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The general non-linear theory of elastic shells undergoing stress-induced phase transition of martensitic type is developed. Our formulation is based on the statically and kinematically exact shell model. We also take into account the strain energy density of capillarity type as well as forces and couples applied along the curvilinear phase interface itself. The boundary value problem is formulated in the weak form through the variational principle of stationary, total potential energy. In particular, we derive the refined static continuity conditions at the coherent interface and at the interface incoherent in rotations.

Introduction

Some non-classical materials may undergo diffusionless Phase Transitions (PTs) of martensitic type. Several mechanical models of such processes are summarized in books, for example by [START_REF] Podstrigach Ya | Introduction to Mechanics of Surface Phenomena in Deformable Solids[END_REF], Grinfeld (1991) and [START_REF] Romano | Thermodynamics of Phase Transitions in Classical Field Theory[END_REF]. In particular, [START_REF] Povstenko | Generalization of Laplace and Young equations involving couples[END_REF] proposed to treat the surface interfaces and three-phase curvilinear junctions in a 3D continuum as 2D and 1D continua of the paper by [START_REF] Cosserat | The non-linear theory of elastic shells with phase transitions[END_REF], respectively.

Thin films made of shape-memory alloys can considerable alter their shapes under appropriate environmental changes. To model PTs in such thin bodies, [START_REF] Cosserat | The non-linear theory of elastic shells with phase transitions[END_REF] and [START_REF] Pietraszkiewicz | Extended non-linear relations of elastic shells undergoing phase transitions[END_REF] used the statically and kinematically exact theory of shells presented in books by [START_REF] Libai | The Nonlinear Theory of Elastic Shells[END_REF] and [START_REF] Chróścielewski | Statyka i dynamika powłok wielopłatowych: Nieliniowa teoria i metoda elementów skończonych, IPPT PAN, seria "Biblioteka Mechaniki Stosowanej[END_REF]. In such a shell model, the 2D equilibrium conditions are derived by a direct through-the-thickness integration of the equilibrium conditions of 3D continuum mechanics. Within the shell model, the PT occurs at a movable surface curve separating shell regions with different material phases. One has only to complete the relations of the non-linear theory of regular shells with appropriate continuity conditions at the curvilinear phase interface. These conditions are necessary and sufficient for establishing the position of the interface in the thermodynamic equilibrium state of the shell.

In this report, the curvilinear phase interface is endowed with the curvilinear strain energy density modeling the generalized capillary-type phenomena, in analogy to the 2D phenomena in 3D bodies discussed for example by [START_REF] Finn | Equilibrium Capillary Surfaces[END_REF] or [START_REF] Rusanov | Surface thermodynamics revisited[END_REF]. We also take into account additional forces and couples applied along the interface curve itself. These loads may result from exact reduction to the 1D problem of the 3D phenomenon in a thin tube about the interface surface curve, performed in analogy to the results by [START_REF] Konopińska | Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells[END_REF] for branching and self-intersecting shells. They may directly model also curvilinear defects of any nature in thin-walled structures, such as dislocations for example, see [START_REF] Gurtin | Configurational Forces as Basic Concepts of Continuum Physics[END_REF].

Weak formulation of the equilibrium BVP

Deformation of the elastic shell is described by the displacement vector u ∈ E and the proper orthogonal (rotation) tensor Q ∈ SO(3) of the shell base surface M , see [START_REF] Chróścielewski | Statyka i dynamika powłok wielopłatowych: Nieliniowa teoria i metoda elementów skończonych, IPPT PAN, seria "Biblioteka Mechaniki Stosowanej[END_REF]. In shells undergoing PT of martensitic type we also need to know the position vector x C ∈ E of the phase interface curve C ⊂ M in the undeformed placement, where E is the 3D vector space, see [START_REF] Cosserat | The non-linear theory of elastic shells with phase transitions[END_REF].

The equilibrium Boundary Value Problem (BVP) for the shell with PT can be formulated in the weak form: given the external resultant surface forces and couples, find a solution (u, Q, x C ) in the configurational space S{M ; E × SO(3) × E} satisfying the kinematic boundary conditions u = u * , Q = Q * along ∂M d = ∂M \∂M f such that for any kinematically admissible virtual displacement field {δu, w = ax(δQQ T ), δx C } the following principle of the total potential energy is satisfied

δI = 0 I = M A W A da + M B W B da + C W C ds -A (2.1)
Here W A = W A (E, K) and W B = W B (E, K) are the 2D elastic strain energy densities associated with the subregions M A and M B of M with different material phases, respectively. The densities W A and W B depend only on the natural surface strain and bending tensors

E, K ∈ E ⊗ T x M . W C = W C (e, k)
is the 1D elastic strain energy density associated with the undeformed phase interface curve C itself. In general, W C can be assumed to depend upon the natural curvilinear strain and bending tensors e, k ∈ E ⊗ T x C of the interface C, given for example in [START_REF] Chróścielewski | Statyka i dynamika powłok wielopłatowych: Nieliniowa teoria i metoda elementów skończonych, IPPT PAN, seria "Biblioteka Mechaniki Stosowanej[END_REF]. In (2.1), A is the potential of external loads such that

δA = M \C (f • δu + c • w) da + C (f C • δu C + c C • w C ) da + (2.2) + ∂M f (n * • δu + m * • w) da + n * e • δu e + m * e • w e -n * i • δu i -m * i • w i
Here δu C and w C are the virtual translation and rotation vectors of the interface curve C, with δu i , w i and δu e , w e denoting the corresponding virtual displacements at the initial and end points of intersection of C with the boundary contour ∂M , respectively. The principle (2.1) with (2.2) states that among all possible values of u, Q in M \C and positions x C of the interface C, the actual solution {u s , Q s , x s C } renders the functional stationary. Calculating δI with I given by (2.1) 2 and (2.2) consists of two parts. In the first part we just refer to all transformations given in detail by [START_REF] Cosserat | The non-linear theory of elastic shells with phase transitions[END_REF] for I without the integral along C in (2.1) 2 , as well as without the integral along C and the out-of-integral terms in (2.2). Variation of the integral along C in (2.1) 2 , performed with the help of theorems for differentiation of curvilinear integrals over the time-dependent singular surface curve C given in Podstrigach and [START_REF] Podstrigach Ya | Introduction to Mechanics of Surface Phenomena in Deformable Solids[END_REF] and [START_REF] Cermelli | A note on the thermodynamics of curvature flows in R 3 and on surfaces in R 3[END_REF], leads to Introducing (2.3) and (2.2) into (2.1) 1 and using the results of [START_REF] Cosserat | The non-linear theory of elastic shells with phase transitions[END_REF], we obtain

δ C W C ds = C (n • δ c e + m • δ c k) ds + C k g V W C ds + W C δx C • t x e x i = = (n • δu C + m • w C ) x e x i - C {n ′ • δu C + (m ′ + y ′ C × n) • w C } ds + (2.3) + C k g V W C ds + W C δx C • t x e x i In (2.3), δ c is the corotational variation, k g is the geodesic curvature of C, V = δx C • n, n ∈ T x M is the external unit normal to C, t = x ′ C is
δI = - M \C ( Div s N + f ) • δu + { Div s M + ax(N F T -F N T ) + c} • w)da+ + ∂M f {(n ν -n * ) • δu + (m ν -m * ) • w} ds + ∂M d (n ν • δu + m ν w) ds + - C {V [W ] -k g V W C + [n ν • δu] + [m ν • w] + (n ′ + f C ) • δu C + (2.4) +(m ′ + y ′ C × n + c C ) • w C } ds + (n e -n * e ) • δu e + (m e -m * e ) • w e + -(n i -n * i ) • δu i -(m i -m * i ) • w i + W Ce δx Ce • t e -W Ci δx Ci • t i = 0
where F = Grad s y is the surface deformation gradient, N = ∂W/∂E and M = ∂W/∂K are the shell stress resultant and stress couple tensors of the Kirchhoff type for which the constitutive equations were discussed by Eremeyev and [START_REF] Eremeyev | Local symmetry group in the general theory of elastic shells[END_REF], n ν = N n and m ν = M n, the expression

[•] = (•) + -(•)
-means the jump at C, while Grad s and Div s are the surface gradient and divergence operators on M , respectively. Vanishing of the first two rows of (2.4) gives the known exact equilibrium equations and static boundary conditions of the general theory of regular shells, see [START_REF] Libai | The Nonlinear Theory of Elastic Shells[END_REF] or [START_REF] Chróścielewski | Statyka i dynamika powłok wielopłatowych: Nieliniowa teoria i metoda elementów skończonych, IPPT PAN, seria "Biblioteka Mechaniki Stosowanej[END_REF]. The third and sixth rows of (2.4) vanish identically along ∂M d where the kinematic boundary conditions are satisfied. The last terms in (2.4) vanish identically if the end points x e and x i of C belong to ∂M d . When (x Ci , x Ce ) ∈ ∂M f , these terms also vanish if δx Ci and δx Ce are normal to C. We are not aware of any physical process of PT in shells which would require taking into account that δx C • t = 0 at the end points of C. Therefore, we assume that δx Ci • t i = δx Ce • t e ≡ 0 and omit terms of the last row of (2.4) from further considerations. As a result, these terms do not influence the thermodynamic equilibrium conditions of the two-phase shell.

Static continuity conditions

In this paper we discuss only such types of PT which do not lead to fragmentation of the shell. This is possible in two types of PT.

The phase interface is called coherent if both fields y and Q are continuous at C

y -= y + = y C [y] = 0 [y ′ ] = 0 Q -= Q + = Q C [Q] = 0 [Q ′ ] = 0 (3.1)
The coherent phase interface may be singular with regard to F and Grad s Q, but not with regard to y and Q themselves. Then from the Maxwell theorem we establish the local kinematic compatibility conditions along C, see [START_REF] Cosserat | The non-linear theory of elastic shells with phase transitions[END_REF] [δu] +

V [F n] = 0 [w] + V [Kn] = 0 (3.2)
which relate [δu] and [w] with V . Therefore, along the coherent interface only the virtual fields V , δu C , w C are independent. For such an interface from the fourth, fifth and sixth rows of (2.4), after some transformations we obtain the local static continuity conditions along C

[W ] -N n • [F n] -M n • [Kn] = k g W C n ′ + [N n] + f C = 0 m ′ + y ′ C × n + [M n] + c C = 0 (3.3) n i -n * i = 0 m i -m * i = 0 at x i = C ∩ ∂M f n e -n * e = 0 m e -m * e = 0 at x e = C ∩ ∂M f where • = 1 2 {(•) + + (•)
-} is the mean value at C. The phase interface is called incoherent in rotations if only y is continuous at C but the continuity of Q may be violated. In this case the conditions indicated in the first row of (3.1) are still satisfied, but those in the second row of (3.1) may be violated. Such an interface can be singular with regard to Q, F , and Grad s Q but not with regard to y and the second kinematic compatibility condition (3.2) can now be violated. As a result, along the interface incoherent in rotations, the virtual fields V , w ± , δu C , and w C are independent. At such an interface after appropriate transformations we obtain the following set of local static continuity conditions

[W ] -N n • [F n] = k g W C M ± n = 0 n ′ + [N n] + f C = 0 m ′ + y ′ C × n + c C = 0 (3.4)
together with static continuity conditions at the initial and end points of C given in the third and fourth row of (3.3).

Capillary energy of the interface

Let us consider a special case of curvilinear strain energy density W C of the phase interface by analogy to the one used in the theory of capillary surfaces, see [START_REF] Finn | Equilibrium Capillary Surfaces[END_REF] and [START_REF] Rusanov | Surface thermodynamics revisited[END_REF]. In our 1D case the term responsible for the curvilinear energy in the functional (2.1) can be assumed to be given by the integral σ C y ′ C • y ′ C ds so that

W C = σ y ′ C • y ′ C (4.1)
Here σ is the line tension which is constant along the deformed curvilinear interface D = χ(C). Other possible types of constitutive equations of one-dimensional continua modeling the curvilinear interface can be found in Podstrigach and [START_REF] Podstrigach Ya | Introduction to Mechanics of Surface Phenomena in Deformable Solids[END_REF]. The concept of line tension is widely used not only in the theory of capillarity but also in the theory of dislocations, where the line tension takes into account the energy of a tube surrounding the dislocation.

When the strain energy density (4.1) is used we can simplify the continuity conditions along the phase interface (3.3) and (3.4). Indeed, from the equation (4.1) we obtain n

= σ y ′ C • y ′ C y ′ C m = 0 (4.2)
Thus, using (4.2) we find that n × y ′ C = 0. If we further assume that c C = 0, the third equation of (3.3) reduces to [M n] = 0 while the fourth one of (3.4) becomes identically satisfied.

Note that y ′ C / y ′ C • y ′ C is the unit vector tangent to the interface curve D. Then from the Frenet formulas it follows that

1 y ′ C • y ′ C y ′ C ′ = k y ′ C • y ′ C m (4.3)
where k is the principal curvature of the interface curve D, and m is the principal unit normal to D. Then with the additional assumption that f C = 0, the second equation of (3.3) or the third one of (3.4) reduces to

σk y ′ C • y ′ C m + [N n] = 0 (4.4)
The equation (4.4) is a 1D analogue of the Laplace equation well-known in the 2D theory of capillarity, see [START_REF] Finn | Equilibrium Capillary Surfaces[END_REF] and [START_REF] Rusanov | Surface thermodynamics revisited[END_REF].

Conclusions

The equilibrium boundary value problem of elastic shells undergoing phase transitions of martensitic type has been developed. In our approach the statically and kinematically exact theory of shells of the Cosserat type has been used. The phase transition has been assumed to take place at the movable singular surface curve.

From the variational principle of stationary total potential energy we have derived not only the local equilibrium conditions of the regular shell parts, but also the local continuity conditions at the coherent phase interface and at the interface incoherent in rotations. These continuity conditions enable to establish position of the interface curve in the thermodynamic equilibrium state. Numerical examples of the phase transition in an infinite plate with a circular hole given in [START_REF] Cosserat | The non-linear theory of elastic shells with phase transitions[END_REF] and [START_REF] Pietraszkiewicz | Extended non-linear relations of elastic shells undergoing phase transitions[END_REF] illustrate the results presented in this report.

  the unit tangent to C, δ c e and δ c k are given in Chróścielewski et al. (2004), and the stress resultant and stress couple vectors along C are defined by n = ∂W C /∂e and m = ∂W C /∂k, respectively.
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