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Mechanical Properties of Materials Considering
Surface Effects

Holm Altenbach, Victor A. Eremeyev, and Nikita F. Morozov

Abstract We discuss the influence of surface effects on the effective properties of
materials such as the effective bending stiffness of plates or the stiffness of rods.
The interest to the investigation of the surface effects is recently grown with respect
to nanomechanics. The surface effects play an important role for such nanosized
materials as films, nanoporous materials, etc. We consider two models of surface
effects. The first one is based on the concept of surface stresses which are the
generalization of the surface tension for solids. The second one (more classical
approach) is based on the consideration of the thin surface layer with mechanical
properties different from the bulk material. Within the framework of these models
we present the effective stiffness properties of plates, shells, and nanoporous rods.

Keywords Surface stresses • Nanoshell • Nanoplate • Nanorod • Nanoporous
materials • Effective stiffness

1 Introduction

The recent progress in the nanotechnologies based on the production of new
materials, so-called nanomaterials, whose properties can differ significantly from
the properties of bulk materials. One of the explanations for these differences of the
presence of surface effects, whose role can be extremely large for nanodimensional
structures in comparison with those in classical elasticity, see [1]. Since the
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contributions of Laplace, Young, and Gibbs, the mathematical study of boundary-
value problems (BVP) for elastic bodies with surface stresses have been carried out
in many works, see e.g. [1–4] and references therein. Mathematical study of BVP
of linear elasticity with surface stresses is given in [5, 6]. Recently, the theory of
elasticity with surface stresses is applied to formulation of theories of nanosized
structures, i.e. beams, plates, and shells, [7–17] and other surface phenomena, see
e.g. [1, 18–20].

The aim of this work is to analyze the influence of surface effects on the
elastic characteristics of materials at the nanoscale. Two models are considered.
The first one is based on taking into account the surface stresses [1–4]. The surface
stresses £ are the generalization of the surface tension known in the theory of
capillarity for the case of solids. As is shown in [18], taking into account surface
stresses results in increasing stiffness of nanoporous materials. This phenomenon is
similar to increasing bending stiffness of nanoplates in comparison with the plates
of macroscopic sizes [7, 8, 10] or to increasing eigenfrequencies of bodies with
surface stresses [6]. The second model uses the approach of the theory of composite
materials [21–23] and the theory of laminates and sandwich plates [24, 25]. In this
approach, the surface effects are taken into account due to the surface layer of finite
thickness with elastic moduli differing from those of the basic material (the matrix).
On the basis of these two approaches, we propose a model combining both the
surface stresses and the surface layer with the properties that differ from those of
the matrix.

2 Equilibrium of Elastic Solids with Surface Stresses

For the linear elastic body with surface stresses the boundary-value problem has the
form [1, 2, 4]

r � ¢ D 0; x 2 V; (1)

uj�1
D 0; n � ¢j�2

D rS � £ C ®; n � ¢j�3
D ®; x 2 �; (2)

where ¢ and £ are the stress and surface stress tensors, respectively, r the three-
dimensional nabla-operator, n the unit external normal to the surface � � @V D
�1 [ �2 [ �3, V the volume, rS the surface nabla-operator related with r by
the formula rS D r � n@=@z; z the coordinate along n. The part of the body
boundary �1 is clamped, on �2 the forces ® as well as the surface tension £ are
given, and the forces ® act on �3. For isotropic materials ¢ and £ are given by

¢ D 2�© C �Itr©; � D 2�S e C �S Atre; (3)
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© D ©.u/ � 1

2

�
ru C .ru/T

�
; e D e.v/ � 1

2

�
rS v � A C A � .rS v/T

�
; (4)

v � uj�2
; (5)

where © and e are the strain and surface strain tensors, respectively, I is the three-
dimensional unit tensor, A D I � n ˝ n is the surface unit tensor, �, � are Lamé’s
moduli of the bulk material, and �S , �S the surface elastic moduli, which are also
named the surface Lamé’s moduli.

3 Stiffness of a Rod with Surface Effects

To illustrate the more complicated model we start from the simplest one-
dimensional (1D) case, i.e. from the problem of uniaxial stress state of a circular
rod of radius R taking into account surface effects. For the uniaxial stress state the
stress tensors take the form

¢ D ¢zziz ˝ iz; � D �zziz ˝ iz;

where iz is the unit vector along the rod axis.
We assume that the surface stresses act on the lateral surface of the rod, while

the force P acts at the rod ends. Equilibrium condition of the rod consists of the
equation

“

�

�zzd� C
Z

�

�zzds D P; (6)

where � is the cross-section area and � D @�.
From (3) follow the 1D constitutive equations

�zz D E"zz; �zz D ESezz;

where E and ES are the Young modulus of bulk material and the surface Young
modulus, respectively, "zz and ezz are the longitudinal strains. For uniaxial tension
"zzj� D ezz D ".

Assuming " to be constant and a circular cross-section of the rod with area F D
	R2, from Eq. (6) we obtain

P D ŒEF C 2	RES
 " (7)
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For a homogeneous rod with the Young modulus E� we use the elementary
formula

P D E�F ": (8)

Comparing (7) and (8) we obtain the effective or apparent Young’s modulus of
the rod with surface stresses

E�
S D E C 2ES

R
: (9)

Since ES � 0, we obtain E�
S � E . This means that the rod with surface stresses

is stiffer than the same rod without surface stresses. Equation (9) predicts the size-
effect, i.e. the dependence of the effective Young modulus on R, according to the
scaling law [26].

Let us consider another approach to describe the surface effects. We assume that
there is a thin layer of thickness hf with the Young modulus Ef. In other words
we consider a non-homogeneous rod which Young modulus near the lateral surface
differs from the Young modulus E in the rod core.

For uniaxial tension of this non-homogeneous rod the effective Young modulus
can be calculated using the mixture rule [21–23]

E�
f D E C .Ef � E/

Ff

F
; (10)

where Ff is the area of the surface layer in the rod cross-section. From (10) it follows
that E�

f ! Ef when R ! hf and E�
f � Ef when R � hf.

Considering both the surface stresses and the non-homogeneity of the bulk
material near the lateral surface we derive the combined formula

E� D E C 2ES

R
C .Ef � E/

Ff

F
: (11)

E� depends on the values of hf, R, ES , and E . The graphs of E�
S , E�

f , and E�
are presented in Fig. 1. Here d D 2ES=E is the characteristic length parameter
introduced as in [1, 26]. Unlike (9), Eq. (11) predicts a more complicated behavior
of E�; for example, if Ef < E then E� may be a non-monotonous function of R,
see Fig. 1b.
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Fig. 1 Effective Young modulus E� vs. radius R: (a) Ef > E , (b) Ef < E

Summarising the behavior of E� we can conclude that

Within the framework of the proposed model, the effective (apparent)
material properties depend on the two following surface-related phenomena

• the surface elasticity according to the Gurtin-Murdoch model [2] and
• the change of the material properties of the bulk material in the vicinity of

the surface.

Further we consider the application of this model to nanoporous materials and to
nanosized plates and shells.

4 Stiffness of a Nanoporous Rod

Following [19] in this section we extend the above described procedure for the
nanoporous rod. We consider a circular rod with n identical pores of radius r which
are uniformly distributed parallel to the rod axis. We denote the area of pores in
the rod cross-section as S D 	nr2 and introduce the porosity � by the relation
� D S=F , � 2 Œ0; 1/. Further, assuming the porosity is fixed we consider how the
effective Young modulus depends on the number of pores.

The following formula holds true, see [19]

E�.n/ D E.1 � �/ C ES

2
p

�Fp
	

p
n C .Ef � E/

Ff.n/

F
; (12)
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where Ef is the Young modulus of the bulk material in the surface layer of thickness
hf surrounding each of pore, Ff is the total area of these layers in the rod cross-
section. Equation (12) shows that the porous rod can be stiffer or softer than the
porous rod without the surface effects. As in Sect. 2, the surface stresses lead to
the monotonous increase of E�.n/ with the increase of n, while the influence of the
change of the Young modulus near the pore surface depends on the sign of Ef � E .

5 Stiffness of a Nanosized Shell

As in the case of porous materials thin films give us another example of structures
with significant influence of surface effects. In this section we discuss the governing
equations of the linear theory of plates and shells taking into account the surface
properties. The main attention is paid here to the constitutive equations for the stress
resultant and couple stress tensors. We consider the Reissner-type model of plates
and shells. Within the framework of this theory a shell is assumed to be a deformable
surface whose kinematics is described by the translation field u and by the rotation
field # , see e.g. [24, 25, 27].

Equilibrium equations take the form

rS � T C q D 0; rS � M C T� C m D 0; (13)

where T and M are the stress resultant and stress couple tensors, respectively, q
and m are the external surface loads and moments, and T� denotes the vectorial
invariant of the second-order tensor T, see [27].

For the derivation of the constitutive equations for T and M we use the through-
the-thickness integration procedure of equilibrium Eqs. (1) and (2) in the case of
a shell-like body, see Fig. 2. We assume that the shell-like body consists of three
layers of thickness hf, hc, and hf, E and � are the Young modulus and Poisson ratio
of the core, h D hc C 2hf is the total thickness, Ef and �f are the Young modulus
and Poisson ratio of the surface layers, respectively. The surface stresses �˙ act
only on the faces �˙, �3 D �� [ �C. In other words, we consider a three-layered
shell-like body with surface stresses acting on its faces.

The through-the-thickness integration procedure is presented in many books and
papers, see e.g. [27] and the reference in it. The procedure is extended to the case of
surface stresses in [7, 8]. As a result we obtain the relations

T D h.A � zB/�1 � ¢i C �C C ��; h.: : :/i D
h=2Z

�h=2

.: : :/Gd z; (14)

M D �h.A � zB/�1 � z¢ � ni � h

2
.�C � ��/ � n; (15)
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Fig. 2 Shell-like body

and

q D GC'C � G�'�; m D h

2
GCn � 'C C h

2
G�n � '�;

G D G.z/ � det.A � zB/; G˙ D G.˙h=2/; (16)

where B D �rS n is the curvature tensor of the shell base surface !, n is the unit
normal to !. Here and in what follows we assume that hjjBjj � 1, i.e. we consider
shallow thin shells. With this accuracy, the following equations can be also used

T D hA � ¢i C �C C ��; M D �hA � z¢ � ni � h

2
.�C � ��/ � n: (17)

For the derivation of T and M as the functions of the surface strain measures we
use Eq. (17) with the approximation

u.q1; q2; z/ D w.q1; q2/ � z#.q1; q2/; n � # D 0: (18)

This approximation is used in the theories of shear-deformable plates and shells,
see e.g. [27], w is the translation vector of shell base surface !, # is the rotation
vector of the shell cross-section, and q1, q2 are the convected coordinates on !.

Application of Eq. (18) to Eq. (17) leads to the following relations

T D C1E C C2AtrE C �� ˝ n; M D � ŒD1K C D2AtrK
 � n; (19)



112 H. Altenbach et al.

where E, K, and � are the surface strain measures given by

E D 1

2

�
rS w � A C A � .rS w/T

�
; K D 1

2

�
rS # � A C A � .rS #/T

�
;

� D rS .w � n/ � # ;

C1, C2 are the tangential stiffness parameters, D1 and D2 are the bending stiffness
parameters, and � is the transverse shear stiffness. The stiffness parameters are
given by formulae

C1 D 2C22 C 4�S ; C2 D C11 � C22 C 2�S;

D1 D 2D22 C h2�S ; D2 D D33 � D22 C h2

2
�S; � D `2D22;

C11 D 1

2

�
2Efhf

1 � �f
C Ehc

1 � �

�
; C22 D 1

2

�
2Efhf

1 C �f
C Ehc

1 C �

�
;

D22 D 1

24

�
Ef.h

3 � h3
c/

1 C �f
C Eh3

c

1 C �

�
; D33 D 1

24

�
Ef.h

3 � h3
c/

1 � �f
C Eh3

c

1 � �

�
;

where ` is the minimal positive root of the following equation

�0 cos `
hf

2
cos `

hc

2
� sin `

hf

2
sin `

hc

2
D 0; �0 D �=�f;

� and �f are the shear moduli of the shell core and faces, respectively.
The effective tangential and bending stiffness take the form

C � � C1 C C2 D 2Efhf

1 � �2
f

C Ehc

1 � �2
C 4�S C 2�S;

D� � D1 C D2 D 1

12

�
Ef.h

3 � h3
c/

1 � �2
f

C Eh3
c

1 � �2

�
C h2

2
.2�S C �S/:

The stiffness parameters depend on the elastic moduli of the bulk material, i.e. on
E , �, Ef, and �f, on thicknesses hc and hf, as well as on 2�S C �S . Determination
of the stiffness parameters C11, C22, D22, and D33 are discussed in [24, 25] in the
case of three-layered and functionally graded plates. In the case of homogeneous
bulk material, i.e. when Ef D E , �f D �, these relations take the form as presented
in [7, 8].

As in the case of the rod the surface elasticity leads to increasing of C � and
D�. This influence is significant if the shell thickness has the same order as the
characteristic length parameter d D .2�S C �S/=E , i.e. when h 	 d . Note that
C � 	 d and D� 	 h2d when h ! 0, while in the classical plates and shells theory
C � 	 h and D� 	 h3. As an example let us take the values used in [1, 18, 26].
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Fig. 3 Bending stiffness vs. h

We set � D 34:7 GPa, � D 0:3, �S D �3:48912 N/m, and �S D 6:2178 N/m. In
[7, 8] it is shown that for h > 50nm the influence of surface stresses is negligible.

The change of the elastic properties of the bulk material near the shell faces can
lead to increasing or decreasing values of C � and D�. This depends on the sign of
Ef � E and the Poisson ratios. The graphs of bending stiffness are given in Fig. 3
for small values of thickness. Here D is the classical bending stiffness and Dl is the
bending stiffness of the three-layered plate [24, 25]

D D Eh3

12.1 � �2/
; Dl D 1

12

�
Ef.h

3 � h3
c/

1 � �2
f

C Eh3
c

1 � �2

�
;

and is assumed to be Ef > E .

6 Conclusion

We discuss the influence of surface effects on the effective properties of materials
such as the effective bending stiffness of plates or the stiffness of rods. The
interest to the investigation of the surface effects has recently grown with respect
to nanomechanics. The surface effects play an important role for such nanosized
materials as films, nanoporous materials, etc. We consider two models of surface
effects. The first one is based on the concept of surface stresses which are the
generalization of the surface tension for solids. The second one (more classical
approach) is based on the consideration of the thin surface layer whose mechanical
properties differ from the bulk material. Within the framework of these models we
present the effective stiffness properties of plates, shells and nanoporous rods.
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The surface stresses have an influence on the effective stiffness properties of the
elastic plates and shells. In the linear case this modification reduces to the addition
of new terms to the elastic stiffness parameters. We show that the surface elasticity
makes a shell stiffer in comparison with the shell without surface stresses. The
second model shows that the effective stiffness of a plate with surface layers depends
on the ratio of the elastic moduli of both the bulk and the surface materials.

Applying these two models we propose a model which takes into account not
only the surface stresses but also the surface layer. This model predicts more
complex behavior of the nanosized material. In particular, the nanoporous rod may
be stiffer or softer then the solid rod and the effective stiffness may be a non-
monotonous function of the size of the voids.
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