. by translational motions.

A new basic object, the point-body, is introduced into cdasition in Zhilin (1994a, 1995b, 2001b, 2002a, 2003c),
where it is assumed that the point-body occupies zero vglame its motion is described completely by means
of its position-vector and its rotation (turn) tensor. Itpisstulated that the kinetic energy of a point-body has a
quadratic form of its translational and angular velociteesd its momentum and proper kinetic moment (dynamic
spin) are defined as partial derivatives of the kinetic eperigh respect to the vector of translational velocity and
the vector of angular velocity, respectively. The model gibint-body, see Zhilin (2003c), is described by three
parameters: mass, moment of inertia, and an additionahpesg, conventionally namedharge which has
never appeared in particles used in the classical mechdhisshown that the motion of this particle in an empty
space has a spiral trajectory, and for some initial conalitia circular trajectory. It is thus shown that in inertial
reference frames, the motion of an isolated particle (poatty) does not necessarily follow a linear path.

The concept of actions is developed by Zhilin (1994a, 1928191b, 2002a, 2003c) based on an axiom which
supplement§alileo’s*® Principle of Inertia generalizing it to the bodies of general kind. This axioates that

in an inertial reference system an isolated closed body mimveuch a way that its momentum and momentum
of momentum remain invariant. Further, both the forces &eddrques are introduced into consideration, and the
force acting upon a body is defined as the reason for the chafrthe momentum of this body, and the torque,
acting upon a body as a reason of the change of the angular ni@meThe set of vectors - the force vector and
the moment vector - are callegtion

The concept of the internal energy of a body, consisting aftdoodies of general kind, see Zhilin (1994a, 1995b,
2001b, 2002a, 2003c), is developed; the axioms for theriat@mergy to be satisfied are formulated. The princi-
pally new idea is to distinguish the additivity of mass frdme tadditivity of bodies. The kinetic energy of a body

is additive by its mass. At the same time, the internal enefgy body is additive to sub-bodies of which the

body under consideration consists of, but, generally Spgak is not an additive function of mass. In Cayley’s

problem, the paradox, related to the loss of energy, isvedah Zhilin (2003c).

Basic concepts of thermodynamics (internal energy, teatpe, and entropy) are introduced in Zhilin (2002a,
2003c) on elementary examples of mechanics of discreteragstThe definition of both the temperature concepts
and the entropy are given by means of purely mechanical aggtsnbased on the use of a special mathematical
formulation of the energy balance.

223ean Bernard &on Foucault (1819-1868); French physicist
23Galileo Galilei (1564-1642); Italian physicist, astronatrastrologer, and philosopher



5 Other Problems

Zhilin was involved in discussions not only in the theoriésaals, plates and shells and rigid body dynamics. He
also considered the general problems of continuum mechanidt electrodynamics.

5.1 Electrodynamics

Zhilin investigated the invariance properties of the Mak#feequations in Zhilin (1993, 1994b), while some
modifications of these equations were proposed in Zhili®6t%, 1997a). In his investigations he used some
mechanical analogies between solutions of the equatiotieeaigid body dynamics and the Maxwell equations.
It is shown in Zhilin (2006e€), that the mathematical dedesipof an elastic continuum of two-spin particles of a
special type is reduced to the classical Maxwell equati®hs.mechanical analogy proposed above allows to state
unambiguously that the vector of the electric field is axaalkl the vector of the magnetic field is polar.

At the end of the XIXth century Kelvi?? described a structure of an ether responsible, in his opjria the true
(non-induced) magnetism, consisting of rotating parsicke specific kind of Kelvin medium (ether) is considered:
the particles of this medium cannot perform translationaliom, but have spinor motions. Kelvin could not write
the mathematical equations of such motion, because theufation of the rotation (turn) tensor, a carrier of a
spinor motion, was not available at the time. In Zhilin (16R@he basic equations of this particular Kelvin medium
are presented, and it is shown that they present a certaibioation of the equations of Kletf-Gordort” and
Schivdingef®. At small rotational velocities of particles, the equasiaf this Kelvin medium are reduced to the
equations of Klein-Gordon, and at large velocities to thier&dinger equation. It is significant that both equations
lie in the frame of Quantum Mechanics.

The theory of a non-linear elastic Kelvin medium the pagticbf which perform translational and rotational mo-
tions, with large displacements and rotations, and mayyfregate about their axes of symmetry, has been pro-
posed. The exact analogy is established between the egsidtipa particular case of Kelvin medium and the
equations of elastic ferromagnetic insulators in the axipration of quasimagnetostatics in Grekova and Zhilin
(1998, 2000, 2001). It is shown that the existing theoriemafinetoelastic materials did not take into account
one of the couplings between magnetic and elastic subsysthioh is allowed by fundamental principles. This
coupling is important for the description of the magnetastizc resonance, and may manifest itself in non-linear
theory as well as in the linear one for the case of anisotnogiterials.

A special representation of the equations of piezoelagtare presented in Kolpakov and Zhilin (2002); Zhilin
and Kolpakov (2006). These equations contain as particalses several theories, and two among them are new.
The proposed general theory is based on the model of a mates-gontinuum.

5.2 Inelastic Media

A general approach for the construction of the theory ofdstit media is proposed in Zhilin (2001a, 2002b);
Altenbach et al. (2003b,a); Zhilin (2003a, 2004). The mdiardion is pointed out to a clear introduction of basic
concepts such as strain measures, internal energy, tetogei@nd chemical potentials. Polar and non-polar media
are considered. The originality of the suggested appraattei following. The spatial description is used where
the fundamental laws are formulated for open systems. A rewdling of the equation of the energy balance is
offered, where the entropy and the chemical potential drednced by means of purely mechanical quantities. The
internal energy is given in a form, which is at the same timaiapble for gaseous, liquid, and solid states. Phase
transitions in the medium are described without introdgamy supplementary conditions; a solid-solid phase
transition can also be described in these terms. The miatarider consideration have a finite tensile strength; this
means that the constitutive equations satisfy the comddfdhe strong ellipticity.

When constructing the general theory of inelastic medieethvrs used thepatial descriptionsee Zhilin (2001a,
2002b, 2003a, 2004), where a certain fixed domain of a framefefence contains different medium particles at

243ames Clerk Maxwell (1831-1879); Scottish mathematician hadretical physicist

25william Thomson, 1st Baron Kelvin (1824-1907); British matietical physicist and engineer
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different instants. Due to the use of the spatial descriptiotheory is constructed where the concept of a smooth
differential manifold is not used. Until then, such thesneere developed only for fluids. For the first time such
a theory is built for solids, where the stress deviator is-pero. In addition, the spatial description is applied to
a medium consisting of particles with rotational degreefr@dom. A new definition of a material derivative,
containing only objective operators, is given. This deifimif when using a moving co-ordinate system, does not
contradict to the Galileo’s principle of inertia, see zZhi{2002b).

A new theory of elasto-plastic bodies is developed in ZH#002b, 2003a). The theory is based on the description
of the non-elastic properties by the phase transitionsamthterials. The definition of the phase transition is given
in the following way. Two material characteristics are tethto their densities: the solid fraction, defined as a
number of particles in a unit volume on the particle volunre] the porosity (void fraction), defined as a negative
solid fraction. A solid has several stable states corredipgrto different values of the solid fraction. The trarsiti
from one stable state to another is a typical phase transificconstitutive equation describing the solid fraction
changes near the phase transition point is suggested.

5.3 Theory of Constitutive Equations of Complex Media

The characteristics of state, corresponding to temperatuntropy, and chemical potential, are presented in Zhilin
(20014, 2002b, 2003a, 2004) from pure mechanical considesa by means of a special mathematical formu-
lation of the energy balance equation, obtained by a sdparaf the stress tensors into elastic and dissipative
components. The second law of thermodynamics gives addltiomitations for the introduced characteristics,
and this completes their formal definition. The reduced &gnaf energy balance is obtained in terms of the
free energy. The main purpose of this equation is to deterttia arguments on which the free energy depends.
It is shown that defining first the internal energy, and thenahtropy and chemical potential, is impossible. All
these quantities should be introduced simultaneously. eTehe relations between the internal energy, entropy,
the chemical potential, the pressure, etc., the reducedtiequof energy balance is used. It is shown that the
free energy is a function of temperature, density of pasichnd strain measures, where all these arguments are
independent. The CauctyGreer® relations relating entropy, chemical potential and tesmsdrelastic stresses
with temperature, density of particles and measures ofrdeftion are obtained. Hence the concrete definition
of the constitutive equations requires the setting of ohé/ftee energy. The equations characterizing the role of
entropy and chemical potential in the formation of the in&¢energy are obtained. Constitutive equations for the
vector of energy flux are offered in Zhilin (2003a). In a peutar case these equations give the analogue of the
Fourier'-Stokes? law.

The micro-polar theory for binary media initiated by Zhilideveloped in Altenbach et al. (2003a,b). The medium
consists of liquid drops and fibres. The liquid is assumedetwibcous and non-polar, but with a non-symmetric
stress tensor. The fibres are described by non-symmetson®of force and couple stresses. The forces of viscous
friction are taken into account. The second law of thermadlyics is formulated in the form of two inequalities,
where the components of the binary media can have diffeeempératures.

The general theory of granular media with particles ableitoconsolidate) is developed in Zhilin (2001a, 2002b).
The particles possess translational and rotational degifdeeedom. For an isotropic material with small displace-
ments and isothermal strains, the theory of consolidatiaggar media is presented in a closed form in Zhilin
(2001a). Instead of the tensor of viscous stresses, whifledsiently used in the literature, the antisymmetric
stress tensor is introduced in Zhilin (2001a) and for thiste the Coulomb friction law is applied. For the couple
stress tensor the viscous friction law is used.
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