
HAL Id: hal-00824003
https://hal.science/hal-00824003

Submitted on 20 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ON CONTINUITY CONDITIONS AT THE PHASE
INTERFACE OF TWO-PHASE ELASTIC SHELLS

Violetta Konopińska, Victor A. Eremeyev, Wojciech Pietraszkiewicz

To cite this version:
Violetta Konopińska, Victor A. Eremeyev, Wojciech Pietraszkiewicz. ON CONTINUITY CONDI-
TIONS AT THE PHASE INTERFACE OF TWO-PHASE ELASTIC SHELLS. EMMC10 - European
Mechanics of Materials Conference, Jun 2007, Kazimierz Dolny, Poland. pp.373-379. �hal-00824003�

https://hal.science/hal-00824003
https://hal.archives-ouvertes.fr


EMMC-10 Conference ”Multi-phase and multi-component materials under dynamic loading”

11-14.06.2007 Kazimierz Dolny, Poland

ON CONTINUITY CONDITIONS AT THE PHASE

INTERFACE OF TWO-PHASE ELASTIC SHELLS

V. Konopińska∗, V. Eremeyev∗∗, W. Pietraszkiewicz∗

∗Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Gdańsk,
Poland; ∗∗South Federal University and South Scientific Center of RASci,

Rostov-on-Don, Russia

e-mail: pietrasz@imp.gda.pl

Abstract: The general non-linear theory of elastic shells undergoing
stress-induced phase transition of martensitic type is developed. Our
formulation is based on the statically and kinematically exact shell mo-
del. We also take into account the strain energy density of capillarity
type as well as forces and couples applied along the curvilinear phase
interface itself. The boundary value problem is formulated in the weak
form through the variational principle of stationary, total potential ener-
gy. In particular, we derive the refined static continuity conditions at the
coherent interface and at the interface incoherent in rotations.
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1. Introduction

Some non-classical materials may undergo diffusionless Phase Transitions (PTs)
of martensitic type. Several mechanical models of such processes are summarized
in books, for example by Podstrigach and Povstenko (1985), Grinfeld (1991) and
Romano (1993). In particular, Povstenko (1991) proposed to treat the surface
interfaces and three-phase curvilinear junctions in a 3D continuum as 2D and 1D
continua of the paper by Cosserat and Cosserat (1909), respectively.
Thin films made of shape-memory alloys can considerable alter their shapes

under appropriate environmental changes. To model PTs in such thin bodies,
Eremeyev and Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) used the
statically and kinematically exact theory of shells presented in books by Libai
and Simmonds (1998) and Chróścielewski et al. (2004). In such a shell model, the
2D equilibrium conditions are derived by a direct through-the-thickness integra-
tion of the equilibrium conditions of 3D continuum mechanics. Within the shell
model, the PT occurs at a movable surface curve separating shell regions with
different material phases. One has only to complete the relations of the non-linear
theory of regular shells with appropriate continuity conditions at the curvilinear
phase interface. These conditions are necessary and sufficient for establishing the
position of the interface in the thermodynamic equilibrium state of the shell.
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In this report, the curvilinear phase interface is endowed with the curvilinear
strain energy density modeling the generalized capillary-type phenomena, in ana-
logy to the 2D phenomena in 3D bodies discussed for example by Finn (1986) or
Rusanov (2005). We also take into account additional forces and couples applied
along the interface curve itself. These loads may result from exact reduction to
the 1D problem of the 3D phenomenon in a thin tube about the interface surface
curve, performed in analogy to the results by Konopińska and Pietraszkiewicz
(2007) for branching and self-intersecting shells. They may directly model also
curvilinear defects of any nature in thin-walled structures, such as dislocations
for example, see Gurtin (2000).

2. Weak formulation of the equilibrium BVP

Deformation of the elastic shell is described by the displacement vector u ∈ E and
the proper orthogonal (rotation) tensor Q ∈ SO(3) of the shell base surface M ,
see Chróścielewski et al. (2004). In shells undergoing PT of martensitic type we
also need to know the position vector xC ∈ E of the phase interface curve C ⊂M
in the undeformed placement, where E is the 3D vector space, see Eremeyev and
Pietraszkiewicz (2004).
The equilibrium Boundary Value Problem (BVP) for the shell with PT

can be formulated in the weak form: given the external resultant surface
forces and couples, find a solution (u,Q,xC) in the configurational space
S{M ;E × SO(3) × E} satisfying the kinematic boundary conditions u = u∗,
Q = Q∗ along ∂Md = ∂M\∂Mf such that for any kinematically admissible vir-

tual displacement field {δu,w = ax(δQQT ), δxC} the following principle of the
total potential energy is satisfied

δI = 0 I =

∫∫

MA

WA da+

∫∫

MB

WB da+

∫

C

WC ds−A (2.1)

Here WA = WA(E,K) and WB = WB(E,K) are the 2D elastic strain energy
densities associated with the subregions MA and MB of M with different mate-
rial phases, respectively. The densities WA and WB depend only on the natural
surface strain and bending tensors E,K ∈ E ⊗ TxM . WC = WC(e, k) is the
1D elastic strain energy density associated with the undeformed phase interface
curve C itself. In general, WC can be assumed to depend upon the natural cu-
rvilinear strain and bending tensors e, k ∈ E ⊗ TxC of the interface C, given for
example in Chróścielewski et al. (2004).
In (2.1), A is the potential of external loads such that

δA =

∫∫

M\C

(f · δu+ c ·w) da+

∫

C

(fC · δuC + cC ·wC) da+

(2.2)

+

∫

∂Mf

(n∗ · δu+m∗ ·w) da+ n∗e · δue +m
∗
e ·we − n

∗
i · δui −m

∗
i ·wi



On continuity conditions at the phase interface... 375

Here δuC and wC are the virtual translation and rotation vectors of the interface
curve C, with δui, wi and δue, we denoting the corresponding virtual displa-
cements at the initial and end points of intersection of C with the boundary
contour ∂M , respectively. The principle (2.1) with (2.2) states that among all
possible values of u, Q in M\C and positions xC of the interface C, the actual
solution {us,Qs,xsC} renders the functional stationary.
Calculating δI with I given by (2.1)2 and (2.2) consists of two parts. In the

first part we just refer to all transformations given in detail by Eremeyev and
Pietraszkiewicz (2004) for I without the integral along C in (2.1)2, as well as
without the integral along C and the out-of-integral terms in (2.2). Variation of
the integral along C in (2.1)2, performed with the help of theorems for differen-
tiation of curvilinear integrals over the time-dependent singular surface curve C
given in Podstrigach and Povstenko (1985) and Cermelli et al. (1998), leads to

δ

∫

C

WC ds =

∫

C

(n · δce+m · δck) ds+

∫

C

kgV WC ds+WCδxC · t
∣

∣

∣

xe

xi
=

= (n · δuC +m ·wC)
∣

∣

∣

xe

xi

−

∫

C

{n′ · δuC + (m
′ + y′C × n) ·wC} ds+

(2.3)

+

∫

C

kgV WC ds+WCδxC · t
∣

∣

∣

xe

xi

In (2.3), δc is the corotational variation, kg is the geodesic curvature of C,
V = δxC · n, n ∈ TxM is the external unit normal to C, t = x

′
C is the unit

tangent to C, δce and δck are given in Chróścielewski et al. (2004), and the
stress resultant and stress couple vectors along C are defined by n = ∂WC/∂e
and m = ∂WC/∂k, respectively.
Introducing (2.3) and (2.2) into (2.1)1 and using the results of Eremeyev and

Pietraszkiewicz (2004), we obtain

δI =−

∫∫

M\C

(

( Div sN + f) · δu+ {Div sM + ax(NF
T− FNT ) + c} ·w)da+

+

∫

∂Mf

{(nν − n
∗) · δu+ (mν −m

∗) ·w} ds+

∫

∂Md

(nν · δu+mνw) ds+

−

∫

C

{V [W ]− kgVWC + [nν · δu] + [mν ·w] + (n
′ + fC) · δuC + (2.4)

+(m′ + y′C × n+ cC) ·wC} ds+ (ne − n
∗
e) · δue + (me −m

∗
e) ·we +

−(ni − n
∗
i ) · δui − (mi −m

∗
i ) ·wi +WCeδxCe · te −WCiδxCi · ti = 0

where F = Grad sy is the surface deformation gradient, N = ∂W/∂E and
M = ∂W/∂K are the shell stress resultant and stress couple tensors of the
Kirchhoff type for which the constitutive equations were discussed by Eremey-
ev and Pietraszkiewicz (2006), nν = Nn and mν = Mn, the expression
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[·] = (·)+ − (·)− means the jump at C, while Grad s and Div s are the sur-
face gradient and divergence operators on M , respectively.
Vanishing of the first two rows of (2.4) gives the known exact equilibrium

equations and static boundary conditions of the general theory of regular shells,
see Libai and Simmonds (1998) or Chróścielewski et al. (2004). The third and
sixth rows of (2.4) vanish identically along ∂Md where the kinematic boundary
conditions are satisfied. The last terms in (2.4) vanish identically if the end points
xe and xi of C belong to ∂Md. When (xCi, xCe) ∈ ∂Mf , these terms also vanish
if δxCi and δxCe are normal to C. We are not aware of any physical process of
PT in shells which would require taking into account that δxC · t 6= 0 at the end
points of C. Therefore, we assume that δxCi · ti = δxCe · te ≡ 0 and omit terms
of the last row of (2.4) from further considerations. As a result, these terms do
not influence the thermodynamic equilibrium conditions of the two-phase shell.

3. Static continuity conditions

In this paper we discuss only such types of PT which do not lead to fragmentation
of the shell. This is possible in two types of PT.
The phase interface is called coherent if both fields y and Q are continuous

at C
y− = y+ = yC [y] = 0 [y′] = 0

Q− = Q+ = QC [Q] = 0 [Q′] = 0
(3.1)

The coherent phase interface may be singular with regard to F and Grad sQ,
but not with regard to y and Q themselves. Then from the Maxwell theorem
we establish the local kinematic compatibility conditions along C, see Eremeyev
and Pietraszkiewicz (2004)

[δu] + V [Fn] = 0 [w] + V [Kn] = 0 (3.2)

which relate [δu] and [w] with V . Therefore, along the coherent interface only
the virtual fields V , δuC , wC are independent. For such an interface from the
fourth, fifth and sixth rows of (2.4), after some transformations we obtain the
local static continuity conditions along C

[W ] − 〈Nn〉 · [Fn]− 〈Mn〉 · [Kn] = kgWC

n′ + [Nn] + fC = 0

m′ + y′C × n+ [Mn] + cC = 0 (3.3)

ni − n
∗
i = 0 mi −m

∗
i = 0 at xi = C ∩ ∂Mf

ne − n
∗
e = 0 me −m

∗
e = 0 at xe = C ∩ ∂Mf

where 〈·〉 = 1
2
{(·)+ + (·)−} is the mean value at C.

The phase interface is called incoherent in rotations if only y is continuous at
C but the continuity of Q may be violated. In this case the conditions indicated
in the first row of (3.1) are still satisfied, but those in the second row of (3.1) may
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be violated. Such an interface can be singular with regard to Q, F , and Grad sQ
but not with regard to y and the second kinematic compatibility condition (3.2)
can now be violated. As a result, along the interface incoherent in rotations, the
virtual fields V , w±, δuC , and wC are independent. At such an interface after
appropriate transformations we obtain the following set of local static continuity
conditions

[W ]− 〈Nn〉 · [Fn] = kgWC M±n = 0

n′ + [Nn] + fC = 0 m′ + y′C × n+ cC = 0
(3.4)

together with static continuity conditions at the initial and end points of C given
in the third and fourth row of (3.3).

4. Capillary energy of the interface

Let us consider a special case of curvilinear strain energy density WC of the
phase interface by analogy to the one used in the theory of capillary surfaces,
see Finn (1986) and Rusanov (2005). In our 1D case the term responsible for
the curvilinear energy in the functional (2.1) can be assumed to be given by the
integral σ

∫

C

√

y′C · y
′
C ds so that

WC = σ
√

y′C · y
′
C (4.1)

Here σ is the line tension which is constant along the deformed curvilinear inter-
face D = χ(C). Other possible types of constitutive equations of one-dimensional
continua modeling the curvilinear interface can be found in Podstrigach and Po-
vstenko (1985). The concept of line tension is widely used not only in the theory
of capillarity but also in the theory of dislocations, where the line tension takes
into account the energy of a tube surrounding the dislocation.
When the strain energy density (4.1) is used we can simplify the continuity

conditions along the phase interface (3.3) and (3.4). Indeed, from the equation
(4.1) we obtain

n =
σ

√

y′C · y
′
C

y′C m = 0 (4.2)

Thus, using (4.2) we find that n × y′C = 0. If we further assume that cC = 0,
the third equation of (3.3) reduces to [Mn] = 0 while the fourth one of (3.4)
becomes identically satisfied.
Note that y′C/

√

y′C · y
′
C is the unit vector tangent to the interface curve D.

Then from the Frenet formulas it follows that
(

1
√

y′C · y
′
C

y′C

)′

= k
√

y′C · y
′
Cm (4.3)

where k is the principal curvature of the interface curve D, and m is the principal
unit normal to D. Then with the additional assumption that fC = 0, the second
equation of (3.3) or the third one of (3.4) reduces to

σk
√

y′C · y
′
Cm+ [Nn] = 0 (4.4)



378 V. Konopińska et al.

The equation (4.4) is a 1D analogue of the Laplace equation well-known in the
2D theory of capillarity, see Finn (1986) and Rusanov (2005).

5. Conclusions

The equilibrium boundary value problem of elastic shells undergoing phase trans-
itions of martensitic type has been developed. In our approach the statically and
kinematically exact theory of shells of the Cosserat type has been used. The phase
transition has been assumed to take place at the movable singular surface curve.
From the variational principle of stationary total potential energy we have derived
not only the local equilibrium conditions of the regular shell parts, but also the
local continuity conditions at the coherent phase interface and at the interface in-
coherent in rotations. These continuity conditions enable to establish position of
the interface curve in the thermodynamic equilibrium state. Numerical examples
of the phase transition in an infinite plate with a circular hole given in Eremeyev
and Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) illustrate the results
presented in this report.
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