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averaged property—the bending stiffness which is an effective property combining the Young’s modulus E ,
the Poisson’s ratio ν and the thickness h

D = Eh3

12(1 − ν2)

On the other hand one observes very rough limitations which are not helpful in modern applications. The
following are examples of such limitations:

• The thinness hypotheses,
• The isotropy assumption,
• The homogeneity assumption,
• The small deflection assumption,
• The assumption that the plate behavior (out-of-plane) and the plane stress behavior (in-plane) are decoupled

Focussing the attention on the applications to modern materials (laminates, sandwiches, foams among others)
various improvements of the classical theory are suggested. For example, considering sandwich structures with
soft core Reissner worked out a theory which takes into account the transverse shear which was ignored by
Kirchhoff [24–26]. Similar governing equations (only some effects were not included) were derived by Mindlin
introducing additional degrees of freedom for the points of the midplane [21]. On the classical approaches and
their improvements, one can get more information, for example, from [3,4,6,7,16,17].

Summarizing the monographs and reviews of the last 50 years (see [5,11,13,19,22,27,28,33]), one can
conclude that there are two different possibilities to deduce the plate equations:

• Starting with the three-dimensional equations of solid mechanics the two-dimensional equations are estab-
lished with the help of some hypotheses or mathematical treatment.

• Introducing a two-dimensional deformable surface the two-dimensional continuum equations are introduced
by the direct approach.

The advantages/disadvantages are readily apparent. In the first case we get the constitutive equations by the
same way like the other governing equations applying the hypotheses or the mathematical treatment of the, for
example in the elastic case, Hooke’s law. The correctness and the approximation degree are often unknown. The
direct approach is in this sense better—the two-dimensional equations are physically-based and so exact like
the three-dimensional continuum mechanics equations. But the constitutive equations must be identified which
is a non-trivial problem. It was shown in [2,5,32,33] among others that the concept of effective properties can
support the handling of the identification. The goal of this paper is to show how a two-dimensional theory
deduced with the help of the direct approach can be applied to plates made from FGM.

The discussion will be limited by the consideration of linear elastic material behavior and the geometrical
linear relations. In contrast to the classical plate theory the deformations will be taken into account like in
the theory of laminated plates with unsymmetrical cross-section properties [8]. The introduced theory is not
restricted by the assumption that the transverse shear strains are neglected.

2 Governing equations of a two-dimensional plate theory

The direct approach is based on the Cosserat theory in continuum mechanics. In continuum mechanics any
theory is based on the cutting principle, the assumption “actio = reactio” and some governing equations. Two
different models can be introduced: the non-polar or the polar. In the first case only force actions are assumed.
From this follows the symmetry of the stress tensor and only translations are considered. But in the basic
course of mechanics the following basic equations are given: the static equilibrium for forces and moments
or the dynamic equilibrium like the balance of momentum and the balance of moment of momentum (both
are independent relations in the general case, which was shown, for example, by Truesdell [31]). For the
second model one has force, and moments actions, too. From this it follows that there is a symmetric and a
nonsymmetric stress tensor and translations and rotations can be introduced independently. Now any continuum
(three-, two- or one-dimensional) can be introduced by a natural way: geometrical relations (kinematics),
material independent balances of mass, momentum, moment of momentum, energy, entropy and the material
dependent equations (constitutive equations and evolution equations). Finally, one needs boundary and, maybe,
initial conditions.
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2.1 Symbolic presentation of the equations

Since the direct approach is a natural way to describe the behavior of plates (the stress resultants which are
used in most of plate theories can be interpreted as forces and moments) a two-dimensional plate theory which
allows one to model homogeneous and inhomogeneous plates can be presented as follows.

2.1.1 Linear basic equations

Let us introduce two basic assumptions:

Assumption 1 The plate (homogeneous or inhomogeneous in transverse direction) can be represented by a
deformable surface.

Assumption 2 Each material point is an infinitesimal rigid body with five degrees of freedom (three translations
and two rotations).

In addition, the theory presented here is limited by small displacements and rotations and the quadratic strain
energy. The basics are presented in [5,6,32]. The following governing equations can be introduced:

• First and second Euler’s law (balances of momentum and momentum of momentum)

T∇ · T + q = ρüu + ρΘΘ1 · ϕ̈, ∇ ·∇ · M + T × + mm = ρΘT
1 ·· üu + ρΘΘ2 · ϕ̈ϕ (2)

Here TT , MM are the tensors of forces and moments, qq, mm are the surface loads (forces and moments), T × is
the vector invariant of the force tensor [20], ∇∇ is the nabla (Hamilton) operator, uuu, ϕϕ are the displacements
and the rotations, ΘΘ1, Θ2 are the first and the second tensor of inertia, ρ is the density (effective property
of the deformable surface), (. . .)T denotes the transposed tensor and ˙(. . .) the time derivative.

• Geometrical relations

µ = (∇u · a)sym, γ = ∇u · n + c · ϕ, κ = ∇ϕ∇ϕ (3)

aa is the first metric tensor (plane tensor, that means two-dimensional!), nn is the unit normal vector, ccc =
−a × n is the discriminant tensor [33], µ, γγ and κ are deformation tensors (tensor of in-plane strains, vector
of transverse shear strains and the tensor of the out-of-plane strains), (. . .)sym denotes symmetric part of the
tensor.

• Boundary conditions

ννν · TTT = fff , νν · MMM = lll (lll · nnn = 0) or uuu = uu0, ϕϕ = ϕϕϕ0 along S (4)

Here f and ll are an external force and a couple acting along the boundary of plate S, while uu0 and ϕϕ0 are
given functions describing the displacements and the rotation of the plate boundary, respectively. νν is the
unit normal vector to S (ν ·n = 0). The relations (4) are the static and kinematic boundary conditions. Other
types of boundary conditions are also possible. For example, the boundary conditions corresponding to a
hinge are given by

ν · MM · τ = 0, uu = 0, ϕϕ · τ = 0 (5)

Here ττ is the unit tangent vector to S (τ · n = τ · ν = 0).

2.1.2 Two-dimensional constitutive equations

Limiting our discussion to the elastic behavior and small strains (for example, rubber-like materials cannot
be analyzed by these equations) the following statements for the constitutive modeling can be done. At first,
the strain energy can be expended in a Taylor series limited by quadratic terms. In addition, we assume that
the eigenstresses can be neglected (the linear terms in the series are dropped out). At second, the positive
definiteness is guarantied.

• Strain energy of the deformable surface W

W (µ, γ ,κκ) = 1

2
µµ ···· AA ·· µ + µµ ···· BB ···· κκ + 1

2
κ ·· C ·· κ + 1

2
· γ·γ · Γ · γ + γγ ·· (ΓΓ 1 ···· µµ + Γ 2 ··· κ) (6)

AA, BBB,CC are fourth rank tensors, ΓΓΓ 1,ΓΓΓ 2 are third rank tensors, ΓΓΓ is a second rank tensor of the effective
stiffness properties. They depend on the material properties and the thickness geometry. In the general case
the tensors contain 36 different values—a reduction is possible assuming some symmetries.
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• Constitutive equations
• Membrane forces

· aT · a = ∂W

∂µµ
= A ···· µµ + B ··· κ + γ · Γ 1 (7)

• Transverse forces

· nT · n = ∂W

∂γ
= · γΓ · γ + Γ 1 ··· µµ + Γ 2 ·· κ (8)

• Moments

MMT = ∂W

∂κκ
= µµ ···· B + CC ··· κκ + γ · Γγ · Γ 2 (9)

2.2 Basic equations in Cartesian coordinates

Let us assume the Cartesian coordinate system x1, x2 (in-plane coordinates) and z (orthogonal to the midplane).
Then the unit normal vectors are e1, ee2 and n. With respect to the introduced coordinate system the following
representations are valid:

• Displacement and rotation vectors

uu = u1e1 + u2ee2 + wnn, ϕ = −ϕ2e1 + ϕ1ee2 (10)

uα(α = 1, 2) are the in-plane displacements, w is the deflection and ϕα are the rotations about the axes eα ,
respectively.

• Force and moment tensors

TT = T1eee1eee1 + T12(eee1ee2 + eee2eee1) + T2eee2ee2 + T1neee1nnn + T2neee2nnn,
MM = M1ee1ee2 − M12(e1e1 − e2e2) − M2e2e1

(11)

Tα, T12 are the in-plane forces, Tαn are the transverse shear forces, Mα are the bending moments and M12
is the torsion moment.

• Deformation tensors

µµ = µ1eee1eee1 + µ12(ee1ee2 + eee2ee1) + µ2eee2eee2,
γ = γ1ee1 + γ2ee2,
κ = κ1ee1ee2 − κ12ee1ee1 + κ21e2ee2 − κ2ee2ee1

• External loads

q = q1e1 + q2e2 + qnn, mm = −m2ee1 + m1e2 (12)

How the symmetries of the “microstructure” do affect the physical properties? The answer comes from the
Curie–Neumann’s principle in the physics of crystals [23]:

Curie–Neumann’s principle ( first formulation): Any type of symmetry exhibited by the point group of a
crystal is possessed by every physical property of the crystal.

Curie–Neumann’s principle (second formulation): For a material element and for any of its physical proper-
ties, every material symmetry transformation of the material
element is a physical symmetry transformation of the physical
property.

Curie–Neumann’s principle (third formulation): The symmetry group of the reason belongs to the symmetry
group of the consequence.

The symmetry group of the “reasons” for the plate is the intersection of:

• Symmetry of the material of the plate (fibre-reinforced material, rolled sheets, …),
• Symmetry of the surface shape (shell or plate)
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• Symmetry of the internal structure of the plate (laminated plates—symmetry of the stacking sequence with
respect to the mid-surface, …)

Let us consider an orthotropic material behavior and a plane mid-surface. In this case instead of the general
form of the effective stiffness tensors, one gets [33]

AA = A11aa1aa1 + A12(a1a2 + aa2aa1) + A22a2a2 + A44a4a4,
BBB = B13aa1aa3 + B14aaa1aaa4 + B23aa2aa3 + BB24aa2aa4 + B42aaa4aaa2,
CC = C22a2a2 + C33aa3aa3 + C34(a3a4 + a4a3) + C44aa4aa4,
ΓΓ = Γ1aa1 + Γ2aa2, ΓΓ 1 = 0, Γ 2 = 0

with

aaa1 = aa = ee1ee1 + eee2eee2, aa2 = eee1eee1 − ee2ee2, aa3 = ccc = ee1ee2 − eee2eee1, aaa4 = ee1ee2 + eee2ee1

e1, e2 are unit basic vectors. In addition, one obtains the orthogonality condition for ai (i = 1, 2, 3, 4)

1

2
aaai ······ aaa j = δi j , δi j =

{
1, i = j,
0, i �= j

Now the first and the second Euler’s law, the geometrical relations, and the constitutive equations take the
form (static case):

• First and second Euler’s law

T1,1 + T12,2 + q1 = 0, T12,1 + T2,2 + q2 = 0,
T1n,1 + T2n,2 + qn = 0,
M1,1 + M12,2 − T1n + m1 = 0, M12,1 + M2,2 − T2n + m2 = 0

(13)

• Boundary conditions (for brevity, we present it when S is a part of line x1 = const (ννν = eee1, τττ = ee2)) Static
boundary conditions

T1 = f1, T12 = f2, T1n = fn, M1 = l1, M12 = l2 (14)

Kinematic boundary conditions

u1 = u0
1, u2 = u0

2, w = w0, ϕ1 = ϕ0
1 , ϕ2 = ϕ0

2 , (15)

Boundary conditions for a hinge

M1 = 0, u1 = u2 = w = 0, ϕ2 = 0 (16)

• Geometrical relations

µ1 = u1,1, µ2 = u2,2, µ12 = 1

2
(u1,2 + u2,1),

γ1 = w,1 + ϕ1, γ2 = w,2 + ϕ2,
κ1 = ϕ1,1, κ2 = ϕ2,2, κ12 = ϕ2,1, κ21 = ϕ1,2

(17)

• Constitutive equations

T1 = (A11 + 2A12 + A22)µ1 + (A11 − A22)µ2 − (B13 + B23 − B14 − B24)κ1
− (B13 + B23 + B14 + B24)κ2,

T2 = (A11 − A22)µ1 + (A11 − 2A12 + A22)µ2 − (B13 − B23 − B14 + B24)κ1
− (B13 − B23 + B14 − B24)κ2,

T12 = 2µ12 A44 + (κ12 + κ21)B42,
T1n = (Γ1 + Γ2)γ1, T2n = (Γ1 − Γ2)γ2,
M1 = (−B13 − B23 + B14 + B24)µ1 − (B13 − B23 − B14 + B24)µ2

+ (C33 − 2C34 + C44)κ1 + (C33 − C44)κ2,
M2 = −(B13 + B23 + B14 + B24)µ1 − (B13 − B23 + B14 − B24)µ2

+ (C33 − C44)κ1 + (C33 + 2C34 + C44)κ2,
M12 = 2µ12 B42 + C22(κ12 + κ21)

From the last equations it can be seen that the Ai j are the effective in-plane stiffness tensor components,
the Ci j are the effective plate stiffness tensor components, Γα are the components of the transverse shear
stiffness tensor and Bi j are the components of the coupling stiffness tensor.
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2.3 Stiffness identification—orthotropic material behavior

The individuality of each class of plates in the framework of the direct approach is expressed by the effective
properties (stiffness, density, inertia terms, etc). Let us focus our attention on the stiffness expressions. The
identification of the effective stresses should be performed on the base of the properties of the real material.
Let us assume Hooke’s Law as

ε1 = u∗
1,1 = 1

E1
σ1 − ν21

E2
σ2 − νn1

En
σn,

ε2 = u∗
2,2 = 1

E2
σ2 − ν12

E1
σ1 − νn2

En
σn,

εn = u∗
n,n = 1

En
σn − ν1n

E1
σ1 − ν2n

E2
σ2,

γ12 = u∗
1,2 + u∗

2,1 = τ12

G12
,

γn1 = u∗
1,n + u∗

n,1 = τn1

Gn1
,

γ2n = u∗
2,n + u∗

n,2 = τ2n

G2n

(18)

with νi j E j = ν j i Ei . Equations (18) are valid in the following cases:

Case 1 Homogeneous plates—all properties are constant (no dependency from z).
Case 2 Inhomogeneous plates (sandwich, multilayered, functionally graded)—all properties are functions

of z, e.g., Ei = Ei (z).

The identification of the effective properties can be performed with the help of static boundary value problems
(two-dimensional, three-dimensional) and the comparison of the forces and moments (in the sense of averaged
stresses or stress resultants)

T = 〈aa · σσ 〉, MM = 〈aa · σ z · c〉

σ is the stress tensor, 〈(. . .)〉 =
h/2∫

−h/2

(. . .)dz.

2.3.1 Classical stiffness values

Problem 1 Tension and bending The following two-dimensional kinematical field is given

u = D1x1e1 + D2x2e2 − 1

2

(
x2

1

R1
+ x2

2

R2

)
nn, ϕ = − x2

R2
ee1 + x1

R1
e2

D1, D2, R1 and R2 are constants. Two-dimensional strain tensors can be calculated

µµµ = D1eee1eee1 + D2eee2eee2, γγγ = 0, κκ = 1

R1
eee1eee2 − 1

R2
ee2ee1
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and one gets the two-dimensional constitutive equations

T1 = D1(A11 + 2A12 + A22) + D2(A11 − A22) − 1

R1
(B13 + B23 − B14 − B24)

− 1

R2
(B13 + B23 + B14 + B24),

T2 = D1(A11 − A22) + D2(A11 − 2A12 + A22) − 1

R1
(B13 − B23 − B14 + B24)

− 1

R2
(B13 − B23 + B14 − B24),

M1 = D1(−B13 − B23 + B14 + B24) − D2(B13 − B23 − B14 + B24)

+ 1

R1
(C33 − 2C34 + C44) + 1

R2
(C33 − C44),

M2 = −D1(B13 + B23 + B14 + B24) − D2(B13 − B23 + B14 − B24)

+ 1

R1
(C33 − C44) + 1

R2
(C33 + 2C34 + C44) (19)

Now assuming the three-dimensional strain tensor components corresponding to the two-dimensional problem

ε1 = D1 + z

R1
, ε2 = D2 + z

R2

the stress tensor components under assumptions of the plane stress state and the Hooke’s law (18) are

σ1 = E1

1 − ν12ν21
(ε1 + ν21ε2), σ2 = E2

1 − ν12ν21
(ε2 + ν12ε1)

Finally, the stress resultants can be estimated

T1 = D1

〈
E1

1 − ν12ν21

〉
+ 1

R1

〈
E1z

1 − ν12ν21

〉
+ D2

〈
ν21 E1

1 − ν12ν21

〉
+ 1

R2

〈
ν21 E1z

1 − ν12ν21

〉
,

T2 = D2

〈
E2

1 − ν12ν21

〉
+ 1

R2

〈
E2z

1 − ν12ν21

〉
+ D1

〈
ν12 E2

1 − ν12ν21

〉
+ 1

R1

〈
ν12 E2z

1 − ν12ν21

〉
,

M1 = D1

〈
E1z

1 − ν12ν21

〉
+ 1

R1

〈
E1z2

1 − ν12ν21

〉
+ D2

〈
ν21 E1z

1 − ν12ν21

〉
+ 1

R2

〈
ν21 E1z2

1 − ν12ν21

〉
,

M2 = D2

〈
E2z

1 − ν12ν21

〉
+ 1

R2

〈
E2z2

1 − ν12ν21

〉
+ D1

〈
ν12 E2z

1 − ν12ν21

〉
+ 1

R1

〈
ν12 E2z2

1 − ν12ν21

〉
(20)

The comparison of the stress resultants (19) and (20) allows the calculation of the following stiffness tensor
components

A11 = 1

4

〈
E1 + E2 + 2E1ν21

1 − ν12ν21

〉
, A12 = 1

4

〈
E1 − E2

1 − ν12ν21

〉
, A22 = 1

4

〈
E1 + E2 − 2E1ν21

1 − ν12ν21

〉
,

B13 = −1

4

〈
E1 + E2 + 2E1ν21

1 − ν12ν21
z

〉
, −B23 = B14 = 1

4

〈
E1 − E2

1 − ν12ν21
z

〉
, B24 = 1

4

〈
E1 + E2 − 2E1ν21

1 − ν12ν21
z

〉
,

C33 = 1

4

〈
E1 + E2 + 2E1ν21

1 − ν12ν21
z2

〉
, C34 = −1

4

〈
E1 − E2

1 − ν12ν21
z2

〉
, C44 = 1

4

〈
E1 + E2 − 2E1ν21

1 − ν12ν21
z2

〉

(21)

Problem 2 Plane shear Let us assume the two-dimensional kinematical field

u = S1x2ee1 + S1x1e2 − S2x1x2nn, ϕ = −S2(x1ee1 − x2ee2)

The corresponding three-dimensional strain tensor component is

γ12 = u∗
1,2 + u∗

2,1 = S1 + S2z

The comparison results in

A44 = 〈G12〉, B42 = −〈G12z〉, C22 = 〈G12z2〉 (22)
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Problem 3 Torsion Let us introduce a deformable strip (|x1| ≤ l1, |x2| < ∞) under constant torsion moment
at the boundaries x1 = ±l1. Then one gets the two-dimensional kinematical field

u = u2(x1)ee2, ϕϕ = −ϕ1(x1)e1

and the force and moment tensors

T = (A44u2,1 − B42ϕ2,1)aa4 + (Γ1 − Γ2)ϕ2e2nn, MM = (B42u2,1 − C22ϕ2,1)a2

The dual three-dimensional problem (strip |x1| ≤ l1, |x2| < ∞, |z| ≤ h/2) results in the displacements

u∗
1 = w∗ = 0, u∗

2 = u∗
2(x1, z)

the stress tensor

σσ = G12
∂u∗

2

∂x1
a4 + G2n

∂u∗
2

∂z
(e2nn + nne2)

and equilibrium equation

G12
∂2u∗

2

∂x2
1

+ ∂

∂z

(
G2n

∂u∗
2

∂z

)
= 0

The solution with respect to the boundary conditions σn = τ1n = τ2n = 0 at |z| = h/2 can be obtained by the
following Fourier’s ansatz: u∗

2(x1, z) = X (x1)Z(z), which yields a Sturm–Liouville problem

d

dz

(
G2n

dZ

dz

)
+ λ2∗G12 Z = 0,

dZ

dz

∣∣∣|z|= h
2

= 0

and

d2 X

dx2
1

− λ2∗X = 0

The lowest non-trivial positive solution λ∗ one obtains from

X (x1) = B
sinh λ∗x1

λ∗ cosh λ∗l1
and u∗

2 = B Z(z)
sinh λ∗x1

λ∗ cosh λ∗l1
Finally, after comparison of the two-dimensional and the three-dimensional solutions one gets

λ = λ∗ =
√

(Γ1 − Γ2)A44

A44C22 − B2
42

T12 and M12 obtained by the two-dimensional and the three-dimensional approaches are in a full agreement.
For the kinematical fields, one gets

〈G12(u
∗
2 − u2 − zϕ2)

2〉 = min(u2, ϕ2)

u2 = M∗
12〈G12z〉

〈G12〉〈G12z2〉 − 〈G12z2〉
sinh λ∗x1

λ∗ cosh λ∗l1
,

ϕ2 = − M∗
12〈G12〉

〈G12〉〈G12z2〉 − 〈G12z2〉
sinh λ∗x1

λ∗ cosh λ∗l1

In addition, one has to analyze the similar problem for the second direction in the two-dimensional case:
(|x1| < ∞, |x2| ≤ l2) as in the three-dimensional case. (|x1| < ∞, |x2| ≤ l2, |z| ≤ h/2) with the constant
torsion moment at the boundary |x2| ≤ l2. Now the one-dimensional case results in

d

dz

(
G1n

d Z̃

dz

)
+ η2G12 Z̃ = 0,

d Z̃

dz

∣∣∣|z|= h
2

= 0, η =
√

(Γ1 + Γ2)A44

A44C22 − B2
42

Finally, we get the following expressions for the transverse shear stiffness tensor components

Γ1 = 1

2
(λ2 + η2)

A44C22 − B2
42

A44
, Γ2 = 1

2
(η2 − λ2)

A44C22 − B2
42

A44
(23)
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2.4 Special case—isotropic behavior

In the case of isotropic material behavior, one has to set in Eq. (18)

E1 = E2 = En = E(z), νi j = ν(z), G12 = Gn1 = G2n = G(z) = E(z)

2(1 + ν(z))

Instead of (21–23), the following non-zero components of the stiffness tensors are valid in-plane stiffness
tensor components

A11 = 1

2

〈
E

1 − ν

〉
, A22 = 1

2

〈
E

1 + ν

〉
= A44 = 〈G〉, (24)

coupling stiffness tensor components

B13 = −1

2

〈
E

1 − ν
z

〉
, B24 = 1

2

〈
E

1 + ν
z

〉
= −B42 = 〈Gz〉, (25)

plate stiffness tensor components

C33 = 1

2

〈
E

1 − ν
z2

〉
, C44 = 1

2

〈
E

1 + ν
z2

〉
= C22 = 〈Gz2〉, (26)

transverse shear stiffness tensor components

Γ1 = λ2 A44C22 − B2
42

A44
(27)

with λ following from

d

dz

(
G

dZ

dz

)
+ λ2∗G Z = 0,

dZ

dz

∣∣∣|z|= h
2

= 0 (28)

3 Examples of effective stiffness properties

3.1 Homogeneous plate

The simplest test for the correctness of the estimated stiffness properties is the homogeneous isotropic plate.
The basic geometrical property is the thickness h, the plate is symmetrical with respect to the mid-plane which
results in BB ≡ 0. Let us assume the following material data: the Young’s modulus E and the shear modulus
G = E/2(1 + ν), ν is the Poisson’s ratio. All material properties are constant, that means they do not depend
on the thickness coordinate. The non-zero components of the classical stiffness tensors are

A11 = Eh

2(1 − ν)
, A22 = Eh

2(1 + ν)
= A44 = Gh,

C33 = Eh3

24(1 − ν)
, C44 = Eh3

24(1 + ν)
= C22 = Gh3

12

The classical plate (bending) stiffness follows as

C33 + C44 = Eh3

12(1 − ν2)

and can be found in the classical textbooks, e.g., [30]. The transverse shear stiffness follows from

Γ = λ2C22

with

d2 Z

dz2 + λ2 Z = 0,
dZ

dz

∣∣∣|z|= h
2

= 0
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The solution cos λz = 0 yields the smallest eigenvalue λ = π

h
, and finally one obtains

Γ = π2

h2

Gh3

12
= π2

12
Gh

π2/12 is a factor which plays in other theories the role of the shear correction. Comparing this value with the
Mindlin’s estimate π2/12 [21] and Reissner’s estimate 5/6 [24] one concludes that the direct approach yields
the same value like in the Mindlin’s theory (note that Mindlin’s shear correction is based on the solution of a
dynamical problem, here the solution of a statical problem) was used. The Reissner’s value slightly differs.

3.2 Classical sandwich plate in Reissner’s sense

Now we assume the following geometry: hc is the core thickness and hf the thickness of the face sheets
(hc 	 hf ). The material properties of the core and the face sheets are Ec, Ef , Gc, Gf with Ec 
 Ef , Gc 
 Gf .
We have again a symmetry with respect to the mid-plane that means BB ≡ 00. With the thickness h = hc + hf
one gets

A11 = 1

2

(
Ef hf

1 − νf
+ Echc

1 − νc

)
, A22 = 1

2

(
Ef hf

1 + νf
+ Echc

1 + νc

)
= A44,

C33 = 1

24

[
Ef(h3 − h3

c)

1 − νf
+ Ech3

c

1 − νc

]
, C44 = 1

24

[
Ef(h3 − h3

c)

1 + νf
+ Echc

1 + νc

]
= C22

The bending stiffness results in

C33 + C44 = 1

12

[
Ef(h3 − h3

c)

1 − ν2
f

+ Ech3
c

1 − ν2
c

]

The transverse shear stiffness can be computed by

Z(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A cos λ

(
z − h

2

)
hc

2
≤ z ≤ h

2
,

B sin λz |z| ≤ hc

2
,

−A cos λ

(
z + h

2

)
−h

2
≤ z ≤ −hc

2

This results in a transcendent equation

µ cos λ
hf

2
cos λ

hc

2
− sin λ

hf

2
sin λ

hc

2
= 0

or

µ cos γ (1 − α) cos γα − sin γ (1 − α) sin γα = 0,

with

γ = λ
h

2
, α = hc

h

γ and α take the values 0 ≤ µ = Gc/Gf < ∞ and 0 ≤ α ≤ 1. A typical sandwich structure has a very weak
core. Then the bending stiffness can be approximated by

C33 + C44 = 1

4

Ef h2hf

1 − ν2
f

,

the transverse shear stiffness by Γ = Gch. This solution was first obtained by Reissner [26].
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3.3 Functionally graded material

Functionally graded materials (FGM) are composite materials where the composition or the microstructure
are locally varied so that a certain variation of the local material properties is achieved. A nitrided steel, for
instance, could be also regarded as a FGM. Modern FGMs are constructed for complex requirements, such
as the heat shield of a rocket or implants for humans. The gradual transition between the heat or corrosion
resistant outer layer (often made of a ceramic material) and the tough metallic base material increases in most
cases the life time of the component.

An example of FGM material is a porous material with nonhomogeneous distribution of porosity. Engineer-
ing structures made of porous materials, especially metal foams, have been used different applications in the
last decades [9,10,12]. A metal foam is a cellular structure consisting of a solid metal, for example aluminium,
steel, copper, etc., containing a large volume fraction of gas-filled pores. There are two types of metal foams.
One is the closed-cell foam, while the second one is the open-cell foam. The defining characteristic of metal
foams is a very high porosity: typically well over 80, 90 and even 98% of the volume consists of void spaces.
Another example of perspective material is a syntactic foam. They are composite materials synthesized by
filling a metal, polymer or ceramic matrix with hollow particles called microballoons (see, e.g., [14,15]).

3.3.1 Linear symmetric distribution

Now we have a functionally graded material with changing mechanical properties. The material is assumed to
be isotropic. The mechanical properties are changing linearly and the changes are symmetrical with respect to
the mid-plane. In addition, it will be assumed that the changing properties are related to the Young’s and the
shear modulus. To make the calculation as simple as possible the Poisson ratio is assumed to be approximately
constant (ν ≈ const). Then the distribution of the Young’s and the shear modulus can be given as

E(z) = Eo

[
2

h
|z| + Em

Eo

(
1 − 2

h
|z|

)]
, G(z) = Go

[
2

h
|z| + Gm

Go

(
1 − 2

h
|z|

)]
(29)

Here the index o denotes the value on the outer surfaces (z = ±h/2) and m at the mid-plane (z = 0). Due to
the symmetry to the mid-plane B ≡ 00. The classical stiffness tensor components can be computed analytically

A11 = Eoh

4(1 − ν)

(
1 + Em

Eo

)
, A22 = Eoh

4(1 + ν)

(
1 + Em

Eo

)
= A44,

C33 = Eoh3

96(1 − ν)

(
3 + Em

Eo

)
, C44 = Eoh3

96(1 + ν)

(
3 + Em

Eo

)
= C22

(30)

The transverse shear stiffness tensor components results from

Γ1 = λ2C22 = λ2 Goh3

48

(
3 + Gm

Go

)

with λ following from

d

dz

[
G(z)

dZ

dz

]
+ λ2G(z)Z = 0,

dZ

dz

∣∣∣|z|= h
2

= 0

Instead of G(z) one has to take the second equation of (29). This spectral problem was solved numerically

by using the shooting method [29]. The dependence normalized Γ1 versus gm ≡ Gm

Go
is shown on the Fig. 1

(solid line), the Reissner’s solution is presented by the dashed line.
Reissner’s solution gives understated values of the transverse stiffness when the difference between elastic

moduli is big enough. On the other hand, Reissner’s solution gives overstated values when the elastic moduli
do not differ. Reissner’s formula gives us good coincidence with our results when the gm ∼ 0.6.
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Fig. 1 Normalised transverse shear stiffness in dependence of the shear modulus

3.3.2 Linear nonsymmetric distribution

If u and l denote the values of the Young’s modulus and the shear modulus on the upper surface (z = h/2) and
the lower surface (z = −h/2), one can represent the linear distribution by

E(z) = 1

2
(Eu − El)z

2

h
+ 1

2
(Eu + El), G(z) = 1

2
(Gu − G l)z

2

h
+ 1

2
(Gu + G l) (31)

and with the assumption of the constant Poisson’s ratio, one gets

A11 = (Eu + El)h

4(1 − ν)
, A22 = (Eu + El)h

4(1 + ν)
= A44,

B13 = − (Eu − El)h2

24(1 − ν)
, B24 = (Eu − El)h2

24(1 + ν)
= B42,

C33 = (Eu + El)h3

24(1 − ν)
, C44 = (Eu + El)h3

48(1 + ν)
= C22

The transverse shear stiffness can be estimated as

Γ1 = λ2 A44C22 − B2
42

A44
= λ2

72

[3(Gu + G l)
2 − (Gu − G l)

2]h3

Gu + G l

with λ following from

d

dz

[
G(z)

dZ

dz

]
+ λ2∗G(z)Z = 0,

dZ

dz

∣∣∣|z|= h
2

= 0

Instead of G(z) one has to take the second equation of (31). The solution of this spectral problem may be

written by using Kummer functions [1]. Dependence Γ1 versus gl ≡ G l

Gu
is shown in the Fig. 2. It is easy to

prove that a good approximation of this curve is given by

Γ1

Guh3 = π2

12
+ 0.416(1 − gl).
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Fig. 2 Normalised transverse shear stiffness in dependence of the shear modulus
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Fig. 3 Distribution of porosity

3.3.3 Nonlinear symmetric distribution

In this section, we consider the small deformations of a functionally graded plate made of a metallic or a
polymer foam. For the panel made of a porous metallic foam the distribution of the pores over the thickness
can be inhomogeneous. Let us introduce h as the thickness of the panel, ρs as the density of the bulk material
and ρp as the minimum value of the density of the foam. For the description of the symmetric distribution of
the porosity, we assume the power law

V (z) = ρ + (1 − ρ)

∣∣∣∣2z

h

∣∣∣∣
n

, (32)

where ρ = ρp

ρs
, n is the power. n = 0 corresponds to the homogeneous plate, for n = 1 we have the linear

distribution of porosity through the thickness. The distribution can be established, for example, if the plate
is made of two symmetric layers. If n > 1 one has a more complex distribution. If n 	 1 the plate core
has an approximately constant porosity, but the distribution of the density in the face layers is significant
inhomogeneous. Examples of the distribution are shown in Fig. 3 for n = 0, 1, 10, 50 with ρ = 0.1.

The elastic properties of a metallic foam highly depend on the porosity and the cell structure. The depen-
dence of Young’s modulus and shear modulus on porosity is given by the power law [9,12]

Ep

Es
∼ ρm,

Gp

Gs
∼ ρm, (33)

where Ep and Gp are the Young’s modulus and shear modulus of the foam, respectively, Es and Gs are the
Young’s modulus and shear modulus of material which is used to synthesize a foam. The value m depends on
the structure of the foam. For a closed-cell foam m = 1, for an open-cell foam m ≈ 2. For the isotropic case,
the graphs of the normalized A11, A44, C33, C22 are given in Fig. 4. Here we used m = 2, ρ = 0.1, ν = 0.3.

To obtain the dependence of the transverse shear stiffness we have to solve Eq. (28). The solution of the
spectral problem (28) was made numerically by using shooting method [29]. The values of normalized Γ1
versus n is given in Fig. 5.
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Fig. 6 Non-symmetric distribution of the porosity V for n = 1, 10, 50

3.3.4 Nonlinear non-symmetric distribution

For the description of the non-symmetric distribution of the porosity we assume again the power law

V (z) = ρ + (1 − ρ)

(
x + h/2

h

)n

(34)

Examples of the distribution are shown in Fig. 6 for n = 0, 10, 50 with ρ = 0.1. For the isotropic case, the
graphs of the normalized A11, A44, C33, C22, B13, B24 are given in Fig. 7. The values of normalized Γ1 versus
n are given in Fig. 8.
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4 Equations of symmetric orthotropic plate

Let us consider the equilibrium equations of an orthotropic plate with a symmetric structure. In this case
Eqs. (13) split into two parts: the plane problem for tangential displacements u1 and u2, and the bending
problem for the w, ϕ1 and ϕ2, respectively.

The constitutive equations for an orthotropic symmetric plate can be given as follows

T1 = (A11 + 2A12 + A22)µ1 + (A11 − A22)µ2, T2 = (A11 − A22)µ1 + (A11 − 2A12 + A22)µ2,

T12 = 2A44µ12,

T1n = (Γ1 + Γ2)γ1, T2n = (Γ1 − Γ2)γ2, (35)

M1 = (C33 − 2C34 + C44)κ1 + (C33 − C44)κ2, M2 = (C33 − C44)κ1 + (C33 + 2C34 + C44)κ2

M12 = C22(κ12 + κ21).
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In Cartesian coordinates with the geometrical relations (17) the equations

T1,1 + T12,2 + q1 = 0, T12,1 + T2,2 + q2 = 0 (36)

are reduced to the form

(A11 + 2A12 + A22)u1,11 + (A11 − A22)u2,21 + A44(u1,21 + u2,11) + q1 = 0,
(A11 − A22)u1,12 + (A11 − 2A12 + A22)u2,22 + A44(u1,22 + u2,12) + q2 = 0 (37)

The equation

T1n,1 + T2n,2 + qn = 0, (38)

has the following form

(Γ1 + Γ2)w,11 + (Γ1 − Γ2)w,22 + (Γ1 + Γ2)ϕ1,1 + (Γ1 − Γ2)ϕ2,2 + qn = 0. (39)

The equations

M1,1 + M12,2 − T1n + m1 = 0, M12,1 + M2,2 − T2n + m2 = 0 (40)

result in

(C33 − 2C34 + C44)ϕ1,11 + (C33 − C44)ϕ2,21 + C22(ϕ1,22 + ϕ2,12)

−(Γ1 + Γ2)ϕ1 − (Γ1 + Γ2)w,1 + m1 = 0,

(C33 + 2C34 + C44)ϕ2,22 + (C33 − C44)ϕ1,12 + C22(ϕ1,21 + ϕ2,11)

−(Γ1 − Γ2)ϕ2 − (Γ1 − Γ2)w,2 + m2 = 0 (41)

4.1 One-dimensional case

First, let us consider the bending of a rectangular plate when q1 = 0, q2 = 0, qn = q(x), m1 = m1(x),
m2 = 0. Then we can assume that u1 = u2 = 0, w = w(x), ϕ1 = ϕ(x), ϕ2 = 0. Equation (39) reduces to

(Γ1 + Γ2)w
′′ + (Γ1 + Γ2)ϕ

′ + q = 0, (42)

where (. . .)′ denotes (. . .),1.
Equations (41) reduce to one equation

(C33 − 2C34 + C44)ϕ
′′ − (Γ1 + Γ2)ϕ − (Γ1 + Γ2)w

′ + m1 = 0 (43)

Let us transform Eqs. (42) and (43) to one equation with respect to w. After some manipulations we obtain

(C33 − 2C34 + C44)w
′′′′ = q − (C33 − 2C34 + C44)

Γ1 + Γ2
q ′′ + m′

1 (44)

If we consider the other one-dimensional case when q1 = 0, q2 = 0, qn = q(y), m1 = 0, m2 = m2(y), then
we can assume that u1 = u2 = 0, w = w(y), ϕ2 = ϕ(y), ϕ1 = 0. Then Eqs. (39) and (41) reduce to

(Γ1 − Γ2)w
′′ + (Γ1 − Γ2)ϕ

′ + qn = 0, (45)

(C33 + 2C34 + C44)ϕ
′′ − (Γ1 − Γ2)ϕ − (Γ1 − Γ2)w

′ + m2 = 0 (46)

where now (.)′ denotes (.),2.
By using the same manipulations, we obtain the equation with respect to w

(C33 + 2C34 + C44)w
′′′′ = q − (C33 + 2C34 + C44)

Γ1 − Γ2
q ′′ + m′

2 (47)

Equations (44) or (47) differ from one-dimensional variant of Eq. (1). If m1 = 0 or m2 = 0 and Γ1 +Γ2 → ∞
or Γ1 − Γ2 → ∞ one gets the Kirchhoff’s plate equation with D = C33 − 2C34 + C44 or with D =
C33 + 2C34 + C44.
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4.2 Two-dimensional case

Let us eliminate the functions ϕ1 and ϕ2 from the Eqs. (39) and (41). For brevity, let us assume that m1 = 0,
m2 = 0. By using operator notations, the Eqs. (41) may be rewritten in the form

L11ϕ1 + L12ϕ2 = b1w, L21ϕ1 + L22ϕ2 = b2w, (48)

where

L11 = (C33 − 2C34 + C44)∂
2
1 + C22∂

2
2 − Γ1 − Γ2, L22 = (C33 + 2C34 + C44)∂

2
2 + C22∂

2
1 − Γ1 + Γ2,

L21 = L12 = (C33 + C22 − C44)∂1∂2,
b1 = (Γ1 + Γ2)∂1, b2 = (Γ1 − Γ2)∂2,

∂α(...) ≡ (...),α, α = 1, 2

From (48) we obtain the relations

Lϕ1 = L1w, Lϕ2 = L2w,

where

L = L11L22 − L2
12, L1 = L22b1 − L12b2, L2 = L11b2 − L21b1

Using operator notations the Eq. (39) can be rewritten as follows

Lww + b1ϕ1 + b2ϕ2 + qn = 0,

where

Lw = (Γ1 + Γ2)∂
2
1 + (Γ1 − Γ2)∂

2
2

Then we obtain one differential equation of 6th order with respect to w

(LLw + b1L1 + b2L2)w + Lqn = 0 (49)

4.3 Two-dimensional case of an isotropic plate

For the isotropic plate we have that C22 = C44, C34 = 0, Γ2 = 0. Then

L11 = (C33 + C44)∂
2
1 + C44∂

2
2 − Γ1, L22 = (C33 + C44)∂

2
2 + C44∂

2
1 − Γ1,

L21 = L12 = C33∂1∂2,
b1 = Γ1∂1, b2 = Γ1∂2,

Lw = Γ1(∂
2
1 + ∂2

2 ) = Γ1∆

and

L = [
(C33 + C44)∂

2
1 + C44∂

2
2 − Γ1

] [
(C33 + C44)∂

2
2 + C44∂

2
1 − Γ1

] − C2
33∂

2
1 ∂2

2 ,

L1 = Γ1[(C33 + C44)∂
2
2 + C44∂

2
1 − Γ1]∂1 + Γ1C33∂1∂

2
2 ,

L2 = −Γ1C33∂
2
1 ∂2 + Γ1[(C33 + C44)∂

2
1 + C44∂

2
2 − Γ1]∂2

Finally, the bending equation (49) has the form

(C33 + C44)∆∆w = ∂1m1 + ∂2m2 − C33 + C44

Γ1
∆qn + qn (50)

If m1 = m2 = 0 and Γ1 → ∞ one gets the Kirchhoff’s plate equation with D = C33 + C44.
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5 Bending of a plate made from functionally graded material

In this case one gets a decoupling of the in-plane state and the plate state. Let us assume the Kirchhoff’s plate
bending. The governing equation (1) preserves the same form—only instead of the bending stiffness D the
effective bending stiffness with respect to (26) must be introduced as follows:

Deff = C33 + C44

and the external load q should be replaced by ∂1m1 + ∂2m2 − Deff

Γ1
∆qn + qn .

To analyze the influence of the transverse shear stiffness on the deflection of a plate let us consider a bending
of a rectangular plate made of a functionally graded material. For brevity, let us assume that m1 = m2 = 0,
x1 ∈ [0, a], x2 ∈ [0, b], where a and b are the length and width of the plate. Using the assumption [9,12] that
ν = const and that the Eqs. (26), (27) are valid, we can rewrite Eq. (50) in the following form:

Deff∆∆w = qn − 2

1 − ν

1

λ2h2 ∆qn (51)

Introducing dimensionless variables by formulas

w̄ = h−1w, x̄1 = h−1x1, x̄2 = h−1x2, x̄1 ∈
[
0,

a

h

]
, x̄2 ∈

[
0,

b

h

]
, q̄ = qnh3

Deff
,

Equation (51) transforms to

∆∆w̄ = q̄ − 2

1 − ν

1

λ2h2 ∆q̄ (52)

Here ∆ = ∂2

∂ x̄2
1

+ ∂2

∂ x̄2
2

.

Let us consider sinusoidal load q̄ = Q sin
πhx̄1

a
sin

πhx̄2

b
(Q = const) and the boundary conditions of

type (16). Then the solution of Eq. (52) is given by

w̄ = K

η2 Q sin
πhx̄1

a
sin

πhx̄2

b
, K = 1 + 2η

1 − ν

1

λh2 , η =
(

πh

a

)2

+
(

πh

b

)2

(53)

For the Kirchhoff’s plate theory K = KK ≡ 1, for the Mindlin’s plate theory K = KM ≡ 1 + 2η

1 − ν

1

π2 ,

respectively. Let us consider the maximal deflection W = K

η2 Q. Thus, for the Kirchhoff’s plate theory, we

obtain that WK = 1

η2 Q, for the Mindlin’s plate theory we obtain that WM = KM

η2 Q, and in the general case

WF = K

η2 Q, respectively.

Let us use following values ν = 0.3, a = b, h = 0.05a. Several normalized deflections are presented in
the Table 1. It is easy to see that for the functionally graded plates the difference between theories may be
significant. Let us note that for the cases of other types of boundary conditions, the influence of the structure
of the plate on the deflection may be greater than for the used simple support type boundary conditions.

6 Summary and outlook

A plate theory based on Zhilin’s direct approach method in the theory of shells for FGM is introduced. The
basic items of the theory are related to

• the formulation of all balances for a deformable directed surface (a priori two-dimensional equations) and
• the specific constitutive equation
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Table 1 Maximal deflections of quadratic plate and corresponding Γ1

Model W/WK Γ1/Gsh

Kirchoff’s plate 1 ∞
Mindlin’s plate 1.01

π2

12
≈ 0.82

FGM plate linear distribution (29)

gm = 0.5 1.02 0.54

gm = 0.1 1.036 0.25

gm = 0.05 1.045 0.2

FGM plate power law (32)

n = 2 1.12 0.027

n = 5 1.15 0.012

n = 10 1.05 0.01

In addition, for each class of plates the identification of the unknown material parameters should be performed.
It is clearly shown that based on the assumption of linear elastic behavior the identification for different foams
can be realized. In this case it was helpful that Zhilin’s theory includes elements of symmetry groups for
two-dimensional objects and the concept of effective properties. A simple static problem is solved and the
solution is compared with a Kirchhoff-type theory and a Mindlin-type theory.

From the calculations one can conclude that for some problems the influence of the transverse shear is
significant. The next step should be directed on the verification of this conclusion in the case of other boundary
condition. Since it is well-known that, if the influence of the shear stiffness is significant, the rotatory inertia has
also an influence, dynamical problems should be investigated. Last but not least the theory should be extended
to the thermodynamical case.
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