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Abstract—This last decade has seen an increasing interest for
wireless communications. With the current use of smart-phones
and tablets coupled to the rise of the Internet of Things, the
number of mobile terminal nodes in networks will significantly
change the way we manage them. Indeed, these wireless networks
are highly dynamic, especially concerning topology and traffic
matrices. The fast moves of mobile devices can for instance
impact the connexity of the networks, or the importance of one
of the nodes in the routing graph. Therefore distributed network
control, and traffic management are of increasing complexities.
Given this high dynamicity, network management will need to
be as autonomous as possible regarding the service they are
providing to users and their resilience. In this paper, we propose
a method for monitoring and assessing the quality of a dynamic
mobile network. For this purpose, we introduce the concept
of System Development Index (SDI). We especially provide
methods and algorithms, which are based on events collection
and distributed mining to analyze the evolution of this index. We
illustrated it by simulation, considering different scenarii under
NS3. We evaluated the evolution of the SDI, and analyzed its
possible underlying reasons for one scenario and analyze error
estimation for various network properties.

I. I NTRODUCTION

Nowadays, one can say that wireless mobile networks have
definitely invaded our daily lives. When looking at forecasts
from Cisco [1], mobile traffic should increase 7.5-times in
the 4 next years. While the service quality will be of primer
interest (two-thirds of this traffic will be dedicated to video),
provider systems will be tricky to manage. Managing wired
networks to sustain unpredictable traffic is still a complexand
unsolved technical domain. The problem raised by wireless
networks will be even more complex: in particular, wirelessin-
frastructures will experience dynamic topologies depending on
terminals position and needs, thus adding a level of magnitude
of complexity. Indeed, complex phenomena will arise with the
Internet of Things where random interactions might generate
new kinds of traffic. As a result, system managers will not be
able to quickly analyze the underlying reasons that affect their
networks’ behaviours, and so, to launch appropriate corrective
measures. Thus, this task needs to be mainly delegated to
systems themselves, for providing fast autonomous adaptative
actions when required (when detecting events leading to
network QoS decreases, or even better when predicting such
QoS decreases). In this paper we provide a reference model for
an observer to assess a system and then conduct an assessment-
centric analysis. While this model could be applied to systems

in general, we consider self-assessment and self-analysiscapa-
bilities for dynamic wireless network of collaborative nodes.
More specifically, our work is focused on the service provided
by the network layer. In this particular case we will have
to face two majors difficulties: (1) nodes only have partial
information on the network state, (2) the level of service relies
on a wireless medium which is complex and not reliable by
nature. Concerning self-assessment, partial informationforces
nodes to agree on a value based on their local information.
Also, this value is time varying and the problem is from the
class of distributed consensus. Concerning self-analysis, nodes
will have to search and share the information they dispose to
understand the law followed by the consensus value. Then,
they will have to determine whether they are responsible for
its evolution. This could be seen as a distributed data-mining in
uncertain partial context problem, uncertainty being harshened
by the medium kind. Therefore, the remainder of this paper
is structured as follows. The following section describes the
related work on data-mining applied to network management
and distributed consensus. We introduce in section III our
general assessment and analysis framework for multi-agent
systems. In section IV, we instantiate this framework in the
case of wireless dynamic systems and lead an off-line analysis
through an example scenario. In the fifth section, a distributed
assessment algorithm is provided for our network. We also
evaluate it under various network conditions. We will conclude
on future work in a last section.

II. RELATED WORK

A. Knowledge Extraction and Network Analysis

Understanding and Managing wireless network is one of
the operator concern. Orange Labs have shown interest on the
optimal deployment of wireless substitution network [2]. On
its side, AT&T Labs worked on data-mining to analyze its own
wireless infrastructure [3]. Data-mining applied to networking
has already been investigated, in particular by the security
community which is quite fond of this angle. The approach
is applied to network intrusion detection but also in traffic
monitoring and anomaly detection. The main idea is to lighten
network manager task by removing false positive alert. In [4]
the authors mentioned that data-mining was a valuable tool
but which was not about making human analysis unnecessary,
specifically in the attribute choices. Then data-mining are
useful to construct new rules. For example, technical results



can be found in [5] where Casas & al. demonstrated the
efficiency of clustering techniques to detect traffic anomaly
and construct new filtering rules without knowledge. Also,
understanding cause and effect between network events is
not the stronghold of security. We found in [6]–[8] analysis
concerned by the understanding of network behavior. In [6]
authors highlighted the sources of TCP reset anomalies. The
field of wireless communication is investigated in [7] where
the key characteristics of the traffic are captured on several
base stations to optimize their coordination. Authors showed
a significant enhancement on the downlink delay performance
by clustering users in profiles. Finally authors of [8] focused
on the relation that can exist between user experience and
the network quality of service. The studies was lead on a
set of mobile users and explained the relation between server
response time, round time trip and user satisfaction. While
[5], [7] have brought methods to extract information, [6], [8]
have tailored their studies toward a very specific goals. These
two approaches need to be linked by a common objective
which is the network performance. Also, narrowing extracted
information down to assessment will allow one to take up the
issue of partial information. Indeed, despite the efficientwork
cited above, it only considers an omniscient and centralized
approach because of their domain complexity. Therefore we
insert our work in between, with the motivation to only extract
clues on a system relatively to its assessment. The assessment
needs to be shared among all the nodes, which leads us to the
distributed consensus problem. Since our assessment method
relies on an average over nodes, we will focus on the average
consensus problem.

B. Distributed Consensus And Average Sharing

In distributed algorithms, when agents need to agree on
a value, it remains on the well known consensus problem.
This class of problem has been deeply studied from various
angles (termination, fault tolerance, etc...). A subclassof this
problem is called average consensus, where each agent i keeps
a valuevi. The consensus for agents is to find the average
x of the kept values. Many algorithms have been designed,
this is perfectly illustrated in [9]. Every algorithm is a trade-
off between time convergence, memory used by each agent
and the number of exchanged messages. Among the ones that
require few communications and computational resources, the
most famous are : the maximum degree weight given in [10],
the metropolis weight given in [11]. In these schemes, each
node proceeds iteratively, computes values and sends them to
its neighborhood at each step. These linear algorithms both
consider that the dynamic of the average is greater than the
convergence time for a connected network. The estimation
x̂i(t) of x for node i at stept+ 1 is given by :

x̂i(t+ 1) = αi.x̂i(t) +
∑

j∈Ni(t)

αj .x̂j(t) and x̂i(0) = vi

whereNi(t) is the neighborhood of i at step t andαk depends
on the algorithm:

Maximum degree weight algorithm for N agent:

αk =
1

n
if k = i and αk = 1−

|Ni(t)|

n
otherwise

Metropolis weight algorithm:

αk =
1

1 +max(|Ni(t)|, |Nj(t)|)
if k 6= i

and αk = 1−
∑

k 6=j

αk otherwise

Keeping in mind the introduced related work, we can now
detail our assessment and analysis framework of systems.

III. A N ASSESSMENT ANDANALYSIS FRAMEWORK FOR

MULTI -AGENT SYSTEMS

A. System Development Index and Assessment

1) A Multi-Agent Systems Model:Inspired from the Multi-
Agent Systems theory, our framework considers a System as
a set of agents. An agent is an entity which owns interfaces
to interact with its environment and specifically with others
agents. An agent also owns interfaces to observe events or
interactions that occurred to him or to its neighborhood. Each
agent has an utility value that represents its wellness overtime.
We defined utility values in the real interval[0, 1] , where 0
is a worst case and 1 is a best case. The utility value of an
agent can also be seen as its percentage of satisfaction driven
by a possibly unknown utility function. Each agent is able to
store a set of observed interactions as well as its satisfaction
history. The formalism we used to describe these observations
is detailed in the next section.

2) System Ideality and System Development Index:When
considering system assessment, our main axioms are the
following:

• Systems where all agents are 100% satisfied are ideal.
• Systems where all agents are 0% satisfied are not ideal.

Therefore we can summarize the level of ideality of a N-agents
system in a N-dimensional vector of utility values.

• Let S be an N-agents system
• Let u(t) be the utility vector of agents in S at time t
• Let ui(t) be the utility of agent i in S at time t
• Let z ∈ [0, 1]N such aszi = 0 ∀ i ∈ [1, N ]
• Let o ∈ [0, 1]N such asoi = 1 ∀ i ∈ [1, N ]

A SDI for a N-agents System S is a function from[0, 1]N to
[0, 1] that satisfies both of our axioms, thus the space of SDI
function for S is given by:

{g : [0, 1]N → [0, 1] | g(o) = 1 and g(z) 6= 1}

The system S is said ideal for a given SDI g at time t if and
only if :

g(u(t)) = 1

Thus in our framework, system ideality is related to a point
of view or function. The classical form of SDI is given by

f(s) =
N∑
i=1

γi.ui with
N∑
i=1

γi = 1



The value ofγi could be based on the pricing policy of a
system manager who gives preferences to some users classes.
For a selfish agent i, the system will be ideal as far as its own
satisfaction equals 1. In the latter caseγj = 0 for j 6= i and
γi = 1. One can also base a SDI on a distance between the
satisfaction distribution and the perfect distribution where all
agents are fully satisfied. The main point is that a SDI is an
index that one wants to follow. For an external observer, this
index can just be studied. In the case of a concerned observer
like a system manager, this index will be tracked in order to
be maximized. Finally if the observer is an agent, the index
indicates how well the system in which it evolves is ideal
given its point of view.

3) SDI Estimation and Analysis in Various Systems:Com-
puting the value of the SDI in real time is not trivial for
systems with a large number of nodes. Indeed one needs to
have access in real time to the utility value of each agent to
be able to compute its exact SDI. From an agent point of
view, it means that he should collaborate with others, which
is not always the case. For the same reasons, accessing the
necessary information to understand the evolution of the SDI is
not always possible. We can thus study the SDI with different
angles which depend on omniscience, and interactivity (off-
line vs on-line):

Omniscient Off-line Studies:This kind of study considers
the whole set of information contained by the agents and
analyzes it passively. The aim here is to identify behaviors,
cause-and-effect regarding the evolution of the SDI for a
whole system. It allows one to retrieve knowledge on the
underlying reasons that drive the assessment of a system under
a given point of view (SDI). Consequently, these studies are
preliminary studies.

Partially informed Off-line Studies:In this case the
information considered is only contained by a subset of agents
(or a unique agent) under a passive analysis. The main goal
of these studies is to characterize the possible conclusionthat
a subset of agents could draw with partial information.

On-line Studies:While for Off-line study it is possible to
be omniscient, in the case of On-line studies, the information
will always be considered as partial, since the agents can not
know the whole state of the system. Thus they can not be sure
of the consequences of their actions. That is the reason why
this type of analysis better requires preliminary off-linesurvey
and calibration.

B. Event Based SDI Analysis

In order to analyze the evolution of a system, we consider
its initial state and its succession of events. We have previously
described our model such as a set of agents having interfaces
through which they observe events. In this section we will
detail the formalization of these observations and the way to
analyze them.

1) Observation and Event Definitions:An observation can
be seen as tri-dimensional point. More specifically an observa-
tion has a time dimension, an observer (or agent) dimension

and an event dimension where events are also multidimen-
sional. An example of table is illustrated in table I.

Time: The time dimension is crucial since we want to
study and manage the temporal evolution of the SDI. Time
is considered continuous, second(s) is the principal unit.We
keep only one time representation which is called#Time. In
our implementation, we considered time as a float value with
the experiment start as the origin.

Agent: Agents are the main entities of our systems they
interact each others, observe, analyze and make decision. They
will have a unique identifier#Agent.

Event: An event is aperceptiblemodification of the
system state. Combining the initial state and events, one can
trace a partial history of a system. As specified above, an
event is a multidimensional object identified by a primary key
#Event. It can be represented by a frame where the first field
is the event type (eType) which determines the validity and the
meaning of the following ones. An Event can occur several
times and be observed at different moments by distinct agents.

(a) Example of Observations Table

Observations

#Time #Agent #Event

float int int

1.2 0 0

1.25 1 1

1.255 0 1

1.3 1 0

(b) Example of Event Table

Events

#Event eType eSource eSpeed eLength ...

int string int float int ...

0 ’Move’ 0 3.0 - ...

1 ’Packet’ 1 - 1500 ...

TABLE I
IN THIS SCENARIO, WE HAVE TWO AGENTS, EACH OF THEM PRODUCES AN
EVENT. EACH EVENT IS OBSERVED BY BOTH AGENTS. AGENT 0 MOVES AT

TIME 1.2S WHILE AGENT 1 SENDS A PACKET AT TIME1.25S. AGENT 0
OBSERVES THE SAME PACKET5MS LATER WHILE AGENT 1 REALIZES THAT

AGENT 0 HAS MOVED AT 1.3S. THE TWO EVENTS HAVE A FIELD IN
COMMON (eSource) AND DISTINCT ONES(eLengthAND eSpeed)

2) Constructing Observation Features:The idea behind an
event based SDI analysis is to link the evolution of an SDI
to the evolution of observations features. We call feature a
property of an observation cluster. Thus, we will create clusters
of observations, compute some cluster properties that varyover
time and then study the association between these properties
and the SDI. As a result, when proceeding to an SDI analysis,
one wants to define three important things : (1) An algorithm
to define clusters, (2) distance functions between observations
and (3) the properties to observe. Therefore we give in table
II examples of canonical distances that one could use to build
a distance between observations.



Dimension Distance(o1,o2)

Time abs(o1.#time-o2.#time)
abs(HoD(o1.#time)-HoD(o2.#time))
abs(DoW(o1.#time)-DoW(o2.#time))

Agent
2-norm(o1.#agent.position,o2.#agent.position)
o1.#agent.nbHop(o2)+o2.#agent.nbHop(o1))

RTT(o1.#agent,o2.#agent)

Event LevenshteinDist(o1.#Event.eType,o2.#Event.eType)
card({field | o1.#Event.field6=’-’ ⊕ o2.#Event.field6=’-’ })

Generalized
Same(f(o1),f(o2))

where Same(x,y)=0 if x=y ;∞ otherwise
example : f(x)=(x.#agent,seconds(x.#time))

TABLE II
THIS TABLE GIVES CANONICAL DISTANCES FOR EACH DIMENSION TO BE

USED WHEN GROUPING OBSERVATIONS. FOR TIME DIMENSION WE

SUGGEST THE USE OFHOUR OFDAY (HOD) OR DAY OF WEEK(DOW).
FOR EVENT DIMENSION, THE STRING COMPARISON OF TYPE NAME IS

POSSIBLE(LEVENSHTEIN OR EDIT DISTANCE). IN THIS PAPER, WE WILL

USE A GENERALIZED DISTANCE(SAME) BASED ON LAMBDA FUNCTIONS

(IN OUR CASE KEY COMPARISON)

Regarding time, one can express naturally the distance
between two timestamps as a simple difference of the values
in seconds. Nevertheless, depending on the studied system,
it could be meaningful to use seasonal distance like the
difference between hour of day or day of week. When consid-
ering agents, the natural way to evaluate distance is to use
geographical positions. This last approach might not make
sense if agents are software entities in a same physical system.
Then, analysts might want to define other distances like the
proximity of their state or the number of hops in the case
of networks. Distance between events are less obvious to
determine. However it is still possible to create generic metrics
based on the string distance between their type names, their
number of common fields or the values of their fields.

Fig. 1. Features and SDI Analysis

3) Temporal Correlation Between Feature and SDI:In
this paper, we only construct features in a supervised way
using aggregation over observations. After having grouped
observations (for example by observers and/or type of event)
we construct subgroups by time intervals. We then apply an
aggregate function (such as count, or average over a field) to

build time series of features. For illustration purpose, a trivial
but significant example of feature is the number of events
observed by an agent during a unit of time like illustrated in
figure 1. Following this process, we can construct a set of time
series of features{f1(t), f2(t), fi(t), ..., fp(t)}. Once these
time series are built, we can study their delayed correlations
with a SDI g(t) over a period of time. We can thus determine
the features that might have driven the SDI evolution during
this period.

• Let t ∈ [1, T ] be a period of time
• Let {fi(t) | i ∈ [1, P ]} be the associated time series
• Let g(t) be an SDI
• Let d ∈ [1, D] be a delay

We defined the matrix R:P×D of ri,d as the delay correlation
matrix whereri,d is the correlation coefficient betweenfi(t)
and g(t + d). The final goal is to find the coefficient in the
matrix that have the highest magnitude in order to highlight
plausible causes of the SDI evolution.

IV. A PPLICATION TO DYNAMIC WIRELESSNETWORKS

So far, we have presented a framework to assess systems
and to analyze the underlaying factors of this assessment. In
this section, we will use this framework to assess dynamic
wireless networks. This instantiation narrows the generalcase
to systems where agents are not malicious, use the same SDI
functions and share a protocol to exchange information on this
SDI.

A. Considered Network Scenarii

The considered system is a wireless mobile ad-hoc network.
We implemented it under the Ns3 simulator. Each node has
its own mobility model and dynamism. Nodes have a unique
wireless interface, might run an UDP server, and instantiate
severals UDP On/Off Constant Bit Rate traffic sources. Each
UDP source has a destination among the set of server nodes.
A source has a fixed data rate and packet size. Duration of
activity phasis follows a uniform distribution with fixed bound.
We used Ns3 YansWifi Model. Controllers are set in ad-hoc
mode and use the adaptive auto rate fallback algorithm without
any quality of service. Routes are discovered through the use
of AODV. The full list of configurable parameters is described
in table III, while a scenario illustration is given figure 2.

B. Framework Instantiation

In this network, nodes are the agents. Each node has a sat-
isfaction function based on the delay it experiences duringits
communications. It interacts with its environment essentially
by its moves and its communications. It can observe others
communications and record its own events.

Event, Agent and Observations: Since Ns3 is an event
based simulator, it offers interesting properties to instantiate
our framework. Among them, its tracing system allows the
easy implementation of event observations. In our instantia-
tion, time is a float where the origin is the beginning of the
simulation, each observer is an agent, whose id is derived
from its IP or MAC address. We have defined various types of



Network Parameters
N Number of Nodes
randSeed Pseudo-random generator initializer

For each node
X Initial position on X axis
Y Initial position on Y axis
hasServer Implement an UDP server
nbSrc Number of UDP source
dataRate Source data rate
pktLen Packet size
onTime Min-Max On period duration of sources
offTime Min-Max Off period duration of sources
noiseFig Noise figure of the Wifi receiver

mobiModel
Mobility Model
(Constant, Random Waypoint, Random Walk)

speed Min-Max Speed
pause Min-Max duration of a stable position
xRange Min-Max position on X-axis
yRange Min-Max position on Y-axis

TABLE III
WE CAN CONFIGURE SEVERAL PARAMETERS IN OURNS3 ENVIRONMENT.
IN THE NETWORK, EACH NODE HAS AN INITIAL POSITION AND CAN MOVE

IN A DEFINED AREA WITH A TUNED MOBILITY . WE CAN ALSO INFLUENCE

THE TRAFFIC MATRIX BY CONFIGURINGUDP SOURCES AND SERVERS

events, but we can sort them into two main classes: (1) Packet
events observable from different nodes (2) Others events,
internal to an agent and only accessible by this agent. The
latter are : nodes moves, routing table attributes modifications,
errors and drops. Table IV delivers further details on the
different instantiated types of events.

TABLE IV
EVENT TYPE DESCRIPTION

Type Information
Packet Packet capture in promiscuous

mode with radiotap header
Rtam A routing table attribute is modified

(number of valid entries, longuest path...)
Move Speed modification along at least one axis
Ipv4Drop Packet Drop for a routing reason
PhyRxError Frame has been received unsuccessfully
PhyRxDrop Frame dropped during reception
MacTxDrop Packet dropped before being

queued for transmission
MacRxDrop Packet dropped after the Physical layer
MacTxDataFailed Data packet transmission failed at mac layer
MacTxRtsFailed RTS transmission failed at mac layer
MacTxFinal The number of consecutive
DataFailed MacTxDataFailed has reach a threshold
MacTxFinal The number of consecutive
RtsFailed MacTxRtsFailed has reach a threshold

Satisfaction and SDI: In our particular case, the SDI is
computed from the observations themselves. We have chosen
a fixed aggregation time of 1 second to analyze the network
events and construct features. This value is small enough to
follow the SDI evolution while sufficiently large to smooth
small wireless dynamics. The network assessment is given by
the following formulas. Each packet that an UDP source has
generated is scored. The scoring function is :

score(d) = max
(
0,

threshold− d

threshold

)
d = delay(p)

The score linearly decreases when the delay increases between
0 and a given threshold. It equals 1 for a null delay and 0
if the delay is greater than a threshold (or if the packet is
lost). We set the threshold to the arbitrary value of 10ms.
A delay associated to a Packet is the timestamps difference
between its first observation on the wireless medium and its
first observation by its destination. This score is a QoS metric
that could be link to the user satisfaction like [8] did. The
satisfaction of node i for the interval T is given by the average
score for packets that have been generated by i during the
interval T:

Sati(T ) = |D|−1.
∑

d∈D

score(d)

Sati(T ) = 1 for |D| = 0

D = {delay(p) | p.ipSrc = ip(i) ∩ p.time ∈ T }

The SDI we choose is a simple average of satisfaction over
nodes. Thus the SDI for a network of N nodes associated to
the interval T is given by:

SDI(T ) = |N |−1.

N∑

i=1

Sati(T )

C. Analysis of Dynamic Wireless Networks

For understanding purpose, we illustrate the analysis of
the scenario given in figure 2. This analysis is off-line and
the observation is omniscient. As we specified above, we
have constructed our features based on aggregation function.
Mainly, we grouped observations by observer and by second.
We have designed more than twenty features by nodes. Table
V details the most relevant ones for this scenario.

Fig. 2. In this scenario, Nodes 2 and 5 are UDP sinks. Node 3 is mobile.
On the top, node 2 might be overloaded. At the bottom, route to5 is down.



Name Information
AvgnbGateway Average # gateway in the routing table
AvgnbValid Average # valid entry in the routing table
CountPhyRx # received frame
CountAllRetry # frame having a retry flag
CountMyRetry # transmitted frame with a retry flag
CountMyIpFlow # local distinct IP destination
CountMyUdpSrc # local active UDP sources
CountAllFlow # IP flow going through the local node
CountPhyRxError # PhyRxError events
CountPhyRxDrop # PhyRxError events
CountDropRouteErr # IPv4 Drop events for a route error reason

TABLE V
FEATURESDESCRIPTION

Most relevant constructed features related to the scenario. Each features is
related to an observer (called local node). The # stands for ”number of”

At the beginning of the scenario, all the sources where off,
thus all nodes were fully satisfied. Traffic sources started to
transmit from second 2 when the SDI brutally decreased. Then,
for every significant move of node 3, IP routes are lost or
recovered, impacting significantly the SDI. When routes are
up, fluctuations can be explained by the delay variations. When
nodes 2 experiences some difficulty to transmit, its number of
retry will increase and impact the delay. Even if only few
packets are concerned, this might have a significant impact
on the source satisfaction if these packets are the only ones
sent by the source node. Since our SDI takes every nodes
in consideration, without any regards on their source volume,
we can see an effect on the SDI. After having computed the
delayed correlation matrix we found high values for the three
features illustrated in figure 3.CountDropRouteErron node
1, CountPhyRxDropon node 5 andCountMyRetryon node 2
scores are respectively -0.92, 0.79, -0.88. In figure 3(a), we
clearly show that the main fluctuation of the SDI is due to
a routing error. Indeed, node 1 can not find a route to node
5 since node 3 has left the path. The retries experienced by
node 2 are detailed in figure 3(b). It impacts the SDI when
the route is up with a bad communication link between 2 and
3. At first, one can think that transmission retries of node
2 are introduced by the physical drops on node 5. In fact,
those events are negatively correlated. Indeed, these nodes can
not reach each others due to their relative distances, sincethe
number of drops is much greater than the number of retries,
it might come from the fact that node 5 could still be in the
carrier range of node 2. Figure 3(c) confirms that node 5 does
not drop packets for low SDI, since node 2 does not send them
because of routing errors.

In this case, we led an off-line analysis based on the real
value of the SDI. Using simple features based on event counts,
we were able to diagnosis the sources of the SDI fluctuation.
By construction, these features can be computed in real time
by nodes and exchanged to analyze the situation.

V. A COLLABORATIVE SDI ESTIMATION

Agents consider their own observations to estimate the SDI
value and communicate with their neighbors. We suggest an
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Fig. 3. Temporal Evolution of SDI Regarding 3 Features

estimation based on existing consensus algorithm. At this
point, network layer needs to estimate the satisfaction of upper
layers. In our case this comes to evaluate the end-to-end delay
experienced by the local application. Thus, in order to estimate
the SDI, we first estimate the delay, this estimation will serve
to approximate the local satisfaction. Finally we exchangethis
local satisfaction to have an estimated SDI.

A. Delay Estimation

The end-to-end delay for a packet has already been defined
above as the temporal difference between source and destina-
tion observations. Each time a packet needs to be forwarded by
a node, it waits for a medium access. This time is difficult to
predict in our case. Indeed, medium access will be impacted by
the level of noise, the number of neighbors, their proximity,
their load and the level of interference they produce. As a



result, we will approximate the average delay by a sum of
average medium access times. Our approximation will take
into account the traffic matrix so that for an interval T, the
estimated average delay that a packet can experience when
leaving a node i is:

D̂i(T ) = Li(T ) +
∑

j∈Gi(T )

ρj(T ).D̂j(T − 1)

with D̂i(0) = Li(0)

Li(T ) is the average local medium access time,Gi(T ) is
the set of gateway used by node i during T,ρj(T ) is the
percentage of data traffic sent/forwarded by node i during T
that should be forwarded by node j. For each packet, the local
processing time equals 0 if the local node is the destination,
it equals the threshold value if the packet is dropped, in other
cases it is the time between the first observation of the packet
from the upcoming link, and the last observation of the packet
on the outgoing link. Given a packet arriving at node i, its
expected delay is at least the local link process. Dependingon
its destination, this process time will be added to the expected
delay of its destination. The expectation is materialized by
ρ, which is a percentage of traffic. The computed average
delay for a node will depend on the previous computed value
of its neighbors. This implies that nodes have to regularly
communicate to update the value of their delay.

B. Local Satisfaction Estimation

Once a node is aware of the average delay it experiences,
it is capable to estimate its satisfaction. We approximate the
satisfaction by assuming that expectation and scoring function
can commute. That is to say (withED the expectation function
over a set D of delay):

ED(score(d)) ≈ score(ED(d))

The approximation error is null when all the observed delays
are under the threshold, since the scoring function is linear
on the interval [0, threshold]. Thus, we can find a threshold
where the approximation can be acceptable. Therefore, we use
the average delaŷDi to approximateSati(T )

Ŝati(T ) = score(D̂i(T )) ≈ Sati(T )

C. SDI Estimation

Since we have defined our SDI as an average, the SDI
estimation problem is in fact a dynamic average consensus
problem. In our case, the average evolves over time as well
as the topology, which is not a fortunate case for previous
algorithm. However, despite our problem complexity, satisfac-
tion of nodes over a network are linked in some ways and
their dynamics rely on events. Thus the values that compose
our average are related and their temporal evolution are driven
by the network itself. Therefore we derive an algorithm from
existing ones to estimate the SDI value, then we study the
impact of satisfaction fluctuation and dynamic topology. Inour
case, we want to estimate the SDI, which is a time-varying

average of the satisfactions. We modified the scheme presented
in II-B to suggest the following iteration:

ŜDIi(t+ 1) = αi.Ŝati(t) +
∑

j∈Ni(t)

αj .ŜDIj(t)

ŜDIi(0) = Ŝati(0)

Also if the local satisfaction is known, the real value can
be used instead. In this scheme, the satisfaction term allows
the consideration of the local satisfaction while the SDI term
permits the estimation propagation over the network. The main
difference is introduce bŷSati(t). This term introduce the
variability of the satisfaction over time, which was not thecase
in previous algorithms. The value ofαk could be chosen from
the metropolis weight [11] or the maximum degree weight
[10].

D. Local Estimation Results

In order to assess the accuracy of our local SDI estimation,
we compare estimated SDI values with the real SDI. We
conducted 432 Ns3 simulations run to measure the impact of
networks characteristics like radius, load and dynamic. We
fixed the number of node to ten. Each scenario combines
different values of the following parameters : Number of
source, Initial average distance, mobility and random seedlike
illustrated in table VI

Network properties
Number of Nodes 10
Source Data Rate 1 Mb/s
Packet size 1470 Byte
Source duty cycle 1 (always On)
Min-Max Speed 5-7
Random seed 0,1,2
Number of source (L) 1,4,7,9
Number of server 10-L
Initial spacing (d) 20,45,65,75
Mobility Model Constant Random Walk Random Waypoint
Area size - dxd d/2xd/2 dxd d/2xd/2
Pause duration - - - 10, 25, 65 10,25,65

TABLE VI
EACH SIMULATION CONFIGURATION TAKES ITS PARAMETERS BY

COMBINING VALUES IN THE TABLE ABOVE

Based on the data set obtained from these simulations,
we were able to study the behavior of both weighting al-
gorithm for the average consensus : Metropolis algorithm
and Maximum weight algorithm. We compare their properties
in different situations. In the first situation we considered a
constant topology and two levels of load which were L=1 and
L=9. In the second case, we considered an heavy load (L=9)
with two levels of mobility. For the first level of mobility,
nodes were able to move in a constrained area (D≤ 50),
for the second level, nodes were moving in a wider area
(D>50). For all scenarii, we computed the absolute value of
the difference between the real SDI and the estimated SDI for
each node and iteration. To study the convergence rate and the
evolution over time, we computed the average of this error. In



figure 4, we plotted the obtained average for all the scenarii
in the considered cases.
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(a) Impact of load under a constant topology
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Fig. 4. Average error for estimated SDI under several network profiles. For
clarity purpose, we did not plot the mid-spread. For information, their values
were always under 0.20 for all the curves.

As expected, the initial error tends to be important since
nodes have no idea of their neighbor satisfactions. Considering
figure 4, because the SDI does not have a constant value, the
convergence is not reached. However, the algorithm tends to
reduce the estimation error over time. This error converges
toward 0.1. In 4(a) like in the case of a constant value,
metropolis weight seems more reactive than the maximum
degree weight, which, in the case of low traffic might be
seen as an over-reaction. When regarding figure 4(b), under
an heavy traffic, algorithm appears to better perform under a
very dynamic topology. The reasons come from the SDI itself.
When the network is too dynamic, routing protocols do not
perform well. As a result, the local satisfaction are sufficient
not to make mistake on the SDI estimation.

VI. CONCLUSION AND FUTURES WORK

The invasion of mobile communication in our network have
definitely changed their level of complexities. The terminal
heterogeneity have multiplied traffic profiles, users are dy-
namic as well as the topologies. Thus, the management task
needs to be mainly delegated to network. In doing so, networks

need to evaluate themselves and understand the way they
behave. In this paper, our contribution was two-folds. First
we introduced a reference model for an observer to assess
multi-agent systems and conduct an analysis focused on this
assessment. We consider that evaluation are temporal scores,
besides we collect event observations to construct time series
of features. Our analysis is based on feature correlations to
detect which features might have impacted our evaluation.
Our model could be applied to distributed systems of several
kind as far as they respect few properties. Future work could
be lead on the unsupervised way to construct features in
order to automate the analysis process. Second, we specifically
applied this framework to the self-assessment and self analysis
of dynamic wireless networks in the environment of Ns3.
After having defined an evaluation policy for our network, we
provided a distributed algorithm derived from existing average
consensus schemes to compute this assessment. We evaluated
this algorithm under various networking conditions to describe
its sensitivity to load and topology dynamicity. To improvethe
algorithm accuracy, future work will be pursued on the use of
the designed feature to have a better estimation propagation.
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