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Micropolar Shells as Two-dimensional
Generalized Continua Models

Holm Altenbach, Victor A. Eremeyev, and Leonid P. Lebedev

Abstract Using the direct approach the basic relations of the nonlinear micropo-
lar shell theory are considered. Within the framework of this theory the shell can
be considered as a deformable surface with attached three unit orthogonal vectors,
so-called directors. In other words the micropolar shell is a two-dimensional (2D)
Cosserat continuum or micropolar continuum. Each point of the micropolar shell
has three translational and three rotational degrees of freedom as in the rigid body
dynamics. In this theory the rotations are kinematically independent on translations.
The interaction between of any two parts of the shell is described by the forces and
moments only. So at the shell boundary six boundary conditions have to be given.
In contrast to Kirchhoff-Love or Reissner’s models of shells the drilling moment
acting on the shell surface can be taken into account.

In the paper we derive the equilibrium equations of the shell theory using the
principle of virtual work. The strain measures are introduced on the base of the
principle of frame indifference. The boundary-value static and dynamic problems
are formulated in Lagrangian and Eulerian coordinates. In addition, some variational
principles are presented. For the general constitutive equations we formulate some
constitutive restrictions, for example, the Coleman-Noll inequality, the Hadamard
inequality, etc. Finally, we discuss the equilibrium of shells made of materials un-
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dergoing phase transformations, such as martensitic transformations, and formulate
the compatibility conditions on the phase interface.

Key words: Micropolar shells. 6-parametric theory of shells. Variational prin-
ciples. Constitutive inequalities. Coleman-Noll inequality. Hadamard inequality.
Phase transformations.

2.1 Introduction

The Mechanics of Generalized Continua has long history of development. Since
the centurial book of Cosserat brothers [13] in the literature there are known vari-
ous generalizations of the classical or Cauchy continuum which are summarized in
many books and papers, see, for example, the books by Eringen [25, 26], Nowacki
[47], and the recent proceedings [45], see also the historical review by Maugin [44]
in this book. Using the direct approach, Ericksen and Truesdell [24] extended the
Cosserat model to construction of the nonlinear mechanics of rods and shells, i.e. to
one-dimensional and two-dimensional media. Since [24] the generalized models of
shells and plates are extensively discussed in the literature, see the recent review [5].

Below we consider the model of a micropolar shell as the example of the gen-
eralized 2D continuum. Indeed, a micropolar shell is a two-dimensional analogue
of the three-dimensional (3D) micropolar continuum, i.e. a micropolar shell is a de-
formable directed surface each particle of which has six degrees of freedom as rigid
bodies. The kinematics of the micropolar shell is described by two fields. The first
field is the position vector of the base surface of the shell while the second one is
the proper orthogonal tensor describing the rotation of the shell cross-section. In
contrast to Kirchhoff-Love and Mindlin-Reissner type theories of plates and shells
the boundary-value problem of a micropolar shell consists of 6 scalar equations
and 6 boundary conditions. Within the micropolar shell theory the so-called drilling
moment can be taken into account.

Let us note that the basic equations of the micropolar shell models presented
in [16, 22, 23, 60] using the direct approach coincide with the general nonlinear
theory of shells initiated by Reissner [55] and presented by Libai and Simmonds
[38, 39], Pietraszkiewicz [51], and Chroscielewski et al. [10], which is also named
6-parametric theory of shells.

The paper is organized as follows. In Sect. 2.2 we recall the basic equations. We
derive the equilibrium equations from the principle of virtual work. Various state-
ments of the nonlinear boundary-value problem are given and few variational prin-
ciples are formulated. The case of small deformations is also considered. Following
[22] in Sect. 2.3 we present in details some inequalities such as the Coleman-Noll
inequality, the Hadamard inequality, strong and ordinary ellipticity conditions, etc.
These inequalities can be regarded as the constitutive restrictions, i.e. the restric-
tions for the constitutive equations of an elastic shell. In Sect. 2.4 we discuss the
compatibility conditions on the phase interface in shells.



Further we use the direct tensorial notations, see for example [36, 42]. Vectors are
denoted by semibold normal font like A. Tensors are denoted by semibold sans serif
upright font like A. Functionals are denoted by calligraphic letters like A. Greek
indices take values 1 and 2, while Latin indices are arbitrary.

2.2 Basic Relations of Micropolar Shell Theory

In this section we use the so-called direct approach to the formulation of the ba-
sic equations of micropolar shell theory. The advantage of the latter approach is
discussed in many papers, see for example [24]. Within framework of the direct
approach, an elastic micropolar shell is a two-dimensional analogue of the Cosserat
continuum, i.e. a micropolar shell is a material surface each particle of which has six
degrees of freedom of the rigid body. Further we will use the notations [16, 22, 23].

2.2.1 Kinematics of a Micropolar Shell

Let 6 be a base surface of the micropolar shell in the reference configuration (for
example, in an undeformed state), ¢g* (o = 1,2) be Gaussian coordinates on ¢, and
r(¢',4%) be a position vector of &, see Fig. 2.1. In the actual (deformed) configu-
ration the surface is denoted by X, and the position of its material points (infinites-
imal point-bodies) is given by the vector R(g',¢?). The orientation of the point-
bodies is described by the so-called microrotation tensor (or turn-tensor) Q(¢', ¢%),
which is the proper orthogonal tensor. If we introduce three orthonormal vectors dy,
(k=1,2,3), which describe the orientation in the reference configuration, and three

Fig. 2.1 Kinematics of a micropolar shell, reference configuration (on the left) and actual one (on
the right)



orthonormal vectors Dy, which determine the orientation in the actual configuration,
then the tensor Q is given by Q = d; ® Dy. Thus, the micropolar shell is described
by two kinematically independent fields

R=R(¢%), Q=Q(¢%). 2.1)

For the micropolar shell made of an elastic material there should exist a strain
energy density . By using the principle of local action [57, 58] the constitutive
equation for the function I is given by the formula [16, 22, 23]

W =W ([R,VR,Q,VQ),

where . 3
A o o _ sa o, _or
V¥ =r ®8q0" r rﬁ_5ﬁ7 r*n=0, rg= 9P

Here the vectors rg and r” denote the natural and reciprocal bases on o, n is the
unit normal to o, 6[3" is the Kronecker symbol, V is the surface nabla operator on
o, and 'V is an arbitrary differentiable tensor field given on .

From the principle of material frame-indifference we can find that W depends on
two Cosserat-type strain measures E and K only

W= (E,K),

1 2Q
E-F. T K= o Neld 2.2
Q' o ®<8an)X, (2.2)
where F = VR is the surface deformation gradient, Ty is the vectorial invariant of
a second-order tensor T defined by

T =(T""RuQR,)x = TR, X R,

for any base R, see e.g. [36], X is the vector product.
A proper orthogonal tensor describes rotation about an arbitrary axis. It can be
represented by Gibbs’ formula

H=(1-e®e)cosy+e®@e—exlsiny, (2.3)

where y and e are the angle of rotation about the axis with the unit vector e, and |
is the 3D unit tensor, respectively. Introducing the vector 8 = 2etan y /2 and using
the formulae

1 —tan? y /2 . 2tany /2

1+tan? y /2’ A= +tan? y /2

we obtain the representation of Q in the form which does not contain trigonometric
functions

cosy =

— 1 2 _ 2_ g
Q—(4+92)[(4 01 +20@ 6 —41x 0], 62=6-6. (2.4)
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In the rigid body kinematics the vector @ is called Rodrigues’ finite rotation vector,
cf. [41]. In the theory of Cosserat-type shells we will call it the microrotation vector.
Other known vectorial parameterizations of an orthogonal tensor are summarized in
[53]. From Eq. (2.4), for a given proper orthogonal tensor Q we find uniquely the
vector 0

0=2(1+trQ)'Q.. (2.5)
Using the finite rotation vector we can express K as follows
K=r*®QLy = 4 vVe. |+1|><0 (2.6)
- * 44102 2 ' ‘

The strain measures E and K are the two-dimensional analogues of the strain mea-
sures used in 3D Cosserat continuum [52, 53].

2.2.2 Principle of Virtual Work and Boundary-value Problems
Statements

The Lagrangian equilibrium equations of the micropolar shell can be derived from
the principle of virtual work

5// Wdo = 8'4A, @.7)

where
54 :// (£-5R+¢-8'y) dc+/(p~5Rds+/}/~8'q/ds,
c o3 o

Ix8y=-Q’-5Q.

In Eq. (2.7), 0 is the symbol of variation, 8’y is the virtual rotation vector, f is the
surface force density distributed on o, ¢ is the surface couple density distributed on
o, @ and 7y are linear densities of forces and couples distributed along corresponding
parts of the shell boundary @, respectively.

Using the formulae [23]

ow ow
= JE e SE+ IK o 5K,

SE = (VSR)-Q" +F-5Q", sK=(V&'y)-Q,

4 1
= 4402 (39+26x36>,

ow

Sy



where X oY = X--Y7 for any tensors X and Y of the second-order, see [36], from
Eq. (2.7) we obtain the Lagrangian shell equations

V-D+f=0, V-G+[F'D] +c=0, (2.8)
oW oW
D:P1-Q, G:PQ‘Q, P1: 8E7 P2: &K, (2-9)
g : RZP(S),
w: v-D=o(s),
@ : Q=h(s), h-h” =1, (2.10)
g : v-G = y(s).

Here p(s), h(s) are given vector functions, and Vv is the external unit normal to the
boundary curve @ (v-n = 0). Equations (2.8) are the equilibrium equations for the
linear momentum and angular momentum of any shell part. The tensors D and G
are the surface stress and couple stress tensors of the 1% Piola-Kirchhoff type, and
the corresponding stress measures P and P, in Eqs (2.8) are the referential stress
tensors, respectively. The strain measures E and K are work-conjugate to the stress
measures D and G. The boundary @ of ¢ is divided into two parts @ = @0; Uw, =
@3 U wy. The following relations are valid

nD=n-G=nP;=nP,=0. (2.11)

The equilibrium equations (2.8) may be transformed to the Eulerian form

Vs T+J =0, VsM+T,+J le=0, (2.12)
where
Ao O o o o _JR
V;-‘I’_R-aqa, R%-Rp = &, R*N=0, Rﬁ_gqﬁ,
T=J"'FI.D, M=J"'F'.G, (2.13)

J= ﬁ {[ix (FF7))* e [(FFT)]}.

Here T and M are the Cauchy-type surface stress and couple stress tensors, Vy is
the surface nabla operator on X associated with V by the formulaV =F.Vy.

The equations of motion of the micropolar shell are given by the relations (see,
for example, [4, 10, 23, 38, 39, 59])

dK;
dr’

V-G+[F'D] ,+m=p <d§2 +vx@{-w>,

V-D+f=p (2.14)

with



1 1
K(v,0) = 2v'v+a)~@1-v+ 2(0-@2-(1),
A IK A 0K
K; = ov :VJr@{-(D, K, = o =0;v+ 0, 0,

where IR | /Q
= @ = H r .
VS oar 2 < dt )X

are the linear and angular velocities, respectively, p is the surface mass density in the
reference configuration, pK is the surface density of the kinetic energy, and p@j,
p O, are the rotatory inertia tensors (@2T = 0,). For the dynamic problem (2.14),
the initial conditions are given by

R‘x:ozRo’ V|z:0:"o’ Q|z:0:Qo’ w|t:0:wo’

where R, v°, Q°, ®° are given initial values.
Under some conditions the equilibrium problem of a micropolar shell can be
transformed to the system of equations with respect to the strain measures

V-P— (P -K) +f=0; (2.15)
V-P,— (P} - K+P{-E) +c"=0, (2.16)
w :v-P=0" Wy 2 vV-Py=7", (2.17)

rira, cfca’, ¢L¢.Q yLya

Let the vectors f*, ¢*, @*, ¥* be given as functions of the coordinates ¢',¢?. From
the physical point of view it means that the shell is loaded by tracking forces and
couples. Then Eqgs (2.15)—(2.17) depend on E, K as the only independent fields.

2.2.3 On the Constitutive Equations of Micropolar Shells

For an elastic shell the constitutive equations consist of the surface strain energy
density as the function of two strain measures. An example of the constitutive equa-
tion is the model of physically linear isotropic shell [10, 18, 23], the energy of which
is given by the quadratic form

2W = oytr?E) + ootr Ef + ostr (- ) + cun E-Eom
+ ﬁltrzK” + ﬁztr Kﬁ + [33tr (K“ Kﬁ + [34n~KT~K-n, (2.18)
E, 2EA K/ 2KA

In Eq. (2.18) there are absent the terms that are bilinear in E and K. It is a conse-
quence of the fact that the bending measure K is a pseudo-tensor that changes the



sign of the value when we apply the inversion of the space. Note that the constitutive
equations contain 8 parameters oy, B (k= 1,2,3,4).

In [10] the following relations for the elastic moduli appearing in Eq. (2.18) are
used

o =Cv, 00=0, az=C(1-vVv), oy4=0cC(l—V),
ﬁ]ZDV, ﬁZZOa ﬁ3:D(17V)7 l}4:OCtD(17V),
Eh ERW

(2.19)

BN 12(1-v2)’

where E and v are the Young’s modulus and the Poisson’s ratio of the bulk material,
respectively, o and o4 are dimensionless shear correction factors, while % is the
shell thickness. o is the shear correction factor introduced in the plate theory by
Reissner (a5 = 5/6) or Mindlin (o = 72/12). The parameter ¢; plays the same
role for the couple stresses. The value oy = 0.7 was proposed by Pietraszkiewicz
[48, 49], see also [11]. In [10, 11, 12] the influence of oy and ¢ on the solution is
investigated numerically for several boundary-value problems.

2.2.4 Compatibility Conditions

Let us consider how to determine the position vector R(¢g!,¢?) of X from the surface
strain E and micro-rotation Q, which are assumed to be given as continuously dif-
ferentiable functions on ¢. By using the equation F = E - Q the problem is reduced
to

VR=F. (2.20)

The necessary and sufficient condition for solvability of Eq. (2.20) is given by the
relation

V.(e-F)=0, e2 1xn, 2.21)

which we call the compatibility condition for the distortion tensor F. Here e is the
skew-symmetric discriminant tensor on the surface ¢. For a simply-connected re-
gion o, if the condition (2.21) is satisfied, the vector field R may be deduced from
Eq. (2.20) only up to an additive vector.

Let us consider a more complex problem of determination of both the translations
and rotations of the micropolar shell from the given fields of E and K. At first, let
us deduce the field Q(¢',4?) by using the system of equations following from def-
inition (2.2) of K

QA gova Kl K (2.22)

The integrability conditions for the system (2.22) are given by the relation



Ky BK[;
2q8 = g =Ko xKg (o,8=1,2). (2.23)
Equations (2.23) are obtained in [38, 49, 50] as the conditions for the existence of
the rotation field of the shell. They may be written in the following coordinate-free
form

V-(e-K)+K'-n=0, (2.24)

; (Ka < Kg) @ (1" x e ) = K2—KtrK+; (2K —rk?) 1.

K-4

Using F = E-Q and Egs (2.2) the compatibility condition (2.21) may be written in
the form

V-(e-E)+ (E"-e-K) =0. (2.25)

Two coordinate-free vector equations (2.24), (2.25) are the compatibility conditions
for the nonlinear micropolar shell. These conditions and the system of equations
(2.15)—(2.17) form the complete boundary-value problem for statics of micropolar
shells expressed entirely in terms of the surface strain measures E and K.

2.2.5 Variational Statements

The presented above static and dynamic problems have corresponding variational
statements. Two of them for statics and one for dynamics are presented below.
2.2.5.1 Lagrange Principle

Let us assume that the external forces and couples are conservative. In the Lagrange-
type variational principle 6€; = 0 the functional & [R, Q] is used, where

&/[R,Q = / / Wdo — AR,Q), (2.26)

and A is the potential of the external loads.

Here the deformation, i.e. the translations and the rotations, have to satisfy the
boundary conditions (2.10); and (2.10); on w; and s, respectively. The station-
arity of £ is equivalent to the equilibrium equations (2.8), (2.9) and the boundary
conditions (2.10); and (2.10)4 on @, and ay.

2.2.5.2 Hu-Washizu Principle

For this principle the functional is given by



€[R,Q,E,K,D,P,] — // W(E,K) —De(E-Q-VR)  (2.27)

—Pje (K— 1r°‘® ( Q ~QT) ﬂ dO'—/v~D~(R—p)ds—A[R,Q].
2 dq” o
(]
From the condition &, = 0 the equilibrium equations (2.8) and (2.9), the consti-
tutive equations, and the relations (2.2) are deduced. For this principle the natural
boundary conditions are given by the relations (2.10), (2.10), and (2.10)4, respec-
tively.

Several other variational statements are given in [23]. Mixed type variational
functionals are constructed in [10]. They are used for the development of a family of
finite elements with 6 degrees of freedom in each node. Then a number of nonlinear
simulations of complex multifolded shell structures are performed.

2.2.5.3 Hamilton-type Principle

The kinetic energy of micropolar shells can be expressed as

1 1
IK://pK(v, w)do, K(v,o)= 2V-V+ w-@l-v+2a)~@2~a), (2.28)
(02

where pK is the surface density of the kinetic energy, p@®;, p©; are the inertia
tensors, @ZT =0,.

It is obvious that we should assume the kinetic energy to be a positive definite
function that imposes some restriction on the form of the inertia tensors. By physical
meaning, ©®; and @; have the following properties

de; doe; _

©,=H"-6}-H, 0,=H"-05H, =

0. 2.29
dt dt (2.29)

The Hamilton principle is a variational principle in dynamics. In real motion, the
functional

3l
&3[R, H] = / (K — &) dt (2.30)

fo
takes a stationary value on the set of all possible shell motions that at the range ¢,
t take given values of the real motion values and satisfy the kinematic boundary

values. In other words, its first variation on a real motion is zero. From condition
&3 =0 Eqgs (2.14) can be established.



2.2.6 Linear Theory of Micropolar Shells

Let us suppose the strains are small. Then we can simplify the equations of the shell
theory significantly. In this geometrically linear case we do not differ Eulerian and
Lagrangian descriptions. The difference of surfaces ¢ and X is infinitesimal. It is
not necessary to distinguish operators V and Vy as well as earlier different types of
stress tensors and couple stress tensors. Let us introduce the vector of infinitesimal
displacements u and the vector of infinitesimal rotation ¥ such that there hold

Rar+u, Q=Il-Ix19. (2.31)

In Eqs (2.31) the last formula follows from the representation of a proper orthogonal
tensor through the finite rotation vector (2.4) if |0] < 1.
Up to the linear addendum, the linear strain measure E and bending strain tensor
can be expressed in terms of the linear strain tensor and linear bending strain tensor
eand x
Ex~l+e, Kxk, e=Vu+Axd9d, x=V3I. (2.32)

Here A £ 1—n®n. The tensors € and k are applied in the linear theory of micropolar
shells, cf. [59, 60]. Assuming Eq. (2.32) in the linear shell theory the stress tensors
D, P;, T and the couple tensors G, P,, M coincide. In what follows we will denote
the stress tensor by T and the couple stress tensor by M.

The constitutive equations of an elastic shell can be represented through the func-
tion of specific strain energy W = W (e, ) as it follows

ow ow
T= de’ M= oK’

(2.33)
In the linear theory the equilibrium equations take the form
VT+f=0, V-M+T,+c=0, (2.34)

whereas the boundary conditions are transformed to

o : u=ug(s),
wy : V'T: (p(s)7
s V= ﬂo(s),
w4 : v-M=17(s),

(2.35)

where ug(s) and ¥(s) are given functions of the arc length that respectively define
the displacements and rotations on a part of the shell contour.

If the strains are small, an example of the constitutive equation is the following
quadratic form



20 = aytr’e) + optr eﬁ + oitr (e” oeﬁ) +oyn-e’-en (2.36)
+[31tr2 K| + thl‘ K‘ﬁ + B3'[I' (K’H . Kﬁ) + [34n- k! -x-n.

This form describes physically linear isotropic shells. Here oy and f are elastic
constants (k= 1,2,3,4) and

€ é e-A K| é K-A.

Considering Eqgs (2.33) and (2.36), the stress tensor and the couple stress tensor are
expressed by the formulas

T=oAtre +oc2eﬁ+oc3eu +oue-n@n, (2.37)

M = B, Atr K||+ﬁ2Kﬁ+ﬁ3 K| + sk -n@n. (2.38)

Supplemented with Eqs (2.34) and (2.35), the linear constitutive equations (2.37),
(2.38) constitute the linear boundary-value problem with respect to the fields of
displacements and rotations. It describes the equilibrium of the micropolar shell
when strains are infinitesimal.

When the strains are small, the Lagrange variational principle (2.26) is trans-
formed to the following form

&\ u, 9] = // W (e, x)do — Alu, 8], (2.39)

where the potential of the external loads A[u, 9] is defined by the equation

Alu, 9] = //(f-u+c-19)d6+/(p-uds+/y.,9d5.
6 wZ Wy

Let functional (2.39) be given on the set of twice differentiable fields of displace-
ments and rotations of the surface ¢ that satisfy the boundary conditions (2.35); and
(2.35)3 on w; and w;3, respectively. It is easy to check that the condition of the func-
tional to have a stationary value is equivalent to the equilibrium equations (2.34)
and the boundary conditions (2.35), and (2.35)4 on w, and @4, respectively. Let us
note that when the strains are small and the form W (e, x) is positive definite, the
Lagrange variational principle is a minimal principle, this means functional (2.39)
takes a minimal value on the equilibrium solution.

In the linear theory it is valid a variational principle for free oscillations. By
linearity, eigen-solutions are proportional to &% (u = u®e’, ¥ = 9°¢*). Now the
variational Rayleigh principle can be formulated: the forms of the eigen-oscillations
of the shell are stationary points of the strain energy functional



Ealu°, 9°] = / /W(e", x°)do, (2.40)

o

where
e’ =Vu’+Axv°, K° =V ¥°,

on the set of functions that satisfy the following conditions
0 :uw=0 w:08°=0 (2.41)

and restriction

| // pK (u®,9°)do = 1. (2.42)

Functions u®, ©¥° represent the amplitudes of oscillations for the displacements and
small rotations.
The Rayleigh variational principle is equivalent to the stationary principle for the

Rayleigh quotient
// w(e°, kx°)do
o

Ru®,9°]= . , (2.43)
// pK (u®,9°)do

that is defined on kinematically admissible functions u°, ¥°. Note that the least
squared eigenfrequency for the shell corresponds the minimal value of R

Q2. =infR[u’, 9°]
on u®, ¥° satisfying (2.41). Using the Courant minimax principle [14] the Rayleigh
quotient (2.43) allows us to estimate the values of higher eigenfrequencies. For this
we should consider R on the set of functions that are orthogonal to the previous
modes of eigen-oscillations in some sense.

2.2.7 Principle Peculiarities of the Micropolar Shell Theory

Let us summarize principle peculiarities of the shell theory under consideration:

1. The shell equilibrium equation constitute a nonlinear system partial differen-
tial equations. In general, the system is elliptic but in some circumstances the
ellipticity condition can fail. We will discuss this later.

2. General theorems of existence of equilibrium or dynamic solutions are absent.
Moreover, there are examples when under some loads the equilibrium solutions



does not exist. As for other nonlinear systems, a solution of the equilibrium
problem can be non-unique, in general.

3. The Lagrange variational principle is not minimal, it is only a stationary varia-
tional principle. The only exception is for the linear theory.

4. For the linear theory of micropolar shells it can be demonstrated the theorems
of existence and uniqueness of a solution.

Further developments of this version of the shell theory can be produced in the
following directions:

1. Development of mathematical theory that should be based on the methods of
partial differential equations theory, functional analysis and calculus of varia-
tions.

2. Numerical algorithms for solution of the reduced systems of nonlinear equa-
tions. For example, it can be done within the framework of the finite element
method, see for example the numerical results in [10, 11, 12].

. Analysis of the restrictions of the nonlinear constitutive equations.

4. Extension of the two-dimensional constitutive equations for the shell made of
various materials. In particular, the extension can include viscoelasticity, ther-
mal effects, etc. In particular, the theory of thermoelastic and thermoviscoelastic
shells with phase transitions is developed in [19].

W

Some of the above problems will be considered in later sections.

2.3 Constitutive Restrictions for Micropolar Shells

In nonlinear elasticity there are well known so-called constitutive restrictions. They
are the strong ellipticity condition, the Hadamard inequality, the GCN-condition,
and some others [56, 57, 58]. Each of them play some role in nonlinear elasticity.
They express mathematically precise and physically intuitive restrictions for con-
stitutive equations of elastic bodies. In particular, the GCN condition proposed by
Coleman and Noll asserts “that the transformation from deformation gradient to
first Piola-Kirchhoff stress tensor shall be monotone with respect to pairs of defor-
mations differing from one another by a pure stretch” (see, [58]).

The aim of this section is to formulate similar constitutive restrictions in the
general nonlinear theory of micropolar shells. Here we formulate the general-
ized Coleman-Noll inequality (GCN-condition), the strong ellipticity condition of
equilibrium equations and the Hadamard inequality. The inequalities represent pos-
sible restrictions of constitutive equations of elastic shells under finite deformation.
We prove that the Coleman-Noll inequality implies strong ellipticity of shell equi-
librium equations.



2.3.1 Linear Theory of Micropolar Shells

In the linear shell theory as well as in the case of the three-dimensional elasticity,
it is necessary to establish additional restrictions, so-called constitutive inequalities
or constitutive restrictions. Again we stipulate the specific strain energy W (e, k) to
be positive definite. Now the energy is a quadratic form of both of the linear strain
tensor and the linear bending strain tensor. In particular, for an isotropic shell it takes
the form (2.36). Positivity of the quadratic form (2.36) for all values of e and K is
equivalent to the following set of inequalities

20+ +0 >0, w+o>0, oz—o>0 o4>0,

2B1+Bo+B3>0, Bo+B:3>0, PB3—B>0, Ps>0. (2.44)

The inequality
W(e,x)>0, Ve ,xk#0

and the following from this the inequalities for the elastic constants of an isotropic
material (2.44) are the simplest example of additional inequalities in the shell the-
ory. When they fail it leads to a number of pathological consequences such as non-
uniqueness of the solution of boundary value problems of linear shell theory that
implies that a solution does not exist for some loads. At second, the propagation of
waves in some directions becomes impossible that is not natural from the physical
point of view. In the case of finite strains, the positive definiteness of the specific en-
ergy W (E,K) is not a warranty that the desired properties of constitutive equations
hold, here must be fulfilled some additional inequalities.

2.3.2 Coleman-Noll Inequality for Elastic Shells

Let us suppose that a certain equilibrium state of a nonlinear elastic shell of the
Cosserat type under the action of a given load is known. Further we will call it
initial or basic stressed state. This state is defined by the vector field R(¢%) and the
tensor field Q(¢*). Along with the basic stressed state we consider some perturbed
equilibrium state which differs from the basic one. The linear parts of increments of
different quantities that characterize the perturbed equilibrium we will denote using
dots above, for example

D= ;TD[V(R+ ,Q—7Qx6,7(Q-1Qx0))| . (2.45)
=0

Here u is the vector of the additional infinitesimal displacement, while 8 is the
vector of the additional infinitesimal rotation characterizing the small rotation with
respect to the initial stressed state. The following relations are valid

R=u Q=-Qx6, E=F&Q', K=FxQl, (2.46)



e=Vu+Ax0, x=Vo, (2.47)

where ¢ is the strain tensor and s is the bending strain tensor usually used in the
linear shell theory of the Cosserat-type [23, 36, 60].

Note that as the reference configuration may be chosen any stressed state of the
shell. To avoid awkward expressions and to simplify the calculations let us assume
that the reference configuration coincides with the initial (basic) stressed state of
the shell. This means that in the reference configuration F=E =1—n®n, Q=1,
K = 0. Under this choice of the reference configuration and using Eqgs (2.9), (2.13),
(2.45)—(2.47) we obtain

. *w 0w
D = JEoE T JEok *F T TX O
fools post) (2.48)
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Here and below we use the operation of a scalar product of tensors given by the
formulae

(CkStka RR; QR ® Rp) ° (Uman o2 Rn) é Cksanman ® Ry,

(VR @R/) e (C’“’PR/c OROR, ® Rp) o (UmR" @ R") & climny, 0,

Suppose that the external couples in the initial and perturbed stressed states of
the shell vanish ¢ = ¥ = 0, while the external forces are “dead”. Then the elastic
energy of the shell is given by the relation

n=¢, ://Wdo—//f-(R—r)dO'—/(p-(Rfr)ds.
o o »

Let us consider the energy increment in the perturbed equilibrium state with respect
to the energy in the initial state taking into account terms of order one and two

dI1 1 d’n
I'[—I'[Ozr( ) + 12( 2) +...
dr /o 2 drs /.,

According to the constitutive relations of an elastic shell (2.9) and Eqs (2.46), (2.47)
we obtain

o = [[ [ @7-Vu)+t (D7Fx 6) +1r (67-V6)[ds (249

f//f-udcf/(p-uds.
c )



Differentiating Eq. (2.49) with respect to the parameter 7 and taking into account
that the reference configuration coincides with the basic stressed state and Eqs (2.46)

we get
» = l/ [tr (D'T-Vu) +tr (D'T X 6)

+tr (TT(Vu) x ) +tr (G'T-x)} dx.

d2IT
dr?

From the equilibrium condition of the basic state and considering Eqs (2.8) and
(2.10) it follows that the first variation of the energy

dIT1
dt

=0

vanishes, and the second variation due to Eqgs (2.47) and (2.48) could be represented
as

2 -
& :2//wd2, w=w 4w (2.50)
e |, .
)
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(2.51)
w'=tr (6xT g)— ;tr (0xT" x0)+ ;tr (0 xM"-5).

The quantity w describes the increment of the elastic energy of the initially pre-
stressed shell under additional infinitesimal deformations. According to Eqs (2.50)
and (2.51) this energy may be decomposed into two parts: the energy of pure strains
w’ and the energy of rotations w"”. The coefficients in the quadratic form w'” are ex-
pressed in terms of the stress and couple stress tensors of the initial stressed state
and do not depend on material properties of the shell. If the basic stressed state of
the shell is natural (T = M = 0), then w = ' and the energy density reduces to the
quadratic form of tensors € and s¢. If the decomposition (2.50) and the formulae
(2.51) are compared with the similar results on increment of 3D strain energy den-
sity [21] of micropolar body one can easily note that they coincide up to notation.

One of the well-known in the nonlinear elasticity [56, 57, 58] constitutive in-
equalities is the Coleman-Noll inequality. The differential form of the Coleman-Noll
inequality (so-called GCN-condition) expresses the property that the elastic energy
density under arbitrary infinitesimal non-zero pure strains and bending strains for
any arbitrary reference configuration should be positive. It is necessary to mention
that this inequality does not restrict the constitutive equations with regard to any
rotations.

Taking into account the energy decomposition (2.50) we obtain an analogue of
the Coleman-Noll inequality for elastic shells of the Cosserat type

w(e,%) >0 Ve#0, »x+#0. (2.52)



Using Eqs (2.51) inequality (2.52) can be written in the equivalent form

2
ddsz(EJrre,KJrr%) >0 Ve#0, x#0. (2.53)
7=0

Condition (2.53) satisfies the principle of material frame-indifference and could
serve as a constitutive inequality for elastic shells.

2.3.3 Strong Ellipticity and Hadamard Inequality

The famous constitutive inequalities in the nonlinear elasticity are the strong ellip-
ticity condition and its weak form known as the Hadamard inequality. Following the
theory of systems of partial differential equations (PDE) [27, 40] in this section we
formulate the strong ellipticity condition of the equilibrium equations (2.8). In the
case of dead loading the linearized equilibrium equations have the form

V.D'=0, V-G +[F-D +(Vu)"-D] =0, (2.54)

where D" and G are given by formulae similar to Eqs (2.45). Equations (2.54) are
the system of linear PDE of second order with respect to u and 0. If we keep in Eqs
(2.54) the differential operators of second order we obtain the relations

o {[sese (F00) ¢ e (vr07) ]

’W T ’W T
V. Vu)- Vo) :
HaKaE'(( w-a’)+ Jone (¢ )Q)} Q}’
which allow to construct the condition of strong ellipticity of the system (2.54).
Using the formal procedure [27, 40] we replace the differential operator V by the

unit vector v tangential to the surface ¢, while the vector fields u and 6 by the
vectors a and b, respectively. Thus, we have the algebraic expressions

{[sere e (o) e (vovar)] a).

I*w T *w T
: . b ) HY.
v HaKaE'(V@aQ )+ ok ® (vepQ } }
Let us multiply the first equation by the vector a while the second one by the

vector b and add these expressions. Then we obtain the strong ellipticity condition
of Egs (2.54) in the following form

o{[ e (ven) i (vora) )
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Using operation e we can transform the latter equations as follows

*W
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e(vabQ') >0, Vab#0.
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This inequality can be written in a more compact form using the matrix notation
EAV)E>0, VveTo, v#0, YVECRS E#0, (2.55)

where & = (a’,b') € IR®, 2’ =a-Q”, b’ = b-Q, and the matrix A(V) is given by

*wW *wW
NEZEMETTS
A(v) = ;
*wW *wW

akoE ) ook V!

where for any fourth-order tensor K and any vector v: K{v} A Kty Vi Vil ® i
The inequality (2.55) is the strong ellipticity condition of the equilibrium equations
(2.8) of an elastic shells. A weak form of the inequality (2.55) is an analogue of the
Hadamard inequality for the shell. These inequalities are examples of possible re-
strictions of the constitutive equations of elastic shells under finite deformations. As
in the case of simple materials, a break in inequality the (2.55) means the possibility
of existing non-smooth solutions of the equilibrium equations (2.8).
The strong ellipticity condition may be written in the equivalent form
d2

dTZW(E+TV®a/,K+TV®b/) >0 Vv,a,b#0. (2.56)
7=0

Comparing the condition of strong ellipticity (2.56) and the Coleman-Noll inequal-
ity (2.53) one can see that the latter implies the former. Indeed, the inequality (2.53)
holds for any tensors € and s. Note that the tensors € and » may by nonsymmet-
ric, in general. If we substitute in the inequality (2.53) the relations € = v ® a’ and
»# =V ®Db' then we immediately obtain the inequality (2.56). Thus, the strong el-
lipticity condition is the special case of the Coleman—Noll inequality. This is the
essential distinction between the shell theory of the Cosserat type and the theory of
simple elastic materials [57, 58] where these two properties completely independent
of each other in the sense that neither of them implies the other one. For 3D elastic
micropolar media the strong ellipticity and the Hadamard conditions are formulated
in [21].



In the shell theory it is widely used the following particular constitutive equation
W (E,K) = W, (E) + " (K). (2.57)

For example, the constitutive relations (2.18) have the form (2.57).
Now condition (2.55) is equivalent to two more simple inequalities

R4 9*W,
a-aEaE{v}a >0, b'aKaK{V}'b >0,

Vv, v#0, vn=0, VabelR} ab#0.

As an example, let us consider when for constitutive equation (2.18) the conditions
(2.55) are valid. It can be shown that the second-order tensors

0w, 02w,
sEgV ad ook v

are given by formulas

9’
: {vl = A+ (o +x)vev+onan,
JEJE 2.58)
9°W, :
8K8K{v} =BA+(Bi+B)vev+Bmen.
Inequality (2.55) is valid under the following conditions
o3>0, op+op+a3>0, og4>0, (2.59)

B;s>0, Bi+B+B;>0, Bs>0.

For an linear isotropic shell, the inequalities (2.59) provide strong ellipticity of equi-
librium equations (2.34), they are more weak in comparison with the condition
of positive definiteness of (2.44). If we consider the constitutive equations of an
isotropic micropolar shell (2.18) then the inequality (2.55) reduces to the system of
inequalities (2.59).

2.3.4 Strong Ellipticity Condition and Acceleration Waves

Using approach [3, 15, 22], we show that the inequality (2.55) coincides with the
conditions for propagation of acceleration waves in a shell. We consider a motion
that may be accompanied by a jump in the continuity of kinematic and dynamic
quantities on a certain smooth curve C(¢), which is called singular (Fig. 2.2). We
assume that the limit values of these quantities exist on C and that they are generally
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different on the opposite sides of C. The jump of an arbitrary quantity ¥ on C is
denoted by [P] =¥ —¥".

Fig. 2.2 Singular curve

The acceleration wave (weak-discontinuity wave or second-order singular curve)
is a moving singular curve C on which the second derivatives (with respect to the
spatial coordinates and time) of the radius-vector R and the microrotation tensor
Q are discontinuous, while the quantities themselves and their first derivatives are
continuous, this means

[F]=0, [vaQ]=0, [v]=0, [e]=0 (2.60)

are valid on C. According to Egs (2.2), the strain measure E and the bending strain
tensor K are continuous near C, and, with respect to constitutive equations (2.9),
jumps of the tensors D and G are absent. The application of the Maxwell theorem
[57] to continuous fields of velocities v and , surface stress tensor D, and the
surface couple stress tensor G yields a system of equations that relate the jumps of
their derivatives with respect to the spatial coordinates and time

[[i,:ﬂ =—Va, [Vv]=v®a, [[i?ﬂ =—Vb, [Vo]=v&b, (2.61)

V[V-D] = —v- [{‘2?]] , V[V-G] =—v [[‘;ﬂ] .

Here a and b are the vector amplitudes for the jumps of the linear and angular
accelerations, v is the unit normal vector to C such that n-v =0, and V' is the velocity
of the surface C in the direction v. If external forces and couples are continuous, the

relations
v-o1=p|dh | ve1-py| ]

follow immediately from the equations of motion (2.14).



Differentiating constitutive Eqs (2.9) and using equations (2.60) and (2.61), we
express latter relations only in terms of the vector amplitudes a and b

2
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Hence the strong ellipticity condition is valid these relations can be also written in
a more compact form
A(v)-§ =pV°B-§, (2.62)

where the matrix B is given by

I  Qoelaqd’
IB:
Q.0,-Q" Q-0,-Q"

Thus, the problem of acceleration wave propagation in the shell has been re-
duced to the spectral problem given by the algebraic equations (2.62). Owing to the
existence of the potential-energy function W, A(Vv) is symmetric. Matrix B is also
symmetric and positive definite. This property enables to formulate an analogue of
the Fresnel-Hadamard—Duhem theorem for the elastic shell:

Theorem 2.1. The squares of the velocities of a second order singular curve (ac-
celeration wave) in the elastic shell are real for arbitrary propagation directions
specified by the vector v.

Note that the positive definiteness of A(V), which is necessary and sufficient for the
wave velocity V' to be real, coincides with the strong ellipticity inequality (2.55).

For a physically linear shell, let us present an example of solution of problem
(2.62). Suppose that @ is zero and @, is the spherical part of the tensor, that is
©, =1l), where 1 is the rotatory inertia measure. Let us assume that the inequalities
(2.59) are valid. Then solutions of equation (2.62) are
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Solutions (2.63) describe transversal and longitudinal waves of acceleration and mi-
crorotation accelerations.

2.3.5 Ordinary Ellipticity

When equilibrium equations are not elliptic it may result in the break of continuity
of solutions. Let us consider this in more detail. We will assume singular time-
independent curves of the second order. Suppose on the shell surface ¢ there exists
a curve Y on which a jump in the second derivatives of the position vector R or
microrotation tensor Q happens. We will call such a jump the weak discontinuity.
For example, the curvature of X is determined through second derivatives of R so
such discontinuity can exhibited in the form of sharp bends of the shell surface.
From the equilibrium equations it follows

[V-D] =0, [V-G]=o0.

Repeating transformations of the previous section, we can reduce these to

0w *w
oEoE ™V sEok V| T2 .
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We can rewrite this in a more compact form
A(v)-E=0, &=(a,b)ecRS (2.64)

The existence of non-trivial solutions of Eq. (2.64) means that weak discontinu-
ities arise. The condition for this is the determinant of matrix A(v) should be zero.
When there holds

detA(v) #0, (2.65)

such discontinuities are impossible.
For the constitutive equation of the form

W =m(E)+ W (K),



condition (2.65) splits into two conditions

9*m 9°m
det v} #0, det v} #0. 2.66
As an example, we consider the conditions (2.65) for the constitutive equations
of a physically linear shell (2.18). With the use of Eqs (2.58) we can show the
conditions (2.66) reduce to the inequalities

o #0, atop+os#0, ou#0, B3#0, Pi+P+Bs#0, Ps#0.

Condition (2.65) is the ellipticity condition of the equilibrium equations of shell the-
ory (ellipticity in sense of Petrovsky). The condition follows from the general def-
inition of ellipticity in the theory of partial differential equations. Condition (2.65)
is also called the ordinary ellipticity condition, which is more weak than the strong
ellipticity condition (2.55).

2.4 Phase Equilibrium Conditions in Micropolar Shells

In the shell material can arise structural or phase transitions when it is produced or
being in exploitation. For example, such transformations can happen in thin-walled
structures made of polymer material or memory shape alloys. Various phase tran-
sitions can happen in biology membranes or liquid crystal films. In this chapter,
we restrict our consideration by the frontal phase transitions, that is the phase tran-
sitions with a sharp border between the phases. We consider these transitions that
are due to the strain change under constant temperature. Let deformation process to
be isothermal or adiabatic. A practically important example of use of thin-walled
structures gives us the use of the mono- or polycrystal films of the alloys of the type
NiTi, that is NiMnGa, NiTiCu, NiAl, etc., which posses the shape memory effect,
see e.g. [7, 46]. Such films are used in microelectromechanical systems, MEMS,
such as miniature pumps, microengines, etc. One of the first mechanical models of
deformations of martensitic films is proposed in [8, 34], see also [7, 46], where,
in particular, as a result of a special reduction procedure from a three-dimensional
layer to a surface, a model of a directed membrane is elaborated, that is of the shell
that does not possesses bending rigidity. Its constitutive equation depends on the
displacement field and its derivatives but besides, on the director field that is kine-
matically independent of the displacement field. Within the nonlinear shell theory,
investigation of equilibrium of phases is presented in [17] and extended in [54]
to the influence of line tension effects. The quasistatic deformation of two-phase
thermoelastic and thermoviscoelastic shells are considered in [19, 20]. Within the
framework of the theory of biological membranes the phase transitions in 2D struc-
tures are investigated in [2, 9].



2.4.1 Thermodynamic Continuity Conditions

For the sake of simplicity we restrict ourselves by the case of thermodynamic equi-
librium. This means that we can use the Gibbs’ variational approach [28]. Let us
suppose the phase transition happens along the whole shell thickness simultane-
ously. This allows us to introduce a curve on the shell surface that separates the
material phases with different properties. The assumption is based on experimental
data for deformation of thin plates and thin-walled tubes with shape memory effect,
cf. [31, 32, 33, 37].

For a two-phase shell, surface ¢ consists of two parts, o_ and o (cf. Fig. 2.3),
that are separated by a smooth curve y. Curve ¥ is unknown in advance, it is a pre-
image of the phase transition border. In the actual configuration ¥ is represented by
I'. We should find the shell deformation (2.1) together with y. Let us note y is a
particular case of the singular curve on which the continuity conditions for some
quantities under consideration can be violated.

Fig. 2.3 Two-phase shell

Using the Gibbs’ variational principle [28], we will find the conditions of ther-
modynamic equilibrium of the shell in isothermal process. For isothermal or adia-
batic processes, the Gibbs’ principle reduces to the stationary principle for the total
energy over kinematically admissible fields of displacements and microrotations.
Here we should suppose the independent position change for the border between
the phases. With regard to phase transition, the variational principles of continuum
mechanics are developed in [7, 29] among others.

Without the loss of generality, let us suppose that external loads are absent and
that ® = @; = w3, i.e. the displacements and rotations are given at the whole shell
contour. Now the strain energy functional takes the form
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To find the first variation of Eq. (2.67), we use the method presented in [14]. Let
us consider functional (2.67) on a smooth single-parameter family

R=R(¢* 1), Q=H(g%7), (2.68)

each element of which satisfies the border conditions for all 7. Here 7 is a small
time-like parameter. When 7 = 0 deformation (2.68) coincides with (2.1). We accept
that in the reference configuration the shell surface as well as the border between
the phases depend on 7 as well

oc=o(1), r=v01)

and (1) lies on 6(7). In other words, we will study the change of the energy func-
tional in case of variable reference configuration. From the physical point of view,
the change of the reference configuration relates to the motion of y(7) on ¢ due to
phase transition. We consider the boundary motion to be independent of the strain
and rotation fields. This means the surfaces ¢ and o(7) differ one from another only
by the partition for different material phases by curves y and y(7), respectively.

Let r =r*(¢*, 1) be an arbitrary diffeomorphism mapping o to o(7) and such
that y(7) = r*(y, ). For sufficiently small T such a map always exists. We can sup-
pose its support to lie in some small neighborhood of y. Then

&(1) = //W(E(r), K(1))do (1), (2.69)
o(1)

where E(7),K(7) are the strain measure and the bending strain measure, respec-
tively, that correspond to the family (2.68). We introduce the notations

_ aR(qa,T) _ 1 aH(qa,T) T
u= P TZO, Y= ) ( P H ) TZO, (2.70)
_ dri(g*,7)

W=

ot

7=0

In Egs (2.70), u, y, w are the vectors of small additional displacements, of mi-
crorotations and the vector of small perturbations of the reference configuration o,
respectively.

The first variation of € is the Gateaux derivative, it can be calculated by the
formula
_dé
~dr
Using integration over ¢ in Eq. (2.69) and the formula of differentiation of an area
element, finally we get

o0&

7=0
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Here and in what follows, in the notation we will omit 7 = 0. Vector w belongs to
the tangent plane to o. Indeed, n-w = 0 as w is the infinitesimal velocity vector of
curve 7y that changes the position on the immovable surface 6. So we derive

5¢ Z/{(:ZW-VW}dG+fV-[[WW]]ds,

where V is the normal vector to Y that is in the tangent plane to ¢. The normal
direction is from o to 0_, see Fig. 2.3. Here in what follows, we denote the jump
in quantities on y with square brackets. For example, [W] = W, — W_. Where it
will be essential, we will use subscripts “+” and “—” of the notation of quantities
for different phases. Let us denote expression v-w by £;. Quantity £y is the virtual
velocity of the motion of ¥ in the direction v; it differs from the velocity V' of a
singular curve in the previous section in notation only. So we get

JE JK
ot o1
Calculating the complete derivative with respect to 7, we take into account that

the independent variables also depend on 7. Using Eqs (2.72) we can demonstrate
that

=(Vu)-Q" + (Fx y)-Q’, =(Vy)-Q. (2.72)

aw _8W JE oW 9K_ T
dr —u-VWw = JE ° 31’+ 8K° P =DeVu+GeVy— [F D]X V.
Thus

58://{DoVu+Gowa [FT-D]X-w}dc+fLy[[W]]ds, (2.73)
o Y

and the energy variation does not depend on the choice of diffeomorphism r* and
Eq. (2.73) includes only the motion of 7.
With regard to Eq. (2.11), we get

58 =875+ 87, (2.74)
—0J6 = // {(V-D)-u+[(V-G)+ (F"-D),] -y} do,

83, = § {v-[Du-+ Gyl + £, 7]} a5
Y

Thus, the condition of stationarity

0E=0



splits into two independent equations 8J5 = 0 and 6J, = 0. From the first equation
it follows the equilibrium equations (2.2.1) in each of the phase domains. To ana-
lyze what happens when the contour integral 6], = 0 takes zero value, we should
introduce some assumptions on the nature of variations u and y in a neighborhood
of y. The assumptions follow from the smoothness properties of R and Q. Vector
R must be continuous on o, otherwise the shell lacks its continuity. It follows the
formula that relates the jump of the additional displacement vector to the jump of
the deformation gradient

[u] + Lyv-[F] =0. (2.75)

We will differ the coherent phase interface, that is when microrotation tensor
Q is continuous, from the phase interface incoherent in rotations, that is when its
continuity on the border between phases its continuity fails. For coherent phase
interface, we obtain the relation for the jumps as it follows

[v]+&yv- [K-Q] = 0. (2.76)

For the phase transition incoherent in rotations, the variations ¥ are independent
and so the last relation is not valid.
Using Egs (2.75), (2.76) we can transform equation 6J, = 0 to the form

F 4V ID]u-+v-[G]-w_— £yv- [u] -v}ds =0, @.77)
Y

where C = WA —D-FT —G-Q-KT is the energy-momentum tensor or Eshelby
tensor for the shell coherent phase interface [17].

For three-dimensional bodies, the Eshelby tensor describes the energy change
when singularity moves inside it [35, 43]. It describes the motion of cracks, phase
interfaces, dislocations, shear bands, etc. C can be also represented in the following
form
o)/ 4 ET_ o)/ 4 _
JE K
Within the framework of linear theory of plates and shells the properties Eshelby-
type tensors are discussed in [35].

Asu_, y_ and £, in Eq. (2.77) are arbitrary, by Eq. (2.77), the thermodynamic
equilibrium conditions of the coherent phase interface take the form

C=WwA- K”.

v:[D]=0, v-[G]=0, v:[C]-v=0. (2.78)

The first two relations of Eqs (2.78) express the balance conditions for the forces
and couples on the singular curve ¥ in the equilibrium state; the last equation is an
additional thermodynamic condition that is necessary for finding the position of the
pre-image of 7.

It can be shown that for the phase transition incoherent in rotations, we must
change the second equation in Egs (2.78) to
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V-G, = 0. (2.79)

In [17] the phase equilibrium conditions (2.78) and (2.79) are derived in another
way. For the geometrically linear shell theory, the phase equilibrium conditions in
displacements and rotations are formulated in [23]. Besides, in [23] they are pre-
sented in terms of stress functions.

2.4.2 Kinetic Equation

The above results allow us to find the time rate change of the strain energy for the
micropolar shell on equilibrium deformation fields that is due to motion of singular
curve Y along the shell. It can be found for any physical phenomenon in which y
arises. Namely, there holds

de
= 7{ £yv-[C] -vds. (2.80)
Ve

In terms of linear irreversible thermodynamics,
v-[C]-v

is the configurational force, cf. [6, 30, 35]), that is dual to £. Equation (2.80) allows
us to formulate the kinetic equation to describe the motion of 7y in the surface under
small perturbations from thermodynamic equilibrium

Ly=—-2(v-[C]-v), 2.81)

where JZ is a positive definite kinetic function. Equation (2.81) is analogous to the
kinetic equations of the three-dimensional elasticity of two-phase solids, cf. [1, 6].
Equations (2.80) and (2.81) describe the energy change for the motion of a defect in
the micropolar shell. We can generalize Eq. (2.81) with regard for some additional
factors such as the energy of v, that affect its motion, see [19, 54] for details.

After [1, 6, 20], we use the kinetic function K(¢) in the form

k(g —co)
> b)
1+&(g-gq) =%
H(G)=10 —60 < ¢ < G, (2.82)
k(g + o)
< —Q.
1—Eg+g) °= %

Here k is a positive kinetic factor, gy describes the effects associated with nucleation
of the new phase and action of the surface tension, see [1], and & is a parameter
describing the limit value of the phase interface velocity [6].



2.5 Conclusions

In this paper the basic relations of the nonlinear micropolar shell theory are re-
viewed. In Sect. 2.2 the local equilibrium equations and the dynamic boundary con-
ditions of the micropolar shell are derived in terms of the surface stress and couple
stress measures using the principle of virtual work. The constitutive equations for
elastic shells are defined through the surface strain energy density depending on two
surface strain measures by using the frame-indifference principle. Some variational
principles are formulated and the nonlinear compatibility conditions for the surface
strain measures are presented.

Then in Sec. 2.3 we formulate the differential form of the Coleman-Noll con-
dition which is an analog to the GCN-condition in 3D elasticity. In 3D nonlinear
elasticity the so-called constitutive restrictions or constitutive inequalities are pre-
sented in [57, 58]. From the physical point of view these restrictions express the our
ideas on the physically reasonable behavior of materials. In the linear shell theory,
such a restriction is given by the condition of positive definiteness of the shell strain
energy. For finite deformation, definite positiveness of the energy is not sufficient.
In Sect. 2.3 we also consider the strong ellipticity condition, the Coleman—Noll in-
equality and the condition of ordinary ellipticity. Then we deduce the linearized
equilibrium equations and formulate the strong ellipticity condition (2.55) and the
Hadamard inequality. We proved that the Coleman-Noll condition is more general
and it implies the strong ellipticity of the equilibrium shell equations. We also show
that the strong ellipticity condition is equivalent to the conditions of the existence
of accelerations waves in the shell. We establish that the conditions of ordinary el-
lipticity are more weak. When they fail then there exist non-smooth solutions of the
shell equilibrium equations.

In Sect. 2.4 we establish the conditions of thermodynamic equilibrium for shells
undergoing phase transitions. In case of small deviation from thermodynamic equi-
librium, we formulate a kinetic equation that describe the motion of the phase inter-
face.
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