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Abstract A method is discussed to determine the eigenfrequencies of nanostructures
(nanotubes, nanospheres, and nanocrystals) by measuring the eigenfrequencies of a
‘large system’ that consists of an array of vertically oriented similar nanotubes or
nanocrystals equidistantly grown on a substrate. It is shown that the eigenfrequen-
cies of a single nanoobject can be derived from the eigenfrequency spectra of the
large (array-substrate) system and of the substrate. With other words, using exper-
imental data for large systems one can determine the eigenfrequencies of a single
nanoobject. The method can be also applied to systems of nanotubes grown in par-
allel to the substrate and to the systems of micro- and nanospheres. The modeling
of nanocomposite plates using the direct approach to the shell theory is discussed.
The effective stiffness tensors are considered. As an example, the eigenfrequencies
of an array of ZnO micro- or nanocrystals and GaAs multiwalled nanotubes on a
sapphire substrate are calculated.

1 Introduction

The experimental determination of the mechanical characteristics of nanoobjects
is today a challenging problem (see, among others, [6,7, 14, 16, 17, 20]). One of
the most efficient methods to determine elastic moduli in macromechanics is the
measurement of the eigenfrequencies of an object. However, attempts to apply this
approach to nanoobjects sometimes demonstrate difficulties. There are at least two
problems lying at the interfaces between mechanics and experimental physics. The
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Fig. 1 Example of nanoobject array: ZnO nanocrystals on a substrate (photos by courtesy of
Konstantin Dvadnenko, South Scientific Center of RASci).

first one is the determination of the elastic moduli of nanoobjects when there is a
possibility to measure the frequencies of the microsubstrate-nanoarray system and
determine the elastic characteristics of the substrate (for example, from the eigen-
frequencies of the free substrate). The second problem is how to extract the eigen-
frequencies of nanoobjects from the eigenfrequency spectrum of the substrate-array
system. The success in solving both problems directly depends on the experimen-
tal conditions, especially, on the way how nanoobjects are grown on the substrate
and how the substrate with nanoobjects is fixed in the measuring device; as well
as on the geometries, weights, and the elastic properties of the nanoobjects and the
substrate. Thus, from the mechanical point of view, one should not only discuss the
measured data, but also elaborate a suitable design of the experiments.

Here we discuss the method of determining the eigenfrequencies of nanostruc-
tures (nanotubes and nanocrystals) from the measured eigenfrequencies of a large
system comprising a highly ordered array of identical nanospheres, nanotubes or
nanocrystals grown on a substrate proposed in [10—13]. The geometry of the consid-
ered nanostructures is presented in Figure 2. An example of such large system, the
array of nanocrystals of zinc oxide, is presented in Figure 1. ZnO nanocrystals are
of considerable interest for nanomechanics and nanophotonics and can be fabricated
by different techniques. The array of GaAs, GeSi nanotubes growing horizontally
on a substrate may be obtained by technology described in [15,21]. The interest to
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Fig. 2 Nanostructures: (a) an array of nanotubes or nanocrystals on substrate; (b) an array of
spherical micro- or nanoparticles; (c) an array of nanotubes lying on a substrate; (d) nanocomposite
plate.

the arrays of hollow sphere-like nanoparticles is motivated by possible applications
to modeling of fullerenes, dendrimers, micelles, vesicles, and liposomes. Some of
them are widely used in modern medicine and farmacology, for example, in order
to deliver encapsulated drugs to target organs in the organism.

Using the asymptotic solutions based on the shell theory it is shown that from
the spectrum of the large system (nanoobjects-substrate), the eigenfrequencies of an
individual nanoobject can be derived. That means, the eigenfrequencies of a single
nanoobject can be determined from experimental data obtained for the large system.
The direct FEM calculation results also indicate the possibility of extracting the
spectrum of nanoobjects from the spectrum of the large system.

The oriented arrays of nanoobjects can be used for assembling of nanocomposite
thin-walled structures, for example, plates (see Figure 2d). In the last section of this
paper we discuss the methods of identifications of elastic properties of a nanocom-
posite plate using the approach [1-3,23].

2 Governing Equations of the Plate and Shell Theory

We apply the theory of plates and shells formulated earlier in [1-5, 22, 23]. From
the direct approach point of view a plate or a shell is modeled as a material surface
each particle of which has five degrees of freedom (three displacements and two



rotations, the rotation about the normal to plate is not considered as a kinematically
independent variable). Note that the application of the direct approach to the thin-
walled nanostructures has advantages because it is free from the consideration of
the nanostructure on the base of the three-dimensional continuum mechanics.

The equations of motion are formulated as the Euler’s laws of dynamics:

V-T4+q=pi+p0; -, V-M+T,+m=p0l -ii+p0;-4. (1)

Here T, M are the tensors of forces and moments, q, m are the vectors of surface
loads (forces and moments), T is the vector invariant of the force tensor, V is the
nabla (Hamilton) operator, u, ¢ are the vectors of displacements and rotations, @1,
O are the first and the second tensor of inertia, p is the density (effective property
of the deformable surface), (...)T denotes transposed and (-)® the time derivative.
The geometrical equations are given as

w=WVu-a¥" y=Vu-n+c -9, k=Vo. (2)

a is the first metric tensor (plane tensor), n is the unit outer normal vector at the
surface, ¢ is the discriminant tensor (¢ = —a x n), i, ¥y and k are the strain tensors
(the tensor of in-plane strains, the vector of transverse shear strains and the tensor
of the out-of-plane strains), while t¥™ denotes the symmetric part.

The boundary conditions are given by

v T=f v-M=101-n=0) or u=u’, (p:(poalongS. 3)

Here f and 1 are external force and moment vectors acting along the boundary of
the plate S, while u and ¢° are given functions describing the displacements and
rotations of the plate boundary, respectively. v is the unit outer normal vector to the
boundary S (v - n = 0). The relations (3) are the static and the kinematic boundary
conditions. Other types of boundary conditions are also possible. The constitutive
equations are given by the following relations:

Strain energy of the deformable surface W:

1 1 1
A, B, C are fourth rank tensors, I'1, I'> are third rank tensors, I' is a second rank
tensor of the effective stiffness properties. They depend on the material properties
and the cross-section geometry. In the general case the tensors contain 36 different
values — a reduction is possible assuming some symmetries.

Constitutive equations
e In-plane forces
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e Transverse forces

ow
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dy

e Moments oW
MT=W=,L..B+C..K+;:-F2. (6)

3 On the Modeling of Natural Oscillations of an Array of
Nanoobjects

For the analytical investigation of such complex structures as presented in Fig-
ure 1 we have to make some assumptions on the stress state and the possible de-
formations of the shell-like structure. Here we have been used the models of the
beams, of spherical and cylindrical shells for the nanocrystals, the nanotubes and the
nanospheres as well as the plate equations for the substrate. To avoid the awkward
calculations we present here the final result: for all of three cases we may choose
the geometry of the large system consisting of an array of nanoobjects in such a way
that one may find the first eigenfrequencies of the nanoobject from its spectrum. The
accuracy of determination of the first eigenfrequency for the vertically oriented ZnO
crystals is about 5%, while for the GaAs nanotubes lying horizontally the accuracy
is about 10-15% (for details, see [10-13]).

Note that the behavior of the system with horizontally located nanotubes differs
from the behavior of a similar system with vertically located nanotubes [10], as
well as from the behavior a system of nanospheres [11], because the horizontally
attached nanotubes change the effective stiffness of the plate and the plate with the
horizontal nanotubes is anisotropic and inhomogeneous with respect to the effective
properties.

For an arbitrary stress-strain state we investigate the system consisting of a
certain number of nanoobjects on the substrate in the framework of the three-
dimensional theory by means of the FEM. Since the materials under considera-
tion (ZnO, GaAs, InAs, GeSi, etc.) have piezoelectric properties, these systems as a
whole are a composite piezoelectric solids. Then for modeling of GaAs nanotubes
and ZnO nanocrystals we used the constitutive equations of the theory of anisotropic
electroelasticity [18, 19].

As an example of FEM modeling let us consider the array of horizontal GaAs
nanotubes (Figure 2c). For the modal analysis of the corresponding boundary value
problems we have used FE code ANSYS. Various numerical experiments are per-
formed for different mesh, different types of finite elements, different numbers of
nanotubes (from one to ten), different system geometries (the ratio of the thicknesses
of the substrate and the nanofilm, the ratio of the nanotube radius to the substrate
length, etc.), and various substrate bonding conditions. We consider the same ma-
terials of the substrate and the nanotubes used in [15,21]. The properties of these



Fig. 3 Sapphire substrate with three GaAs nanotubes: (a) natural mode localized in nanotubes;
(b) natural mode corresponding to the first bending mode of the substrate.

materials are taken from [8], and the geometrical parameters are taken from [15,21].
The calculations show that for any bonding of the substrate, it is possible to choose
the problem parameters in such a way that the natural frequencies of the nanotubes
and the substrate can be extracted from the general spectrum of the large system.
The numerical estimates confirm the results of the above theoretical analysis.

The calculation results for the free sapphire substrate with three GaAs nanotubes
are shown in Figure 3. Figure 3a corresponds to the natural vibrations localized in
the nanotubes. Figure 3b shows the natural vibrations at the frequency correspond-
ing to the first bending mode of the substrate vibrations.

The eigenmodes for the nanospheres are presented in Figure 4. It is easy to see
that we have approximately the same situation as shown in Figure 3. The spectrum
of eigenmodes consists of modes which are localized in a sphere and the modes of
the substrate. Let us note that the separation of the eigenmodes is fulfilled only for
the first part of the spectrum when the localized motion of the array is possible. The
high-oscillating modes do not correspond to any modes of a single nanoobject or the
substrate. The high-oscillating modes depend on the interaction of the nanoarray and
the substrate. Note that the vibration interaction between the substrate and nanotubes
is stronger than that for a case of a vertical array of nanocrystals or nanospheres.

The eigenfrequencies for different nanoarrays are summarized in Figure 5. Here
the distribution of the natural frequencies w over their ordinal numbers 7 is depicted.
In Figure Sa the results of the modal analysis of the large system consisting of 8
ZnO nano-sized crystals grown on a sapphire substrate are presented, see [10]. The
eigenfrequencies of three GaAs nanotubes attached to the sapphire substrate are
given in Figure 5b, while in Figure Sc the eigenfrequencies of 33 hollow spheres
made of a polymer are presented. The graphs show the presence of a plateau in
the distributions. The length of the plateau depends on the number of nanoobjects
in the array. The plateau corresponds to the eigenfrequency of one nanoobject. A
big number of approximately equal eigenfrequencies gives us additional chance to
find it by using of experimental measurements. On the other hand if one extends the
graphs to the higher n-values the next plateaus will be disappeared. For example, the
second plateau for the array of nanotubes is not strictly expressed. But for the first
frequencies, the numerical coincidence of the eigenfrequencies of the large system



Fig. 4 Eigenmodes of a substrate with nanospheres: (a) natural mode localized in one nanosphere;
(b) natural mode corresponding to the first bending mode of the substrate.

with the respective partial eigenfrequencies of the substrate and single nanotube is
satisfactory.

From an engineering point of view, let us mention that the main restriction on ap-
plication of the described method is the frequency range of measuring instruments.
If the eigenfrequencies of the nanoobjects are too high, such frequencies cannot be
registered. On the other hand, the method is the most effective and accurate method
if the first eigenfrequencies of the nanoobjects are comparable with the first eigen-
frequencies of the substrate. Thus, the governing factor in using this method is a
good choice of proportions between both the geometric and the physical character-
istics of the nanoobjects and the substrate.

4 Effective Properties of Nanocomposite Plates

In [1-3,23] a new approach to the determination of the effective stiffness tensors
was proposed. The idea of this approach is based on the comparison of the ex-
act solutions of the three-dimensional elasticity and the corresponding solutions of
Equations (1)—(6) for several test problems of the elastostatics such as tension and
bending, plane shear, and torsion. The method was applied to isotropic plates as
well as to orthotropic and transversally isotropic material behavior. Now it is well
known that the nanocomposites demonstrate mechanical properties which may be
quite different from its macro-analogues, see e.g. [7, 17]. One of the reasons of
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Fig. 5 Distribution of the natural frequencies of the large system vs. their number n: (a) for ZnO
nanocrystals; (b) for GaAs nanotubes lying horizontally (the squares are the natural frequencies
corresponding to the vibrations of the substrate); (c) for spherical nano-membranes.

such difference is the surface tension, because these materials have a fractal-like
surface. The influence of the surface tension on the elastic moduli was investigated
by several authors, see for example [9]. From this point of view they may consider
the nanocomposite based on an oriented array of nanocrystals or nanotubes as a
transversally isotropic material. We propose to extend the procedure [1,2,23] to the
case of such materials. Finally, one obtains the components of the effective stiffness
tensors which depend not only on the bulk elastic properties and the thickness of the
plate but also on the surface tension.



5 Conclusion

A direct approach method in the theory of shells for nano-sized thin-walled struc-
tures is introduced. The basic items of the theory are related to:

e the formulation of all balances for a deformable directed surface (a priori two-
dimensional equations), and
e the specific constitutive equations.

The direct approach has an advantage to the modeling of nanostructures because it
is not necessary to consider nanostructures as three-dimensional solids, while many
of them are not existed in the bulk phase or the properties of the bulk phase are
quite different from the properties of the nanoobjects. On the other hand the de-
termination of the elastic stiffness tensors is essential for the applicability of the
theory. The effective stiffness may be obtained by consideration of experimental
data on eigenfrequencies. Here we discussed a possible method of determination
of the eigenfrequencies of single nanoobjects by investigation the spectrum of the
large system consisting of an array of identically nanoobjects grown on a substrate.

The theoretical and numerical analysis performed for nanospheres, nanocrystals
and nanotubes, shows that it is possible to determine the eigenfrequencies of micro-
and nanoobjects in experiments using the measurement of eigenfrequencies of the
substrate with an array of such nanodimensional objects bonded to the surface. The
results of numerical calculations of the eigenfrequencies and the eigenmodes are
presented. The identification procedure of the effective stiffness of nanocomposite
plates is discussed.
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