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Weak law of large numbers for some Markov chains along non

homogeneous genealogies

Vincent Bansaye ∗, Chunmao Huang †

May 21, 2013

Abstract

We consider a population with non-overlapping generations, whose size goes to infinity.
It is described by a discrete genealogy which may be time non-homogeneous and we pay
special attention to branching trees in varying environments. A Markov chain models the
dynamic of the trait of each individual along this genealogy and may also be time non-
homogeneous. Such models are motivated by transmission processes in the cell division,
reproduction-dispersion dynamics or sampling problems in evolution. We want to determine
the evolution of the distribution of the traits among the population, namely the asymptotic
behavior of the proportion of individuals with a given trait. We prove some quenched laws
of large numbers which rely on the ergodicity of an auxiliary process, in the same vein as
[21, 15]. Applications to time inhomogeneous Markov chains lead us to derive a backward
(with respect to the environment) law of large numbers and a law of large numbers on the
whole population until generation n. A central limit is also established in the transient case.

Key words. Non-homogeneous Markov chain, random environment, branching processes, law
of large numbers.

MSC classes. 60J05, 60J20, 60J80, 60J85, 60F05.

1 Introduction

In this paper, we consider Markov chains which are indexed by discrete trees. This approach
is motivated in particular by the study of structured populations. The tree is thus describing the
genealogy of the population in discrete time, with non overlapping generations and the nodes of
the tree are the individuals. We consider a trait in the population, which could be the location
of the individual, its phenotype, its genotype or any biological characteristic. Letting this trait
evolve as a Markov chain and be transmitted to the offspring with a random transition leads us
to consider a Markov chain indexed by the genealogical tree. Such a process can also be regarded
as a branching particle system where the offspring of each particle is given by the genealogy and
the associated traits by the Markov chain.

Let (X , BX ) be a measurable space. The process starts with an initial single individual ∅
with trait X(∅) ∈ X whose distribution is ν. The initial individual ∅ produces a random number
N = N(∅) of particles of generation 1, denoted by 1, 2, · · · , N , with traits determined by
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P(X(1) ∈ dx1, · · · ,X(k) ∈ dxk|N = k,X(∅) = x) = p(k)(0)(x, dx1, · · · , dxk),
where for each k, n ∈ N and x ∈ X , p(k)(n)(x, ·) is a probability measure on (X k, BXk). More
generally, each individual u = u1 · · · un of generation n whose trait is X(u) yields N(u) offspring
in generation n+ 1, denoted by u1, u2, · · · , uN(u), whose traits are determined by

P(X(u1) ∈ dx1, · · · ,X(uk) ∈ dxk|N(u) = k,X(u) = x)

= p(k)(n)(x, dx1, · · · , dxk).

The individuals of each generation evolve independently, so the process enjoys the branching
property.

The evolution of a time homogeneous Markov chain indexed by a binary tree is well known
thanks to the works of [4, 21]. As soon as the Markov chain along a random lineage of the binary
tree is ergodic, a law of large numbers holds. It yields the convergence for the proportions of
individuals in generation n whose trait has some given value. More specifically, this asymptotic
proportion is given by the stationary measure of the ergodic Markov chain. This convergence
holds in probability in general, and under additional assumptions on the speed of convergence
of the Markov chain or uniform ergodicity, it also holds almost surely. Such results have been
extended and modified to understand the (random) transmission of some biological characteristic
of dividing cells such as cellular aging, cell damages, parasite infection... In particular, [6]
considered non ergodic Markov chains and rare events associated to the Markov chain for cell
division with parasite infection. In [15], the authors considered a Markov chain indexed by
a Galton-Watson tree, which is motivated by cellular aging when the cells may die. In the
same vein, the almost sure convergence in the case of bifurcating autoregressive Markov chain is
achieved in [9] via martingale arguments. Such results have been extended recently and one can
see the works of De Saporta, Gégout- Petit, Marsalle, Blandin and al. For biological motivations
in this vein, we also refer to [37, 35].

In this paper, we consider similar questions for the case where both the genealogical tree
and the Markov chain along the branches are time non-homogeneous. In particular, we are
motivated by the fact that the cell division is affected by the media. This latter is often time
non-homogeneous, which may be due to the variations of the available resources or the envi-
ronment, a medical treatment... Such phenomena are well known in biology from the classical
studies of Gause about Paramecium or Tilman about diatoms. The cell genealogy may be mod-
eled by a Galton-Watson process in a varying (or random) environment. It is quite straight-
forward to extend the weak law of large numbers to the case of non-homogeneous genealogies
if the branching events are symmetric and independant (each child obtains an i.i.d. copy) and
the Markov chain along the branches is time homogeneous. However, as the convergence of
non-homogeneous Markov chains is a delicate problem, we need to consider new limit theorems
to understand the evolution of the traits in the cell population. As stated in the next section,
the asymptotic proportion can still be characterized as the stationary probability of an auxiliary
Markov chain, in the same vein as [15]. It yields a natural interpretation of the repartition of
the traits as a stationary probability and the description of the lineage of a typical individual,
which then can be easily simulated. A large literature also exists concerning asymptotic be-
havior of even-odd Markov chains along time homogeneous trees (see e.g. [33]), with different
motivations. We stress that in our model the trait of the cell does not influence its division,
which means that the genealogical tree may be random but does not depend on the evolution of
the Markov chain along its branches. When such a dependence holds (in continuous time, with
fixed environments), some many to one formulas can be found in [22] and asymptotic propor-
tions were briefly considered in [7].

Letting the trait be (replaced by) the location of the individual, the process considered here
is more usually called a Branching Markov Chain. The particular case that the motion of each
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individual has i.i.d. increments, i.e. branching random walks, has been largely studied from the
pioneering works of Biggins [10, 11, 12]. The density occupation, the law of large numbers, cen-
tral limit theorems, large deviations results and the positions of the extremal particles have been
considered. These results, such as recurrence, transience or survival criteria, have been partially
extended to random environment both in time and space, see e.g. [20, 30, 24, 13, 14, 39, 28].
Here, we consider both the case of non i.i.d. displacements and non homogeneous environ-
ments. We mainly focus on (positive) recurrent branching random walks. This provides some
tractable models for reproduction-dispersion of species which evolve in a spatially and tempo-
rally non-homogeneous environment and compact state space. With our assumptions, the time
environment may influence both the reproduction and the dispersion. One can figure out the
effects of the humidity and the enlightenment for the reproduction of plants and the wind for
pollination. The spatial environment (such as the intensity of wind, the relief...) may here
influence only the dispersion. The fact that the space location does not influence the repro-
duction events requires space homogeneity of some environmental parameters, such as the light
exposure, quality of the ground. An extension of our results to space dependent reproduction is
a challenging problem. As a motivating article in this vein in ecology, we refer for instance to [18].

Finally, such models might be a first step to consider evolution processes on larger time scale
with time inhomogeneity. The trait would then correspond to a phenotype or a genotype. The
fact that the branching event does not depend on the trait (neutral theory) may hold in some
cases or be used as a zero hypothesis, see for example [26]. More generally, the non-homogeneity
of the branching rates in the genealogies raises many difficulties but has various motivations.
As an example, we refer to [36] for discussions on time non-homogeneity for extinction and
speciation.

In next two sections, we state the results of this paper and consider some applications. Firstly
(Section 2), we give a very general statement which ensures the convergence in probability of
the proportions of individuals with a given trait as time goes to infinity. The fact that the com-
mon ancestor of two individuals is not recent yields a natural setting for law of large numbers.
Here the genealogical tree may be very general but the assumptions that we need are often not
satisfied and the asymptotic proportions are not explicit. That’s why we focus next on time
non-homogeneous tree with branching properties (Section 3). That allows us to get a many to
one formula, in the same vein as [21, 7, 22, 16] (see Lemma 5.1). We can then state a forward
law of large numbers, which requires ergodic convergence of an auxiliary time non-homogeneous
Markov chain. This latter is still not easily satisfied. Thus, we give a backward analog of this
result, which yields quite general sufficient conditions linked to ergodicity of Markov chains with
stationary Markov transitions [32]. To get assumptions which are easy to check and applications
with stationary ergodic environments, we also provide a weak law of large numbers for the whole
population. Finally, we derive a central limit theorem and apply it to some branching random
walks in random environments. The rest of the paper (Sections 4 and 5) is dedicated to the
proofs.

Notations. In the whole paper, we need the following notations. If u = u1 · · · un and v =
v1 · · · vm, then |u| = n is the length of u and uv = u1 · · · unv1 · · · vm. We denote by

T ∈ ∪∞
m=0{1, 2, · · · }m

the generation tree rooted at ∅ and we define by

Tn := {u ∈ T : |u| = n}
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the set of all individuals in generation n. Let

Zn =
∑

u∈Tn

δX(u)

be the counting measure of particles of generation n. In fact, for any measurable set A of X ,

Zn(A) := #{u ∈ Tn : X(u) ∈ A}

denotes the number of individuals whose trait belongs to A. Our aim is to obtain the asymptotic
behavior of this quantity. In particular, we write

Nn := Zn(X )

and we shall consider the asymptotic proportion of individual whose trait belongs to A, which
is given by Zn(A)/Nn.

For two different individuals u, v of a tree, write u < v if u is an ancestor of v, and denote
by u ∧ v the nearest common ancestor of u and v in the means that |w| ≤ |u ∧ v| if w < u and
w < v.

2 Weak law of large numbers for non-homogeneous trees

In this section, the genealogical tree T is fixed (non random).We require that the size of the
population in generation n goes to infinity as n → ∞.

We consider a transition kernel (p(k)(n)(x, dx1, · · · , dxk) : k, n ≥ 0). Then the Markov chain
X along the tree T is specified recursively by

E

[

∏

u∈Tn

Fu (X(u1), · · · ,X(uN(u)))

∣

∣

∣

∣

(X(u) : |u| ≤ n)

]

=
∏

u∈Tn

∫

Fu(x1, · · · , xN(u))p
N(u)(n)(x, dx1, · · · dxk). (2.1)

where (Fu : u ∈ T) ∈ BT
b and Bb is the set of bounded measurable functions from ∪k≥0X k to R.

The trees rooted at u are defined similarly:

T(u) := {v : uv ∈ T}, Tn(u) := {v : uv ∈ T, |v| = n}

Z(u)
n :=

∑

uv∈Tn(u)

δX(uv), Nn(u) := Z(u)
n (X ).

Proposition 2.1. Let A ∈ BX . We assume that

(i) Nn → ∞ as n → ∞;

(ii) lim supn→∞ P(|Un∧Vn| ≥ K) → 0 as K → ∞, where Un, Vn are two individuals uniformly
and independently chosen in Tn;

(iii) there exists µ(A) ∈ R such that for all u ∈ T and x ∈ X ,

lim
n→∞

P

(

X(U (u)
n ) ∈ A

∣

∣

∣

∣

X(u) = x

)

= µ(A),

where U
(u)
n denotes an individual uniformly chosen in Tn(u).
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Then
Zn(A)

Nn
→ µ(A) in L2.

The Assumption (ii) means that the common ancestor of two individuals chosen randomly
is at the be beginning of the tree. Then assumption (iii) ensures that any sampling is giving
the same distribution. The assumptions (i − ii) hold for many classical genealogies, such as
branching genealogies (see below), Wright Fischer (or Moran) genealogies when we let the size
of the population N go to infinity. The assumption (iii) is difficult to obtain in general. We first
give a simple example where it holds. The next section is giving better sufficient conditions, in
the branching framework. We also provide below a result which weaken the Assumption (ii),
since the most recent common ancestor can be in the middle of the tree. It requires a stronger
ergodicity along the branches than Assumption (iii).

Example 2.1. Symmetric independent kernels. The Assumption (iii) becomes clear in
the symmetric and homogeneous case. More precisely it holds if

p(k)(n)(x, dx1, · · · , dxk) =
k
∏

i=1

p(x, dxi)

and Px(Yn ∈ A) → µ(A) as n → ∞, for every x, where Yn is a Markov chain with transition
kernel p. This problem is related to the ergodicity of Y . Sufficient conditions for the ergodicity
of a Markov chain are known in literature, and we refer e.g. to [29].

Proposition 2.2. Let A ∈ BX . We assume that

(i) Nn → ∞ as n → ∞;

(ii) lim supn→∞ P(|Un ∧ Vn| ≥ n − K) → 0 as K → ∞, where Un, Vn are two individuals
uniformly and independently chosen in Tn;

(iii) there exists µ(A) ∈ R such that

lim
n→∞

sup
u∈T,x∈X

∣

∣

∣

∣

P

(

X(U (u)
n ) ∈ A

∣

∣

∣

∣

X(u) = x

)

− µ(A)

∣

∣

∣

∣

= 0,

where U
(u)
n denotes an individual uniformly chosen in Tn(u).

Then
Zn(A)

Nn
→ µ(A) in L2.

We note that the assumption (ii) is satisfied for any tree T where each individual has at most
q (constant) offspring. Considering the symmetric and homogeneous case described in Example
2.1, (iii) is satisfied when a strong ergodicity holds. It it the case for example in finite state
space or under Doeblin type conditions. In this situation, Proposition 2.2 can be applied.

3 Quenched Law of large numbers for branching Markov chains

in random environment

In this section, the genealogical tree T may be random. The the population evolves following
a branching process in random environment (BPRE), described as follows. Let ξ = (ξ0, ξ1, · · · )
be a sequence of random variables taking values in some measurable space Ω, which will come in
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applications below from a stationary and ergodic process. Each ξn corresponds to a probability
distribution on N = {0, 1, 2, · · · }, denoted by p(ξn) = {pk(ξn) : k ≥ 0}. This infinite vector ξ is
called a random environment.

We consider now random measurable transition kernels (p
(k)
ξn

(x, dx1, · · · , dxk) : k, n ≥ 0),
which are indexed by the nth environment component ξn. The process X is a Markov chain
along the random tree T with transition kernels p. Conditionally on (ξ,T), the process is
constructed following (2.1). More specifically, the successive offspring distributions are {p(ξn)},
so that the number of offspring N(u) of individual u of generation n is distributed as p(ξn) and
the traits of its offspring {X(ui)} are determined by

Pξ(X(u1) ∈ dx1, · · · ,X(uk) ∈ dxk|N(u) = k,X(u) = x)

= p
(k)
ξn

(x, dx1, · · · , dxk).
We note that the offspring number N(u) does not depend on the parent’s trait X(u), and the
offspring traits {X(ui) : i = 1, · · · , N(u)} may depend on N(u),X(u) and ξn.

Given ξ, the conditional probability will be denoted by Pξ and the corresponding expectation
by Eξ. The total probability will be denoted by P and the corresponding expectation by E. As
usual, Pξ is called quenched law, and P annealed law.

Let F0 = F(ξ) = σ(ξ0, ξ1, · · · ) and Fn = Fn(ξ) = σ(ξ0, ξ1, · · · , (N(u) : |u| < n)) be the σ-
field generated by the random variables N(u) with |u| < n, so that Nn, the size of the population
in generation n, are Fn-measurable. Denote

mn =
∑

k

pk(ξn) for n ≥ 0,

P0 = 1 and Pn = m0 · · ·mn−1 for n ≥ 1.

Thus, for every n ∈ N, Pn = EξNn. It is well known that the normalized population size

Wn =
Nn

Pn

is a nonnegative martingale with respect to Fn, so the limit

W = lim
n→∞

Wn

exists a.s. and EξW ≤ 1.
In the rest of this section, we make the following assumptions

Assumption 3.1. (i) The environment ξ = (ξ0, ξ1, · · · ) is a stationary ergodic sequence.

(ii) We assume that P(m0 = 0) = 0, P(p0(ξ0) = 1) < 1 and E(logm0) < ∞.

(iii) We focus on the supercritical non degenerated case

E(logm0) > 0, E

(

log
EξN

2

m2
0

)

< ∞. (3.1)

The first assumption allows to get asymptotic results on the size of the population. The
second assumption avoids some degenerated cases. Denoting by

q(ξ) := Pξ(Nn = 0 for some n)

the extinction probability, it is well known that the non-extinction event {Nn → ∞} has
quenched probability 1− q(ξ). Moreover, the condition E(logm0) ≤ 0 implies that q(ξ) = 1 a.s.,
whereas E(logm0) > 0 (supercritical case) yields

q(ξ) < 1 a.s.

The last assumption ensures that the random variable W is positive on the non-extinction event.
We refer to [2, 3] for the statements and proofs of these results.
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3.1 Forward weak law of large numbers in generation n

We first give a forward law of large numbers in generation n for the model introduced above,
with the help of an auxiliary Markov process constructed as follows. Let

P
(k,i)
ξn

(x, ·) = p
(k)
ξn

(x,X i−1 × · × X k−i)

and the random transition probability

Qn(x, ·) = Q(T nξ;x, ·) := 1

mn

∞
∑

k=0

pk(ξn)

k
∑

i=1

P
(k,i)
ξn

(x, ·).

We note that for each ξ ∈ Ω, the Markov transition kernel Q(ξ; ·, ·) is a function from X × BX

into [0, 1] satisfying:

• for each x ∈ X , Q(ξ;x, ·) is a probability measure on (X , BX );

• for each A ∈ BX , Q(ξ; ·, A) is a BX -measurable function on X .

Given the environment ξ, we define an auxiliary Markov chain in varying environment Y ,
whose transition probability in generation j is Qj :

Pξ(Yj+1 = y|Yj = x) = Qj(x, y).

As usual, we denote by Pξ,x the quenched probability when the process Y starts from the initial
value x, and by Eξ,x the corresponding expectation.

As stated below, the convergence of the measure Zn(·) normalized comes from the ergodic
behavior of Yn. In the same vein as [15], we have

Theorem 3.2. Let A ∈ BX . We assume that there exists a sequence (µξ,n(A))n such that for
almost every ξ and for each r ∈ N,

lim
n→∞

PT rξ,x(Yn−r ∈ A)− µξ,n(A) = 0 for every x ∈ X , (3.2)

where Tξ = (ξ1, ξ2, · · · ) if ξ = (ξ0, ξ1, · · · ). Then we have for almost all ξ,

Zn(A)

Pn
− µξ,n(A)W → 0 in Pξ-L

2, (3.3)

and conditionally on the non-extinction event,

Zn(A)

Nn
− µξ,n(A) → 0 in Pξ-probability. (3.4)

This forward result theorem is adapted to the underlying branching genealogy. The proof
is defered to the next section, where a more general is obtained. The condition (3.2) holds if
the auxiliary Markov chain is weakly ergodic, for suitable sets A. For sufficient (and necessary)
conditions of weak ergodicity in the non-homogeneous case, we refer in particular to [31].

Let us now give more trackable results. We derive a first result of (quenched forward)
weak law of large numbers, under a stronger assumption, and two examples in simple cases
(homogeneous case).

Corollary 3.3. Let A ∈ BX . We assume that there exists µ(A) ∈ R such that for almost all ξ,

lim
n→∞

Pξ,x(Yn ∈ A) = µ(A) for every x ∈ X . (3.5)
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Then we have for almost all ξ,

Zn(A)

Pn
→ µ(A)W in Pξ-L

2, (3.6)

and conditionally on the non-extinction event,

Zn(A)

Nn
→ µ(A) in Pξ-probability. (3.7)

We now give two examples, where we can check (3.5) by considering models for which the
associated auxiliary chain Y is time homogeneous. We also note that assuming a uniform
convergence in with respect to x, we can get an almost sure convergence following the proof of
Theorem 2 in [3].

Example 3.1. Homogeneous Markov chains along Galton Watson trees. We focus
here on the case when the time environment is non random, i.e. ξn is constant for every
n ∈ N. The genealogical tree is a Galton Watson tree, whose offspring distribution is specified
by {pk : k ≥ 0}. Moreover, we assume that

Pξ(X(u1) ∈ dx1, · · · ,X(uk) ∈ dxk|N(u) = k,X(u) = x) = p(k)(x, dx1, · · · , dxk).

does not depend on ξ. Then, denoting by m the mean number of offspring per individual and

P (k,i)(x, ·) = p(k)(x,X i−1 × · × X k−i),

the auxiliary process Y is a time homogeneous Markov chain whose transition kernel is given by

Q(x, ·) = 1

m

∞
∑

k=0

pk

k
∑

i=1

P (k,i)(x, ·).

Thus a law of large number in probability is obtained as soon as the ergodicity of the Markov
chain Y is proved. Indeed, it ensures that there exists a probability measure µ such that for
each x ∈ X and a measurable set A such that µ(∂A1)= 0, and Qn(x,A) = Px(Yn ∈ A) → µ(A),
so that we can apply Theorem 3.3.

We recall that sufficient conditions for the ergodicity of a Markov chain are known in the
literatures, see e.g. [29]. This result is a simple generalization of law of large numbers on the
binary tree in [21] and that on Galton Watson trees with at most two offsprings given in [15].
A continuous time analogous result can be found in [8].

Example 3.2. Symmetric homogeneous Markov chains along branching trees in

random environment. We consider a Branching Markov Chain on X in the stationary and
ergodic environment ξ. Given ξ, for each u of generation n, the number of its offspring N(u)
is determined by distribution p(ξn) = {pk(ξn) : k ≥ 0}. The offspring positions {X(ui)},
independent of each other conditioned on the position of u, are determined by

Pξ(X(ui) ∈ dy|X(u) = x) = p(x, dy),

where p(x, ·) is a probability on X . We note that this example is a particular case of Example
2.1. We can see that

p
(k)
ξn

(x, dx1, · · · , dxk) =

k
∏

i=1

Pξ(X(ui) ∈ dxi|X(u) = x) =

k
∏

i=1

p(x, dxi).

1
∂A is the boundary of A
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Therefore, Q(x, dy) = Qn(x, dy) = p(x, dy) and Yn is a time-homogeneous Markov chain with
transition probability p. As in the previous example, the problem is reduced to the ergodicity
of Y . Such a class may be relevant to model the dispersion of plants in spaces where the repro-
duction is homogeneous and the time environment only influences the genealogy.

The convergence of the Markov chain (3.5) is difficult to get under general assumptions. In-
deed, soon as the auxiliary kernel Q depends on ξ, the auxiliary process is time non-homogeneous
and the forward convergence in distribution (3.5) won’t hold in general2. It is the case for most
of the models we have in mind but the two previous examples. For such an ergodic convergence,
the backward convergence is much more adapted (see [32]). Moreover, general sufficient condi-
tions can be found for ergodic (Birkhoff’s) theorems and we can use in particular [32, 34]. Thus,
we derive in the next subsection a backward law of large numbers and then one on the whole
tree.

3.2 Backward law of large numbers in generation n

Now we consider the environment ξ time reversed. Thus, for each n ∈ N, we define

ξ(n) = (ξn−1, · · · , ξ0).
For each individual u of generation r (0 ≤ r ≤ n), the number of its offspring N(u) is determined
by the distribution p(ξn−r−1), and the positions of its offspring {X(ui)} are determined by the
transition kernel pξn−r−1 defined previously.

To distinguish from the forward case, we denote the counting measure of generation k by

Z
(n)
k (·), the population size of generation k by N

(n)
k , and its normalization by

W
(n)
k =

N
(n)
k

Eξ(n)(N
(n)
k )

for 0 ≤ k ≤ n. We remark that unlike the forward case, here the normalize population W
(n)
n is

not a martingale, hence the existence of its limit is not ensured. But when the environment is
reversible in law, i.e.

(ξ0, · · · , ξn−1)
d
= (ξn−1, · · · , ξ0),

then W
(n)
n has the same distribution as Wn under the total probability P.

The following theorem is a law of large numbers in generation n for the backward case, whose
proof is deferred to next section.

Corollary 3.4. Let A ∈ BX . We assume that for almost all ξ,

m0 ≥ a > 1, EξN
p ≤ b

for some constants a, b and p > 2. We also assume that there exists µξ(A) ∈ R such that

lim
n→∞

Pξ(n),x(Yn ∈ A) = µξ(A) for every x ∈ X . (3.8)

Then we have for almost all ξ,

Z
(n)
n (A) − µξ(A)N

(n)
n

Pn
→ 0 in Pξ-L

2. (3.9)

Moreover, if the environment is reversible in law then

1
{N

(n)
n >0}

[

Z
(n)
n (A)

N
(n)
n

− µξ(A)

]

→ 0 in P-probability. (3.10)

2the reader could consider for example the case of an environment containing only two components whose

associated transition matrices have different stationary probability.
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Thanks to [32] (see in particular Theorem 5.5.), we can check when the Assumption (3.8) is
satisfied. It requires that the environment is ergodic, which holds here. As expected, the author
also need the uniqueness of the invariant probability and some irreducibility assumptions. He
also requires that some δ∗ is equal to 0, which is much more technical to get. As a simple case
where such assumptions hold, the author gives the case of finite state space, which yields the
following example.

Example 3.3. Multitype branching processes in random environment. In the case
when X(u) belongs to a finite state space X for every u, the process considered here is a multi-
type branching processes in random environment, where the reproduction law of each individual
does not depend on its type, but the offspring distribution does. If the kernel Q is irreducible,
we get the quenched convergence in probability of the proportion of each type. This asymptotic
proportion is identified as the stationary measure of the auxiliary chain Y , and can be thus
easily simulated. For the growth rate of the whole population in the case when the reproduction
may depend on the type, we refer to [38] for such results under stability assumptions.

To get weaker assumptions (of the Doeblin type) which can be satisfied for Markov chains
in stationary random environment, we focus now on limit theorems the whole tree.

3.3 Law of large numbers on the whole tree

In the framework of Markov chains with stationary and ergodic environments, quenched
ergodic theorems are known (see e.g. [32, 34]). They ensure the convergence (for every x ∈ X )
of

1

n

n
∑

k=1

Q0 · · ·Qk−1(x, ·) as n → ∞.

It leads us to consider the following limit theorems on the whole tree, where each generation
of the tree has the same mean weight in the limit. Such an approach is both adapted to
the branching (forward) genealogy and the convergence of the underlying auxiliary time non-
homogeneous Markov chain Y , whose transition are stationary and ergodic. It defers from the
usual limit theorem on the whole tree [21, 15] where each cell has the same weight, but not each
generation.

Theorem 3.5. Let A ∈ BX . We assume that there exists µ(A) ∈ R such that for almost all ξ,

lim
n→∞

1

n

n
∑

k=1

Pξ,x(Yk ∈ A) = µ(A) for every x ∈ X . (3.11)

Then we have for almost all ξ,

lim
n→∞

1

n

n
∑

k=1

Zk(A)

Pk
= µ(A)W in Pξ-L

2. (3.12)

and, on the non extinction event,

lim
n→∞

1

n

n
∑

k=1

Zk(A)

Nk
= µ(A) in Pξ-probability. (3.13)

The proof is also deferred to next section.
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Example 3.4. Doeblin conditions for the auxiliary Markov chain Y . Assume that
there exist a positive integer b and a measurable function M(ξ) : Ω → [1,∞) such that
E| logM(ξ)| < ∞, and for almost all ξ,

Pξ,x(Yb ∈ A) ≤ M(ξ)Pξ,y(Yb ∈ A) for all x, y ∈ X ,

which means that Assumption (A) of Seppäläinen [34] is satisfied. According to Theorem 2.8
(i) and (iii) of Seppäläinen [34] (with f = 1A×Ω), there exists a probability Φ on X × Ω such
that for almost all ξ,

lim
n→∞

1

n

n
∑

k=1

1A(Yk) = Φ(A× Ω) Pξ,x-a.s. for every x ∈ X .

By the dominate convergence theorem, we have for almost all ξ,

lim
n→∞

1

n

n
∑

k=1

Pξ,x(Yk ∈ A) = Φ(A× Ω) for every x ∈ X .

Thus (3.11) holds with µ(A) = Φ(A× Ω), so we can use Theorem 3.5 to get (3.12) and (3.13).

3.4 Central limit theorem

When the auxiliary Markov chain Y is a classical random walk on X ⊂ R, we know that Yn

satisfies a central limit theorem. Such results have been extended to the framework of random
walk in random environment (see e.g. [1]) and some more general Markov chains (see e.g. [19]).
It leads us to state the convergence of proportions in the case when Yn satisfies a central limit
theorem.

Theorem 3.6. Let X ⊂ R. We assume that for almost all ξ, Yn satisfies a central limit theorem:
there exits a sequence of random variables {(an(ξ), bn(ξ)} satisfying bn(ξ) > 0 such that

lim
n→∞

Pξ,x

(

Yn − an(ξ)

bn(ξ)
≤ y

)

= Φ(y) for every x ∈ X , (3.14)

where Φ is a continuous function on R. If for each r ∈ N fixed,

lim
n→∞

bn(ξ)

bn−r(T rξ)
= 1 and lim

n→∞

an(ξ)− an−r(T
rξ)

bn−r(T rξ)
= 0 a.s., (3.15)

then we have for almost all ξ,

Zn(−∞, bn(ξ)y + an(ξ)]

Pn
→ Φ(y)W in Pξ-L

2, (3.16)

and conditionally on the non-extinction event,

Zn(−∞, bn(ξ)y + an(ξ)]

Nn
→ Φ(y) in Pξ-probability. (3.17)

Example 3.5. Branching random walk on R with random environment in time.

This model is considered in Huang & Liu [24]. The environment ξ = (ξn)n∈N is a stationary
and ergodic process indexed by time n ∈ N. Each realization of ξn corresponds to a distribution
ηn = ηξn on N⊗RN. Given the environment ξ, the process is formed as follows: at time n, each
particle u of generation n, located at X(u) ∈ R, is replaced by N(u) new particles of generation
n+1 which scattered on R with positions determined by X(ui) = X(u)+Li(u), where the point
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process (N(u);L1(u), L2(u), · · · ) has distribution ηn. To fit with the notations of this paper, we
can see that

pk(ξn) = ηn(k,R × R× · · · ),

p
(k,i)
ξn

(x, y) = ηn(k,R
i−1 × {y − x} × Rk−i) =: q

(k,i)
ξn

(y − x),

Qn(x, y) =
1

mn

∞
∑

k=0

pk(ξn)

k
∑

i=1

q
(k,i)
ξn

(y − x) =: qn(y − x).

We note that for any measurable function f on R,

∫

f(t)qn(dt) =
1

mn
Eξ

N(u)
∑

i=1

f(Li(u)) (u ∈ Tn).

Hence qn is the normalized intensity measure of the point process (N(u);L1(u), L2(u), · · · ) for
u ∈ Tn. We define

Yn = ζ0 + ζ1 + · · ·+ ζn,

where ζj is independent of each other under Pξ and the distribution of ζj for j ≥ 1 is qj. Then
Yn is a non-homogeneous Markov chain, whose transition kernel satisfies

Pξ(Yn+1 = y|Yn = x) = qn(y − x) = Qn(x, y).

Let µn =
∫

R
tqn(dt) and σ2

n =
∫

R
(t− µn)qn(dt). If |µ0| < ∞ a.s. and E(σ2

0) ∈ (0,∞), according
to Huang & Liu [24], the sequence (qn) satisfies a central limit theorem:

q1 ∗ · · · ∗ qn(bn(ξ)y + an(ξ)) → Φ(y) a.s.,

where

an(ξ) =

n−1
∑

i=0

µn, bn(ξ) =

(

n−1
∑

i=0

σ2
n

)1/2

and Φ is the distribution function of the standard normal distribution. It follows that (3.14)
holds for almost all ξ. Moreover, by the ergodic theorem, (3.15) can be verified. Thus we can
apply Theorem 3.6 to this model and obtain (3.17) under the hypothesis given above. This result
can also be deduced from [24], where the almost sure convergence of (3.17) is shown though some
tedious calculations.

Example 3.6. Branching random walk on Z with random environment in time and in

locations. This model is considered in Liu [27]. Let ξ = (ξn)n∈N be a stationary and ergodic
process denoting the environment in time, and ω = (ωx)x∈Z, which denotes the environment in
locations, be another stationary and ergodic process taking values in [0, 1]. The two sequences
ξ, ω are supposed to be independent of each other. Given the environment (ξ, ω), each u of
generation n, located at X(u) ∈ Z, is replaced at time n+1 by k new particles with probability
pk(ξn), which move immediately and independently to x + 1 with probability ωx and to x − 1
with probability 1− ωx. Namely, the position of ui is determined by

P(ξ,ω)(X(ui) = y|X(u) = x) = Q(x, y) :=

{

ωx if y = x+ 1;
1− ωx if y = x− 1,

where P(ξ,ω) denotes the conditional probability given the environment (ξ, ω). Notice that when
the environment in locations ω is fixed, this process is the just one considered in Example 3.2
with the state space X = Z and p(x, y) = Q(x, y). So the transition probability of the Markov
chain Yn is Q, which only depends on the environment in locations ω and is independent of
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the environment in time ξ. We can regard Yn as a random walk on Z in random environment
which is studied in Alili [1]. By Theorem 6.3 of Alili [1] and the continuity of Φ, under some
hypothesis, we have for every ω,

lim
n→∞

Pω,x

(

Yn − nγ√
n

≤ y

)

= Φ(y) for every x ∈ Z,

where Φ is the distribution function of the normal distribution N (0,D), and γ,D are two explicit
constants (see [1] for details). Therefore, we can apply Theorem 3.6 and obtain (3.16) and (3.17)
under the probability P(ξ,ω).

4 Proof of Propositions 2.1 and 2.2

Proposition 2.1 is a consequence of the following result with f(x) = 1A(x) − µ(A). It is
extended hereafter to some class of unbounded functions f .

Lemma 4.1. Let f be a bounded measurable function on X . We assume that

(i) Nn → ∞ as n → ∞;

(ii) lim supn→∞ P(|Un ∧ Vn| ≥ K) → 0 as K → ∞;

(iii) for all u ∈ T and x ∈ X ,
lim
n→∞

Ru(n, x) = 0,

where
Ru(n, x) = E

[

f(X(U (u)
n ))

∣

∣

∣
X(u) = x

]

.

Then
∑

u∈Tn
f(X(u))

Nn
→ 0 in L2.

Proof. We first notice that

E

(

∑

u∈Tn
f(X(u))

Nn

)2

=
1

N2
n

E

[

∑

u∈Tn

f2(X(u))

]

+
1

N2
n

E

[

∑

u,v∈Tn

u 6=v

f(X(u))f(X(v))

]

.

We need to prove that both terms in the right side go to 0 as n → ∞. For the first term, since
f is bounded, there exists a constant C such that |f | ≤ C. By (i),

1

N2
n

E

[

∑

u∈Tn

f2(X(u))

]

=
Ef2(Un)

Nn
≤ C2

Nn
→ 0 as n → ∞.

The second term can be decomposed as

1

N2
n

E









∑

u,v∈Tn

u 6=v

f(X(u))f(X(v))









=
1

N2
n

n−1
∑

r=0

E









∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

∑

wiũ∈Tn−r−1(wi)
wjṽ∈Tn−r−1(wj)

f(X(wiũ))f(X(wjṽ))









=
K
∑

r=0

EAn,r +
n−1
∑

r=K+1

EAn,r,
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where K is a fixed integer suitable large, and

An,r =
1

N2
n

∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

∑

wiũ∈Tn−r−1(wi)
wjṽ∈Tn−r−1(wj)

f(X(wiũ))f(X(wjṽ)).

It is clear that

EAn,r =
1

N2
n

∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

∑

wiũ∈Tn−r−1(wi)
wjṽ∈Tn−r−1(wj)

Ef(X(wiũ))f(X(wjṽ))

=
∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

an,r(wi,wj)Rn,r(wi,wj),

where

an,r(wi,wj) =
Nn−r−1(wi)Nn−r−1(wj)

N2
n

and
Rn,r(wi,wj) = E [Rwi(n− r − 1,X(wi))Rwj (n− r − 1,X(wj))] .

As |Ru(n, x)| ≤ C for all u,n and x,

n−1
∑

r=K+1

EAn,r ≤ C2
n−1
∑

r=K+1

∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

an,r(wi,wj)

= C2
n−1
∑

r=K+1

P(|Un ∧ Vn| = r)

≤ C2P(|Un ∧ Vn| ≥ K + 1).

By (ii), lim supn→∞ P(|Un ∧ Vn| ≥ K + 1) → 0 as K → ∞. Thus lim supn→∞

∑n−1
r=K+1EAn,r is

negligible for K large enough. For 0 ≤ r ≤ K, the fact that Ru(n− r− 1, x) goes to zero for a.e.
x and is bounded by C with respect to x enables us to apply the dominate convergence theorem
and get

Rn,r(wi,wj) → 0 as n → ∞.

Adding that an,r(wi,wj) is bounded by 1 yields

K
∑

r=0

EAn,r → 0 as n → ∞.

This completes the proof.

We give here an extension of the previous result, to get asymptotic results on unbounded
functions (such as f(x) = xα).

Lemma 4.2. Let f be a measurable function on X . We assume that

(i) Ef2(Un)/Nn → 0 as n → ∞;

(ii) there exists a function g such that for all n, u ∈ T and x ∈ X , |Ru(n, x)| ≤ g(x);

(iii) Eg(X(ui)g(X(uj))) ≤ β|u| for ui, uj ∈ T1(u) and i 6= j, and

lim sup
K→∞

lim sup
n→∞

Cn,K = 0,

where Cn,K =
∑n−1

r=K P(|Un ∧ Vn| = r)βr;

14



(iv) for all u ∈ T and x ∈ X , limn→∞Ru(n, x) = 0.

Then
∑

u∈Tn
f(X(u))

Nn
→ 0 in L2.

Proof. According to the proof of Proposition 4.1, here we only need to show that lim supn
∑n−1

r=K+1 EAn,r →
0 as K → ∞. By (ii) and (iii), for w ∈ Tr,

|Rn,r(wi,wj)| ≤ Eg(X(wi)g(X(wj))) ≤ βr,

so that

n−1
∑

r=K+1

EAn,r ≤
n−1
∑

r=K+1

∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

an,r(wi,wj)βr = Cn,K .

Letting successively n and K go to ∞ yields the result.

Proposition 2.2 is a result of Lemma 4.3 below, with f(x) = 1A(x) − µ(A), which also can
be extended to a result similar to Lemma 4.2 for unbounded functions f , but here we omit to
state it for technical convenience.

Lemma 4.3. Let f be a bounded measurable function on X . We assume that

(i) Nn → ∞ as n → ∞;

(ii) lim supn→∞ P(|Un ∧ Vn| ≥ n−K) → 0 as K → ∞;

(iii) limn→∞ supu∈T |Ru(n,X(u))| = 0.

Then
∑

u∈Tn
f(X(u))

Nn
→ 0 in L2.

Proof. Similar to the proof of Lemma 4.1, but we split

n−1
∑

r=0

EAn,r =

n−K−1
∑

r=0

EAn,r +

n−1
∑

r=n−K

EAn,r,

and show the negligibility of the two terms respectively. By (ii), we fist have

n−1
∑

r=n−K

EAn,r ≤ C2 lim sup
n→∞

P(|Un ∧ Vn| ≥ n−K) → 0 as K → ∞.

Now we consider
∑n−K−1

r=0 EAn,r. For r ≤ n−K − 1 and wi,wj ∈ T1(w) (w ∈ Tr, i 6= j),

|Rn,r(wi,wj)| ≤ E |Rwi(n− r − 1,X(wi))Rwj(n− r − 1,X(wj))|

≤ sup
k≥K

E

(

sup
u∈T

|Ru(k,X(u))|2
)

.

It follows that

n−K−1
∑

r=0

EAn,r ≤
n−K−1
∑

r=0

∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

an,r(wi,wj) sup
k≥K

E

(

sup
u∈T

|Ru(k,X(u))|2
)

= P(|Un ∧ Vn| ≤ n−K − 1) sup
k≥K

E

(

sup
u∈T

|Ru(k,X(u))|2
)

≤ sup
k≥K

E

(

sup
u∈T

|Ru(k,X(u))|2
)

.
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By (iii) and the dominate convergence theorem, we have

lim
n→∞

E

(

sup
u∈T

|Ru(n,X(u))|2
)

= 0.

Thus supn
∑n−K−1

r=0 EAn,r → 0 as K → ∞.

5 Proofs for branching Markov chains in random environments

In this section, we focus on the process in random environments and present proofs for the
theorems stated in Section 3.

5.1 Many to one formula

Lemma 5.1. For each x ∈ R, u ∈ T and any measurable function fξ,n on X ,

Eξ [fξ,n(Yn(u)) | Y0(u) = x] =

Eξ

[

∑

uv∈Tn(u)
fξ,n(X(uv))

∣

∣

∣

∣

X(u) = x

]

EξN(u)
. (5.1)

Proof. By the definition of {Yn(u)}, it is easy to see that

Eξ [fξ,n(Yn(u))|Y0(u) = x]

= Q|u| · · ·Q|u|+n−1fξ,n(x)

= (m|u| · · ·m|u|+n−1)
−1 ×

∞
∑

k0,··· ,kn−1=0

k0
∑

i0=1

· · ·
kn−1
∑

in−1=1

pk0(ξ|u|) · · · pkn−1(ξ|u|+n−1)P
(k0,i0)
ξ0

· · ·P (kn−1,in−1)
ξn−1

fξ,n(x).

On the other hand, we notice that

Eξ,x





∑

ui∈T1(u)

fξ,n(X(ui))



 (5.2)

= Eξ

[

∑

ui∈T1(u)

fξ,n(X(ui))

∣

∣

∣

∣

X(u) = x

]

=

∞
∑

k=0

Eξ

[ k
∑

i=1

fξ,n(X(ui))

∣

∣

∣

∣

N(u) = k,X(u) = x

]

Pξ(N(u) = k)

=

∞
∑

k=0

pk(ξ|u|)

k
∑

i=1

P
(k,i)
ξ|u|

fξ,n(x). (5.3)

Thus,
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Eξ,x

[

∑

uv∈Tn

fξ,n(X(uv))

]

= Eξ,x





∑

uv∈Tn−1(u)

∑

uvi∈T1(uv)

fξ,n(X(uvi))





= Eξ,x





∑

uv∈Tn−1(u)

Eξ





∑

uvi∈T1(uv)

fξ,n(X(uvi))

∣

∣

∣

∣

Fn−1,X(uv)









= Eξ,x





∑

uv∈Tn−1(u)

Eξ,X(uv)





∑

uvi∈T1(uv)

fξ,n(X(uvi))









=
∞
∑

k=0

k
∑

i=1

pk(ξ|u|+n−1)Eξ,x





∑

uv∈Tn−1(u)

P
(k,i)
ξ|u|+n−1

fξ,n(X(uv))



 .

By iteration, we obtain

Eξ,x

[

∑

uv∈Tn

fξ,n(X(uv))

]

=

∞
∑

k0,··· ,kn−1=0

k0
∑

i0=1

· · ·
kn−1
∑

in−1=1

pk0(ξ|u|) · · · pkn−1(ξ|u|+n−1)

× P
(k0,i0)
ξ|u|

· · ·P(k|u|+n−1,in−1)

ξ|u|+n−1
fξ,n(x),

so that
Eξ,x

[

∑

uv∈Tn(u)
fξ,n(X(uv))

]

EξNn(u)
= Eξ,x [fξ,n(Yn(u))] .

It ends up the proof.

5.2 Proof of the law of large numbers in generation n

Following the definition of Y in Section 3.1, for each u ∈ T, we define the Markov chain Y (u)
associated to u by

Pξ(Yj+1(u) = y|Yj(u) = x) = Q(T |u|+jξ;x, y).

In particular, Yn = Yn(∅). Moreover, for any measurable function f on X , we denote throughout

P
(k,i)
ξn

f(x) :=

∫

f(y)P
(k,i)
ξn

(x, dy) and Qjf(x) :=

∫

f(y)Qj(x, dy).

First, Lemma 5.1 below reveals the mean relation between Yn(u) and the tree T(u), in the
same vein as [21, 15, 22].

Proposition 5.1. Let νξ be the distribution of X(∅). We assume that for almost all ξ, there
exist a function g, an integer n0 = n0(ξ) and non negative numbers (αn, βn)= (αn(ξ), βn(ξ))
such that

(H1) for all n ≥ n0 and x ∈ X ,

sup
0≤r<n

Qr · · ·Qn−1|fξ,n|(x) ≤ g(x).

(H2) for every n ≥ n0,

νξQ0 · · ·Qn−1f
2
ξ,n ≤ αn, αn/Pn → 0 (n → ∞);
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(H3) for every n ∈ N,

νξQ0 · · ·Qn−1JTnξ(g ⊗ g) ≤ βn,
∑

n

βn
Pnm2

n

< ∞,

where Jξ(fξ ⊗ gξ)(x) := Eξ,x
∑

i,j∈T1
i 6=j

fξ(X(i))gξ(X(j));

(H4) for each r fixed, Qr · · ·Qn−1fξ,n(x) → 0 as n → ∞ for every x ∈ X .

Then we have for almost all ξ,

∑

u∈Tn
fξ,n(X(u))

Pn
→ 0 in Pξ-L

2.

Proof. We need to show that

Eξ

(

∑

u∈Tn
fξ,n(X(u))

Pn

)2

→ 0 a.s. as n → ∞.

Similar to the proof of Proposition 4.1, we write

Eξ

(

∑

u∈Tn
fξ,n(X(u))

Pn

)2

=
1

P 2
n

Eξ

[

∑

u∈Tn

f2
ξ,n(X(u))

]

+
K
∑

r=0

EξAn,r +
n−1
∑

r=K+1

EξAn,r, (5.4)

where

An,r :=
1

P 2
n

∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

∑

wiũ∈Tn−r−1(wi)

∑

wjṽ∈Tn−r−1(wj)

fξ,n(X(wiũ))fξ,n(X(wjṽ)),

and K = K(ξ)(≥ n0) is suitable large. By Lemma 5.1 and condition (H2), for n ≥ n0,

1

P 2
n

Eξ

[

∑

u∈Tn

f2
ξ,n(X(u))

]

=
1

Pn
Eξf

2
ξ,n(Yn)

=
1

Pn
νξQ0 · · ·Qn−1f

2
ξ,n

≤ αn

Pn
→ 0 a.s. as n → ∞.

Again by Lemma 5.1, for every w ∈ Tr, i 6= j ∈ N, denoting nr := n− r− 1 in the computation
below,

B(wi,wj)

:= Eξ

[

∑

wiũ∈Tnr (wi)

fξ,n(X(wiũ))
∑

wjṽ∈Tnr (wj)

fξ,n(X(wjṽ))

∣

∣

∣

∣

Fr+1,X(wi),X(wj)

]

= Eξ,X(wi)

[

∑

wiũ∈Tnr (wi)

fξ,n(X(wiũ))

]

Eξ,X(wj)

[

∑

wjṽ∈Tnr (wj)

fξ,n(X(wjṽ))

]

= Eξ,X(wi) [fξ,n(Ynr
(wi))]Eξ [Nnr

(wi)]Eξ,X(wj) [fξ,n(Ynr
(wj))]Eξ [Nnr

(wj)]

= m2
r+1 · · ·m2

n−1Qr+1,nfξ,n(X(wi))Qr+1,nfξ,n(X(wj)),
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with the notation Qr,n = Qr · · ·Qn−1. Thus,

EξAn,r

=
1

P 2
n

Eξ









∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

B(wi,wj)









=
1

P 2
r+1

Eξ









∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

Qr+1,nfξ,n(X(wi))Qr+1,nfξ,n)(X(wj))









=
1

Prm2
r

νξQ0 · · ·Qr−1JT rξ(Qr+1,nfξ,n ⊗Qr+1,nfξ,n).

For r ≥ K + 1, by conditions (H1) and (H3),

n−1
∑

r=K+1

EξAn,r ≤
∞
∑

r=K+1

1

Prm2
r

νξQ0 · · ·Qr−1JT rξ(g ⊗ g)

≤
∞
∑

r=K+1

βr
Prm2

r

→ 0 a.s. as K → ∞.

It remains to consider 0 ≤ r ≤ K. For almost all ξ, for each r fixed, by (H4),

Qr+1,nfξ,n ⊗Qr+1,nfξ,n(y, z)
n→∞−→ 0 for each (y, z) ∈ X 2.

Notice that by (H1) and (H3), for n ≥ n0(ξ),

νξQ0 · · ·Qr−1JT rξ(Qr+1,nfξ,n ⊗Qr+1,nfξ,n)

≤ νξQ0 · · ·Qr−1JT rξ(g ⊗ g) ≤ βr a.s.

By the dominated convergence theorem,
∑K

r=0 EξAn,r → 0 a.s. as n → ∞. The proof is
completed.

In particular, applying Proposition 5.1 with fξ,n = fξ−π(fξ), we obtain the following result.
We denote

Fξ,n = νξQ0 · · ·Qn−1.

Proposition 5.2. Let νξ be the distribution of X(∅). We assume that for almost all ξ, there
exist a function g, an integer n0 = n0(ξ) and non negative numbers (αn, βn)= (αn(ξ), βn(ξ))
such that

(H1) for all n ≥ n0 and x ∈ X ,

sup
0≤r<n

Qr · · ·Qn−1|fξ|(x) ≤ g(x);

(H2) for every n ≥ n0, Fξ,n(f
2
ξ ) ≤ αn, and αn/Pn → 0 (n → ∞).

(H3) for every n ∈ N,

max{Fξ,n(JTnξ(g ⊗ g)), Fξ,n(JTnξ(g ⊗ 1)), Fξ,n(JTnξ(1⊗ 1))} ≤ βn,
∑

n

βn
Pnm2

n

< ∞;
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(H4) there exists π(fξ) ∈ R bounded by some constant M such that for each r fixed,

lim
n→∞

Qr · · ·Qn−1fξ(x) = π(fξ) for every x ∈ X .

Under (H1)-(H4), if additionally Wn → W in Pξ-L
2, then we have for almost all ξ,

∑

u∈Tn
fξ(X(u))

Pn
→ π(fξ)W in Pξ-L

2.

In particular, if fξ = f , then conditions (H1) and (H4) can be simplified to

(H1’) Q0 · · ·Qn−1|f |(x) ≤ g(x) for all n ∈ N and x ∈ X ;

(H4’) there exists π(f) ∈ R such that Q0 · · ·Qn−1f(x) → π(f) as n → ∞ for every x ∈ X .

Proof of Theorem 3.2. We apply Proposition 5.1 with fξ,n(x) = 1A(x) − µξ,n(A). Indeed, for
n large enough, fξ,n is bounded by some constant M . We can let g = M , αn = M2 and
βn = ETnξN

2. The assumptions (3.1) ensure that a.s.,

αn

Pn
→ 0,

∑

n

βn
Pnm2

n

< ∞ and Wn → W in Pξ-L
2.

Then Proposition 5.1 yields (3.3). Moreover EξW = 1 implies that q(ξ) = Pξ(W = 0) < 1, so
{W > 0} = {Nn → ∞} Pξ-a.s.. Finally, (3.4) comes from (3.3) and the fact that Wn → W > 0
a.s. on the non-extinction event {Nn → ∞}.

Proof of Corollary 3.3. We apply Proposition 5.2 with f(x) = 1A(x). Take g = 1, αn = 1 and
βn = ETnξN

2.

5.3 Adaptation of the proof for backward law of large numbers

Proof of Corollary 3.4 (3.9) . Let fξ(x) = 1A(x)−µξ(A). Clearly, fξ is bounded by 1. Like the
proof of Proposition 5.1, we still have (5.4) with fξ in place of fξ,n, but here and throughout
this proof, Tk(u) (|u|+ k ≤ n) denotes the set of individuals in kth generation of a tree rooted
at u in the environment ξ(n). Firstly, we have a.s.,

1

P 2
n

Eξ

[

∑

u∈Tn

f2
ξ (X(u))

]

≤ 1

Pn
→ 0 as n → ∞.

By Lemma 5.1, for |u| < n and k ≤ n− |u|,

Eξ,x
∑

uv∈Tk(u)
fξ(X(uv))

Eξ(n)Nk(u)
= Qn−|u|−1 · · ·Qn−|u|−kfξ(x). (5.5)

Therefore,

EξAn,r = (mn−1 · · ·mn−r)
−2Eξ









∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

gξ,nr
(X(wi))gξ,nr

(X(wj))









,
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where gξ,n(x) = Qn−1 · · ·Q0fξ(x) and nr := n − r − 1. For r ≥ K + 1, since m0 > a and
EξN

2 ≤ (EξN
p)2/p ≤ b2/p, we get

n−1
∑

r=K+1

EξAn,r ≤
n−1
∑

r=K+1

(mn−1 · · ·mn−rm
2
nr
)−1ETnr ξN

2

≤
∞
∑

r=K+1

a−(r+2)b2/p → 0 as K → ∞.

Now consider 0 ≤ r ≤ K. The fact that m0 > a and gξ,n is bounded by 1 yields

EξAn,r ≤ a−2rEξ





∑

w∈Tr

N(w)
∑

wi∈T1(w)

|gξ,nr
(X(wi))|





≤ a−2rEξ



N
(n)
r+1

∑

w∈Tr+1

|gξ,nr
(X(w))|





= Sn,r + Tn,r,

where

Sn,r = a−2rEξ



N
(n)
r+11{N(n)

r+1≤K}

∑

w∈Tr+1

|gξ,nr
(X(w))|





and

Tn,r = a−2rEξ



N
(n)
r+11{N(n)

r+1>K}

∑

w∈Tr+1

|gξ,nr
(X(w))|



 .

We first deal with Sn,r and fix r ≥ 0. Let us label the individuals in generation r+1 as 1, 2, · · · .
For j > N

(n)
r+1, the value of gξ,nr

(X(j)) will be 0 by convention. So

Sn,r ≤ Ka−2r
K
∑

j=1

Eξ|gξ,nr
(X(j))|.

By (3.5), for almost all ξ,

gξ,n(x) = Pξ(n),x(Yn ∈ A)− µξ(A)
n→∞−→ 0 for every x ∈ X .

By the bounded convergence theorem, we have for each r fixed, limn Sn,r = 0 a.s. On the other
hand, following arguments in Huang & Liu [23], the fact that

Eξ

(

N

m0

)p

< b/ap

for some p > 2 implies that for all n,

sup
0≤r≤n

Eξ(n)

[

W
(n)
r+1

]p
≤ Cp

for some constant Cp depending on p. Thus for each r fixed and δ ∈ (0, p − 2),

Tn,r ≤ a−2rEξ(n)

[

(

N
(n)
r+1

)2
1
{N

(n)
r+1>K}

]

= K−δa−2rEξ(n)

[

N
(n)
r+1

]2+δ

≤ Cr,δK
−δ −→ 0

as K → ∞, where Cr,δ is a constant depending on r and δ. Therefore, a.s., limn EξAn,r = 0 for
each r fixed, so that

∑

0≤r≤K EξAn,r → 0 as n → ∞. So (3.9) is proved.
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Proof of Corollary 3.4 (3.10). Since supn Eξ(n)

[

W
(n)
n

]2
≤ C for some constant C, by the bounded

convergence theorem, (3.9) implies that

Z
(n)
n (A)− µξ(A)N

(n)
n

Pn
→ 0 in L2 and in P-probability. (5.6)

For any ε > 0 and α > 0,

P

(

∣

∣

∣

∣

Z
(n)
n (A)

N
(n)
n

− µξ(A)

∣

∣

∣

∣

> ε,N (n)
n > 0

)

≤ P

(

∣

∣

∣

∣

Z
(n)
n (A) − µξ(A)N

(n)
n

Pn

∣

∣

∣

∣

> αε

)

+ P(0 < W (n)
n < α). (5.7)

By (5.6), it is clear that the first term in the right side of the inequality above tends to 0 as

n → ∞. When the environment is reversible in law, under P, W
(n)
n has the same distribution as

Wn of the forward case. Thus we have

P(0 < W (n)
n < α) = P(0 < Wn < α).

In the forward case, it is known that Wn tends to a limit W a.s., and

lim
n→∞

P(Nn = 0) = P(Nn = 0 for some n) = P(W = 0) a.s.

when E logm0 > 0 and E N
m0

log+ N < ∞. Therefore we have

lim sup
n→∞

P(0 < Wn < α) = P(0 < W ≤ α).

Since limα↓0 P(0 < W ≤ α) = 0, for any η > 0, there exists α > 0 small enough such that
P(0 < W ≤ α) ≤ η. Taking the superior limit in (5.7), we obtain

lim sup
n→∞

P

(

∣

∣

∣

∣

Z
(n)
n (A)

N
(n)
n

− µξ(A)

∣

∣

∣

∣

> ε,N (n)
n > 0

)

≤ P(0 < W ≤ α) ≤ η.

Letting η → 0 completes the proof.

5.4 Proof of the law of large numbers on the whole tree

Proposition 5.3 below is in the same vein as Proposition 5.2. We recall the notation Fξ,n =
νξQ0 · · ·Qn−1.

Proposition 5.3. Let νξ be the distribution of X(∅). We assume that for almost all ξ, there
exist non negative numbers (αn, βn)= (αn(ξ), βn(ξ)) such that

(H1) for all n ∈ N and x ∈ X ,

sup
0≤r<n

Qr · · ·Qn−1|fξ|(x) ≤ g(x);

(H2) for every n ∈ N,

max{Fξ,n(f
2
ξ ), Fξ,n(|fξ|g), Fξ,n(g)} ≤ αn,

∑

n

αn

Pn
< ∞;
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(H3) for every n ∈ N,

max{Fξ,n(JTnξ(g ⊗ g)), Fξ,n(JTnξ(g ⊗ 1)), Fξ,n(JTnξ(1⊗ 1))} ≤ βn,
∑

n

βn
Pnm2

n

< ∞;

(H4) there exists π(fξ) ∈ R bounded by some constant M such that for each r fixed,

lim
n→∞

1

n− r

n
∑

k=r+1

Qr · · ·Qk−1fξ(x) = π(fξ) for every x ∈ X .

In particular, if fξ = f , then conditions (H1) and (H4) can be simplified to

(H1’) Q0 · · ·Qn−1|f |(x) ≤ g(x) for all n ∈ N and x ∈ X ;

(H4’) there exists π(f) ∈ R such that 1
n

∑n
k=1Q0 · · ·Qk−1f(x) → π(f) as n → ∞ for every

x ∈ X .

Proof of Proposition 5.3. We only prove the case where π(fξ) = 0. For general case, it suffices
to consider fξ − π(fξ) in place of fξ. We shall prove that under the hypothesis (H1)-(H4), a.s.,

Eξ

(

1

n

∑

u∈Γn

fξ(X(u))

P|u|

)2

→ 0 as n → ∞. (5.8)

Notice that Γn =
⋃n

k=1 Tk is the set of all individuals in the first n generation. For u, v ∈ Γn,
we discuss for two cases: (i) u and v in the same life line, which means that one is an ancestor
of the other, i.e. u ∧ v = u or v; (ii) the contrary case, i.e. u ∧ v 6= u, v. So we can write

Eξ

(

1

n

∑

u∈Γn

fξ(X(u))

P|u|

)2

=
1

n2
Eξ





∑

u,v∈Γn

fξ(X(u))fξ(X(v))

P|u|P|v|





= Sn,ξ + Tn,ξ,

where

Sn,ξ =
1

n2
Eξ







∑

u,v∈Γn

u∧v=u or v

fξ(X(u))fξ(X(v))

P|u|P|v|






,

and

Tn,ξ =
1

n2
Eξ









∑

u,v∈Γn

u∧v 6=u,v

fξ(X(u))fξ(X(v))

P|u|P|v|









.

We need to prove that Sn,ξ, Tn,ξ tend to 0 a.s. as n → ∞.
At first, Sn,ξ can be decomposed as

Sn,ξ =
2

n2
Eξ







∑

u,v∈Γn

u<v

fξ(X(u))fξ(X(v))

P|u|P|v|






+

1

n2
Eξ

[

∑

u∈Γn

f2
ξ (X(u))

P 2
|u|

]

. (5.9)
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For the second term in the right side of the equality above, we use (H2) and get

1

n2
Eξ

[

∑

u∈Γn

f2
ξ (X(u))

P 2
|u|

]

=
1

n2

n
∑

r=1

Eξ

[

∑

u∈Tr

f2
ξ (X(u))

P 2
|r|

]

=
1

n2

n
∑

r=1

P−1
r νξQ0 · · ·Qr−1f

2
ξ

≤ 1

n2

∞
∑

r=1

P−1
r αr → 0 as n → ∞,

since
∑

n P
−1
n αn < ∞ a.s.. For u, v ∈ Γn with u < v, we write v = uṽ with |ṽ| = k− r if u ∈ Tr

and v ∈ Tk (k > r). Then, using (H2) and the a.s. convergence of
∑

n P
−1
n αn again, we have

a.s.,

2

n2
Eξ







∑

u,v∈Γn

u<v

fξ(X(u))fξ(X(v))

P|u|P|v|







=
2

n2

n
∑

r=1

n
∑

k=r+1

Eξ





∑

u∈Tr

∑

uṽ∈Tk−r(u)

fξ(X(u))fξ(X(uṽ))

P|r|P|k|





=
2

n2

n
∑

r=1

n
∑

k=r+1

P−1
r P−1

k Eξ





∑

u∈Tr

fξ(X(u))Eξ,X(u)





∑

uṽ∈Tk−r(u)

fξ(X(uṽ))









=
2

n2

n
∑

r=1

n
∑

k=r+1

P−2
r Eξ

[

∑

u∈Tr

fξ(X(u))Qr · · ·Qk−1fξ(X(u))

]

≤ 2(n− r)

n2

n
∑

r=1

P−1
r νξQ0 · · ·Qr−1|fξ|g

≤ 2

n

∞
∑

r=1

P−1
r αr → 0 as n → ∞.

Hence we have Sn,ξ → 0 a.s. as n → ∞.
Now we consider Tn,ξ. For K = K(ξ) fixed suitable large,

Tn,ξ =

K
∑

r=1

EξAn,r +

n−1
∑

r=K+1

EξAn,r,

where

An,r =
1

n2

n
∑

k,l=r+1

∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

∑

wiũ∈Tk−r−1(wi)
wjṽ∈Tk−r−1(wj)

fξ(X(wiũ))fξ(X(wiṽ))

PkPl
.
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With the notation Qr,n = Qr · · ·Qn−1, we compute

EξAn,r

=
1

n2

n
∑

k,l=r+1

(PkPl)
−1Eξ









∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

Eξ,X(wi)





∑

wiũ∈Tk−r−1(wi)

fξ(X(wiũ))





× Eξ,X(wi)





∑

wjṽ∈Tl−r−1(wj)

fξ(X(wjṽ))









=
1

n2

n
∑

k,l=r+1

P−2
r+1Eξ









∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

Qr+1,kfξ(X(wi))Qr+1,lfξ(X(wj))









=
(n− r)2

n2
P−2
r+1Eξ









∑

w∈Tr

∑

wi,wj∈T1(w)
i 6=j

Rn,r(X(wi))Rn,r(X(wj))









=
(n− r)2

n2

1

Prm2
r

νξQ0 · · ·Qr−1JT r+1ξ(Rr,n ⊗Rr,n),

where

Rn,r(x) =
1

n− r

n
∑

k=r+1

Qr+1,kfξ(x).

we oberve that thanks to (H1), sup0≤r<n |Rr,n| ≤ g for every n. And by (H4), for almost all ξ,
for each r fixed,

Rn,r ⊗Rn,r(y, z)
n→∞−→ 0 for each (y, z) ∈ X 2.

Following similar arguments in the proof of Proposition 5.1, we see Tn,ξ → 0 a.s. as n → ∞.
The proof is completed.

Lemma 5.2. Let p > 1. If E(logm0) > 0 and E

(

logEξ

(

N
m0

)p)

< ∞, then

lim
n→∞

1

n

n
∑

k=1

Wk = W in Pξ-L
p.

Proof. By Theorems 2.1 and 2.2 in Huang & Liu [23], the integrability assumptions ensure that
a.s.,

0 < EξW
p < ∞ and lim

k→∞
ρkEξ|Wk −W |p = 0,

for some ρ > 1. It implies that

Eξ|Wk −W |p ≤ Cξρ
k a.s. (5.10)

for some Cξ < ∞. Therefore, a.s.,

Eξ

∣

∣

∣

∣

∣

1

n

n
∑

k=1

Wk −W

∣

∣

∣

∣

∣

p

= Eξ

∣

∣

∣

∣

∣

1

n

n
∑

k=1

(Wk −W )

∣

∣

∣

∣

∣

p

≤ 1

n

n
∑

k=1

Eξ|Wk −W |p

≤ Cξ
1

n

∞
∑

k=1

ρ−k → 0 as n → ∞,
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since
∑∞

k=1 ρ
−k < ∞.

Proof of Theorem 3.5. By Lemma 5.2, 1
n

∑n
k=1Wk → W in Pξ-L

2. Applying Proposition 5.3
with f(x) = 1A(x), g = 1, αn = 1 and βn = ETnξN

2, we obtain (3.12).
Now we prove (3.13). Since Wn → W a.s., for any δ > 0, there exists n0 such that ∀n ≥ n0,

|Wn −W | < δ and

∣

∣

∣

∣

1

Wn
− 1

W

∣

∣

∣

∣

< δ (5.11)

a.s. on the non-extinction event. We write

1

n

n
∑

k=1

Zk(A)

Nk
− µ(A)

=
1

n

n0
∑

k=1

Zk(A)

Pk

(

1

Wk
− 1

W

)

+
1

n

n
∑

k=n0+1

Zk(A)

Pk

(

1

Wk
− 1

W

)

+
1

W

(

1

n

n
∑

k=1

Zk(A)

Pk
− µ(A)W

)

. (5.12)

Obviously, the first term in the right hand side of (5.12) tends to 0 a.s. on the non-extinction
event as n goes to infinity. And the convergence of the third term is from (3.12). Therefore, to
prove (3.13), we only need to show that the second term

1

n

n
∑

k=n0+1

Zk(A)

Pk

(

1

Wk
− 1

W

)

n→∞−→ 0 in Pξ-probability (5.13)

on the non-extinction event for almost all ξ. In fact, by (5.11), we have
∣

∣

∣

∣

∣

∣

1

n

n
∑

k=n0+1

Zk(A)

Pk

(

1

Wk
− 1

W

)

∣

∣

∣

∣

∣

∣

< δ(W + δ)

a.s. on the non-extinction event. The arbitrariness of δ yields (5.13).

5.5 Proof of the central limit theorem

Proof of Theorem 3.6. We shall apply Proposition 5.1 with fξ,n(x) = 1An
(x) − Φ(y), where

An = (−∞, bn(ξ)y + an(ξ)]. By (3.14) and Dini’s Theorem, we have a.s.,

lim
n→∞

sup
y∈R

∣

∣

∣

∣

Pξ,x

(

Yn − an(ξ)

bn(ξ)
≤ y

)

− Φ(y)

∣

∣

∣

∣

= 0 for every x ∈ X . (5.14)

Notice that |fξ,n| ≤ 1. Take g = 1, αn = 1 and βn = ETnξN
2. It is easy to verify that (H1)-(H3)

are satisfied. For (H4), by (5.14) and the continuity of Φ, for each r fixed,

Qr · · ·Qn−1fξ,n(x)

= PT rξ,x(Yn−r ≤ bn(ξ)y + an(ξ)) − Φ(y)

≤ sup
y∈R

∣

∣

∣

∣

PT rξ,x

(

Yn−r − an−r(T
rξ)

bn−r(T rξ)
≤ y

)

− Φ (y)

∣

∣

∣

∣

+

∣

∣

∣

∣

Φ

(

bn(ξ)y + an(ξ)− an−r(T
rξ)

bn−r(T rξ)

)

− Φ(y)

∣

∣

∣

∣

,

which goes to 0 as n → ∞ for every x ∈ X . By Proposition 5.1, a.s.,

Zn(An)

Pn
− Φ(y)

Nn

Pn
→ 0 in Pξ-L

2.

Since Wn → W a.s. and in Pξ-L
2, we get (3.16) and (3.17).
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