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Abstract—This last decade has seen an increasing interest for in general, we consider self-assessment and self-analys&s
wireless communications. With the current use of smart-phoes  pilities for dynamic wireless network of collaborative resd
and tablets coupled to the rise of the Intemet of Things, the \;qre gpecifically, our work is focused on the service prodide

number of mobile terminal nodes in networks will significanty by th twork | In thi ticul il n
change the way we manage them. Indeed, these wireless netk®r y the network fayer. In this particular case we will have

are highly dynamic, especially concerning topology and tric  t0 face two majors difficulties: (1) nodes only have partial
matrices. The fast moves of mobile devices can for instance information on the network state, (2) the level of servidese

impact the connexity of the networks, or the importance of o®  on a wireless medium which is complex and not reliable by
of the nodes in the routing graph. Therefore distributed netvork nature. Concerning self-assessment, partial informdticres

control, and traffic management are of increasing complexies. des t lue based their | Linf fi
Given this high dynamicity, network management will need to noaes to agree on a value based on their local intormation.

be as autonomous as possible regarding the service they areAlso, this value is time varying and the problem is from the
providing to users and their resilience. In this paper, we popose class of distributed consensus. Concerning self-analysibes

a method for monitoring and assessing the quality of a dynanti  will have to search and share the information they dispose to
mobile network. For this purpose, we introduce the concept \; qerstand the law followed by the consensus value. Then,

of System Development Index (SDI). We especially provide - . .
methods and algorithms, which are based on events collectio they will have to determine whether they are responsible for

and distributed mining to analyze the evolution of this index. We  its evolution. This could be seen as a distributed datasgiim
illustrated it by simulation, considering different scenaii under  uncertain partial context problem, uncertainty being hangd

NS3. We evaluated the evolution of the SDI, and analyzed its by the medium kind. Therefore, the remainder of this paper
possible underlying reasons for one scenario and analyzerer s stryctured as follows. The following section describies t
estimation for various network properties. - .
related work on data-mining applied to network management

and distributed consensus. We introduce in secfioh Il our
general assessment and analysis framework for multi-agent

Nowadays, one can say that wireless mobile networks hasgstems. In section 1V, we instantiate this framework in the
definitely invaded our daily lives. When looking at foresastcase of wireless dynamic systems and lead an off-line aisalys
from Cisco [1], mobile traffic should increase 7.5-times ithrough an example scenario. In the fifth section, a disteitbu
the 4 next years. While the service quality will be of primeassessment algorithm is provided for our network. We also
interest (two-thirds of this traffic will be dedicated to e, evaluate it under various network conditions. We will carls
provider systems will be tricky to manage. Managing wiredn future work in a last section.
networks to sustain unpredictable traffic is still a comex
unsolved technical domain. The problem raised by wireless ) )
networks will be even more complex: in particular, wireless A- Knowledge Extraction and Network Analysis
frastructures will experience dynamic topologies depegdin Understanding and Managing wireless network is one of
terminals position and needs, thus adding a level of madaituthe operator concern. Orange Labs have shown interest on the
of complexity. Indeed, complex phenomena will arise with thoptimal deployment of wireless substitution netwark [2ja O
Internet of Things where random interactions might gemerats side, AT&T Labs worked on data-mining to analyze its own
new kinds of traffic. As a result, system managers will not beireless infrastructure [3]. Data-mining applied to netiing
able to quickly analyze the underlying reasons that aftesirt has already been investigated, in particular by the segrcurit
networks’ behaviours, and so, to launch appropriate civeec community which is quite fond of this angle. The approach
measures. Thus, this task needs to be mainly delegatedst@pplied to network intrusion detection but also in traffic
systems themselves, for providing fast autonomous adaptaimonitoring and anomaly detection. The main idea is to lighte
actions when required (when detecting events leading nietwork manager task by removing false positive alert ]n [4
network QoS decreases, or even better when predicting sticlh authors mentioned that data-mining was a valuable tool
QoS decreases). In this paper we provide a reference madeldot which was not about making human analysis unnecessary,
an observer to assess a system and then conduct an assesssmatifically in the attribute choices. Then data-mining are
centric analysis. While this model could be applied to syste useful to construct new rules. For example, technical tesul

|I. INTRODUCTION

Il. RELATED WORK



can be found in[[5] where Casas & al. demonstrated the Maximum degree weight algorithm for N agent:

efficiency of clustering techniques to detect traffic angmal 1 IN;(1)]

and construct new filtering rules without knowledge. Alsopr, = — if k=i and ap=1- otherwise
understanding cause and effect between network events is _ . )

not the stronghold of security. We found il [6[-[8] analysis  Metropolis weight algorithm:

concerned by the understanding of network behavior[In [6] - 1 TR
authors highlighted the sources of TCP reset anomalies. The Ok = 1+ max(|N; ()], |N; (t)]) if 71

field of wireless communication is investigated in [7] where '

the key characteristics of the traffic are captured on sévera and o =1— Zak otherwise

base stations to optimize their coordination. Authors sttbw k#j

a significant enhancement on the downlink delay performancekeeping in mind the introduced related work, we can now
by clustering users in profiles. Finally authors of [8] foeds detail our assessment and analysis framework of systems.
on the relation that can exist between user experience and

the network quality of service. The studies was lead on d!l- AN ASSESSMENT ANDANALYSIS FRAMEWORK FOR

set of mobile users and explained the relation between serve MULTI-AGENT SYSTEMS

response time, round time trip and user satisfaction. Whife System Development Index and Assessment

[5], [I7] have brought methods to extract informatian, [@] [ 1) A Multi-Agent Systems Modelnspired from the Multi-
have tailored their studies towgrd a very specific goals;éh(?Agent Systems theory, our framework considers a System as
two approaches need to be linked by a common objectiyeset of agents. An agent is an entity which owns interfaces
which is the network performance. Also, narrowing extréctgq jnteract with its environment and specifically with other
information down to assessment will allow one to take up thgyents. An agent also owns interfaces to observe events or
issue of partial information. Indeed, despite the efficwotk jnieractions that occurred to him or to its neighborhoodtiEa
cited above, it only considers an omniscient and centmhlizggent has an utility value that represents its wellness timer.
approach because of their domain complexity. Therefore We defined utility values in the real intervil, 1] , where 0
insert our work in between, with the motivation to only extra js 5 worst case and 1 is a best case. The utility value of an
clues on a system relatively to its assessment. The ass@Ssfgent can also be seen as its percentage of satisfactiendriv
needs to be shared among all the nodes, which leads us tOnga possibly unknown utility function. Each agent is able to
distributed consensus problem. Since our assessment thet\ge 5 set of observed interactions as well as its safisfact
relies on an average over nodes, we will focus on the averaggiory. The formalism we used to describe these obsenatio

consensus problem. is detailed in the next section.
o ) 2) System ldeality and System Development Indiken
B. Distributed Consensus And Average Sharing considering system assessment, our main axioms are the

In distributed algorithms, when agents need to agree &ilowing:
a value, it remains on the well known consensus problem.. Systems where all agents are 100% satisfied are ideal.
This class of problem has been deeply studied from variouse Systems where all agents are 0% satisfied are not ideal.

angles (termination, fault tolerance, etc...). A subclalsthis Therefore we can summarize the level of ideality of a N-agent
problem is called average consensus, where each agents keggtem in a N-dimensional vector of utility values.

a valuev;. The consensus for agents is to find the average, | ot s pe an N-agents system

z of the kept values. Many algorithms have been designed, | o u(t) be the utility vector of agents in S at time t

this is perfectly illustrated in|9]. Every algorithm is aatfe- . Letu;(t) be the utility of agent i in S at time t
off between time convergence, memory used by each agent | ZZE 0,11V suchasy; =0 Vie[l,N]

and the number of exchanged messages. Among the ones that | o o €[0,1]N suchasp; =1 Vie|L,N]
require few communications and computational resourbes, t
most famous are : the maximum degree weight given in [1
the metropolis weight given i [11]. In these schemes, ea
node proceeds iteratively, computes values and sends them”
its neighborhood at each step. These linear algorithms both  {g: [0,1]Y = [0,1] | g(0) =1 and g(z) # 1}
consider that t_he dynamic of the average is greater t_han .tPﬁe system S is said ideal for a given SDI g at time t if and
convergence time for a connected network. The esﬂmaﬂgﬂ

SDI for a N-agents System S is a function frdim1]%V to
1] that satisfies both of our axioms, thus the space of SDI
pction for S is given by:

~ . T ly if
z;(t) of z for node i at steg + 1 is given by :
© i+ 1is gven by glu(t) =1
Ti(t+1) = o 2(t) + Z a;.7;(t) and 7;(0) = v; Thus in our framework, system ideality is related to a point
JEN:(t) of view or function. The classical form of SDI is given by

whereN;(¢) is the neighborhood of i at step t ang depends

N N
o f(s)=> ~iu; with v =1
on the algorithm: (s) _21 Z:

=1



The value ofy; could be based on the pricing policy of aand an event dimension where events are also multidimen-
system manager who gives preferences to some users classesal. An example of table is illustrated in table I.
For a selfish agent i, the system will be ideal as far as its own Time: The time dimension is crucial since we want to
satisfaction equals 1. In the latter cage= 0 for j # ¢ and study and manage the temporal evolution of the SDI. Time
v = 1. One can also base a SDI on a distance between tbeonsidered continuous, second(s) is the principal Wi.
satisfaction distribution and the perfect distributiones all keep only one time representation which is cal#édme In
agents are fully satisfied. The main point is that a SDI is ajur implementation, we considered time as a float value with
index that one wants to follow. For an external observes thihe experiment start as the origin.
index can just be studied. In the case of a concerned observer Agent: Agents are the main entities of our systems they
like a system manager, this index will be tracked in order {@teract each others, observe, analyze and make decidiey. T
be maximized. Finally if the observer is an agent, the indexll have a unique identifiet#Agent
indicates how well the system in which it evolves is ideal  Event: An event is aperceptible modification of the
given its point of view. system state. Combining the initial state and events, one ca
3) SDI Estimation and Analysis in Various Syster@&m- trace a partial history of a system. As specified above, an
puting the value of the SDI in real time is not trivial forevent is a multidimensional object identified by a primary ke
systems with a large number of nodes. Indeed one needstBvent It can be represented by a frame where the first field
have access in real time to the utility value of each agent ithe event typegTypg which determines the validity and the
be able to compute its exact SDI. From an agent point afeaning of the following ones. An Event can occur several
view, it means that he should collaborate with others, whiglmes and be observed at different moments by distinct agent
is not always the case. For the same reasons, accessing the
necessary information to understand the evolution of theiSD

not always possible. We can thus study the SDI with different (a) Example of Observations Table

angles which depend on omniscience, and interactivity- (off Observations

line vs On_“ne): #Time #Agent #Event
Omniscient Off-line Studiesthis kind of study considers float int int

the whole set of information contained by the agents and 12 0 0

analyzes it passively. The aim here is to identify behayiors 125 1 1

cause-and-effect regarding the evolution of the SDI for a 1.255 0 1

whole system. It allows one to retrieve knowledge on the 13 L 0

underlying reasons that drive the assessment of a systeer und (b) Example of Event Table

a given point of view (SDI). Consequently, these studies are Events ;
prellmlngry Stlljdles' . . . #Event eType eSource| eSpeed elength ... !
_ Part_|aIIy qurmed _Off-llne Stu_dleszln this case the int string int float nt 3
information considered is only contained by a subset of &gen 0 ‘Move' 0 30 - N
(or a unique agent) under a passive analysis. The main goal 1 'Packet 1 . 1500 N
of these studies is to characterize the possible conclubin '
a subset of agents could draw with partial information. TABLE |

: : : : P : IN THIS SCENARIO, WE HAVE TWO AGENTS, EACH OF THEM PRODUCES AN
On-line StudiesWhile for Off-line StUdy itis pOSSIble to EVENT. EACH EVENT IS OBSERVED BY BOTH AGENTSAGENT 0 MOVES AT

be omniscient, in the case of On-line studies, the inforomati 1ime 1.25 wHILE AGENT 1 SENDS A PACKET AT TIMEL.255. AGENT 0

will always be considered as patrtial, since the agents can @@SERVES(T)HE SAME PACKEEgSS LATER WHILE AGENT 1 REALIZES THAT
AGENT O HAS MOVED AT 1.3S. THE TWO EVENTS HAVE A FIELD IN

know the whole state of the _syste_m. Thus th(_ey can not be sure COMMON (€S0UrCe AND DISTINGT ONES (eLengthan eSpeel

of the consequences of their actions. That is the reason why

this type of analysis better requires preliminary off-lsevey

and calibration. ) . . .
2) Constructing Observation Feature$he idea behind an

event based SDI analysis is to link the evolution of an SDI
to the evolution of observations features. We call feature a
In order to analyze the evolution of a system, we considgroperty of an observation cluster. Thus, we will creatstelts
its initial state and its succession of events. We have pusly  of observations, compute some cluster properties thatoxay
described our model such as a set of agents having interfagg®e and then study the association between these prapertie
through which they observe events. In this section we wilind the SDI. As a result, when proceeding to an SDI analysis,
detail the formalization of these observations and the weay éne wants to define three important things : (1) An algorithm
analyze them. to define clusters, (2) distance functions between obsenst
1) Observation and Event Definitiongn observation can and (3) the properties to observe. Therefore we give in table
be seen as tri-dimensional point. More specifically an alzser[lllexamples of canonical distances that one could use tal buil
tion has a time dimension, an observer (or agent) dimensiardistance between observations.

B. Event Based SDI Analysis



Dimension Distance(01,02) ooy . . . ..
- abs(o1 #lime-02 #ime) build _t|m_e. series of features. For |Ilu§trat|on purposeriaat
ime abs(HoD(01.#time)-HoD(02.#time)) but significant example of feature is the number of events
, abS((D0W(01-#time)-Dovg(02-#tim6)) — observed by an agent during a unit of time like illustrated in
-norm(ol.#agent.position,02.#agent.position : : f :
Agent o1 #agent nbHop(02)+02.#agent nbHop(o1)) flgL!re[l Following this process, we can construct a set o tim
RTT(ol.#agent,02.#agent) series of featureq fi(t), f2(t), fi(t),..., fp(t)}. Once these
Event LevenshteinDist(o1.#Event.eType,02 #Event.eType)| time series are built, we can study their delayed correaiatio
card({field | ol.#Event.fielgt’-' @ o02.#Event.fielet’-' }) ; ; ; ;
ST with a SDI g(t) over a period of time. We can thus determine
. Same(f(o1),f(02 ; : ; ;
Generalized Where Same(x.y)=0 if X=y 4o otherwise thg feat.ures that might have driven the SDI evolution during
example : f(x)=(x.#agent,seconds(x.#time)) this period.
TABLE II o Lett e [1,T] be a period of time
THIS TABLE GIVES CANONICAL DISTANCES FOR EACH DIMENSION TO BE o Let{fi(¢) |7 € [1, P]} be the associated time series
USED WHEN GROUPING OBSERVATIONSFOR TIME DIMENSION WE . Let g(t) be an SDl
SUGGEST THE USE OFHOUR OF DAY (HOD) oR DAY OF WEEK(DOW).
FOR EVENT DIMENSION, THE STRING COMPARISON OF TYPE NAME IS o Let d € [1’ D] be a delay

POSSIBLE(L EVENSHTEIN OR EDIT DISTANCB. IN THIS PAPER WE WILL We deﬁned the matrix RP x D Of 7.4 S the de|ay Correlation
USE A GENERALIZED DISTANCE(SAME) BASED ON LAMBDA FUNCTIONS . h . h | L ff . b
(IN OUR CASE KEY COMPARISON matrix wherer; q is the correlation coefficient gt\_/vegfg(t)
and g(¢t + d). The final goal is to find the coefficient in the
matrix that have the highest magnitude in order to highlight

plausible causes of the SDI evolution.

Regarding time, one can express naturally the distancqv_ APPLICATION TO DYNAMIC WIRELESSNETWORKS
between two timestamps as a simple difference of the values

in seconds. Nevertheless, depending on the studied systens0 far, we have presented a framework to assess systems
it could be meaningful to use seasonal distance like tﬁ@d to analyze the. underlaymg factors of this assessment.ll
difference between hour of day or day of week. When consililis section, we will use this framework to assess dynamic
ering agents, the natural way to evaluate distance is to J¥eless networks. This instantiation narrows the geneaae
geographical positions. This last approach might not male sy_stems where agents are not maI|C|ous,_ use the_ same SDI
sense if agents are software entities in a same physicalmystfuncuons and share a protocol to exchange information izn th
Then, analysts might want to define other distances like tRP!-

proximity of their state or the number of hops in the casg considered Network Scenarii

of networks. Distance between events are less obvious tQI'h idered em i irel bile ad-h work
determine. However it is still possible to create generitrive € considered System IS a Wireless mobiie ad-noc network.

based on the string distance between their type names, tﬁ/gﬁ |mpleme_n_ted it under the NS3_ simulator. Each node_ has
number of common fields or the values of their fields. its own mobility model and dynamism. Nodes have a unique
wireless interface, might run an UDP server, and instantiat

#Eyent sobeomver 2 severals UDP On/Off Cpns'Fant Bit Rate traffic sources. Each
M eves 1% 5o UDP source has a destination among the set of server nodes.
| °e | A source has a fixed data rate and packet size. Duration of
"-“'I I | |#Observer 1 activity phasis follows a uniform distribution with fixed bind.
/\ ! ! We used Ns3 YansWifi Model. Controllers are set in ad-hoc
LK | l | l mode and use the adaptive auto rate fallback algorithm witho
e | oo | any quality of service. Routes are discovered through tlee us
> | eee | e’ o #Time of AODV. The full list of configurable parameters is descdbe
/ in table[TIl, while a scenario illustration is given figuré 2.
f1(t) / f2(t) | SDI(t) R d=0 | d=1 B. Framework Instantiation
127 6 02 a |(oso | - In this network, nodes are the agents. Each node has a sat-
5 6 0.5 isfaction function based on the delay it experiences duitsg
4 7 0.5 f2 0.5 ) communications. It interacts with its environment essgiyti
by its moves and its communications. It can observe others
Fig. 1. Features and SDI Analysis communications and record its own events.

Event, Agent and Observations. Since Ns3 is an event
3) Temporal Correlation Between Feature and SOh based simulator, it offers interesting properties to intéde
this paper, we only construct features in a supervised wayr framework. Among them, its tracing system allows the
using aggregation over observations. After having groupedsy implementation of event observations. In our instanti
observations (for example by observers and/or type of gvetibn, time is a float where the origin is the beginning of the
we construct subgroups by time intervals. We then apply aimmulation, each observer is an agent, whose id is derived
aggregate function (such as count, or average over a field)ftom its IP or MAC address. We have defined various types of



Network Parameters
N Number of Nodes
randSeed Pseudo-random generator initializer

For each node
X Initial position on X axis
Y Initial position on Y axis
hasServer Implement an UDP server
nbSrc Number of UDP source
dataRate Source data rate
pktLen Packet size
onTime Min-Max On period duration of sources
offTime Min-Max Off period duration of sources
noiseFig Noise figure of the Wifi receiver
mobiModel Mobility Model _
(Constant, Random Waypoint, Random Walk)

speed Min-Max Speed
pause Min-Max duration of a stable position
xRange Min-Max position on X-axis
yRange Min-Max position on Y-axis

TABLE Il

WE CAN CONFIGURE SEVERAL PARAMETERS IN OURNS3 ENVIRONMENT.

IN THE NETWORK, EACH NODE HAS AN INITIAL POSITION AND CAN MOVE

IN A DEFINED AREA WITH A TUNED MOBILITY. WE CAN ALSO INFLUENCE
THE TRAFFIC MATRIX BY CONFIGURINGUDP SOURCES AND SERVERS

events, but we can sort them into two main classes: (1) Packet
events observable from different nodes (2) Others events,

The score linearly decreases when the delay increasesdretwe
0 and a given threshold. It equals 1 for a null delay and 0
if the delay is greater than a threshold (or if the packet is
lost). We set the threshold to the arbitrary value of 10ms.
A delay associated to a Packet is the timestamps difference
between its first observation on the wireless medium and its
first observation by its destination. This score is a QoS imetr
that could be link to the user satisfaction like [8] did. The
satisfaction of node i for the interval T is given by the aggra
score for packets that have been generated by i during the
interval T:

Sat;(T) = |D|~". Z score(d)
deD

Sat;(T)=1 for |D|=0

D = {delay(p) | p.ipSrc =ip(i) N p.time € T}

The SDI we choose is a simple average of satisfaction over
nodes. Thus the SDI for a network of N nodes associated to
the interval T is given by:

N
SDI(T) = [N[7".) " Sat;(T)
i=1

internal to an agent and only accessible by this agent. Tae Analysis of Dynamic Wireless Networks

latter are : nodes moves, routing table attributes modidinat
errors and drops. Table_]V delivers further details on tr}ﬁ

different instantiated types of events.

TABLE IV
EVENT TYPEDESCRIPTION

For understanding purpose, we illustrate the analysis of
e scenario given in figurdgl 2. This analysis is off-line and
the observation is omniscient. As we specified above, we
have constructed our features based on aggregation fanctio
Mainly, we grouped observations by observer and by second.
We have designed more than twenty features by nodes. Table
[Vl details the most relevant ones for this scenario.

Type Information
Packet Packet capture in promiscuous
mode with radiotap header
Rtam A routing table attribute is modified
(number of valid entries, longuest path...)
Move Speed modification along at least one axig
Ipv4Drop Packet Drop for a routing reason
PhyRxError Frame has been received unsuccessfully
PhyRxDrop Frame dropped during reception
MacTxDrop Packet dropped before being
queued for transmission
MacRxDrop Packet dropped after the Physical layer
MacTxDataFailed| Data packet transmission failed at maerlay
MacTxRtsFailed RTS transmission failed at mac layer
MacTxFinal The number of consecutive
DataFailed MacTxDataFailed has reach a threshold
MacTxFinal The number of consecutive
RtsFailed MacTxRtsFailed has reach a threshold

Satisfaction and SDI: In our particular case, the SDI is
computed from the observations themselves. We have chosen
a fixed aggregation time of 1 second to analyze the network
events and construct features. This value is small enough to
follow the SDI evolution while sufficiently large to smooth
small wireless dynamics. The network assessment is given by
the following formulas. Each packet that an UDP source has
generated is scored. The scoring function is :

threshold — d

score(d) = max( " threshold

) d = delay(p)

Fig. 2.

= = Non routed Flow
wems Routed Flow

@ Server Node

{ " Communication Range

[1 Random Waypoint
—> Intense UDP flow
—> Light UDP flow

In this scenario, Nodes 2 and 5 are UDP sinks. Node 3oisilen
On the top, node 2 might be overloaded. At the bottom, routg i® down.




Name Information 100 s — 500

AvgnbGateway Average # gateway in the routing table CounbropRoueEronode L ==

AvgnbValid Average # valid entry in the routing table * i S = Lo

CountPhyRx # received frame © Lo el b

CountAllRetry # frame having a retry flag i “

CountMyRetry # transmitted frame with a retry flag o : I

CountMylpFlow # local distinct 1P destination H

CountMyUdpSrc # local active UDP sources %

CountAllFlow # IP flow going through the local node “

CountPhyRxError # PhyRxError events

CountPhyRxDrop # PhyRxError events %0

CountDropRouteErr| # IPv4 Drop events for a route error neaso

TABLE V © 0 20 40 ceconde 60 80 100
FEATURESDESCRIPTION (a) CountDropRouteErr on node 1

Most relevant constructed features related to the scensoh features is 1039 200

related to an observer (called local node). The # standsnfiomber of

At the beginning of the scenario, all the sources where off,
thus all nodes were fully satisfied. Traffic sources started t 3
transmit from second 2 when the SDI brutally decreased. ;Then “ri
for every significant move of node 3, IP routes are lost or sl
recovered, impacting significantly the SDI. When routes are :
up, fluctuations can be explained by the delay variationseiwWh !
nodes 2 experiences some difficulty to transmit, its numlber o s © e o
retry will increase and impact the delay. Even if only few
packets are concerned, this might have a significant impact
on the source satisfaction if these packets are the only ones
sent by the source node. Since our SDI takes every nodes
in consideration, without any regards on their source velum
we can see an effect on the SDI. After having computed the
delayed correlation matrix we found high values for the ¢hre
features illustrated in figuriel ountDropRouteEron node
1, CountPhyRxDromn node 5 andCountMyRetryon node 2
scores are respectively -0.92, 0.79, -0.88. In fidure| 3(&), w
clearly show that the main fluctuation of the SDI is due to |
a routing error. Indeed, node 1 can not find a route to node ‘ ‘ ‘ ‘ ‘
5 since node 3 has left the path. The retries experienced by
node 2 are detailed in figufe 3(b). It impacts the SDI when
the route is up with a bad communication link between 2 and
3. At first, one can think that transmission retries of node
2 are introduced by the physical drops on node 5. In fact,
those events are negatively correlated. Indeed, thesesiwadie estimation based on existing consensus algorithm. At this
not reach each others due to their relative distances, #iirece point, network layer needs to estimate the satisfactiorppfu
number of drops is much greater than the number of retrigésyers. In our case this comes to evaluate the end-to-eiag del
it might come from the fact that node 5 could still be in thexperienced by the local application. Thus, in order taesti
carrier range of node 2. Figure 3(c) confirms that node 5 dogg SDI, we first estimate the delay, this estimation wilvser
not drop packets for low SDI, since node 2 does not send thesnapproximate the local satisfaction. Finally we exchathge
because of routing errors. local satisfaction to have an estimated SDI.

In this case, we led an off-line analysis based on the real
value of the SDI. Using simple features based on event cours Delay Estimation

we were abl_e to diagnosis the sources of the SDI fluctuati_on.-l-he end-to-end delay for a packet has already been defined
By construction, these features can be cornpu_ted in real g, e 25 the temporal difference between source and destina
by nodes and exchanged to analyze the situation. tion observations. Each time a packet needs to be forwargled b
a node, it waits for a medium access. This time is difficult to
predict in our case. Indeed, medium access will be impacted b
Agents consider their own observations to estimate the Sthke level of noise, the number of neighbors, their proximity
value and communicate with their neighbors. We suggest tireir load and the level of interference they produce. As a

SDI (%)
5
8

retries

(b) CountMyRetry on node 2

1500

4 1000

SDI (%)
drops

500

(c) CountPhyRxDrop on node 5

Fig. 3. Temporal Evolution of SDI Regarding 3 Features
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result, we will approximate the average delay by a sum aferage of the satisfactions. We modified the scheme pexsent
average medium access times. Our approximation will takell-Blto suggest the following iteration:

into account the traffic matrix so that for an interval T, the _— — —

estimated average delay that a packet can experience when SDIi(t +1) = ai.Sati(t) + Z a;.SDI;(t)

leaving a node i is: FEN:(?)
Di(T)=L(T)+ Y. p;j(T).D;(T 1) SDI;(0) = Sat;(0)
JEG(T)

Also if the local satisfaction is known, the real value can
with  Dy(0) = L:(0) be used _instegd. In this scheme_, the _satisfa_ction term sllow
the consideration of the local satisfaction while the SDinte
L;(T) is the average local medium access tir6g(T") is permits the estimation propagation over the network. Thiama
the set of gateway used by node i during gf(T) is the difference is introduce bySat;(t). This term introduce the
percentage of data traffic sent/forwarded by node i duringvariability of the satisfaction over time, which was not trase
that should be forwarded by node j. For each packet, the logalprevious algorithms. The value af, could be chosen from
processing time equals O if the local node is the destinatidthe metropolis weight[[11] or the maximum degree weight
it equals the threshold value if the packet is dropped, irioth[10].
cases it is the time between the first observation of the packe
from the upcoming link, and the last observation of the packe- Local Estimation Results
on the outgoing link. Given a packet arriving at node i, its In order to assess the accuracy of our local SDI estimation,
expected delay is at least the local link process. Depermlingwe compare estimated SDI values with the real SDI. We
its destination, this process time will be added to the etgubc conducted 432 Ns3 simulations run to measure the impact of
delay of its destination. The expectation is materializgd hetworks characteristics like radius, load and dynamic. We
p,» Which is a percentage of traffic. The computed averagiged the number of node to ten. Each scenario combines
delay for a node will depend on the previous computed valdgferent values of the following parameters : Number of
of its neighbors. This implies that nodes have to regularpurce, Initial average distance, mobility and random siged

communicate to update the value of their delay. illustrated in tablé VI
B. Local Satisfaction Estimation Network properties
o de i f th del it . _Number of Nodes 10
~ Once a node is aware of the average delay it experienGegg;res para Rate TMbB/S
it is capable to estimate its satisfaction. We approximhée t Packet size 1470 Byte
satisfaction by assuming that expectation and scoringtifumc | Source duty cycle 1 (always On)
can commute. That is to say (wiffip the expectation function [_Min-Max Speed il
) Random seed 0,1,2
over a set D of delay): Number of source (L) 1,479
Number of server 10-L
Ep(score(d)) = score(Ep(d)) Initial spacing (d) 20,45,65,75
. . . Mobility Model Constant] Random WalK Random Waypoint]
The approximation error is null when all the observed delay3rea size -

dxd| d/2xd/2] dxd d/2xd/2
- - 10, 25, 6p  10,25,65

are under the threshold, since the scoring function is fingaPause duration
on the interval [0, threshold]. Thus, we can find a threshold TABLE VI

where the approximation can be acceptable. Therefore, e us EACH SIMULATION CONFIGURATION TAKES ITS PARAMETERS BY
the average dela@z to approximateS‘ati(T) COMBINING VALUES IN THE TABLE ABOVE

§(1\ti(T) = score(D;(T)) ~ Sat;(T)

] ) Based on the data set obtained from these simulations,
C. SDI Estimation we were able to study the behavior of both weighting al-

Since we have defined our SDI as an average, the Sfurithm for the average consensus : Metropolis algorithm

estimation problem is in fact a dynamic average consensarsd Maximum weight algorithm. We compare their properties
problem. In our case, the average evolves over time as wielldifferent situations. In the first situation we considér@
as the topology, which is not a fortunate case for previoesnstant topology and two levels of load which were L=1 and
algorithm. However, despite our problem complexity, $atis L=9. In the second case, we considered an heavy load (L=9)
tion of nodes over a network are linked in some ways andth two levels of mobility. For the first level of mobility,
their dynamics rely on events. Thus the values that compasades were able to move in a constrained area<([%0),
our average are related and their temporal evolution avenri for the second level, nodes were moving in a wider area
by the network itself. Therefore we derive an algorithm frorfD>50). For all scenarii, we computed the absolute value of
existing ones to estimate the SDI value, then we study thee difference between the real SDI and the estimated SDI for
impact of satisfaction fluctuation and dynamic topologyolm each node and iteration. To study the convergence rate and th
case, we want to estimate the SDI, which is a time-varyirgyolution over time, we computed the average of this error. |



figure[4, we plotted the obtained average for all the scenamied to evaluate themselves and understand the way they
in the considered cases.
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Fig. 4. Average error for estimated SDI under several ndtvpoofiles. For
clarity purpose, we did not plot the mid-spread. For infatiorg their values

were always under 0.20 for all the curves.

As expected, the initial error tends to be important since
nodes have no idea of their neighbor satisfactions. Corisigle

behave. In this paper, our contribution was two-folds. tFirs
we introduced a reference model for an observer to assess
multi-agent systems and conduct an analysis focused on this
assessment. We consider that evaluation are temporalsscore
besides we collect event observations to construct timesser

of features. Our analysis is based on feature correlations t
detect which features might have impacted our evaluation.
Our model could be applied to distributed systems of several
kind as far as they respect few properties. Future work could
be lead on the unsupervised way to construct features in
order to automate the analysis process. Second, we sphyifica
applied this framework to the self-assessment and self/sisal

of dynamic wireless networks in the environment of Ns3.
After having defined an evaluation policy for our network, we
provided a distributed algorithm derived from existing rage
consensus schemes to compute this assessment. We evaluated
this algorithm under various networking conditions to dtdsz

its sensitivity to load and topology dynamicity. To imprahe
algorithm accuracy, future work will be pursued on the use of
the designed feature to have a better estimation propagatio
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