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• We formulate conditions for which the equality of the strain-energy densities is guaranteed.
• Two numerical examples are presented to illustrate the theoretical analysis.

2 Energy-density estimates

Let us assume that a non-linear elastic body occupies the volume V with the smooth surface A. Neglecting
body forces, the Lagrangian equilibrium equations and the static boundary conditions have the form

∇ · σσ = 000, nnn · σσσ ∣
∣

A f
= 00, nn · σσ ∣

∣
At

= ttt, uu
∣
∣

Au
= 00, (1)

where σσ is the stress tensor, uu the displacement vector, ∇ the nabla (Hamilton) operator, nn the unit-normal
vector to the body surface A = Au ∪ A f ∪ At . The part Au is clamped, A f is traction-free, while the surface
loads t act on the remaining part At , Fig. 1.

For homogeneous materials, the following conservation law is established [8]:

∇ · bb = 00, bb = W I − σ · (∇u)T , (2.1,2)

where bb is the Eshelby tensor, W the strain-energy function, I the unit tensor, and the superscript T denotes
the transpose of a second-order tensor.

Integrating Eq. (2.1) over any part V∗ ⊂ V with the boundary A∗ and applying the Gauss-Ostrogradsky
theorem, we obtain the identity

∫∫

A∗
nn · bb dA = 0. (3)

Equation (3) may be used for the construction of the path-independent surface and line integrals, see [8] for
details.

Let us consider the second boundary-value problem for the body with the same shape and the same bound-
ary conditions but made from a linear elastic material. We assume that the corresponding constitutive equation
is the limit case of the non-linear constitutive equation for small strains, that is, for this linear elastic material,
the following relations hold true:

σ ≈ σ ◦, W ≈ W◦, (4)

when ‖∇uu‖ 	 1. In (4), σ ◦ and W◦ denote the stress tensor and the strain-energy density for the linear
elastic body, respectively. Let us designate this body as the comparison body. In other words, the comparison
body occupies the same volume V with the boundary A, while its properties are described by Hooke’s law.
The boundary-value problem for the comparison body has the form

∇ · σ ◦ = 00, n · σσ ◦
∣
∣

A f
= 00, nn · σσ ◦

∣
∣

At
= tt, u

∣
∣

Au
= 00. (5)

Fig. 1 A body with a notch. The gray region V∗ denotes the influence zone of the non-linear effect. The white region V \V∗
corresponds to the zone where the difference between solutions of the non-linear and linear problems can be neglected
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Then, the conservation law and the integral identity are given by

∇ · bbb◦ = 000, bb◦ = W◦II − σσ ◦ · (∇uu)T , (6)
∫∫

A∗
nn · bb◦ dA = 0. (7)

As an example of a non-linear constitutive law, let us consider the Ramberg–Osgood model

Eεε = (1 + ν)dev σσ − (1 − 2ν)σm II + 3

2
α

(
σvM

σy

)n−1

dev σσσ ,

ε = 1

2

[

∇uu + (∇u)T
]

, (8)

σm = −1

3
tr σ , σ 2

vM = 3

2
tr (dev σσ)2.

Here, E and ν are Young’s modulus and Poisson’s ratio, respectively, ε is the linear strain tensor, α the yield
offset, σy the yield stress, n the hardening exponent, tr and dev are the trace and deviator operators, and
σvM and σm denote the von Mises stress and the hydrostatic stress, respectively. The Ramberg–Osgood model
describes the non-linear relationship between stress and strain tensors for plastic materials during the loading.

The corresponding constitutive equation for the comparison body is given by Hooke’s law

Eε = (1 + ν)dev σ ◦ + (1 − 2ν)

3
II tr σ ◦. (9)

In what follows, we use two assumptions:

1. Under the applied traction t , there are stress concentration zones such as notches, holes, etc. The surface
of these zones is traction-free.

2. The non-linear material behavior is localized in the vicinity of the stress concentration zone (gray region
in Fig. 1), i.e., far from this zone, the material behavior is linear.

More precisely, we assume the existence of the surface A◦ ⊂ V surrounding the concentration zone where
the stress and the strain fields of the non-linear body which satisfy (1) almost coincide with the solution of the
boundary-value problem (5) for the comparison body.

Consider the part V∗ ⊂ V containing the concentration zone with the boundary A∗ = ∂V∗ that consists of
the surface A◦ and the part of the free boundary Ac ⊂ A f , A∗ = A◦ ∪ Ac, Fig. 1. Applying Eqs. (3) and (7)
to this surface, we obtain

∫∫

Ac

nn · bb dA +
∫∫

A◦
nnn · bbb dA = 000,

(10)∫∫

Ac

n · b◦ dA +
∫∫

A◦
n · b◦ dA = 00.

By definition of A◦, it follows that b ≈ b◦ on A◦. Hence, from (10), we obtain the relation
∫∫

Ac

nn · (bb − b◦) dA ≈ 00. (11)

Using the boundary conditions

nn · σσ ∣
∣

Ac
= 00, n · σσ ◦

∣
∣

Ac
= 0,

and Eq. (11), the following integral relation for the strain-energy functions W and W◦ can be derived:
∫∫

Ac

(W − W◦)nnn dA ≈ 00. (12)

The scalar product of Eq. (12) with any constant vector i results in the scalar equation
∫∫

Ac

(W − W◦)ni dA ≈ 0. (13)

where ni = n · ii .
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If ni 
= 0, then from (12) or (13), it follows that at least one curve L ⊂ Ac exists, where W = W◦. Indeed,
Eq. (13) implies that the integrand should change its sign in some points of Ac. Therefore, (W − W◦)ni = 0
in that points. The continuity condition of the integrand requires that these points form at least one curve L .

For plane problems, the surface integrals reduce to line integrals, i.e., to J-integrals. Let us consider the
plane stress (strain) problems for a U-notch. Then, Eq. (13) transforms to

∫

�c

(W − W◦)ni ds ≈ 0, (14)

where �c is the curve describing the notch. From Eq. (14), it follows that at least one point exists along �c
such that W = W◦.

3 Example for U-notched plate

To illustrate our results, let us consider an example for a U-notched rectangular plate subjected to uniform
traction t under plane stress conditions, Fig. 2.

Let us select the contour � = ABCDEF for the quarter of the plate as the integration path. Then, Eq. (3)
can be transformed to

∫

�

nnn · bb · ii ds ≡
∫

AB
nn · bb · iii ds +

∫

BC
nn · bbb · ii ds +

∫

CD
nn · bb · iii ds

+
∫

DE
nn · bb · iii ds +

∫

EF
nnn · bbb · ii ds +

∫

FA
nnn · bbb · ii ds = 0. (15)

From the symmetry of the boundary-value problem, it follows that nn·bb·ii = 0 at BC . Furthermore, n ·b·i = −W
for the path AB, n · b · i = W ni for the path C D, n · b · i = 0 for the path DE, n · bb · ii = W for the path E F ,
and n · b · ii = t · (∇u)T · ii along E A. As a result, we have

−
∫

AB
W ds +

∫

CD
W ni ds +

∫

EF
W ds +

∫

FA
t · (∇u)T · ii ds = 0. (16)

For the comparison body, we obtain the similar equation

−
∫

AB
W◦ ds +

∫

CD
W◦ni ds +

∫

EF
W◦ ds +

∫

FA
tt · (∇uu◦)T · ii ds = 0. (17)

If the non-linear effects are localized near C D, then W ≈ W◦ along AB and E F and uu ≈ uu◦ along F A.
By subtracting Eq. (17) from Eq. (16), we obtain

∫

CD
W ni ds −

∫

CD
W◦ni ds ≈ 0. (18)

Fig. 2 Plate with two U-notches
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Equation (18) illustrates the general integral equation (14) for the U-notched plate with �c = C D. Thus, at
least one point on C D exists where W = W◦.

To examine our conclusions, let us present two numerical examples for a U-notched rectangular plate with
different geometries. The shape and size of the U-notch are assumed to be the same, while the length and width
of the plates are different. The dimensions of the plates ( mm), the loading, and the boundary conditions are
presented in Fig. 3. To estimate the energy densities, the finite-element analyses for both plate geometries are
performed using the ABAQUS code with the following material parameters for the Ramberg–Osgood model:

E = 2.1 × 105 MPa, ν = 0.3,

σy = 300 MPa, n = 5, α = 0.1.

The traction is proportionally increased from zero up to the value tmax = 100 MPa. Figure 3 shows the strain-
energy density as a function of the normalized arc length parameter s/s0 along the notch path. The notch
root C is located at s = 0, while s = s0 corresponds to the point D. The black solid lines correspond to the
strain-energy density W of the plates for the Ramberg–Osgood material. The gray broken lines illustrate the
solutions W◦ of the linear comparison problem. The strain-energy density is calculated as

W◦ = 1

2
σ ◦ · · · ε = 1 + ν

3E
σ 2

vM◦ + 3

2

1 − 2ν

E
σ 2

m◦ (19)

for the linear elastic material and

W = 1 + ν

3E
σ 2

vM + 3

2

1 − 2ν

E
σ 2

m + ασ n+1
vM

Eσ n−1
y

n

n + 1
(20)
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b example II
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for the Ramberg–Osgood material. From the theoretical analysis given above, it follows that if the assumptions
1 and 2 are met, then W = W◦ at a point along the path C D. As Fig. 3a shows, for the first example, such a
point in a neighborhood of the notch root exists. For the second example, Fig. 3b, the strain-energy densities
W and W◦ do not coincide even far from the notch root.

Let us note that the “plastic zone” (zone, where the non-linear term in the Ramberg–Osgood material
model is essential) is constrained in a neighborhood of the notch root for both the examples. However, the
small “plastic zone” may affect the stress state even far from the notch root. Figure 4 shows the von Mises
equivalent stress as a function of the normalized traction in the corner point A of the plates. In the first exam-
ple, Fig. 4a, the variation is linear that means the “plastic zone” does not affect the equilibrium far from the
notch root. In the second example, Fig. 4b, the variation deviates essentially from the linear solution even for
moderate traction values. Therefore, it is not possible to find a path �◦, where the solution is linear elastic;
thus, the assumption 2 is violated, and the solutions of (1) and (5) do not coincide even far from the notch root.

For the first example considered, the equality of energies in a point near the notch allows us to calculate
the actual stress value. Indeed, on the free surface of the notch, the stress tensors are defined as follows:

σσ = σssees ⊗ eees, σσ ◦ = σss◦ees ⊗ ees,

where σss and σss◦ are the tangential stresses and es is the unit tangential vector to the contour CD. Therefore

σm = 1

3
σss, σvM = σss σm◦ = 1

3
σss◦, σvM◦ = σss◦ .

If σss◦ is known from the solution of the linear elastic problem, then σss can be calculated from (19), (20),
and W = W◦. The equality of energies is proved only for the point in the neighborhood of the notch root, cf.
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Fig. 3a, but not in the notch root itself. However, the position of the point will tend toward the notch root as
the length of the localization path C D decreases, for example by a decrease in the notch radius. The equality
of the strain energies in a root of a sharp notch is assumed in [5].

In [11], notches of equal strength, i.e., notches with uniform distribution of stresses and strains along the
notch boundary, are discussed. For such notches, W = W◦ for the whole notch path.

4 Conclusions

The aim of this paper was to show that approximate rules for a rapid estimation of stress fields in non-linear
elastic solids near stress concentration zones such as notches, holes, etc. can be related to Eshelby-type conser-
vation laws. In particular, applying the conservation laws, the sufficient conditions for the use of approximate
methods can be established. The principal conditions are the localization of the non-linear behavior in the
vicinity of the stress concentration zone, for example, in the vicinity of the notch, and the existence of a surface
(in the three-dimensional case) or a curve (in the two-dimensional case) where the Eshelby tensors for the non-
linear and linear bodies almost coincide. If these conditions are satisfied, then the strain-energy density for the
non-linear and linear elastic bodies coincide in some points along the notch surface. The presented examples
of finite-element analyses show that these conditions not only are sufficient but also may be necessary.
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