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Abstract 

Working memory is usually defined in cognitive psychology as a system devoted to the 

simultaneous processing and maintenance of information. However, though many models of 

working memory have been put forward during the last decades, they often leave 

underspecified the dynamic interplay between processing and storage. Moreover, the account 

of their interaction proposed by the most popular Baddeley and Hitch’s multiple-component 

model is contradicted by facts, leaving unresolved one of the main issues of cognitive 

functioning. In this article, we derive from the Time-Based Resource-Sharing model of 

working memory a mathematical function relating the cognitive load involved by concurrent 

processing to the amount of information that can be simultaneously maintained active in 

working memory. A meta-analysis from several experiments testing the effects of processing 

on storage corroborates the parameters of the predicted function, suggesting that it properly 

reflects the law relating the two functions of working memory. 
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On the law relating processing to storage in working memory 

 

The main strength of Baddeley and Hitch’s (1974) seminal work was undoubtedly to go 

beyond the unitary short-term store described by Atkinson and Shiffrin (1968) and to set the 

theoretical basis for a working memory conceived as a system devoted to the simultaneous 

maintenance and processing of information involved in complex cognitive activities. 

Accordingly, besides slave systems devoted to store information in the short term, Baddeley 

and Hitch proposed the existence of a central executive responsible for the manipulation of 

this information, thus leading to the well known multiple-component model of working 

memory. However, though this central executive was initially conceived as having also some 

capacity of storage, the further versions of the theory rapidly restricted its role to processing 

(Baddeley, 1986), thus delineating a strict structural distinction between the two functions. As 

a result, the multiple-component model considers processing and storage as independent from 

each other and fueled by specific resources. Unfortunately, as we will see, this assumption of 

independence has been repeatedly contradicted by facts, suggesting that the multiple-

component model, which has became the modal theory of working memory, provides an 

inadequate account of the main role of working memory. More surprisingly, though many 

models of working memory have subsequently been proposed (e.g., Cowan, 2005; Engle, 

Kane, & Tuholski, 1999; Ericsson & Kintsch, 1995), they have often left underspecified the 

dynamics of the relationships between processing and storage.  This is even more surprising 

that, since Baddeley and Hitch’s (1974) initial inquiry, working memory was primarily 

introduced as an interface capable of storing and processing information, as opposed to short-

term memory only having storage capacity. The aim of this article is to fill this gap by 

establishing the law relating processing to storage in working memory.  
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This article is organized in the following way. First, we show that the conception of the 

relationships between processing and storage proposed by the multiple-component theory of 

working memory is at odds with several recent findings, most of them issuing from studies 

conducted within the theoretical framework provided by our Time-Based Resource-Sharing 

model of working memory (TBRS, Barrouillet, Bernardin, & Camos, 2004). We derive from 

our theory the mathematical function governing the trade-off between the amount of 

information that can be maintained active in working memory and the cognitive load involved 

by concurrent processing, and we show that this mathematical function is corroborated by 

empirical results through a meta-analysis including previous and new studies in adults. 

Finally, we show that our theory can account for the seminal findings that led Baddeley and 

Hitch (1974) to dissociate processing from storage, and we address recent sets of data that 

have been interpreted as evidence against the existence of a trade-off between the two 

functions, the hypothesis of a time-related decay in short-term memory, and against the TBRS 

model itself. In the discussion, we assess the capacity of previous theories of working 

memory to accommodate the facts reported and to account for the law relating processing to 

storage.   

Processing and storage within the multiple-component model 

The question of the relationships between processing and storage has been at the heart 

of working memory studies from their very beginning and motivated the seminal study by 

Baddeley and Hitch (1974). Their aim was to test the modal model of Atkinson and Shiffrin 

(1968). They reasoned that if short-term memory functions as a working memory, then 

processing should be dramatically impaired when the capacity of this short-term memory is 

exhausted by maintenance requirements. Actually, Baddeley and Hitch (1974) observed in 

several experiments that short term maintenance did not dramatically impair concurrent 

processing. They concluded that processing and storage share some common resource or 
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supply, but also that they are in many respects independent and supported by distinct 

structures and mechanisms. This was the foundation of the multiple-component model in 

which slave systems would be in charge of storage, with a phonological loop for verbal 

information and a visual scratchpad for visuo-spatial information, while a central executive 

would coordinate their functioning, select appropriate strategies, and control processing. It is 

worth noting that the original model of Baddeley and Hitch (1974) conceived the central 

executive with the capacity to store information when needed and thus to supplement the 

slave systems. However, this latter assumption of a central executive as a general workspace 

with storage capacity was subsequently abandoned (Baddeley, 1986). Accordingly, it was 

argued that even a demanding storage could have virtually no impact on complex tasks 

requiring the central executive such as arithmetic verification or sentence comprehension, 

while demanding verification or reading would not impair concurrent maintenance (Logie & 

Duff, 1996; see also Duff & Logie, 2001). Thus, the multiple-component approach has clearly 

separated storage from processing functions that would be supported by different structures 

and fueled by separate pools of resource (Baddeley & Logie, 1999). 

This clear distinction has been recently blurred by the addition of a new storage 

component, the episodic buffer. According to Baddeley (2001), this buffer is assumed to be a 

limited-capacity storage system with the capacity to integrate and bind information from a 

variety of subsystems into a form of temporary representation. The underlying processing for 

this episodic memory would be carried out by the central executive that permits access to the 

episodic buffer through the medium of conscious awareness, influences its content through 

attention focusing on a given source of information, and binds together information provided 

by various sources (Baddeley, 2000). It is important to note that, within this new elaboration 

of the model, the role of the central executive is not restricted to processing. Contrary to the 

slave systems that have separate rehearsal systems independent of the central executive, the 
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maintenance of information within the episodic buffer depends on the central executive 

through attention (Repovs & Baddeley, 2006). Thus, it could be assumed that the central 

executive plays a major role in the storage function of working memory, but things are not so 

clear. Indeed, Repovs and Baddeley (2006) pointed out that  simple representation and 

maintenance may be independent of the central executive, unless it requires complex binding 

and integration of information. However, it seems difficult to establish what kind of memory 

requires complex binding and the notion of “simple” representation is rather vague. For 

example, Allen, Baddeley, and Hitch (2006) established that binding visual features to 

represent objects is not complex and could be automatic. Consequently, Allen, Hitch, and 

Baddeley (2009) proposed to think of the episodic buffer as a passive store fed by a range of 

sources. 

In summary, the introduction of the episodic buffer constitutes a major theoretical 

advance in accounting for the integration and binding of information in working memory, but 

it leaves largely unchanged the assumptions of the multiple-component model concerning the 

independence of the functions of processing and storage. As we will see in the next section, 

this assumption of independence does not resist a systematic empirical enquiry.  

Assessing the independence assumption 

Our own attempt to address the question of the relationships between processing and 

storage led us to propose the Time-Based Resource-Sharing (TBRS) model of working 

memory. In line with a well established view that conceives working memory capacity as a 

general pool of cognitive resources shared between the two functions of processing and 

storage (Case, 1985; Daneman & Carpenter, 1980; Just & Carpenter, 1992; Turner & Engle, 

1989), the main proposal of the TBRS model (Barrouillet et al., 2004) was that maintenance 

and processing of information in working memory are not independent, but rely on the same 

limited resource, which is attention. Maintenance would rely on a process of activation and 



 7 

reactivation of memory traces through attentional focusing, while goal-directed processing 

would engage the construction, selection and transformation of representations through 

attention. Attention is thus a common resource to be shared between processing and storage. 

Following Pashler’s (1998) conception of a central bottleneck and Oberauer’s (2002, 2005) 

hypothesis that the focus of attention can select only one element of knowledge at a time as 

the object of the next cognitive operation, we assumed that only one elementary cognitive 

step could take place at a time. Thus, when attention is needed for some processing episode, it 

is not available for the maintenance of memory items. Because the activation of these items 

suffers from a time-related decay as soon as attention is switched away, memory traces of the 

to-be-remembered items fade away when attention is occupied by a processing step. A 

refreshment of these items is thus needed before their complete disappearance through 

reactivation by attentional focusing. This sharing of attention would be permitted by a rapid 

and incessant switching of attention from processing to maintenance occurring during short 

pauses that would be freed while concurrent processing is running. 

Subsequently, Barrouillet, Bernardin, Portrat, Vergauwe, and Camos (2007) extended 

this model and suggested that the mechanisms responsible for both the maintenance and the 

processing functions of working memory are executive processes that can be gathered 

together in a central executive whose role is to form, maintain and transform the temporary 

representations held in working memory. These representations that integrate information 

from a variety of sources were presented as similar to those maintained within the episodic 

buffer in Baddeley’s model. Following Cowan (2005), we suggested that this integration 

would result from binding activated features from long-term memory within the focus of 

attention, executive functions being processes that retrieve, select, and combine the features 

that form working memory representations by directing attention towards the items of 

knowledge that are relevant for the task in hand. 
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Thus, contrary to the multiple-component model, the TBRS model assumes a complete 

dependence and a trade-off between processing and storage. Because memory traces fade 

away when attention is switched away, processing that occupies attention almost continuously 

should have a highly detrimental effect on concurrent maintenance by preventing refreshing 

activities to take place. By contrast, processing that allows frequent and long episodes during 

which attention is available to refresh memory traces should have a weaker impact on 

concurrent maintenance. As a consequence, we defined cognitive load (CL) as the proportion 

of time during which a given task occupies attention, thus preventing maintenance of memory 

traces: 

CL = ta / T    (1) 

where ta is the time during which attention is occupied and T the total time allowed to perform 

the task. A remarkable aspect of the model is that the impact of processing on maintenance is 

more dependent on the cognitive load this processing involves than on its nature, even if the 

TBRS model also allows for some forgetting induced by representation-based interference 

(Barrouillet et al., 2007).   

We tested this model in working memory span tasks that require the maintenance of 

memory items while performing a concurrent processing activity that involves attention. We 

predicted that recall performance (e.g., working memory span) should be strongly affected by 

this concurrent processing, and more precisely by the cognitive load it involves. For this 

purpose, we designed computer-paced working memory span tasks that allow to control 

temporal parameters, such as the reading digit span task in which participants have to 

remember series of letters while reading series of digits presented successively at a fixed 

rhythm after each letter. Cognitive load was manipulated by varying the number of digits to 

be read within the interletter intervals as well as the duration of these intervals. It turned out 

that recall performance was a function of the ratio between the number of digits to be read 
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during each interletter interval and the time allowed to read them (Barrouillet et al., 2004). 

We argued that this ratio reflects the cognitive load involved by the reading digit task. Recall 

performance decreased as this ratio increased, either by increasing the number of digits to be 

read or by decreasing the time allowed to read them or both. In the same way, we 

demonstrated that varying the cognitive load involved in solving elementary one-digit 

operations, or in assessing the parity of digits had an effect on maintenance of letters, while 

reading letters at different paces had an effect on the concurrent maintenance of digits 

(Barrouillet et al., 2004; Gavens & Barrouillet, 2004; Lépine, Bernardin, & Barrouillet, 2005) 

More recently, the time-related effects of processing on storage were extended to the 

visuo-spatial domain. Vergauwe, Barrouillet, and Camos (2009) used computer-paced 

complex span tasks in which visual (series of matrix patterns) and spatial storage (series of 

ball movements) were combined with both visual (color discrimination) and spatial 

(symmetry judgments) processing components. As observed in the verbal domain, 

manipulating the cognitive load involved by these processing components, either by 

increasing the number of items to be processed or by decreasing the time allowed to process 

them, had a direct impact on recall performance. Interestingly, and contrary to the domain-

based fractionation of visuo-spatial working memory proposed by Logie (1995) or Klauer and 

Zhao (2004), but in line with the TBRS model, increasing the cognitive load of either the 

visual or the spatial processing had the same effect on the visual storage, the same being true 

for the spatial storage.  

The findings reported above rule out a strong version of the multiple-component model. 

According to this version, the slave systems are literally stores exclusively responsible for 

storage of domain specific information and are never involved in any processing activity, 

which all resort to a central executive that is itself never involved in storage (Vergauwe, 

Barrouillet, & Camos, 2010). This conception is for example illustrated by Duff and Logie 
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(2001) who assumed independence between processing and storage within the verbal domain. 

However, a weaker version allows for some interference between processing and storage. For 

example, Baddeley and Logie (1999, p. 29) described the peripheral systems as “specialized 

for the processing and temporary maintenance of material within a particular domain”. Thus, 

processing should interfere with storage when both functions rely on the same domain-

specific system. However, whatever the version retained, what the multiple-component view 

of working memory excludes is central interference by which activities involving two distinct 

domains (e.g., verbal and spatial or auditory and visual) would interfere with each other. 

Nonetheless, there is abundant evidence of between-domain interference between processing 

and storage, suggesting that the two functions rely on the same attentional resource. 

Evidence for such a domain-general attentional mechanism in charge of both processing 

and storage was provided, for instance, by Stevanovski and Jolicoeur (2007) who reported 

disruption of visual working memory by a tone identification task as well as by Chen and 

Cowan (2009) who observed the disruption of verbal memory by a nonverbal choice RT task. 

In the same way, we observed that varying the cognitive load involved by a spatial task 

(judging the location of a black square appearing either in the upper or the lower part of the 

screen) has a direct impact on the maintenance of verbal information such as letters 

(Barrouillet et al., 2007; Portrat, Barrouillet, & Camos, 2008). This was made even clearer in 

a more recent study in which verbal (remembering letters) and visuo-spatial storage (memory 

for locations) were combined with both verbal (semantic categorization) and visuo-spatial 

(visuo-spatial fit judgment) processing (Vergauwe et al., 2010). As Vergauwe et al. (2009) 

already established, increasing the cognitive load of concurrent visuo-spatial processing 

impaired visuo-spatial recall performance, but the same was true for increasing the cognitive 

load of concurrent verbal processing activities. Basically, the same pattern of results was 
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observed for the verbal storage: increasing the cognitive load of both processing activities 

impaired verbal maintenance without any interaction.  

In summary, the independence of processing and storage assumed by the multiple-

component model with cognitive structures exclusively devoted either to storage or 

processing is no longer tenable. As the TBRS model predicted, there is a trade-off between 

processing and storage, any increase in the cognitive load involved by processing resulting in 

a correlative memory loss. However, the TBRS model goes further by predicting the function 

relating processing to storage. 

The mathematical function relating processing to storage 

The findings reported in the previous section provide evidence that concurrent 

processing has a disruptive effect on maintenance of information in working memory, and 

that this effect depends on temporal factors. Thus, the main function of working memory can 

be seen as achieving the optimal compromise between two highly adaptive but contradictory 

objectives, which are, on the one hand, maintaining active and ready for treatments as much 

information as possible and, on the other hand, processing the greatest amount of incoming 

relevant stimuli. The TBRS assumes that this compromise is achieved through time-sharing 

between the two functions. Both the transformation of working memory representations for 

processing purpose and their refreshing and maintenance for storage rely on executive 

processes that are constrained by a central bottleneck, thus resulting in the sequentiality 

between the two functions1. Theorizing the sequential functioning of working memory as 

resulting from a bottleneck constraining executive processes to fire one at a time allows us to 

relax the strong assumption of a focus of attention limited to only one element, as previous 

versions of the TBRS model assumed. Indeed, several empirical evidence suggest that this 

focus has a capacity of four instead of one element (Cowan, 1999, 2001; Cowan et al., 2005; 

Saults & Cowan, 2007). What the time sharing observed between processing and storage in 
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our previous studies suggests is the sequentiality of the two functions, but it does not 

necessarily result from a single-item attentional focus. Actually, this sequential functioning 

and the linear trend relating cognitive load to working memory span are not incompatible with 

alternative conceptions such as Cowan’s embedded processes model and his assumption of a 

four-item focus of attention. In line with Cowan’s proposal, it could be imagined that working 

memory representations can hold up to four items that can be embraced at a time within the 

focus of attention. This does not necessarily mean that the refreshing function could reactivate 

the entirety of the information held in these representations, especially when the time 

available for refreshing process becomes shorter and shorter as cognitive load increases. This 

partial and incomplete refreshing along with probabilistic retrieval mechanisms that do not 

lead to optimal recall even when memory traces are still in working memory can produce the 

observed linear function without assuming a one-item focus of attention constraining 

maintenance mechanisms to reactivate memory items one at a time.  

Whatever the size of the focus of attention and the precise way by which the refreshing 

mechanism operates, the main point here is to keep the idea that while the central bottleneck 

is occupied for processing purposes, it is no longer available to refresh memory traces that 

suffer from a time-related decay. Thus, the working memory trade-off function relates the 

proportion of time occupied by processing activities, i.e. their cognitive load, to the amount of 

information that can be maintained active, usually assessed through working memory span 

measures. In this section, we establish that the TBRS model predicts the nature and the 

parameters of this function. 

Working memory span tasks are especially appropriate to study the trade-off 

phenomenon by involving the two functions of processing and storage. If our hypothesis of a 

sequential functioning of working memory that alternates between processing and storage 

activities is correct, any temporal gap that can be freed during processing should be filled with 
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maintenance activities, resulting in a perfect trade-off.  This means that any variation in 

cognitive load δ CL should result in a correlative variation δ Span in the amount of 

information that can be maintained active. The relation between δ CL and δ Span should 

reflect the structure and functioning of the system in which this trade-off occurs. 

A recent computational model of the TBRS permits one to specify the nature of this 

function (Oberauer & Lewandowsky, in press). This computational model is aimed at 

simulating the time course of activation of the memoranda during working memory span tasks 

in which the presentation of each to-be-remembered item is followed by a series of processing 

episodes. When free time is available after a given processing episode, it is filled by 

refreshing. In a nutshell, the model assumes that each item to be memorized is represented by 

a single unit associated with a layer dedicated to the representation of its serial position. Thus, 

encoding an item consists in activating it in the item layer and associating it to its position by 

Hebbian learning. Each learning event is implemented as an exponential growth of connection 

strength over time towards an asymptote. At retrieval, the unit with the highest activation is 

selected, recalled, and then suppressed. In order to simulate the time-related decay 

hypothesized by the TBRS model, during every time step in the simulation, an exponential 

decay is applied to the whole weight matrix representing memory for a list. Refreshing is 

modeled as retrieval followed by a re-encoding of the retrieved item, with the only difference 

that this re-encoding is faster than the initial encoding and that, contrary to recall, the item 

refreshed is not suppressed from the list. In line with the sequential functioning of working 

memory assumed by the TBRS model, refreshing proceeds in a cumulative fashion, starting 

from the first list item and proceeding forward until the end of the list. When refreshing is 

interrupted by a processing episode or a new item, it is resumed starting from the first list 

item. Oberauer and Lewandowsky (in press) ran a simulation of a working memory span task 

in which they manipulated the cognitive load of processing by varying the duration of both 
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processing episodes and free time, with 4 or 8 processing episodes after each memory item for 

lists varying in length from 1 to 9. Recall performance was evaluated following the span 

procedure we adopted in most of our studies (e.g., Barrouillet et al., 2004). The simulation 

revealed a smooth and roughly linear decline of working memory spans with increasing 

cognitive load, suggesting that the function relating span to cognitive load is of the form: 

Span = a - b CL (2) 

Actually, several empirical findings confirmed this linear relation between cognitive 

load and span in working memory tasks. For instance, using the reading digit span task 

already evoked, Barrouillet et al. (2004) observed that working memory span varied linearly 

with the pace at which the concurrent reading digit task was performed (Figure 1). Linear 

relations were also observed when investigating the visuo-spatial domain (Vergauwe et al., 

2009), in working memory tasks involving between-domains combinations of storage and 

processing (e.g., verbal and visuo-spatial, Barrouillet et al., 2007; Vergauwe et al., 2010), as 

well as in children from age 7 onwards (Barrouillet, Gavens, Vergauwe, Gaillard, & Camos, 

2009). 

We can go further by predicting the parameters of this linear function that can be 

directly derived from the main tenets of the TBRS. If we assume that working memory 

representations are transient in nature and suffer from a time-related decay when attention is 

switched away, prolonged periods without any refreshing activity should lead to the complete 

disappearance of these representations. Thus, in principle, a situation in which processing 

would continuously involve executive processes and occupy the central bottleneck for an 

extended period of time would result in a complete loss of working memory content. The 

parameters of the trade-off function should be as such as when CL tends towards its 

maximum value 1, working memory span tends towards 0. As a consequence, equation (2) 

can be simplified as 
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Span = k (1 – CL) (3) 

where k is a unique parameter reflecting both the slope and the intercept of the function. The 

value of this intercept corresponds to working memory span in a situation in which CL = 0, all 

the time being available and devoted to maintenance activities. This situation should reflect 

what is observed in short-term memory tasks in which individuals concentrate all their 

capacities on the maintenance of a maximum number of items. Miller (1956) established that, 

in this situation, adults can maintain a limited number of 7±2 chunks in working memory2. 

Thus, when CL tends towards 0, adults’ working memory span should tend towards a value 

close to Miller’s magical number. It is worth to note that the value k, the amount of 

information that can be maintained without any concurrent activity, varies as a function of the 

type of information to be maintained (letters, digits, or words) and age (Dempster, 1981), but 

also across individuals.  

In summary, the TBRS model predicts that the amount of information that can be 

maintained active should linearly decrease with the increase of the cognitive load involved by 

concurrent processing, from a value close, in adults, to Miller’s number for a null cognitive 

load to 0 for a cognitive load of 1. This cognitive load corresponds to the proportion of time 

during which executive functions involved by this concurrent processing occupy the central 

bottleneck. In the next section, we provide empirical evidence supporting the trade-off 

function.  

An empirical test  

A proper test of the trade-off function would necessitate precise measures of cognitive 

load by evaluating the time during which a given activity effectively involves the central 

bottleneck, something difficult to do both for theoretical and methodological reasons because 

it is hardly possible to disentangle executive to non-executive processes within a given 

activity. However, apart from some experiments run in our laboratory within the TBRS 
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theoretical framework (e.g., Barrouillet et al., 2007), we are not aware of a study that would 

have systematically investigated the effects on working memory spans of variations of 

cognitive load while carefully controlling for temporal parameters associated with the 

processing component of the tasks. To fill this gap, we performed a series of studies presented 

below with the aim of overcoming the difficulty of a precise evaluation of the time during 

which executive functions are involved by the processing component of working memory 

span tasks. Our strategy was to compare the duration of processing and the resulting recall 

performance on two working memory span tasks with processing components that differed 

only by the involvement of an executive function. For example, in one experiment, the tasks 

under comparison involved the maintenance of series of numbers, each number being 

followed by a Stroop task, the participants being asked to name the color of words. In one 

condition, the words displayed on screen were neutral words without any semantic relation 

with colors whereas, in the other, they were color words with 50% incongruent trials (e.g., the 

word “blue” colored in red). The prepotent response of reading the word displayed on screen 

was conceived of as creating a response conflict and the need to inhibit it to name the color, 

whereas the neutral words were used as a control condition involving a lower level of conflict. 

Thus, the difference in processing times between the two conditions could only be attributed 

to the extra involvement of the central bottleneck for inhibition, thus leading to a “pure” 

difference in cognitive load δ CL. We reasoned that the resulting difference in recall δ Span 

could be related to δ CL, providing us with a good approximation of the slope of the trade-off 

function (δ Span / δ CL). 

Because there is no consensus about a finite and exhaustive list of what could be 

considered as executive functions, we adopted a comprehensive approach by exploring the 

effects on concurrent maintenance of two mechanisms classified as executive functions in the 

pivotal article of Miyake et al. (2000), namely the inhibition of prepotent responses and the 
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updating of working memory content. Moreover, we summarize previous experiments 

investigating the effect on maintenance of the executive processes of response selection and 

directed retrieval from long-term memory, the results of which will be included with the new 

findings in a meta-analysis. All the studies presented below have the same rationale. 

Participants were presented with computer-paced working memory span tasks combining 

memory requirement with a concurrent processing task, each to-be-remembered item being 

followed by a series of stimuli to be processed. We varied the cognitive load involved by this 

intervening processing by manipulating either the stimuli or the task to be performed on them 

in order to induce an additional demand on executive control. The dependent variable was the 

maximum number of items that can be recalled (i.e., working memory span). In line with 

Equation (3), the relation between cognitive load and working memory spans should be linear 

with intercept values close to Miller’s magical number 7±2 and negative slopes values close 

to these intercepts. 

The inhibition of prepotent responses 

In a first series of experiments, variations in cognitive load were obtained by 

manipulating the need to inhibit prepotent responses in the processing component of time-

controlled working memory span tasks. For this purpose, we performed two experiments 

using a Stroop-like task paradigm. In the first experiment described above, participants had to 

name the color of either color words or neutral words. We verified in a pretest that the 

interference created by the incongruent trials resulted in longer response times in the color-

word than in the neutral-word condition. Response times were measured from stimulus onset 

to the onset of the response detected by a vocal key and revealed an average extra-time of 51 

ms per word in the color-word condition (668 ms) compared to the neutral-word condition 

(617 ms). The rationale of the second experiment was the same as the first except that 

participants no longer maintained numbers but series of monosyllabic words and evaluated 
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the numerosity of small dice-like patterns of 1 to 4 Arabic digits or letters presented 

successively on screen. The digits condition created the possibility of incongruent trials (e.g., 

a display of three “2”) in which the displayed digits trigger a prepotent response conflicting 

with the target response corresponding to the size of the dice-like pattern, something that 

could not occur with letters (see methods and results in Appendix). A pretest confirmed that 

incongruent trials induced a Stroop-like effect with longer response times for sets of digits 

(603 ms) than sets of letters (545 ms). 

As we expected, the inhibition of prepotent responses involved in processing the 

incongruent trials of the Stroop-like conditions (color-words and digits) had a detrimental 

effect on concurrent maintenance. The color-word condition elicited significantly poorer 

recall performance than the neutral-word condition (mean spans of 2.93 and 3.18 

respectively), and recall performance was significantly poorer in the Stroop-like condition 

involving patterns of digits than in the control condition involving letters (mean spans of 3.27 

and 3.72 respectively). In order to assess the parameters of the predicted linear function, the 

cognitive load involved by the processing component of each of the four experimental 

conditions was approximated by calculating the ratio between the total processing time of the 

stimuli displayed in the interval between two successive items to be memorized and the total 

time available to process them (i.e., the duration of this interval). For this purpose, we used 

the response times observed in the pretests. The total processing time was evaluated by 

multiplying these response times by the number of stimuli to be processed after each memory 

item. The mean spans observed on each of the four conditions (ranging from 2.93 to 3.72) 

were regressed on these cognitive load values (ranging from .628 to .513), revealing a linear 

trend accounting for 98% of the observed variance in recall performance with a slope of -6.78 

and an intercept of 7.16. Thus, this first study gave promising results with parameters of the 

linear relation within the expected range. 
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Working memory updating 

In a second series of experiments, variations in cognitive load were induced by 

manipulating the updating requirements of the processing component of the tasks. For the first 

experiment, we used a memory-updating task inspired from Oberauer (2002) who asked 

participants to keep track, in a self pace mode, of up to 6 simultaneous running counts related 

to different frames. The trials began with the presentation of an initial value (a digit) in each 

frame. Then, participants had to apply sequential arithmetic operations (e.g., + 3 or - 6) 

appearing at random in the different frames, to update the corresponding value, and to go on 

the next step. After 9 updates, participants had to report the final value corresponding to each 

frame. We used a computer-paced version of this task in which participants had to perform 

only 2 running counts with simpler arithmetic operations (i.e., +1, -1, +2, and -2). For each 

new update, participants had to say aloud the answer of the current operation while 

maintaining the value that had not been updated. This task was inserted as processing 

component within a working memory span task in which participants had to maintain and 

recall series of letters. This updating condition was compared to a simple storage condition in 

which no updating was required. After the initial presentation of two frames with a digit in 

each frame, the successive arithmetic operations were replaced by a signal appearing in one of 

the two frames and participants had only to retrieve and utter the initial value presented in the 

corresponding frame without any modification of this value. The response times to each 

stimulus were recorded on-line using a voice key (see method in Appendix). As we expected, 

when compared with the simple storage task, the memory updating task led to longer 

processing times (mean response time of 994 ms and 493 ms respectively) and poorer recall 

performance (mean spans of 2.35 and 3.84  respectively). 

The rationale of the second experiment was the same. Participants had to maintain 

series of numbers while performing an intervening N-back on series of letters. This task 
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required participants to judge if the currently displayed letter was the same as to the one 

presented N trials before by pressing appropriate keys. Variations in cognitive load were 

obtained by manipulating the N value. In the updating condition, participants performed a 

traditional 2-back task on series of 8 letters presented after each number. This updating 

condition was compared with a 0-back condition that did not require any updating. 

Participants were asked to indicate whether each letter corresponded to one of the first two 

letters of the series. Thus, both tasks were identical in their memory requirement with 2 letters 

to be maintained throughout the series to be processed, except that these letters had to be 

continuously updated in the 2-back condition whereas they remained unchanged for a given 

series in the 0-back condition. Accuracy and response times were registered (see method in 

Appendix). As it could be expected, the 2-back condition elicited longer reaction times than 

the 0-back condition (594 ms and 518 ms respectively), and lower spans (3.65 and 4.19 

respectively). 

The cognitive load in each of the four experimental conditions was evaluated in the 

same way as for the inhibition study as the ratio between the time needed to process the 

stimuli (i.e., the mean sum of the response times to the stimuli presented within the intervals 

between two successive memoranda) and the time allowed to process them (i.e., the duration 

of these intervals). These values ranged from .247 to .454. For sake of comparison with the 

previous analyses, the working memory spans observed in the updating experiments were 

increased by 2 units to take into account the fact that, in each condition of both experiments, 

participants had to continuously maintain 2 items during the processing tasks on top of the to-

be-recalled memory items. The resulting mean spans (ranging from 6.19 to 4.35) were 

regressed on these cognitive load values. The linear regression analysis revealed a high R2 

value (.99), with an intercept within the expected range (8.18) and a slope close to this value 

(-8.48). In summary, the results concerning updating confirmed those observed in the 
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inhibition studies. The additional involvement of these executive functions resulted in 

degraded memory performance with a linear relation between cognitive load and working 

memory spans. Both linear functions exhibited parameters in the range of the expected values. 

Response selection and retrieval 

In a previous study that aimed at investigating the critical role of temporal factors on the 

effect of processing on storage, Barrouillet et al. (2007, Exp. 3) studied the effect on 

maintenance of two tasks involving response selection and memory retrieval. These 

experiments are relevant for our purpose because response selection is known to compete 

with memory retrievals for the central bottleneck (Rohrer & Pashler, 2003) and has 

accordingly been proposed to involve executive control (Hegarty, Shah, & Miyake, 2000; 

Rowe, Toni, Josephs, Frackowiak, & Passingham, 2000), whereas memory retrieval is 

considered by Baddeley (1996) as one of the functions of the central executive.  

We used a computer-paced working memory span task in which participants were 

presented with series of letters to be remembered, each letter being followed by a series of 

digits displayed either in the upper or lower part of the screen. According to the condition 

they were assigned to, participants had to judge either the parity or the location on screen of 

these digits by pressing appropriate keys. The pace of these intervening activities and the 

resulting cognitive load was varied by manipulating the number of digits (either 4, 6, or 8) 

presented in a constant interletter interval. The results revealed, as in the studies reported 

above, a strong effect of pace in both tasks with lower spans in the parity (5.16, 4.58, and 3.69 

for 4, 6, and 8 digits respectively) than in the location condition (5.56, 5.52, and 4.60 

respectively). This effect reflected the longer response times elicited by the parity task (a 

mean of 554 ms compared to 411 ms for the location task), which necessitates an additional 

retrieval from long-term memory compared to the location task that only involves response 

selection. In each of the 6 experimental conditions, the cognitive load involved by the 
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processing component was approximated by dividing the mean total processing time by the 

total time allowed (i.e., the duration of the interletter intervals). When the mean span scores 

were regressed on this cognitive load, it appeared that the two slopes (- 7.82 and - 7.68 for the 

parity and the location tasks respectively) were very close to each other and close to the 

corresponding intercepts (8.04 and 7.84 respectively), leading further support for the 

predicted equation.   

A meta-analysis 

  The results of the inhibition and updating studies were included in a meta-analysis 

with the results of the experiments involving the parity and the location tasks from Barrouillet 

et al. (2007) that evaluated the impact of the functions of retrieval and response selection 

respectively. The main results of these different studies are summarized in Table 1. As our 

theory predicts, the intercepts of the trade-off functions range from 7.16 to 8.18. This 

restricted range of intercept values corresponds to Miller’s magical number, which is all the 

more remarkable since these experiments did not involve the same memory material (either 

letters, digits, or monosyllabic words). Moreover, some processing components involved a 

concurrent articulation, such as the experiments about inhibition, which is known to impair 

maintenance of verbal information. Accordingly, these experimental conditions resulted in a 

smaller intercept value than the others (7.16 compared to values near to 8). The second 

prediction that slopes should be close to the intercept values is also supported by empirical 

evidence, the slope / intercept ratios ranging from 0.95 to 1.04, all values very close to 1. The 

mean observed intercept was 7.81 and the mean slope -7.69, for a ratio of .985. Finally, the 

meta-analysis regrouping the 14 experimental conditions reveals a linear function with an 

intercept of 8.13 and a slope of -8.33 (Figure 2), the linear regression accounting for 98% of 

the variance observed in the working memory spans.  
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Thus, the variation in span resulting from the manipulation of the cognitive load 

induced by a variety of tasks and processes fitted the processing-storage equation predicted by 

the TBRS. Moreover, it should be noted that, in line with this model, the executive functions 

studied in this article have an effect on concurrent maintenance that does not mainly depend 

on their nature but on the time during which they occupy the central bottleneck and impede 

refreshing. This is a further evidence that time is a crucial factor in working memory 

functioning beyond and above the nature of its operations and of the representations 

processed. 

Some comments about the processing-storage equation  

Though the experimental data fitted the expected linear function, some prudence is 

needed in interpreting these results. First of all, it is worth noting that the trade-off function 

described here is not a working-memory-loss or a time-loss function. Indeed, the function 

only describes how the amount of information that can be maintained and recalled evolves 

with the temporal density of concurrent processing activities. It does not say anything about 

the speed of the time-related decay of working memory traces, because cognitive load refers 

to a time ratio and not to raw durations. Of course, the fact that recall performance depends 

almost entirely on the temporal aspects of the tasks strongly suggests that time plays a major 

role in working memory functioning and forgetting, but our data do not convey information 

about the function relating time to forgetting. 

Second, the cognitive load values reported here are probably coarse estimates of the 

proportion of time during which the processing tasks really occupied the central bottleneck. 

Processing times measured from stimulus onset to response production probably encompass 

some cognitive steps that do not involve executive functions, such as the first steps of 

perceptual encoding or the realization of motor responses. The present experiments led to the 

predicted values probably because the slopes were calculated from experimental conditions 
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that were designed to differ only on executive functions involvement. For example, it is quite 

certain that the difference in processing times between the Stroop-like and the control 

conditions in the inhibition experiments only resulted from the involvement of an additional 

inhibitory process. By contrast, processing times for more automatic activities, such as 

reading digits as Barrouillet et al. (2004) used, are probably poorer estimates of the 

involvement of central processes, even if these processes are involved in such simple 

activities (Barrouillet, Lépine, & Camos, 2008). 

Third, the trade-off function described here characterizes working memory functioning 

under some conditions. For example, the proportion of time corresponding to the cognitive 

load makes sense only for sufficiently extended periods of time. It seems highly improbable 

that, for a given cognitive load, very short and long periods of time would have the same 

effect on maintenance. It can not be expected that even a high cognitive load during very 

short periods of time (e.g., 1 second) would have a highly disruptive effect on maintenance, 

because most of the information previously activated can probably be retrieved after short 

interruptions. Finally, the entire trade-off function is extrapolated from cognitive load values 

ranging approximately from 0.25 to 0.65. The other parts of the function, and more 

particularly those close to CL = 1, are theoretical rather than empirical, although Oberauer et 

al. (2009) were able in their simulation to increase the cognitive load up to .90 and their 

results fitted the predicted linear trend. The null span value given by the trade-off function for 

a CL of 1 confirms the fact that cognitive load is the main determinant of storage in working 

memory: A difference δ CL of 0.1 results in a decrease in span corresponding to k x 0.1, k 

being the maximum span with no concurrent activity (i.e., the simple span). Now, this is not 

to say that designing or performing a task that would continuously capture attention for a long 

period of time is possible, and that such a task would lead to a complete working memory 

loss. Actually, we never observed a complete memory loss, even in children, and we are not 
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aware of any study reporting such a phenomenon. Even in the most demanding conditions of 

our computer-paced working memory span tasks, adults seem able to recall about 2 items 

(e.g., Barrouillet et al., 2004, Exp. 7) and 8-year-old children 1 item (Barrouillet et al., 2009). 

In line with our theory, what the equation of the trade-off function tells us is that, in the 

hypothetical case of a task occupying continuously the central executive during an extended 

period of time, the concurrent maintenance would become impossible and would result in a 

complete loss of working memory representations. Thus, exactly like some physical laws, the 

trade-off function and its extreme span values for CL tending towards 1 must be understood 

as a theoretical equation describing an ideal functioning that does not necessarily correspond 

to real physical or psychological states. 

A TBRS account of Baddeley & Hitch (1974) 

As we previously noted, the seminal investigations of the relationships between 

processing and storage by Baddeley and Hitch (1974) led them to conclude to a relative 

independence between processing and storage. In contradiction with this conclusion, we have 

presented in this article several empirical evidence pointing towards a perfect time-based 

trade-off between the two functions, as the TBRS model predicted. However, a pending 

question concerns the capacity of our model to account for Baddeley and Hitch’s (1974) 

findings and other results taken as evidence supporting the multi-component model and its 

fractionation between processing and storage. In this section, we show that these results 

contradict the hypothesis of a continuous resource-sharing, but are fully compatible with our 

hypothesis of a time-based resource sharing. 

In most of Baddeley and Hitch (1974) studies, participants were presented with a 

reasoning task in which they had to judge the truth-value of a sentence purporting to describe 

the order of occurrence of two letters (e.g., A is not preceded by B – AB), this sentence 

remaining visible until participants pressed the “true” or “false” response key. The difficulty 
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of the task was varied by using passive rather than active sentences and negative instead of 

affirmative propositions. This task was performed alone or while maintaining a concurrent 

preload of 1, 2 or 6 letters or digits. The results are well known. There was no reliable effect 

of memory load on accuracy and solution time regardless of whether the load was one or two 

items. With 6 items, memory load had a negligible effect on accuracy but slowed down 

reasoning considerably, an effect also observed when the processing was a task of language 

comprehension or free recall of unrelated words. A related unpublished study by Baddeley 

and Lewis reported in Baddeley (1986) involved the same reasoning task with a preload from 

1 to 8 digits. Once more, memory load had virtually no effect on reasoning performance, but 

it appeared that the slowing down in reasoning times increased with the number of digits to be 

maintained (Figure 3). More interestingly, five days of practice did not remove the influence 

of concurrent load, and this effect of concurrent load did not interact with the difficulty of the 

reasoning task. The same function relating memory load to processing time was observed by 

Baddeley, Lewis, Eldridge, and Thomson (1984) with a sentence verification task. 

Though these findings were taken as evidence for independence between processing and 

storage, they are actually compatible with our model in which maintenance activities and 

reasoning processes are underpinned by the same supply through a time-based sharing. In line 

with the hypothesis of a sequential functioning of working memory that alternates between 

processing and storage, any activity of refreshing memory traces would postpone concurrent 

processing steps for a duration commensurate with the amount of information to be 

maintained. Actually, as a time-based trade-off between processing and storage would predict, 

Baddeley (1986) observed that increasing the number of digits to be maintained resulted in a 

smooth increase in the time needed to perform the concurrent task. Interestingly, as shown in 

Figure 3, the relation between memory load and processing time was roughly linear, as the 

reverse function between cognitive load and working memory span is. Because the task takes 
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only 2 s, its postponement for refreshing purpose is probably not needed when few items have 

to be maintained, hence the total absence of effect for memory loads of one and two digits. 

The increase in processing time of about 720 ms for a load of 8 digits echoes the parameters 

of the computational simulation of the TBRS by Oberauer et al. (2009) who set at 80 ms the 

time needed to refresh a memory item. 

Our model accounts also for the fact that this postponement has a small impact on 

performance in Baddeley and Hitch’s task for two reasons. First, because information to be 

processed in the reasoning task is always available on screen, processing can be postponed 

without any damage for response accuracy. Second, our model assumes that there is no 

continuous sharing of attention, but a time-based sharing. As a consequence, when attention is 

turned to the processing task, all the capacities of the cognitive system are available and 

devoted to this processing, whatever the amount of information to be concurrently 

maintained. This can also explain that the effect of concurrent load did not interact with the 

difficulty of the reasoning task in Baddeley and Hitch (1974). Because the temporal effect of 

concurrent load on reasoning reflects a postponement consecutive to the activities of 

maintenance of the memoranda, this postponement depends only on the amount of 

information to be refreshed, but in any way on the difficulty of the postponed task. In the 

same way, as Baddeley and Hitch observed, practicing the task even during 5 days can not 

remove the need to reactivate memory traces and the ensuing postponement of the reasoning 

task.  

Thus, instead of ruling out the idea that there is a common supply shared by processing 

and storage, Baddeley and Hitch’s (1974) results were only at odds with the idea that 

processing and storage compete for the simultaneous occupation of a limited space, but they 

are compatible with a time sharing account, as the authors themselves noted in their 

discussion.  
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Another and more recent refutation of a trade-off between processing and storage was 

alleged by Duff and Logie (2001). They assessed independently a word span and a sentence 

verification span (i.e., the maximum number of short sentences that participants could read 

and verify in 10 s), and then had participants perform the two tasks in combination. The 

combined task followed the same logic as the Daneman and Carpenter’s (1980) reading span 

task: participants performed the same task as in the sentence verification task but had to 

remember the last word of each sentence to be verified. The authors noted that, although the 

reduction in performance induced by the combined task was statistically robust, it was far 

from the dramatic decrease in performance that might have been expected if processing and 

storage were fuelled by a common pool of resource. As a consequence, they argued for a 

multiple resource model. As we have already argued elsewhere (Barrouillet et al., 2007), the 

facts reported by Duff and Logie (2001) are not at odds with a time-based resource sharing 

between processing and storage. Actually, both the word span and the verification span were 

about 4.75 when performed in isolation (i.e., a mean of 2.11 s per sentence). When the two 

tasks were performed in combination, the verification span dropped to 3.6 and the word span 

to 3. Thus, the concurrent maintenance of words resulted in a slowing down of verification, 

with each sentence being now processed in a 2.78 s. What Duff and Logie have demonstrated 

is that it takes an additional time of about 650 ms per sentence to concurrently store and 

maintain 3 words in a reading span task procedure. This result says nothing about the 

existence of multiple instead of a unique pool of resources and is perfectly in line with what 

our model would predict. The additional requirement of maintaining the last words of the 

sentences results in an overall increase in the time needed to process each of them. 

In summary, the empirical evidences usually considered as supporting a fractionation 

between processing and storage are issued from experiments based on the same rationale: If 

processing and storage share a common resource, exhausting the storage capacity of working 
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memory should have a dramatic impact on concurrent processing. However, this research 

strategy can only rule out models in which a unique resource is continuously shared between 

processing and storage, but not alternative views assuming the time-based sharing of a 

common supply. Actually, these studies reveal that memory load postpones processing 

exactly as the TBRS predicts.  

Alternative proposals and empirical evidence challenging the TBRS model 

Though our model was successful in predicting the mathematical function governing the 

trade-off between processing and storage, one of its main tenets, the hypothesis of forgetting 

in the short term through temporal decay, has been the object of recent evaluations and 

rebuttals. Naturally, these criticisms have been extended to the TBRS itself. In this section, 

we evaluate the findings on which these criticisms are based and show that there is no current 

evidence contradicting our theory. 

Evidence against temporal decay? 

In a recent series of studies, Lewandoswky and colleagues argued having demonstrated 

that there is no temporal decay of memory traces in the short-term (see Brown & 

Lewandowsky, 2010; Lewandowsky, Oberauer, & Brown, 2009, for reviews). For example, 

Lewandowsky, Duncan, and Brown (2004) investigated the effect of time on immediate serial 

recall of letters by asking participants to repeat a suppressor (“super”) either one, two, or three 

times before the recall of each letter, thus increasing the delay between study and output. The 

results revealed no effect of the number of suppressors uttered, suggesting that memory traces 

do not suffer any temporal decay. These results were replicated and extended by Oberauer 

and Lewandowsky (2008). Nonetheless, they noticed that utterance of the suppressor blocks 

any verbal rehearsal, but allows the attentional refreshing postulated by the TBRS model to 

take place and counteract the effect of decay. This could explain why increasing the number 

of “super” had no effect on memory performance. In order to block the attentional mechanism 
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of maintenance, Oberauer and Lewandowsky added a choice reaction task to the utterance of 

the suppressor “super”, creating a condition referred to as AS + CRT (for articulatory 

suppression + choice reaction task). Participants were presented with either one or four 

stimuli that appeared successively on screen. In response to these stimuli (either & or %), 

participants had to say “super” aloud and press the left or the right key respectively. The 

results revealed no effect of the number of distractors to be processed (see Lewandowsky, 

Geiger, and Oberauer, 2008, for a replication). Lewandowsky et al. (2008) concluded that 

these findings provide a strong case against temporal decay: even when verbal rehearsal and 

attentional refreshing are impeded, increasing the delay between encoding and recall does not 

result in more forgetting as the temporal decay hypothesis would have predicted. 

These is no doubt that these results constitute an impressive body of empirical evidence 

demonstrating that forgetting in the short term does not depend on the delay between 

encoding and recall. However, the TBRS model does not assume that forgetting depends on 

this delay, but on the proportion of time during which the central bottleneck is occupied by 

concurrent activities over this delay. Do these findings constitute compelling evidence against 

this latter view? We will set aside the tasks in which the delay between encoding and recall 

only involves the utterance of a varying number of “super”. As Oberauer and Lewandowsky 

(2008) themselves noted, this articulatory suppression places very little demand on the 

attentional bottleneck and does not block the mechanism of attentional refreshing, the 

existence of which is attested by both behavioral (Camos, Lagner, & Barrouillet, 2009; 

Hudjetz & Oberauer, 2007) and neurological (Raye et al., 2007) evidence. As a consequence, 

the “super” experiments, including Lewandowsky et al. (2004), can not provide any evidence 

against temporal decay. We will thus concentrate on the tasks requiring both articulatory 

suppression and attentional demand. Because there seems to be a consensus about the 

existence of an attentional refreshing mechanism that can counteract the potential effects of 



 31 

decay, it is of crucial importance to control the possibility for participants to surreptitiously 

turn their attention towards the memoranda when processing distractors. However, in all the 

conditions of the experiments run by Lewandowsky and colleagues, the tasks were self paced, 

participants displaying themselves on screen the next stimulus by pressing some key. Thus, it 

can not be assumed, as Lewandowsky et al. (2008) did, that their choice task placed 

continuous demands on the attentional bottleneck, because participants were free to postpone 

the processing of the next distractor in any time all along the task3. Accordingly, the reaction 

times reported by Oberauer and Lewandowsky (2008) in their AS + CRT condition are far 

longer than choice reaction times observed in similar tasks (e.g., Barrouillet et al., 2007). 

Thus, it is highly improbable that the AS + CRT task created the intended continuous 

occupation of the attentional bottleneck that is needed to draw conclusions against temporal 

decay. Contrary to what Lewandowsky and colleagues have repeatedly claimed (Brown & 

Lewandowsky, 2010; Lewandowsky et al., 2009), they did not provide compelling evidence 

against decay yet.    

Evidence against the TBRS model? 

The criticisms addressed by Lewandowsky and colleagues to the hypothesis of a 

temporal decay have been naturally extended to the TBRS model. Oberauer and 

Lewandowsky (2008) argued that the findings related to their AS + CRT condition posed a 

challenge to the TBRS model. Is this the case? It is worth noting that our model predicts that 

recall performance depends on the pace at which distractors are processed, which determines 

CL, and not on their number. Thus, at a constant pace, varying the number of distractors 

should not have any effect on recall, a prediction that was empirically verified (Barrouillet et 

al., 2004; Gavens & Barrouillet, 2004). For example, in Barrouillet et al. (2004, Exp. 3), 

participants were presented with series of letters for further recall, each letter being followed 

by series of either 2 or 4 arithmetic operations at a rate of one operation every 2 s. At this 
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constant pace, we observed no effect of the number of operations on recall performance, 

though it took longer to solve 4 than 2 operations. It is only on the extreme case of an 

intervening task that would involve a maximal CL of 1 that increasing the delay between 

encoding and recall would result in poorer memory performance. However, we have seen that 

it cannot be reasonably argued that the AS + CRT task involved such a cognitive load in 

Oberauer and Lewandowsky (2008). As a consequence, the TBRS model is not challenged by 

these results because it does not predict poorer performance when four stimuli were to be 

processed instead of one.  

In a more recent study, Lewandowsky, Geiger, Morrell, and Oberauer (2010) 

investigated the effects of the duration and type of to-be-articulated distractors in a complex 

span task design. This new series of experiments aimed at testing the predictions of their 

interference model of STM, named SOB (for Serial Order in a Box, Farrell & Lewandowsky, 

2002), which assumes that forgetting occurs through novelty encoding. Novel or dissimilar 

items would be more strongly encoded compared to what was already memorized, while the 

repeated encoding of the same item should cause minimal additional interference and 

disruption of encoding into STM. They tested these hypothesis using complex span tasks in 

which participants had to remember consonants followed by bursts of words to be read, with 

either one word, three different words, or the same word repeated three times. In line with 

SOB predictions, the results revealed that articulating once or three times the same word after 

each consonant had the same detrimental effect on recall compared with a condition without 

any distractor. By contrast, bursts of different words involved poorer recall performance than 

the repetition of the same word even when articulation times were equated.  

Lewandowsky et al. (2010) argued that the absence of a distractor duration effect for the 

repetition condition constitute a challenge for the TBRS model because they assumed that 

participants articulating distractors continuously, their manipulation pushed cognitive load to 



 33 

the maximum level that can be achieved with speaking as a distractor activity. It is not 

difficult to see that these findings do not contradict the TBRS assumptions in any way. The 

effects related to the repetition of the same word would be annoying for the TBRS only if this 

activity continuously blocked the central bottleneck, impeding attentional refreshing. 

However, as Oberauer and Lewandowsky (2008) acknowledged, this articulatory suppression 

cannot block the mechanism of attentional refreshing. As a consequence, repeating the same 

word, even continuously, does not block the refreshing mechanism postulated by the TBRS 

model and cannot push the cognitive load to its maximal level. The TBRS model also 

accounts for the difference observed in recall between a mere repetition of the same word and 

reading three different words. While the level of articulatory suppression was similar between 

the two conditions, the attentional demand was higher for the latter which required reading 

three instead of one word. This confound between novelty and attentional demand 

undermines Lewandowsky et al. (2010) results. Actually, when novelty of the distractors and 

attentional demand of their processing are disentangled while temporal factors are carefully 

controlled, it appears that novelty per se has no effect in recall performance (Plancher & 

Barrouillet, 2010). In summary, none of the findings reported by Lewandowsky and 

colleagues can be taken as compelling evidence against the TBRS model. 

General Discussion 

In this article, we have argued and provided empirical evidence in favor of an equation 

that relates the proportion of time devoted to processing, corresponding to the cognitive load 

induced by this processing, to the amount of information that can be maintained active in 

working memory. This function reveals that working memory spans for a given type of items 

can be understood as a function of the simple span for these items and the cognitive load 

induced by concurrent processing, thus unifying short-term and working memory in a 

common theoretical framework and their respective spans in a single mathematical function. 
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This theoretical proposal and the related findings have a series of implications for our 

understanding of working memory structure and functioning. In this general discussion, we 

evaluate the capacity of the main theories of working memory to account for the mathematical 

relation described here between processing and storage. Three main hypotheses have so far 

been put forward. The first consists in assuming the independence of processing and storage, 

such as in Baddeley’s (1986) theory or Duff and Logie’s (2001) proposal. We have seen that 

this position is no longer tenable and can not account for the relation existing between 

processing and storage. The second hypothesis assumes a continuous resource sharing 

between processing and storage, while the third suggests a time-based sharing, as in the TBRS 

model. We will concentrate on these two latter hypotheses. 

Continuous resource-sharing between processing and storage 

This conception, which underlies most of the working memory span tasks, assumes that 

processing and storage are fueled by a unique pool of resources that are shared at any moment 

between the two functions. This conception has been very popular and endorsed, among 

others, by Daneman and Carpenter (1980), Case (1985), Turner and Engle (1989), Just and 

Carpenter (1992), or Anderson, Reder, and Lebière (1996).  

Case’s theory assumes that there is a limited total processing space in which some part 

is devoted to processing, the operating space, the remaining part, named the short-term 

storage space, being available for maintenance purpose. Thus, this theory predicts a trade-off 

between processing and storage, any increase in the demand of processing resulting in a 

correlative decrease in the resources left available for storage. Accordingly, Case, Kurland, 

and Goldberg (1982) provided evidence that counting spans vary with the efficiency of the 

processing component of the task. However, it remains unclear how this theory could predict 

the mathematical function studied here. The notions of resources and cognitive load remained 

too vague in Case’s proposal to permit quantified predictions. 
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Just and Carpenter (1992) also assumed that a same capacity, which can be thought of 

as the maximum amount of available activation, is shared between processing and storage. 

Their theory is essentially an activation model assuming that representations receive 

activation, and that those representations activated above threshold are part of working 

memory and become available for processing. Processing, understood in the theory as 

computation, consists in manipulations of activation by production rules that propagate 

activation from one element to another. The same production is assumed to fire repeatedly 

over successive cycles until the activation of its target element has reached the threshold. One 

of the key assumptions of the theory is that activation is a limited resource. If the total amount 

of activation available is less than the activation needed to perform a task, activation is 

deallocated from some old representations, resulting in a forgetting by displacement. In the 

same way, if several productions are required and if the amount of activation that they try to 

propagate exceeds the capacity, their attempts at propagation are scaled back, resulting in an 

increase in the number of cycles required to bring an element to threshold, then slowing down 

processing. At a first sight, such a theoretical framework is not incompatible with the 

processing-storage function. It could be assumed that, as the cognitive demand of the 

processing component increases, attention is deallocated from memory items that are lost. 

However, though this theory is compatible with the findings reported here as all the theories 

assuming a resource-sharing between processing and storage, it lacks the metric of cognitive 

demand needed to predict the parameters of the trade-off function. Without such a metric, the 

predictions issued from this theory, as well as from Case’s model, remain qualitative. 

Moreover, Just and Carpenter (1992) assume that all enabled processes can execute 

simultaneously. This fits uneasily with the fact that working memory spans are a function of 

the duration of processing, which strongly suggests a sequentiality of the activities of 

processing and storage.  
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More recently, Lovett, Daily, and Reder (2000; see also Lovett, Reder, & Lebière, 

1999) have proposed a source activation theory of working memory akin to Just and 

Carpenter’s conceptions. Inspired from ACT-R architecture, this theory assumes that working 

memory is a subset of all declarative memory corresponding to those declarative chunks that 

receive activation from the current goal and the relevant production rules. These production 

rules, which are of the form condition-action, can only fire one at a time. According to Lovett 

et al. (2000), working memory is not limited by the total amount of available activation as in 

Just and Carpenter’s theory, but by the amount of source activation, which is a type of 

attentional supply that produces activation and must be divided among the items in the focus 

of attention. When a given item does no longer receive activation through attention, its 

activation suffers from a time-related decay. It seems that this account of working memory 

(see also Anderson et al., 2004), with the assumptions of sequential processing and decaying 

memory traces, is the most able to account for the function relating processing to storage. As 

a matter of fact, the ACT-R model was one of our sources of inspiration in proposing the 

TBRS model. It could be imagined that, as soon as the processing episode can be interrupted, 

the goal of maintaining active the memoranda would activate some production rule allocating 

source activation to the decaying memory traces. A source of difficulty could reside in the 

possibility, in ACT-R, to activate several items simultaneously, whereas the first versions of 

the TBRS model assumed that memory traces are reactivated sequentially. This sequential 

refreshing was implemented in the simulation that produced the linear function (Oberauer & 

Lewandowsky, in press), and it remains to verify if a parallel refreshing process would result 

in a linear function when varying cognitive load. 

Among the theories that consider working memory as the activated part of long-term 

memory, the embedded-process model proposed by Cowan (1999, 2005) and Engle’s  

controlled-attention theory (Engle, 2002; Engle et al., 1999; Engle & Kane, 2004) are 
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nowadays the most prominent. Both theories endorse a unitary view of working memory and 

assume a unique resource, attention, that fuels processing and storage. However, these models 

are not intended to give a detailed account of the relationships between processing and 

storage. Thus, they should potentially be able to account for the processing-storage function, 

but would need adequate extensions and additional assumptions.   

Time-based resource-sharing between processing and storage 

According to this last hypothesis, there is no continuous sharing of resource between the 

two functions but alternation, working memory switching from one function to the other. This 

is the hypothesis favored by the TBRS model. This task switching assumption has been 

recently endorsed by other models like Towse and Hitch (1995; Hitch, Towse, & Hutton, 

2001) and Saito and Miyake (2004). 

 Towse and Hitch (1995) assumed a task switching between processing and storage as 

well as a time-related decay of memory traces as soon as attention is switched away. 

However, this task switching differs from that assumed by the TBRS model because it would 

reflect the way the working memory span tasks are structured, disallowing a switching during 

the completion of the processing component. Rather, attention would be directed toward the 

processing activity and switched to storage only when memory items are presented. Thus, 

according to this theory, the amount of information that can be maintained would mainly 

depend on the raw duration of processing that determines the time during which memory 

traces decay. One of the consequences of this approach that departs from the TBRS model is 

to consider as superfluous the notion of cognitive load. Thus, Towse and Hitch’s theory does 

not account for the processing-storage function. Incidentally, a series of studies comparing the 

predictions of Towse and Hitch’s model with those issuing from our theory clearly indicated 

that the TBRS model provided a better account of the results (Barrouillet et al., 2004). 
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Though Saito and Miyake (2004) recognize that attentional demand is an important 

element that must be added to Towse and Hitch’s task-switching model to explain working 

memory span performance, their account of the relationships between processing and storage 

could fail to account for the results reported here. Indeed, Saito and Miyake (2004) assume 

that the forgetting mechanism during processing is not time-based, but rather representation-

based, resulting from the degree of representational overlap.  

As we have seen, the decay hypothesis has been the object of many criticisms (e.g., 

Lewandowsky et al., 2009; Unsworth, Heitz, & Park, 2008), and as Saito and Miyake (2004) 

did, several theories of short-term memory (Brown, Neath, & Chater, 2007; Nairne, 1990; 

Oberauer & Lewandowsky, 2008) as well as working memory (Unsworth & Engle, 2007) 

have claimed that forgetting occurs uniquely through representation-based interference. The 

main proposal of these approaches is clearly summarized by Unsworth and Engle (2007, p. 

125) who state “many of the effects taken as evidence for decay-based models of working 

memory (e.g., Baddeley, 1986) can be handled by the cue-dependent retrieval frameworks”. 

Of course, it can not be denied that interference is an important source of forgetting. We have 

elsewhere described how interference could occur within the TBRS model (Barrouillet et al., 

2007; Camos et al., 2009; Camos, Mora, & Oberauer, in press). Nonetheless, it will certainly 

be arduous to develop a purely interference-based model of forgetting fitting a trade-off 

function that so perfectly mimics the effect of time. One possibility would be to assume that 

the amount of interference created by the intervening activities is a direct function of their 

duration. However, interference-based theories of forgetting usually assume that interference 

results from the nature of the items involved by these intervening activities rather than from 

the time taken to process them (Oberauer & Lewandowsky, 2008; Nairne, 1990). Another 

possibility would be to imagine that what matters is not the duration of occupation of the 

central bottleneck but the free time available to restore memory traces when attention is no 
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longer occupied by processing episodes (Oberauer & Kliegl, 2006; Lewandowsky & 

Oberauer, 2009). According to this conception, memory traces would not suffer from a 

temporal decay during processing. The relationship between cognitive load and working 

memory spans would be due to the fact that lower values of cognitive load correspond to 

longer times during which attention is free and available to repair the damages created by 

interference. However, we have seen that activities that differ in nature have effects on 

storage commensurate with their duration (Figure 2). To account for this finding within a 

purely interference-based account of forgetting, it should be admitted that the amount of 

interference to be repaired does not depend on the nature of the stimuli to be processed, 

something at odds with the tenets of the interference theories.   

In summary, several theories of working memory could accommodate the law relating 

processing to storage, provided changes and additional assumptions concerning the role of 

time in working memory functioning. Paradoxically, apart from the TBRS model, the models 

that appear closer to this benchmark do not assume a time sharing but a continuous resource 

sharing between processing and storage. This is probably due to the fact that the resource-

sharing models often assume a temporal decay of memory traces (Lovett et al., 1999) or a 

memory loss related to the increasing demands of processing activities (Just & Carpenter, 

1992) that are the two phenomena that explain the nature of the time-related processing-

storage function.   

Conclusion 

As we recalled above, Baddeley and Hitch’s (1974) seminal enquiry aimed at 

investigating the difference between working and short-term memory: Was the short-term 

store described by Atkinson and Schiffrin (1968) a good candidate for the role of working 

memory? Their answer was negative, and they suggested that storage and processing involve 

distinct structures and mechanisms. There is no doubt that this conclusion, and the model that, 
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accordingly, Baddeley and Hitch (1974) delineated, launched one of the most important and 

active research domains of cognitive psychology. However, the two functions that Baddeley 

(1986) segregated into different subsystems appear closely related to each other. As the TBRS 

model predicts, the interplay between processing and storage in working memory can be 

described by a general trade-off function that reflects the temporal constraints inherent to the 

sequential functioning of a unique system in charge of both working memory functions. The 

parameters of this trade-off function conform to well-known values with high psychological 

significance, such as Miller’s magical number, permitting to establish not only a theoretical 

but a mathematical link between working memory and short-term memory. We can thus 

refine the answer given by Baddeley and Hitch (1974) to their initial question: short-term 

memory is the working memory when it does not “work”, or more precisely when it works for 

maintenance purpose only. Rather being a subsystem of working memory, short-term memory 

could be one of its extreme states in the dynamic interplay between the two functions of 

processing and storage. 
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Appendix  

 

Method and results of the experiments reported in the section “An empirical test”    

All the experiments contrasted two conditions varying in the cognitive load involved by 

the processing component of the working memory span task. Participants were presented with 

series of to-be-remembered items of various lengths with 3 series of each length in both 

experimental conditions. Across participants, these series were counterbalanced between 

conditions. At the end of the series, the word “recall” was displayed on screen and 

participants were asked to write down the remembered items in correct order by filling out 

frames containing the appropriate number of boxes. They had to fill out the boxes serially 

from left to right and to leave a blank if they did not remember the item at a given place. 

Recall performance was assessed by computing span scores as in Barrouillet et al. (2007). 

Each correctly recalled series of to-be-remembered items counted as one third; the total 

number of thirds was added to 2 (the shorter series being of length 3) to provide a span score. 

For example, in a given experimental condition, the correct recall of the 3 series of 3 

numbers, of 1 series of 4 numbers and 1 series of 5 numbers resulted in a span of 2 + (3 + 1 + 

1) x 1/3 = 3.67. This span score reflects the maximum number of items that can be held in 

working memory while concurrently processing information. Each experiment involved a 

different group of undergraduate students at the Université de Bourgogne who received partial 

course credit for participating. 

Stroop-Color Task 

Twenty participants (mean age = 21.1 years, SD = 1.3, 18 females) had to memorize 

series of 3 to 6 monosyllabic numbers from 1 to 16 in which repetitions were avoided. 

Depending on the experimental condition (Stroop-like or control), each number was followed 

by series of either 8 color words or neutral words successively displayed on screen, the color 
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of which had to be named. The color words “bleu” (blue), “rouge” (red), “vert” (green), and 

“jaune” (yellow) appeared on screen either in blue, red, green, and yellow with 50 % 

congruent trials. The neutral-words were adjectives, with the same length and the same 

frequency as the color words, but without any semantic relation with colors: “doux” (soft), 

“connu” (known), “rare” (rare), “utile” (useful). The 8 items of each series appeared in a fixed 

random order with the restriction that two consecutive items do not appear in the same color 

to avoid two identical successive responses.  

Each trial began by a ready signal (an asterisk) for 750 ms. After a delay of 500 ms, the 

first number appeared for 1500 ms and was followed by a post-number delay of 500 ms. 

Then, 8 words were successively displayed on screen for 667 ms with a post-word delay of 

333 ms, resulting in an inter-number interval of 8500 ms (500 ms + 8 [667 ms + 333 ms]). 

After the last of the 8 post-word delays, the second number appeared, followed by another 

series of 8 words and so on until the end of the series. At this point, the word  “recall” 

appeared on screen. The 24 series were presented following two random orders, participants 

being informed of the length of the forthcoming series (e. g., "3 items to memorize"). The 

experimental session was preceded by a training phase in which participants named the color 

of 32 color-words and 32 neutral-words, and then practiced one trial of the working memory 

task in both conditions. All participants reached a high rate of correct responses in both 

conditions of the color naming task with, on average, 99 % and 97 % of correct responses for 

neutral-words and color-words respectively. Recall performance was poorer in the color-word 

than in the neutral-word conditions (mean spans of 2.93, SD = .74, and 3.18, SD = .82, 

respectively), t (19) = 2.12, p < .05. 

Sroop-digit task 

Twenty participants (mean age = 19.7 years, SD = 1.5, 13 females) were presented with 

a complex span task that had exactly the same structure as the previous experiment, except 
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that the memory items were series of 3 to 6 words and the items to be processed were sets of 1 

to 4 digits (1, 2, 3, or 4) or letters (P, M, S, or R) displayed on screen in canonical dice-like 

patterns, resulting respectively in Stroop-like and control conditions. Words were three-letter 

monosyllabic masculine nouns selected from the French Brulex database (Content, Mousty, & 

Radeau, 1990). The number of items to be processed after each word, the proportion of 

incongruent trials in the Stroop-like condition, the time course of the different stimuli 

presented on screen, as well as the structure of the training phase were the same as in the 

previous experiment. All participants reached a high rate of correct responses in both 

conditions of the enumeration task with, on average, 100 % for letters and 98 % for digits. 

Recall performance was poorer in digit than in the letter condition (mean spans of 3.27, SD = 

.81, and 3.72, SD = .82, respectively), t (19) = 2.80, p < .05.  

Memory updating vs. simple storage 

Twenty-four participants (mean age = 19.8 years, SD = 1.5, 23 females) had to read 

aloud and memorize series of 3 to 8 consonants. There were three series of each length in 

each experimental condition (memory updating and simple storage) resulting in 18 x 2 = 36 

series presented in random order. Before each series of letters, a signal displayed on screen 

for 1500 ms indicated the task to be performed (the letters “opé” for the memory updating 

task and a star for the simple storage task). Each letter was then presented during 1500 ms and 

followed, after a delay of 500 ms, by two 5 cm x 5 cm square frames horizontally displayed 

on screen with a 7.5 cm interval. The stimuli appearing in these frames were as follows. First, 

the two frames were filled with a different digit randomly selected from 1 to 9 that remained 

on screen for 1 s. After a delay of 500 ms, 8 stimuli were successively displayed at random 

either in the left or the right frame for 1 s each and followed by a 500 ms delay. In the simple 

storage condition, these stimuli were stars, whereas in the memory updating condition, they 
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were simple operands (either -2, -1, +1, or +2). To facilitate discrimination, the stimuli were 

always blue in the left frame and red in the right frame.  

For the simple storage task, participants were asked to say aloud the digit that had been 

displayed in the same frame as the currently displayed star. For the memory updating task, 

they were asked to update the current value of the respective frame according to the currently 

displayed operation by saying aloud the intermediary result (the series of operations were 

constructed to avoid results lower than 1 or higher than 9). In both tasks, the experimenter 

checked accuracy on line while response times were registered using a voice key. Before 

performing the task, participants practiced the memory updating and the simple storage tasks 

with 9 series of 8 stimuli, and the working memory span tasks in both condition. 

The on-line registration of responses times during processing induced a lot of technical 

failures, but 81% of response times were successfully recorded by the voice key. Five 

participants whose more than one third of the response times were lost were discarded from 

the analyses that were run on the 19 remaining participants. Despite its intrinsic difficulty and 

the additional burden of the memory load, the memory updating task elicited a high rate of 

correct responses (79 %) whereas performance on the simple storage task was quite perfect 

with 98 % of correct responses. The memory updating task took longer than the simple 

storage task (mean response time of 994 ms and 493 ms respectively), t (18) = 39.38, p < .001 

and involved lower recall performance (mean spans of 2.35, SD = .46, and 3.84, SD = 1.17, 

respectively), t (18) = 7.53, p < .001. 

The N-back task 

Twenty-nine participants (mean age = 19.2 years, SD = 1.9, 23 females) performed two 

working memory span tasks in which the processing component was an N-back task, the N 

value being either 0 or 2. Half of the participants performed the 0-back task first and the other 

half the 2-back task. In each task, they had to read aloud and memorize series of 3 to 7 
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numbers from 1 to 16. In both tasks, each number was followed by a series of 8 successive 

letters (consonants only). In the 2-back task, participants had to judge if the currently 

presented letter was the same as the one presented 2 trials before, whereas in the 0-back task, 

they had to judge if it was the same as one of the two first letters of the series (the targets). 

Thus, both tasks were identical in their memory requirement with 2 letters to be maintained 

throughout the series to be processed, except that these letters had to be continuously updated 

in the 2-back condition whereas they remained unchanged for a given series in the 0-back 

condition. In both conditions, participants were instructed to not respond on the two first 

letters that were easily distinguishable by their blue color (all the other letters were black). In 

both conditions and in each series, among the 6 following black letters, 2 elicited a positive 

and 4 a negative response, one of which being a lure. Lures were letters requiring a negative 

response but eliciting positive response based on familiarity feeling (Cohen et al., 1997; 

Oberauer, 2005). In the 2-back condition, lures were letters presented 3 or 1 trial before (and 

not 2). In the 0-back task, lures were either letters already presented in the current sequence, 

but not as targets, or letters that were targets, but in the previous series. 

Irrespective of the task, each trial began by a fixation point that was displayed for 750 

ms and followed, after a 500 ms delay, by the first to-be-remembered number appearing into a 

centered frame (7.5 cm x 7.5 cm) for 1500 ms. After a 500 ms post-number delay, the 8 letters 

were successively displayed for 1000 ms and followed by a 500 ms post-letter delay. 

Participants gave their response by pressing one of two identified keys (positive response on 

the right side). After the last of the 8 post-letter delays, the second number appeared, followed 

by 2 other targets and 6 other letters and so on up to the end of the series where the word 

"recall" appeared. Before the experimental sessions, participants familiarized with the 

forthcoming task on 15 sequences of 2 targets and 6 stimuli to process (with beeps for 

mistakes and a 80 % correct response criterion) and practiced with the working memory task 
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per se. Five participants who did not reach an average of 80 % correct responses in the N-

back tasks were discarded from the analyses that were run on the 24 remaining participants, 

half of them having performed the 0-back task first, and the other half the 2-back task first. 

Not surprisingly, the 2-back task was more difficult than the 0-back task (88% and 93% of 

correct responses respectively), t (23) = 7.13, p < .001, and involved longer reaction times 

(594 ms and 518 ms respectively), t (23) = 6.75, p < .001, and lower spans (3.65, SD = 1.13, 

and 4.19, SD = 1.14, respectively), t (23) = 18.60, p < .001. 
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Footnotes 

1. The TBRS model assumes that memory traces are refreshed through a process of 

covert retrieval described by Cowan, Saults, and Elliott (2002), and identified by Raye, 

Johnson, Mitchell, Greene, and Johnson (2007) as a minimal executive function, distinct from 

articulatory rehearsal, and neurally located in the left dorsolateral prefrontal cortex. 

2. Of course, further studies have suggested that the capacity of working memory 

should be scaled down from 7 to 4 (Broadbent, 1975; Cowan, 2001, 2010). However, these 

later estimates refer to the “pure” capacity of working memory when mechanisms of 

maintenance are blocked. What we are referring to here is the maximum number of verbal 

items that people can actually maintain in the short term when no other activity interferes with 

maintenance, which corresponds to Miller’s magical number. 

3. It could be argued that in our computer-paced span tasks, participants are also free to 

postpone processing for refreshing memory traces. However, in computer-paced span tasks, 

any postponement results in a reduction of the time available to perform the following item, 

the appearance of which does not depend on participant’s activities. By contrast, postponing a 

processing episode in Lewandowsky et al.’s procedure has no impact on the time available to 

process the following stimuli.  
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Table 1 

Proportion of explained variance (R2), slope, intercept and slope / intercept ratio resulting 

from the regressions of span scores on cognitive load of the tasks involving executive 

functions of retrieval, response selection, inhibition and updating. The data concerning 

retrieval and response selection are from Barrouillet et al. (2007, Exp. 3) and refer 

respectively to the parity and location judgment tasks used in this study. 

 

 Executive function   

 Retrieval  Response 
Selection  Inhibition  Updating  Meta-

analysis 

R2 .93  .86  .98  .99  .98 

Slope - 7.82  - 7.68  - 6.78  - 8.48  - 8.33 

Intercept 8.04  7.84  7.16  8.18  8.13 

Ratio .97  .98  .95  1.04  1.03 
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Figure caption 

 

Figure 1: Mean spans as a function of the number-of-digits-to-time ratio. Adapted from 

“Time constraints and resource-sharing in adults’ working memory spans,” by P. Barrouillet, 

S. Bernardin, and V. Camos, 2004, Journal of Experimental Psychology: General, 133, p. 94. 

Copyright 2004 by the American Psychological Association. 

 

Figure 2: The processing-storage trade-off function of working memory. Mean span as a 

function of the cognitive load involved by four different types of tasks. Data concerning 

response selection and retrieval from “Time and cognitive load in working memory”, by P. 

Barrouillet, S. Bernardin, S. Portrat, E. Vergauwe, V. Camos, 2007, Journal of Experimental 

Psychology: Learning, Memory & Cognition, 33, p. 577. Copyright 2007 by the American 

Psychological Association. The three values for response selection and retrieval are from Exp. 

3 in Barrouillet et al. (2007) and correspond to the three conditions (i.e., 4, 6, and 8 stimuli) of 

the location and the parity judgment tasks respectively.  

 

Figure 3: Response times and error rates in a reasoning task as a function of the concurrent 

digit load in Baddeley and Lewis’ study reported in Baddeley (1986). Adapted from, Working 

memory, Baddeley (1986), Oxford University Press. 
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