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Zero-sum repeated games: counterexamples to the existence of

the asymptotic value and the conjecture maxmin=lim vn

Bruno Ziliotto ∗

May 23, 2013

Abstract

We provide an example of a two-player zero-sum repeated game with public signals and perfect
observation of the actions, where neither the value of the lambda-discounted game nor the value
of the n-stage game converges, when respectively lambda goes to 0 and n goes to infinity. It is
a counterexample to two long-standing conjectures, formulated by Mertens [6]: first, in any zero-
sum repeated game, the asymptotic value exists, and secondly, when Player 1 is more informed
than Player 2, Player 1 is able to guarantee the limit value of the n-stage game in the long run.
The aforementioned example involves seven states, two actions and two signals for each player.
Remarkably, players observe the payoffs, and play in turn (at each step the action of one player
only has an effect on the payoff and the transition). Moreover, it can be adapted to fit in the class
of standard stochastic games where the state is not observed.

Introduction

In a general zero-sum repeated game, at each step, the two players simultaneously choose an action and
receive a payoff which depends on the actions and the current state of nature (Player 1’s payoff is the
opposite of Player 2’s payoff). Following that, a new state is drawn from a distribution depending on
the actions and the state of the current step. Last, each player receives a private signal which provides
him with information on the action of the other player and on the past and new state. The state space,
action sets and signal sets are assumed to be finite.

There are several ways to evaluate the global payoff in a repeated game. In the discounted game
with parameter λ, the payoff is the discounted mean λ

∑
m≥1 λ(1− λ)m−1gm, where gm is the payoff at

stage m. In the n-stage repeated game, the payoff is the Cesaro mean 1
n

∑n
m=1 gm.

Properties of repeated games with long horizon (that is to say, when n is big or λ is small) have
been widely studied in the literature. Following Zamir [25], we distinguish two main approaches.

The asymptotic approach is the study of the asymptotic properties of the value vn of the n-stage
repeated game and the value vλ of the λ-discounted game, when respectively n goes to +∞ and λ goes
to 0. The main question is whether these two quantities converge and have the same limit. When this
is the case, the game is said to have an asymptotic value.
For standard stochastic games (that is to say, repeated games where the state and the actions are
perfectly observed), Bewley and Kolhberg [2] have shown the existence of an asymptotic value (see also
Oliu Barton [10] for a recent alternative proof). For repeated games with incomplete information on
both sides (actions are perfectly observed, the state does not evolve and players receive only one private
signal about the initial state at the beginning), Mertens and Zamir [9] have proved that the asymptotic
value does exist and have characterized it.
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The asymptotic value represents a target payoff in the long-horizon game. A natural question is
whether players have strategies which guarantee this quantity in the long run, that is to say, strategies
which are approximately optimal in any game Γn and Γλ with n big enough and λ small enough. When
this is the case, the game is said to have a uniform value. Note that the existence of the uniform value
yields the existence of the asymptotic value. Standard stochastic games (see Mertens and Neyman [7])
and repeated games with incomplete information on one side (see Aumann Maschler [1]) have a uniform
value. In the case of imperfect observation of the actions, or incomplete information on both sides, a
repeated game may fail to have a uniform value (see respectively Coulomb [4] and Rosenberg, Solan
and Vieille [16], and Aumann and Maschler [1]).
The results stated above, and the study of the Big Match with lack of information on one side by Sorin
(see [20] and [21]) have led to the following two conjectures (see Mertens [6] and Mertens, Sorin and
Zamir [8]):

1 In a repeated game, (vn) and (vλ) converge and have the same limit.

2 In a repeated game where Player 1 is more informed than Player 2, (vn) converges to the maxmin of
the game.

By definition, Player 1 is more informed than Player 2 if he observes what Player 2 observes (for more
details, see Coulomb [3]). The maxmin is the greatest number Player 1 can guarantee in the long-horizon
game.

More recent results have confirmed these conjectures in the following classes of repeated games: ab-
sorbing games with incomplete information on one side (Rosenberg [15]), recursive games with incom-
plete information on one side (Rosenberg and Vieille [17]), repeated games with an informed controller
(Renault [13]), Markov chain games with lack of information on one side (Renault [11]), and repeated
games with a more informed controller (Gensbittel, Oliu Barton and Venel [5]). When there is only
one player, the two conjectures boil down to the existence of a uniform value. In this framework, they
hold true, even in a more general setting such as compact action sets, continuous transition function
and payoff, and more general evaluations of the payoff than Cesaro means (see respectively Renault [12]
and Renault and Venel [14]).

One of the simplest category of repeated games where 1 and 2 were still open are state-blind
repeated games: actions are public but players observe nothing about the state. In this model, Venel
[23] has shown the existence of a uniform value, under the additional hypothesis that transitions are
commutative. Note that if 2 holds true, then state-blind repeated games should have a uniform value.
Indeed, in this case Player 1 is more informed than Player 2, and symmetrically Player 2 is more
informed than Player 1. Therefore the maxmin should be equal to the minmax. More generally, if 2
holds true, then repeated games with public signals and perfect observation of the actions (repeated
games where signals are the same for both players and include past actions) should have a uniform
value.

We provide an example of a repeated game with public signals and perfect observation of the actions,
where neither (vn) nor (vλ) converge, which contradicts 1. In particular, this game has no uniform value,
which also contradicts 2. One remarkable feature of this game is that at each step, only the action of
one player influences the payoff and the transition. Moreover, players observe their payoff.

Note that if f is a continuous function f : [0, 1] → [0, 1], the Cesaro mean of its iterates
1

n

n∑
m=1

fm

may fail to converge. Hence, as far as the asymptotic value is concerned, either the state space has to
be finite, or an additionnal assumption on the transition function has to be made, like nonexpansiveness
(see Renault and Venel [14]).

In the case of compact stochastic games (finite state space, compact action sets, continuous transition
and payoff functions and perfect observation of state and actions), Vigeral [24] has recently provided
an example with no asymptotic value.

The paper is organized as follows. In section 1, we recall the model of repeated game and some basic
concepts. In section 2, we present our main counterexample and show that (vλ) does not converge. In
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section 3, we construct a similar game where (vn) does not converge. In section 4, we show how our
counterexample adapts to other classes of games. We notably exhibit an alternative example to Vigeral
[24] of a compact stochastic game with no asymptotic value.

1 Generalities

N denotes the set of non-negative integers, and N∗ := N \ {0}.
If C is any countable set, we denote by ∆(C) the set of probability measures on C: ∆(C) :={

p ∈ RC+|
∑
c∈C pc = 1

}
. To define some p ∈ ∆(C), we will often write p :=

∑
c∈C pc · c.

1.1 General model of repeated game

A repeated game Γ is defined by:
-A state space K
-An action set I (resp. J) for Player 1 (resp. 2)
-A signal set A (resp. B) for Player 1 (resp. 2)
-An initial probability p on K ×A×B
-A transition function q : K × I × J → ∆(K ×A×B)
-A bounded payoff function g : K × I × J → R.
We assume K, I, J , A and B to be finite.

The game proceeds as below:

• Before game starts, a triplet (k1, a0, b0) is drawn according to p. k1 is the initial state, and Player
1 (resp. 2) gets the signal a0 (resp. b0).

• At step m ≥ 1, both players choose an action simultaneously and independently, im ∈ I (resp.
jm ∈ J) for Player 1 (resp. 2). The payoff at stage m is g(km, im, jm). A triplet (km+1, am, bm)
is drawn from q(km, im, jm). The signal am (resp. bm) is announced to Player 1 (resp. 2). The
game switches to state km+1, and goes to the next step.

We call history of the game before step m the random sequence
Hm := (a0, b0, k1, i1, j1, a1, b1, k2, ..., im−1, jm−1, am−1, bm−1, km).
The set of all possible histories before step m is
Hm = A×B ×K × (I × J ×A×B ×K)m−1.

The set of all possible histories is H∞ = A×B ×K × (I × J ×A×B ×K)N
∗
.

The private history of Player 1 (resp. 2) before step m is the sequence (a0, i1, a1, ..., im−1, am−1)
(resp. (b0, j1, b1, ..., jm−1, bm−1)), and the set of all private histories for Player 1 (resp. 2) is H1

m =
A× (I ×A)m−1 (resp. H2

m = B × (J ×B)m−1).
We denote H1 = ∪

m≥1
H1
m and H2 = ∪

m≥1
H2
m.

A pure strategy for Player 1 (resp. 2) is a map s : H1 → I (resp. t : H2 → J).
A behavioral strategy for Player 1 (resp. 2) is a map σ : H1 → ∆(I) (resp. τ : H2 → ∆(J)). The

set of all behavioral strategies for Player 1 (resp. 2) is denoted Σ (resp. T ).
An initial probability p ∈ ∆(K×A×B) and a couple of (pure or behavioral) strategies (σ, τ) ∈ Σ×T

naturally induce a unique probability measure Ppσ,τ on the set of all possible histories of the game H∞.

We denote gm the random payoff at stage m ≥ 1: gm := g(km, im, jm). For λ ∈ (0, 1], we call λ-
discounted game the game Γpλ with normal form (Σ, T , γpλ), where the payoff γpλ : Σ×T → R is defined
by

γpλ(σ, τ) = Epσ,τ

∑
m≥1

λ(1− λ)m−1gm


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For n ∈ N∗, we call n-stage repeated game the game Γpn with normal form (Σ, T , γpn), where the payoff
γpn : Σ× T → R is defined by

γpn(σ, τ) := Epσ,τ

(
1

n

n∑
m=1

gm

)
It is easy to show, using Sion’s theorem (see [19]), that Γpλ (resp. Γpn) has a value vλ : ∆(K×A×B)→ R
(resp. vn : ∆(K ×A×B)→ R):

vλ(p) = max
σ∈Σ

min
τ∈T

γpλ(σ, τ) = min
τ∈T

max
σ∈Σ

γpλ(σ, τ)

vn(p) = max
σ∈Σ

min
τ∈T

γpn(σ, τ) = min
τ∈T

max
σ∈Σ

γpn(σ, τ)

1.1.1 Asymptotic approach

Definition Γ has an asymptotic value if (vn) and (vλ) converge pointwise to the same limit (when
n→ +∞ and λ→ 0).

Remark It is easy to see that for all (n, λ) ∈ N∗× (0, 1], vn and vλ are ‖g‖∞ Lipschitz. Thus as far as
these sequences are concerned, pointwise and uniform convergence are equivalent.

1.1.2 Uniform approach

Let p ∈ ∆(K ×A×B).

Definition Player 1 (resp. 2) can guarantee α ∈ R in Γ∞(p) if for all ε > 0, there exists σ∗ ∈ Σ (resp.
τ∗ ∈ T ) and n0 ∈ N∗ such that for all τ ∈ T (resp. σ ∈ Σ) and n ≥ n0

γpn(σ∗, τ) ≥ α− ε (resp.γpn(σ, τ∗) ≤ α+ ε)

The maxmin of Γ∞(p) is sup {α | Player 1 can guarantee α in Γ∞(p)}.
The minmax of Γ∞(p) is inf {α| Player 2 can guarantee α in Γ∞(p)}.
When the minmax is equal to the maxmin, this quantity is called the uniform value, and is denoted

by v∞(p).

Definition Player 1 (resp. 2) can defend uniformly α ∈ R in Γ∞(p) if for all ε > 0, forall τ ∈ T (resp.
σ ∈ Σ), there exists σ ∈ Σ (resp. τ ∈ T ) and n0 ∈ N∗ such that for all n ≥ n0

γpn(σ, τ) ≥ α− ε (resp.γpn(σ, τ) ≤ α+ ε)

When Player 1 can defend uniformly the minmax, the minmax is called uniform minmax. When Player
2 can defend uniformly the maxmin, the maxmin is called uniform maxmin.

Remarks

• The existence of the uniform value yields the existence of the asymptotic value.

• When the uniform value exists, the maxmin and minmax are uniform.

1.2 Repeated games with public signals and perfect observation of the ac-
tions

A repeated game Γ with public signals and perfect monitoring of the actions is a repeated game where
the signals received by both players are public and include the actions. Explicitly, with the notations
of subsection 1.1, A = B, for all m ∈ N am = bm, and (im, jm) is measurable with respect to am. We
fix such a game Γ.
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For m ≥ 1, we denote by pm the conditional probability on the state km at stage m, given the
past history Hm: for all k ∈ K, pm(k) = P (km = k|Hm). pm represents the common belief at stage m
about the current state km. It turns out that the triplet (pm, im, jm) is the only relevant information

conveyed by the signal am. Formally, let Γ̃ be the auxiliary repeated game with state space ∆(K),
action sets I and J , transition function q̃ : ∆(K) × I × J → ∆f (∆(K)) defined by q̃(p, i, j) :=

P (p2 = p|p1 = p, i1 = i, j1 = j), and payoff function g̃ : ∆(K)×I×J defined by g̃(p, i, j) :=
∑
k∈K

g(k, i, j).

As for the signaling structure, both players observe perfectly the state and the actions.
For all λ ∈ (0, 1] (resp. n ∈ N∗), Γ̃λ (resp. Γ̃n) and Γλ (resp. Γn) have the same value, and optimal

strategies in the first game induce optimal strategies in the second one, and reciprocally. Thus in what
follows we identify Γ with Γ̃, and set q := q̃, and g := g̃.

By an easy generalization of Shapley [18], vλ is the unique solution of the following functional
equation

f(p) = max
x∈∆(I)

min
y∈∆(J)

{
λg(p, x, y) + (1− λ)Epx,y(f)

}
(1)

= min
y∈∆(J)

max
x∈∆(I)

{
λg(p, x, y) + (1− λ)Epx,y(f)

}
(2)

where the unknown is a continuous function f : ∆(K)→ R,

Epx,y(f) :=
∑

(p′,i,j)∈∆(K)×I×J

x(i)y(j)q(p, i, j)(p′)f(p′) and g(p, x, y) :=
∑

(i,j)∈I×J

x(i)y(j)g(p, i, j).

Remark Note that in this framework the belief hierarchy is trivial: Players have the same information.
In the general model of repeated game, it may not be the case, and a recursive equation similar to (1)
is more difficult to write (see Coulomb [3]).

One can deduce for any λ ∈ (0, 1] the existence of stationnary optimal strategies in Γλ: a stationary
strategy is a strategy which depends only on the state pm. We have the following refinement:

Definition A player is said to control p ∈ ∆(K) if in this state the transition q(p, .) and the payoff
g(p, .) do not depend on the action of the other player.

Lemma 1.1 Assume that each state p ∈ ∆(K) is controlled by one player. Let Γ′ be the restriction of
Γ to pure stationary strategies. Let λ ∈ (0, 1]. Then Γ′λ has a value v′λ, and v′λ = vλ. Moreover, optimal
strategies in Γ′λ are also optimal in Γλ.

Proof Assume Player 1 (resp. 2) controls some p ∈ ∆(K). Let λ ∈ (0, 1]. Then (1) boils down to

vλ(p) = max
x∈∆(I)

{λg(p, x) + (1− λ)Epx(vλ)}

and respectively (2) boils down to

vλ(p) = min
y∈∆(J)

{
λg(p, y) + (1− λ)Epy(vλ)

}
The right term is linear in x (resp. y), hence the maximum (resp. minimum) is reached for some i ∈ I
(resp. j ∈ J). It yields the existence of a pure optimal stationary strategy for Player 1 (resp. 2) in Γλ.
In particular, Γ′λ has a value and v′λ = vλ. If x, y are optimal strategies in Γ′λ, they are also optimal
in (1) and (2), and therefore in Γλ.

2 A repeated game with public signals and perfect observation
of the actions where (vλ) does not converge

In subsection 2.1 we present the counterexample. Then we describe the equivalent game with perfect
observation of state and actions (see subsection 1.2). Though this game seems a bit intricate at first
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sight, it turns out that for each discount factor λ in (0, 1], the discounted game is equivalent to a one-
shot game played on N× 2N. This last game is easy to analyze, and we show in subsection 2.4 that its
discounted value does not converge.

2.1 Description of the game

Let us consider the following repeated game with public signals and perfect observation of the actions
Γ, with state space K =

{
1∗, 1++, 1T , 1+, 0∗, 0++, 0+

}
, action sets I = J = {C,Q} and signal sets

A = B = {D,D′}. The initial state will usually be taken as 1++.
Payoffs are independent of actions, and are 1 in states 1∗, 1++, 1T and 1+, and 0 in states 0∗, 0++

and 0+.
1++, 1T , 1+ are controlled by Player 2, in the sense that the transition on these states q(1++, .),

q(1T , .) and q(1+, .) do not depend on the actions of Player 1. Similarly, Player 1 controls the states
0++ and 0+. Hence q can be seen as a map from K × {C,Q} to ∆(K × {D,D′}). Last, 1∗ and 0∗ are
absorbing states: it means that once 1∗ or 0∗ is reached, the game remains forever in this state, and
the payoff does not depend on the actions (absorbing payoff).
The following table describes the transitions of the game in the states controlled by Player 2, that is to
say 1++, 1T and 1+:

q(1++, C) := 1
2 · (1

T , D) + 1
2 · (1

++, D′)

q(1T , C) := 1
8 · (1

++, D) + 3
8 · (1

+, D) + 1
2 · (1

++, D′)

q(1+, C) := 1
2 · (1

+, D) + 1
2 · (1

++, D′)

q(1++, Q) := q(1T , Q) := (1∗, D′)

q(1+, Q) := (0++, D)

We now describe the transitions in the states controlled by Player 1, that is to say 0++ and 0+:

q(0++, C) := 1
4 · (0

++, D) + 1
4 · (0

+, D) + 1
2 · (0

++, D′)

q(0+, C) := 1
2 · (0

+, D) + 1
2 · (0

++, D′)

q(0++, Q) := (0∗, D′)

q(0+, Q) := (1++, D)

2.2 Equivalent repeated game with perfect observation

Recall that from subsection 1.2, Γ is equivalent in terms of value to a repeated game with perfect
observation of the state and actions Γ̃, with state variable pm = km|Hm. In this subsection, we give
the exact expression of the transition q̃ and payoff g̃ of such a game.
We define the following elements of ∆(K):

1n := 2−n · 1++ + (1− 2−n) · 1+

1Tn := 2−n · 1T + (1− 2−n) · 1+

0n := 2−n · 0++ + (1− 2−n) · 0+

Let P1 := ∪
n∈N

12n, PT1 := ∪
n∈N

1T2n, P2 := ∪
n∈N

0n, and P = P1∪PT1 ∪P2∪{1∗, 0∗}. Note that in Γ̃, Player

1 controls all the states in P2, and Player 2 controls all the states in P1 and PT1 . In P , the transition q̃
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depends only on the action of one player, and is the following:

q̃(12n, C) := 1
2 · 1

T
2n + 1

2 · 1
++

q̃(1T2n, C) := 1
2 · 12n+2 + 1

2 · 1
++

q̃(12n, Q) := q̃(1T2n, Q) := (1− 2−2n) · 0++ + 2−2n · 1∗

q̃(0n, C) := 1
2 · 0n+1 + 1

2 · 0
++

q̃(0n, Q) := (1− 2−n) · 1++ + 2−n · 0∗

(3)

Conditionnally to the game leaving from any p ∈ P , the common belief about the state pm remains in
P . Hence the preceding equations describe completely the transitions of the game leaving from state p.
The following proposition summarizes what has been shown above:

Proposition 2.1 Let p ∈ P . Γp is equivalent to a repeated game with perfect observation of state and
actions Γ̃p, with state space P , action sets I = J = {C,Q}, transition q̃ described by (3), and a payoff
function g̃ which depends only on the state, such that for all p in P1 ∪ PT1 (resp. p in P2), g̃(p) = 1
(resp. g̃(p) = 0).

From now on we identify Γ with Γ̃, and set g := g̃ and q := q̃.
Let us explain informally the dynamics of the game. Assume that the game starts in p1 = 0++.

Player 1 wants to go to state 1++. If he plays Q immediately, the game is absorbed in 0∗, which is
very bad for him. If he never plays Q, the payoff is 0 forever, which is also bad. If he plays C until
the state is 0n, and then Q, with probability 2−n the state is absorbed in 0∗ (we will often call 2−n the
”absorbing risk”), and with probability (1− 2−n) the games goes to 1++.

To reach 0n from 0++, Player 1 needs on average 2n steps. Hence there is a trade-off between staying
not too long in states of type 0, and reducing the risk of absorbing in 0∗. Basically Player 1 needs to
wait 2n steps to take a risk of absorbing in 0∗ equal to 2−n.

For Player 2, it is the same principle. Assume that the game starts in p1 = 1++. Player 2 plays
C until reaching 12n or 1T2n, and then Q. With probability 2−2n the game is absorbed in 1∗, and with
probability (1− 2−2n) the game goes to state 0++.

To reach 12n, Player 2 needs on average 22n steps. Player 2 can also play Q in 1T2n, but it is not a
good strategy, since such a state is harder to reach than 12n (22n+1 steps on average) but leads to the
same absorbing risk 2−2n. Note that the time needed by Player 2 to go from 1++ to 12n is on average
the same as the time needed by Player 1 to go from 0++ to 02n.
Therefore, the only asymmetry of the game is that Player 1 can take any absorbing risks of the form
2−n, whereas Player 2 can only take absorbing risks of the form 2−2n.

2.3 Equivalent one-shot game on N× 2N
We fix some λ ∈ (0, 1).

The aim of this section is to prove the following proposition:

Proposition 2.2 Γ1++

λ has the same value as the one-shot game Gλ with action set N for Player 1,
2N for Player 2, and payoff

gλ(a, b) :=
1− fλ(b)

1− fλ(a)fλ(b)

where

fλ(n) :=
(1− 2−n)(1− λ2)

1 + 2n+1λ(1− λ)−n − λ

Moreover, optimal strategies in Gλ induce optimal strategies in Γ1++

λ .
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Let a, b ∈ N2. We consider strategies σ(a) and τ(b) for Player 1 and 2 of the following form:
if pm = 0n for some n ≥ a, play Q, otherwise play C.

if pm = 1n for some n ≥ b, play Q, otherwise play C.
When there is no ambiguity, we will simply denote a (resp. b) for σ(a) (resp. τ(b)).

Remark If Player 1 (resp. 2) plays σ(a) (resp. τ(b)), the state 0n (resp. 12n, 1
T
2n) with n > a (resp.

2n > b) is never reached in Γ1++

.

Proposition 2.3 Let Γ′ be the restriction of Γ to pure stationary strategies. In Γ′
1++

λ , any strategy for
Player 1 (resp. 2) is dominated by some σ(a) (resp. τ(b)).

Proof First note that a pure stationary strategy for one player in Γ can be seen as a map from N to
{C,Q}. Indeed Player 1 only influences the game when the state is in P2, and Player 2 only influences
the game when the state is in P1.
Let (σ, τ) ∈ Σ× T be pure stationary strategies. σ(n) represents the action of Player 1 when the state
is 0n. τ(2n) (resp. τ(2n + 1)) represents the action of Player 2 when the state is 12n (resp. 1T2n). Let
a = inf {n ≥ 1|σ(n) = Q}. If a = +∞, then σ is dominated by σ(0). If a < +∞, by the preceding

remark, σ and σ(a) are equivalent in Γ′
1++

: for all τ ∈ T , P1++

σ,τ = P1++

σ(a),τ .

Let b = inf {n ≥ 1|τ(n) = Q}. If b = +∞, then τ is dominated by τ(0). Assume b is even. Still by the

preceding remark, τ and τ(b) are the same strategies in Γ′
1++

: for all σ ∈ Σ, P1++

σ,τ = P1++

σ,τ(a). If b is

odd, then τ(b− 1) dominates τ(b). Indeed, as mentioned above, it is always better for Player 2 to quit
in 12n rather than in 1T2n.

Proposition 2.4 Let Γ′′ be the restriction of Γ to strategies of the form σ(a) and σ(b), (a, b) ∈ N×2N.

Then Γ1++

λ and Γ′′
1++

λ have the same value. Moreover, any optimal strategy in Γ′′
1++

λ is also optimal

in Γ1++

λ .

Proof It stems directly from Proposition 2.3 and Lemma 1.1.

To complete the proof of Proposition 2.2, it remains to compute γ1++

λ (a, b) (the payoff in the game

Γ1++

λ , when Player 1 plays σ(a) and Player 2 plays τ(b)), for some (a, b) ∈ N × 2N, and show that

γ1++

λ (a, b) = gλ(a, b).
Our aim is first to compute the average time spent by Player 2 (resp. 1) in states of type 1 (resp.

0) before he plays Q, when he plays the strategy σ(b) (resp. σ(a)), going from 1++ (resp. 0++).
Let T 1

a = inf {m ≥ 1|im = Q} and T 2
b = inf

{
m ≥ T 1

a + 1|jm = Q
}
− T 1

a .
Let (Xn)n≥0 be the Markov chain on N with transition π : N→ ∆(N) defined by π(n) = 1

2 ·(n+1)+ 1
2 ·0,

and take X0 := 0. Let Tn = inf {n′ ≥ 0|Xn′ = n}. Tn represents the random time needed by the Markov
chain to go from 0 to n. By definition of the transition of Γ (see (3)) and the Markov property, under

P1++

σ(a),σ(b), T
1
a (resp. T 2

b ) and Ta + 1 (resp. Tb + 1) have the same law. We have the following lemma:

Lemma 2.5 For all n ∈ N

E
(
(1− λ)Tn

)
=

1 + λ

1 + 2n+1λ(1− λ)−n − λ

Proof For n = 0 the result is clear. Let n ≥ 1.
Going from 0, to get to state n the Markov chain (Xn) has to reach n− 1. Then it goes to n (resp.

0), if the realization of a certain Bernoulli random variable B is 1 (resp. 0). Therefore, by the Markov
property, Tn satisfies

Tn = Tn−1 + 1B=1 + 1B=0(1 + T ′n)

where T ′n is an independent copy of Tn. Note that Tn−1, B and T ′n are independent. Therefore we have

E
(
(1− λ)Tn

)
= (1− λ)E

(
(1− λ)Tn−1

)
E
(

(1− λ)1B=0T
′
n

)
8



and

E
(

(1− λ)1B=0T
′
n

)
= E

(
1B=0(1− λ)T

′
n

)
+ E (1B=1)

=
1

2

(
1 + E

(
(1− λ)T

′
n

))
Let xn := E

(
(1− λ)Tn

)
= E

(
(1− λ)T

′
n

)
. We have

xn =
1− λ

2
xn−1(1 + xn)

Dividing by xnxn−1 (clearly all xn are strictly positive) and taking un :=
1

xn
yields

un−1 =
1− λ

2
(1 + un)

and

un =
2

1− λ
un−1 − 1

Let vn := un −
1− λ
1 + λ

. Then

vn =
2

1− λ
vn−1

Since T0 = 0, u0 = 1, v0 =
2λ

1 + λ
and we have for all n ∈ N∗

vn = 2n(1− λ)−n
2λ

1 + λ

Thus

un =
2n+1λ(1− λ)−n + 1− λ

1 + λ

Replacing un by
1

xn
gives the lemma.

We now give the expression of γ1++

λ (a, b):

Proposition 2.6

γ1++

λ (a, b) =
1− fλ(b)

1− fλ(a)fλ(b)

where

fλ(n) =
(1− 2−n)(1− λ2)

1 + 2n+1λ(1− λ)−n − λ

Proof γ1++

λ (a, b) satisfies the following recursive equation:

γ1++

λ (a, b) = 2−b + (1− 2−b)E

 T 2
b∑

m=1

λ(1− λ)m−11 +

T 1
a+T 2

b∑
m=T 2

b +1

λ(1− λ)m−10


+(1− 2−b)(1− 2−a)E

(
(1− λ)T

1
a+T 2

b

)
γ1++

λ (a, b)

The 2−b corresponds to the probability that the game be absorbed in 1∗ when Player 2 plays Q: in this
case the payoff at any step is 1. If the game is not absorbed at that point, then the payoff from step 1

9



until the step when Player 1 plays Q is the second term of the equation. When Player 1 plays Q, with
probability 2−a the game is absorbed in 0∗, and with probability (1 − 2−a) the game is back in state
1++: it is the third term of the equation.

We deduce that

γ1++

λ (a, b) =
1− (1− 2−b)E

(
(1− λ)T

2
b

)
1− (1− 2−a)(1− 2−b)E

(
(1− λ)T

1
a+T 2

b

)
Since T 1

a and T 2
b are independent, we have E

(
(1− λ)T

1
a+T 2

b

)
= E

(
(1− λ)T

1
a

)
E
(

(1− λ)T
2
b

)
. Recall

now that T 1
a (resp. T 2

b ) and Ta + 1 (resp. Tb + 1) have the same law. It yields

γ1++

λ (a, b) =
1− (1− 2−b)(1− λ)E

(
(1− λ)Tb

)
1− (1− λ)2(1− 2−a)(1− 2−b)E ((1− λ)Ta)E ((1− λ)Tb)

We get the proposition by applying Lemma 2.5.

2.4 Asymptotic study of Gλ and proof of the main theorem

We first determine optimal strategies in Gλ:

Proposition 2.7 Let (a∗, b∗) ∈ argmax
n∈N

fλ × argmax
n∈2N

fλ. Then a∗ (resp. b∗) is a dominant strategy for

Player 1 (resp. 2) in Gλ. In particular, they are optimal strategies in Γ1++

λ .

Proof We have lim
n→+∞

fλ(n) = 0, therefore a∗ and b∗ are well defined. Observe that the function

(x, y) → 1− y
1− xy

, defined on [0, 1)2, is increasing in x and decreasing in y, and that fλ(N) ⊂ [0, 1).

Hence a∗ and b∗ are dominant strategies in Gλ, and by Proposition 2.2 they are optimal strategies in
Γ1++

λ .

To study fλ, it is convenient to make the change of variables r = 2−n, and define

[0, 1] −→ R

f̂λ : r 7−→ 1− r
1 + 2λr−s − λ

where s := 1− ln(1− λ)

ln(2)
> 1.

Note that for all n ∈ N, fλ(n) = (1− λ2)f̂λ(2−n).

Lemma 2.8 f̂λ reaches its maximum at one unique point r∗(λ), is strictly increasing on [0, r∗(λ)], and

strictly decreasing on [r∗(λ), 1]. Moreover, for all c > 0, f̂λ(c
√

2λ) =
λ→0

1− (c+ c−1)
√

2λ+ o(
√
λ), and

r∗(λ) ∼
λ→0

√
2λ.

Proof

f̂ ′λ(r) =
−(1 + 2λr−s − λ)− (1− r)(−2λsr−s−1)

(1 + 2λr−s − λ)2

The numerator of this expression is equal to hλ(r) := λ− 1 + 2λ(−(1 + s)r + s)r−s−1. We have

h′λ(r) = −2λ(s(1 + s)(1− r))r−s−2

We have h′λ < 0 on (0, 1), lim
r→0

hλ(r) = +∞ and hλ(1) = −(1+λ). Hence there exists r∗(λ) ∈ (0, 1) such

that hλ is strictly positive on (0, r∗(λ)], and strictly negative on [r∗(λ), 1]. Thus f̂λ is strictly increasing
on [0, r∗(λ)], and strictly decreasing on [r∗(λ), 1].

If c > 0, we have
f̂λ(c
√

2λ) =
λ→0

1− (c+ c−1)
√

2λ+ o(
√
λ)
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Let ε > 0. Applying the last relation to c = 1 − ε, c = 1 and c = 1 + ε shows that for λ small
enough, f̂λ(

√
2λ) > f̂λ((1− ε)

√
2λ) and f̂λ(

√
2λ) > f̂λ((1 + ε)

√
2λ). Thus, for λ small enough, r∗(λ) ∈[

(1− ε)
√

2λ, (1 + ε)
√

2λ
]
. We deduce that r∗(λ) ∼

λ→0

√
2λ.

We can now prove our main result:

Theorem 2.9 (vλ) does not converge when λ→ 0.

Proof Set λm = 2−4m−1 and µm = 2−4m−3. Hence
√

2λm = 2−2m and
√

2µm = 2−2m−1. By Lemma
2.8, for m big enough,

argmax
n∈N

fλm = argmax
n∈2N

fλm = {2m}

Hence by Proposition 2.7, we have

vλm(1++) =
1− fλm(2m)

1− fλm(2m)2
=

1

1 + fλm(2m)

By Lemma 2.8, fλm(2m) converges to 1, thus (vλm(1++)) converges to
1

2
.

Still by Lemma 2.8, for m big enough, we have

argmax
n∈N

fµm = {2m+ 1} and argmax
n∈2N

fµm ⊂ {2m, 2m+ 2}

Therefore

vµm(1++) = min

(
1− fµm(2m)

1− fµm(2m)fµm(2m+ 1)
,

1− fµm(2m+ 2)

1− fµm(2m+ 2)fµm(2m+ 1)

)
By Lemma 2.8, we have

fµm(2m+ 1) =
m→+∞

1− 2
√

2µm + o(
√
µm)

fµm(2m) =
m→+∞

1− 5

2

√
2µm + o(

√
µm)

fµm(2m+ 2) =
m→+∞

1− 5

2

√
2µm + o(

√
µm)

Hence
1− fµm(2m)

1− fµm(2m)fµm(2m+ 1)
∼

m→+∞

5
2

√
2µm(

2 + 5
2

)√
2µm

=
5

9

And similarly
1− fµm(2m+ 2)

1− fµm(2m+ 2)fµm(2m+ 1)
∼

m→+∞

5
2

√
2µm(

2 + 5
2

)√
2µm

=
5

9

(vλm(1++) and (vµm(1++)) converge to a different limit, hence (vλ) does not converge.

Remark More generally, if p ∈ P \ {1∗, 0∗}, (vλ(p)) does not converge. Indeed, let n ∈ N and N ≥ n,
and consider the following strategy σ for Player 1 in Γ0n : play C until pm = 0N , then play Q, and play

optimal in Γ1++

. σ guarantees asymptotically vλ(1++)− 1

N
in Γ0n : lim inf

λ→0
vλ(0n) ≥ lim inf

λ→0
vλ(1++)− 1

N
,

and with N → +∞, lim inf
λ→0

vλ(0n) ≥ lim inf
λ→0

vλ(1++). With the same kind of argument, one can show

that for all (p, p′) ∈ P 2 \ {1∗, 0∗}, lim
λ→0
|vλ(p)− vλ(p′)| = 0, which gives the result.
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3 From (vλ) to (vn)

Let l ≥ 2. We construct a repeated game with public signals and perfect observation of the actions
Γ(l), which λ-discounted value (vlλ) and n-stage value (vln) fail to converge, for l big enough.

The state space is K =
{

1++, 1T1 , 1T2 , ..., 1T2l−1 , 1+, 1∗, 0++, 0T1 , 0T2 , ..., 0Tl−1 , 0+, 0∗
}

, actions sets
are I = J = {C,Q}, and signal sets are A = B = {D,D′}. The initial state will usually be taken as
1++. Payoffs are independent of actions, and are 1 in states belonging to 1∗, 1++, 1T1 , ..., 1T2l−1 , 1+, and
0 in states belonging to 0∗, 0++, 0T1 , ..., 0Tl−1 , 0+.

1++, 1T1 , ..., 1T2l−1 , 1+ are controlled by Player 2, in the sense that the transition on these states
q(1++, .), q(1T1 , .),...,q(1T2l−1 , .) and q(1+, .) do not depend on the actions of Player 1.

Similarly, Player 1 controls the states 0++, 0T1 , ..., 0Tl−1 , 0+. Hence q can be seen as a map from
K × {C,Q} to ∆(K × {D,D′}). Last, 1∗ and 0∗ are absorbing states.
The following table describes the transitions of the game in the states controlled by Player 2, that is to
say 1++, 1T1 , ..., 1T2l−1 , 1+. m is any integer in [|0, 2l − 2|], and 1T0 := 1++.

q(1Tm , C) := 1
2 · (1

Tm+1 , D) + 1
2 · (1

++, D′)

q(1T2l−1 , C) := 2−2l−1 · (1++, D) + 1
2 (1− 2−2l) · (1+, D) + 1

2 · (1
++, D′)

q(1+, C) := 1
2 · (1

+, D) + 1
2 · (1

++, D′)

q(1Tm , Q) := q(1T2l−1 , Q) := (1∗, D′)

q(1+, Q) := (0++, D)

We now describe the transitions in the states controlled by Player 1, that is to say 0++, 0T1 , ..., 0Tl−1 , 0+.
m is any integer in [|0, l − 2|], and 0T0 := 0++.

q(0Tm , C) := 1
2 · (0

Tm+1 , D) + 1
2 · (0

++, D′)

q(0Tl−1 , C) := 2−l−1 · (0++, D) + 1
2 (1− 2−l) · (0+, D) + 1

2 · (0
++, D′)

q(0+, C) := 1
2 · (0

+, D) + 1
2 · (0

++, D′)

q(0Tm , Q) := q(0Tl−1 , Q) := (0∗, D′)

q(0+, Q) := (1++, D)

Recall that we have shown that for λ ∈ (0, 1] fixed, the discounted game Γλ of section 2 was
equivalent in terms of value and optimal strategies to a one-shot game with actions sets N for Player 1
(resp. 2N for Player 2) and with payoff function gλ which expression is given in Proposition 2.2.

With exactly the same analysis, we can show that Γ(l)1++

λ is equivalent to a game played on lN×2lN:

Proposition 3.1 Γ(l)1++

λ has the same value as the one-shot game Gλ(l), with action set lN for Player
1, 2lN for Player 2, and payoff

glλ(a, b) := gλ(a, b)

Moreover, optimal strategies in Gλ(l) induce optimal strategies in Γ(l)1++

λ .

For m ≥ 1, let λm := 2−4lm−1 and µm := 2−4lm−2l−1. Proceeding exactly the same way as in 2.4, we
get

Proposition 3.2

lim
m→+∞

vlλm(1++) =
1

2
and lim

m→+∞
vlµm(1++) =

2l + 2−l

2l + 2−l + 2

12



We will show that for l big enough, the value (vln) of the game Γ(l)n does not converge by comparing
it to the value (vlλ) of the game Γ(l)λ, using a similar technique as Vigeral [24].

We fix some l ≥ 2.
We start with a lemma, which can be immediately deduced from the proof of Theorem C.8 in Sorin

[22]:

Lemma 3.3 Let Γ be any repeated game with public signals and perfect observation of the actions. Let
n0, n ∈ N∗, and for m ∈ N∗ set wm := v 1

m
. Then the following inequality holds:

‖vn − wn‖∞ ≤
n0

n
‖vn0 − wn0‖∞ +

n−1∑
m=n0

‖wm − wm+1‖∞

Proof Let m ≥ 1 and p ∈ ∆(K). We have the following dynamic programming principle (see Sorin
[22]):

vm(p) = max
x∈∆(I)

min
x∈∆(J)

{
1

m
g(p, x, y) +

m− 1

m
Epx,y(vm−1)

}
(4)

and

wm(p) = max
x∈∆(I)

min
x∈∆(J)

{
1

m
g(p, x, y) +

m− 1

m
Epx,y(wm)

}
(5)

Let x ∈ ∆(I) optimal in (4) and y ∈ ∆(J) optimal in (5). We have

vm(p) ≤ 1

m
g(p, x, y) +

m− 1

m
Epx,y(vm−1)

wm(p) ≥ 1

m
g(p, x, y) +

m− 1

m
Epx,y(wm)

The combination of these two inequalities gives

vm(p)− wm(p) ≤ m− 1

m
‖vm−1 − wm‖∞

Taking x′ ∈ ∆(I) optimal in (4) and y′ ∈ ∆(J) optimal in (5) gives the symmetric inequality:

wm(p)− vm(p) ≤ m− 1

m
‖vm−1 − wm‖∞

Hence

‖vm − wm‖∞ ≤
m− 1

m
‖vm−1 − wm‖∞

and
m ‖vm − wm‖∞ ≤ (m− 1) ‖vm−1 − wm−1‖∞ + (m− 1) ‖wm−1 − wm‖∞

Let n, n0 ≥ 1. Summing the last inequality from n0 + 1 to n yields

n ‖vn − wn‖∞ ≤ n0 ‖vn0
− wn0

‖∞ +

n−1∑
m=n0

m ‖wm − wm+1‖∞

Dividing by n gives the lemma.

To have more simple notations, if (λ, p) ∈ [0, 1) ×∆(K), v′λ(p) designates the derivative of vλ(p) with
respect to λ, evaluated in λ, and it is the same for f ′λ(p). Moreover, when there is no ambiguity, we
will write vn for vln and vλ for vlλ.

Remark When ‖v′λ‖∞ =
λ→0

o
(
λ−1

)
, one can easily deduce from the above inequality that (vn) and

(vλ) have the same accumulation points (see Vigeral [24]). In our example we can only say that
‖v′λ‖∞ =

λ→0
O
(
λ−1

)
, which is not sufficient. We need a sharper majoration of the derivative, given by

the following lemma.
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For m ≥ 1, we define λm := 2−4lm−1 and µm := 2−4lm−2l−1.

Lemma 3.4 There exists m0 ≥ 1 such that for all m ≥ m0 and µm ≤ µ ≤ 2
l
2−1µm∥∥v′µ∥∥∞ ≤ 2−

l
2µ−1

and for all λm ≤ λ ≤ 2l−1λm
‖v′λ‖∞ ≤ 2

l
2 +2λ−

1
2

Proof Let µ ∈ ∪
m≥1

[
µm, 2

l−1µm
]
. We denote by m(µ) the unique m such that µ ∈

[
µm, 2

l−1µm
]
. By

a similar analysis as in Lemma 2.8, one can easily show that for µ small enough, a(µ) = 2lm(µ) + l is
an optimal strategy for Player 1 in Gµ(l). Moreover, for µ small enough, there exists µm(µ) ≤ µ0

m(µ) ≤
2l−1µm(µ) such that for µm(µ) ≤ µ ≤ µ0

m(µ) (resp. µ0
m(µ) ≤ µ ≤ 2l−1µm(µ)), b

′(µ) = 2lm(µ) + 2l

(resp. b(µ) = 2lm(µ)) is an optimal strategy for Player 2 in Gµ(l). The two cases b(µ) = 2lm(µ) and
b′(µ) = 2lm(µ) + 2l being similar, we only treat the first one.

Let C1(µ) := 2−2lm(µ)−l(2µ)−
1
2 =

√
µm(µ)

µ
and C2(µ) := 2−2lm(µ)(2µ)−

1
2 = 2l

√
µm(µ)

µ
. Note that

2−a(µ) = C1(µ)
√

2µ and 2−b(µ) = C2(µ)
√

2µ. Moreover, C1 and C2 are bounded and bounded away
from 0.

The fact that optimal strategies in Γ1++

µ are locally constant with respect to µ allows us to compute
easily the derivative of vµ. First

f ′µ(a(µ)) = (1−2−a(µ))
−2µ(1 + 2a(µ)+1µ(1− µ)−a(µ) − µ)− (1− µ2)(2a(µ)+1((1− µ)−a(µ) − a(µ)µ(1− µ)a(µ)−1)− 1)

(1 + 2a(µ)+1µ(1− µ)−a(µ) − µ)2

We deduce that
f ′µ(a(µ)) =

µ→0
−2C1(µ)−1(2µ)−

1
2 + o

(
µ−

1
2

)
(6)

The same equality holds replacing a(µ) by b(µ) and C1(µ) by C2(µ).
The same computation as in Lemma 2.8 gives

fµ(a(µ)) =
µ→0

1− (C1(µ) + C1(µ)−1)(2µ)
1
2 + o

(
µ

1
2

)
fµ(b(µ)) =

µ→0
1− (C2(µ) + C2(µ)−1)(2µ)

1
2 + o

(
µ

1
2

)
We can now differentiate vµ(1++) (we omit the dependance of a and b in µ):

v′µ(1++) = g′µ(a, b) =
−f ′µ(b)(1− fµ(a)fµ(b)) + (1− fµ(b))(f ′µ(a)fµ(b) + fµ(a)f ′µ(b))

(1− fµ(a)fµ(b))2

=
f ′µ(a)fµ(b)(1− fµ(b))− f ′µ(b)(1− fµ(a))

(1− fµ(a)fµ(b))2

When µ goes to 0, the numerator of this expression is (we omit the dependence in µ)

−2C−1
1 (C2 + C−1

2 ) + 2C−1
2 (C1 + C−1

1 ) + o(1) = 2(C−1
2 C1 − C−1

1 C2) + o(1)

Hence

v′µ(1++) =
µ→0

(C−1
2 C1 − C−1

1 C2)

(C1 + C−1
1 + C2 + C−1

2 )2
µ−1 + o(µ−1)

If µm ≤ µ ≤ 2
l
2−1µm, we have∣∣∣∣ (C−1

2 C1 − C−1
1 C2)

(C1 + C−1
1 + C2 + C−1

2 )2

∣∣∣∣ ≤ C−1
1 C−1

2 = 2−l
µ

µm(µ)
≤ 2−

l
2−1
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The last two relations show that for m big enough and µm ≤ µ ≤ 2
l
2−1µm

|v′µ(1++)| ≤ 2−
l
2−1µ−1

We can easily show that µ → µ
1
2

∣∣v′µ(p)− v′µ(1++)
∣∣ is uniformly bounded in p ∈ ∆(K) such that

p(0∗) = p(1∗) = 0. Indeed for example

vµ(0++) = E

2−a(µ) + (1− 2−a(µ))

Ta(µ)∑
m=1

µ(1− µ)m−1 + (1− µ)Ta(µ)vµ(1++)


Thus

vµ(0++) = 1− fµ(a(µ))vµ(1++)

and
v′µ(0++) = −f ′µ(a(µ))vµ(1++)− fµ(a(µ))v′µ(1++)

and (6) gives the result. Hence for m big enough and µm ≤ µ ≤ 2
1
2−1µ∥∥v′µ∥∥∞ ≤ 2−

l
2µ−1

The proof of the second part is similar. Let λ ∈ ∪
m≥1

[
λm, 2

l−1λm
]
. We denote by m(λ) the unique m

such that λ ∈
[
λm, 2

l−1λm
]
. For λ small enough, a(λ) = 2lm(λ) is an optimal strategy for both players

in Gλ(l), hence for such a λ

v′λ(1++) = − fλ(a(λ))′

(1 + fλ(a(λ)))2

Let C(λ) :=

√
λm(λ)

λ
. Then as in (6)

f ′λ(a(λ)) =
λ→0
−2C(λ)−1(2λ)−

1
2 + o

(
λ−

1
2

)
Since C(λ)−1 ≤ 2

l−1
2 and fλ(a(λ)) goes to 1 when λ goes to 0, we get the desired inequality for v′λ(1++),

and it extends to v′λ(p) in the same way.

Theorem 3.5 There exists l0 ∈ N∗ such that for all l ≥ l0, (vln) and (vlλ) do not converge.

Proof Let l ≥ 2. Recall that from Proposition 3.2, vlλm →
1
2 and vlµm →

2l + 2−l

2l + 2−l + 2
:= w(l). In

particular, (vlλ) does not converge.

Let m ≥ m0. Let n(m) := µ−1
m = 24lm+2l+1 and n0(m) := 2−b

l
2c+1n(m). We compare vln(m) and

vlµm , using Lemma 3.3:

∥∥∥vln(m) − v
l
µm

∥∥∥
∞
≤ n0(m)

n(m)

∥∥∥∥vln0(m) − v
l

2b l2c−1
µm

∥∥∥∥
∞

+

n(m)−1∑
m′=n0(m)

∥∥∥vl 1
m′
− vl 1

m′+1

∥∥∥
∞

The term on the left is smaller than 2−b
l
2c+1, and by the Mean Value theorem and Lemma 3.4 the

term on the right is smaller than 2−
l
2

∫ (n0(m))−1

(n(m))−1

1

x
dx = 2−

l
2

(⌊
l

2

⌋
− 1

)
. Making m going to infinity,

we deduce that ∣∣∣∣lim inf
m→+∞

vln(m)(1
++)− w(l)

∣∣∣∣ ≤ 2−b
l
2c+1 + 2−

l
2

(⌊
l

2

⌋
− 1

)
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Note that lim
l→+∞

w(l) = 1 and that the term on the right goes to 0 when l goes to infinity.

Applying again lemma 3.3 for n(m) := λ−1
m and n0(m) := 2−b

l
2 c+1n(m) gives also an inequality of the

form ∣∣∣∣lim inf
m→+∞

vln(m)(1
++)− 1

2

∣∣∣∣ ≤ t(l)
where lim

l→+∞
t(l) = 0. Hence for l big enough, (vln(1++)) does not converge.

4 Extension to other classes of games

In this section, we show that the counterexample can be adapted to fit in other classes of games.

4.1 State-blind repeated games

Let us consider the following state-blind repeated game Γ, with state spaceK =
{

1∗, 1++, 1T , 1+, 0∗, 0++, 0+
}

,
action sets I = {T,B,Q} for Player 1 and J = {L,R,Q} for Player 2. 0∗ and 1∗ are absorbing states.
The payoff is 1 in states 1++, 1T and 1+, and 0 in states 0++ and 0+. The transitions are described
below:

1++

L R Q
T 1++ 1T 1∗

B 1T 1++ 1∗

Q 0∗ 0∗ 0∗

1T

L R Q
T 1++ 3

41+ + 1
41++ 1∗

B 3
41+ + 1

41++ 1++ 1∗

Q 0∗ 0∗ 0∗

1+

L R Q
T 1++ 1+ 0++

B 1+ 1++ 0++

Q 0∗ 0∗ 0∗

0++

L R Q
T 1

20++ + 1
20+ 0++ 1∗

B 0++ 1
20++ + 1

20+ 1∗

Q 0∗ 0∗ 1∗

0+

L R Q
T 0+ 0++ 1∗

B 0++ 0+ 1∗

Q 1++ 1++ 1∗

Recall that in this model, both players observe nothing about the state, but observe past actions.
As in section 2, we consider the equivalent game with full information played on ∆(K). As in the

example with public signals, P (see section 2.2 for the notations) is stable under the dynamics of the
game: leaving from some p ∈ P , the state remains in P . It is clearly optimal for Player 1 (resp. 2)

to play

(
1

2
,

1

2

)
when the state lies in P2 (resp. P1 ∪ PT1 ). Under this type of strategy, the dynamics

of the game coincide with the counterexample of section 2. Therefore the values (vλ) and (vn) are the
same, and thus do not converge.

4.2 Repeated games with one informed player∗

We now investigate a repeated game with perfect observation of the actions where Player 2 is fully
informed about the state, but Player 1 has no information about it. As usual, both players observe past
actions.

The state space is K = {1∗, 1, 0∗, 0++, 0+}, action sets are I = {T,B,Q} for Player 1 and J = {L,R}
for Player 2. 0∗ and 1∗ are absorbing states. The payoff is 1 in state 1, and 0 in states 0++ and 0+.
The transitions are described below:

∗We thank Guillaume Vigeral for his help to design this example.
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1
L R

T 1 0++

B 0++ 1∗

Q 0∗ 0∗

0++

L R
T 1

20++ + 1
20+ 0++

B 0++ 1
20++ + 1

20+

Q 0∗ 0∗

0+

L R
T 0+ 0++

B 0++ 0+

Q 1 1

Compared to the game of subsection 4.1, states 1++, 1T and 1+ have been replaced by one single
state 1, which is similar to the state ω+ of Vigeral [24]. The other states have not been changed.

In the equivalent game played on ∆(K), the game going from 1 remains in {1}∪P2. It is easy to see
that optimal stationary strategies for Player 1 in Γλ when the state is in P2 are the same as in the game
of subsection 4.1 (or as in the counterexample of section 2), and that (1−

√
λ,
√
λ) is an asymptotically

optimal strategy for both players when the state is 1 (see Vigeral [24]). Thus when the state is 1, the

game stays in 1 a number of steps of order λ−
1
2 , and the probability of absorbing in 1∗ before going

to 0++ is of order
√
λ. Hence the dynamics of the game is similar to the example of section 2, and we

can prove in the same way that (vλ) oscillates. Note that in this example, Player 2’s situation is even
better than Player 1’s situation in the previous example. Indeed one can prove that

lim inf
λ→0

vλ < lim sup
λ→0

vλ <
1

2

4.3 Stochastic games with compact action sets

We now study a repeated game with perfect observation (states and actions are known by both players)
but where I and J are compact. It yields an alternative counterexample to Vigeral [24], which is
equivalent in terms of dynamics to the example of section 2. The state space is K = {1∗, 1, 0∗, 0},
and actions sets are I = [0, 1] and J = {0} ∪ ∪m∈N4−m. The transition q is defined by q(1, x, y) :=
(1− y) · 1 + (y− y2) · 0 + y2 · 1∗ and q(0, x, y) := (1−x) · 0 + (x−x2) · 1 +x2 · 0∗. Hence Player 1 controls
0 and Player 2 controls 1.
Let λ ∈ (0, 1]. A pure stationary strategy in Γλ for Player 1 (resp. 2) can be seen as an element of I
(resp. J).

Remark x ∈ I corresponds to the absorbing risk 2−a in the example of section 2. Indeed, when Player
1 plays x in state 0, on average he waits approximately x−1 steps before switching to state 1, and
the probability of absorbing in 0∗ before reaching 1 is approximately x. Recall that in the example of
section 2, when Player 1 plays a ∈ N, he waits on average 2a steps before quitting, and when he quits
the game is absorbed in 0∗ with probability 2−a. It is the same for Player 2. As in our first example,
Player 2 can not take any absorbing risk: only y = 4−m for some m ∈ N, or y = 0. But Player 1 can
take any absorbing risk in [0, 1]. That is why we expect (vλ) to oscillate, just as in the first example.

We now compute the payoff in Γλ given by a couple of strategies (x, y) ∈ I × J :

γλ(x, y) =
(1− (1− λ)(1− y2))(1− (1− λ)(1− x))

(1− (1− λ)(1− xy))(1− (1− λ)(1− x)(1− y))

For any x ∈ [0, 1] (resp. y ∈ [0, 1]) γλ(x, .) (resp. γλ(., y)) is convex (resp. concave) and reaches its
minimum (resp. its maximum) at y∗ (resp. x∗) such that

x∗ = y∗ =

√
λ− λ

1− λ
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For m ≥ 1, we define λm := 2−2m and µm := 2−2m−1. Then for m big enough, xm = ym =
√
λm are

optimal strategies in Γλm . We have

γλm(xm, ym) =
(1− (1− λm)(1− xm))

(1− (1− λm)(1− xm)(1− ym))

∼
√
λm

2
√
λm

=
1

2

Hence lim
m→+∞

vλm(1) =
1

2
.

For m big enough, xm =
√
µm is an optimal strategy for Player 1 in Γµm , and either ym = 2

√
µm

or y′m = 1
2

√
µm is an optimal strategy for Player 2 in Γµm . We have

γµm(xm, ym) ∼
(µm + 4µm)

√
µm

(µm + 2µm)3
√
µm

=
5

9

And similarly γµm(xm, y
′
m) ∼ 5

9
, hence lim

m→+∞
vµm(1) =

5

9
Therefore (vλ) does not converge.

5 Conclusion and open problems

We have shown that in the general model of repeated games, the asymptotic value may fail to exist, even
when both players have the same information. In addition to the very simple signaling structure (two
public signals, perfect observation of the actions), the example of section 2 presents some remarkable
properties: players observe the payoffs, and players play in turn. A natural question that arises is
the following: can we characterize the class of repeated games which have an asymptotic value? As
recalled in the introduction, this class contains standard stochastic games, absorbing games with lack
of information on one side, and repeated games with one informed controller. We leave for further
research the study of the common denominator between these classes of games.

Concerning the link between asymptotic approach and uniform approach, our example contradicts
the conjecture “maxmin = lim

n→∞
vn when Player 1 is more informed than Player 2”. Nonetheless, we

conjecture that in our example, lim inf
n→+∞

vn(1++) =
1

2
= maxmin(1++) and lim sup

n→+∞
vn(1++) =

5

9
=

minmax(1++). It suggests that the conjecture of Mertens could be replaced by “When Player 1 is more
informed than Player 2, Player 1 can guarantee maxmin = lim inf vn”.

We used in section 3 a technique similar to Vigeral [24] to prove the divergence of (vn), exploiting
the regularity of (vλ). But this method does not apply to the original example of section 2. Is there
another way to prove the divergence of (vn) in the original example, and to compute lim inf

n→+∞
vn and

lim sup
n→+∞

vn? More generally, the link between the asymptotic properties of (vn) and (vλ) requires further

investigation.
Last, our example shows that, in the framework of non-zero sum stochastic games with public signals

and perfect observation of the actions, the set of λ-discounted Nash equilibrium payoff Eλ may fail to
converge in the sense of the Hausdorff distance and when λ goes to zero. This question of convergence
is still open when the public signals include the state and the actions.
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