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INTRODUCTION

Statistical Energy Analysis was used in the past dgaluating the sound transmission of structures:
simple/double panels separating two rooms [1,i2fpér floor [3] or of a hybrid heavyweight-lightvegit floor [4].
A limitation of this approach is that it cannot kasily applied to evaluate the sound transmissimough
nonhomogenous or stiffened panels like the firewhlin automotive or the compartment partitionga odil vehicle.
Moreover, this method is not adapted to evaluagartfiuence on transmission loss of excitation ¢oks such as
source room geometry, source location, or the iooaif the panel in the source room [5]. On anotherd, as the
non resonant transmission is not described in ldwsical SEA model which describes the energy shdretween
the resonant modes, Crocker and Price [1] introdwageindirect coupling loss factor between the texcand the
receiving room. The parameter is estimated fromsthgle mass law equation of an infinite panelffequencies
below the critical frequency. In [6], Craik propssa new formula of this coupling loss factor wheslthg with a
double wall. It seems that this parameter dependbé@ considered structure.

In this paper, one proposes to evaluate the saamdrission through a complex panel separatingcivities
by using the Statistical model Energy distributinalysis (SmEdA) model [7, 8]. This method is basedthe
same assumptions as the Statistical Energy AnaligisA) model except for the modal energy equipartit
assumption which is not supposed by the SmEdA mddé$ method has the advantage of using the nimatds of
uncoupled subsystems. These bases can be evalatesing Finite Element models when subsystems laave
complex geometry ([9]). As SEA, SmEdA describeseahergy sharing by the resonant modes. One extesrdghe
SmEdA model for describing the contribution of tren resonant modes.

DESCRIPTION OF CAVITY-STRUCTURE-CAVITY SYSTEM WITH THE DUAL
MODAL FORMULATION

Let us consider the cavity-structure-cavity problespresented on Fig. 1. It is composed of two eduatic
cavities and an elastic thin structufde two cavities can exchange vibrating energy ghathne thin structure and
all the others cavity walls are supposed as riQite supposes that an acoustic source is locatethiatcavity 1 and

has a white noise spectrum in the frequency t{afﬁp d)z] . Then, by estimating the total energy of eachtgawne
could deduce the transmission loss of the testtstre.

Rigid wall Elastic thin structure

FIGURE 1. lllustration of the cavity-structure-cavity systewnsidered to evaluate the sound transmissiortestastructure.

This vibro-acoustic problem can be described byhgishe Dual Modal Formulation (DMF) [8, 10]. In
accordance with this formulation, the thin struetis described by a displacement and its uncoupésdmodes
whereas the cavities are described by a stressdi@ their uncoupled-blocked modes. The boundangitons of
these uncoupled subsystem modes are illustrateligpn2 for the present case. These subsystem nuaiebe
easily calculated analytically for academic cagé86]( or numerically with Finite Elements models foomplex
cases ([9]).



FIGURE 2. lllustration of the uncoupled subsystems with appaie boundary conditions.
The modal expansions of the normal displaceri¢at pointM ' on the thin structure may be written
W(M') =3 x, (O, ("), &
whereas the acoustic pressupest pointM arc:TjQM " inside cavity 1 and 2, respectively, write:

p(M.1)= X4, (1) 3, (M) p(M".0) = X¢"(1) B, (M"). @
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where:
Gy Xy ¢, are the modal amplitudes;

- f)p, p, are the pressure mode shape (normalised to anodial stiffness) of cavity 1 and 2, respectively,

- VY/q are the displacement mode shapes (normalisedni enodal mass) of the thin structure.

The modal summations of these equations shoulddtieally have an infinite number of terms. For gtieal
reason, it is necessary to truncate them. Let ussider a finite set of modes for each subsysteme Gote

f’, (5, andRthe mode sets, respectively, for the cavity 1 stinecture and the cavity 2.

DMF consists in introducing these expansions (1AR2a weak formulation of the considered vibro-adimus
problem and using the orthogonality propertieshef tincoupled modes. For more details on this faatiar, the
reader can study Ref. [8]. The following modal agres are obtained

¢'F'J + wp”p¢;) + wp2¢p - prq/\/:] =Q,, UpO P

aQ
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where:

- Qp are the generalised source strength due to thesacsourceQ,;

-W,, W, W are the angular frequencies of subsystem modes;

My My 1, are the modal damping loss factors, and ;

-W

- ,qu are the modal interaction works defined by:

W,, = [W, p,dS:W, = [W,p,ds- )
S S

The form of these equations allows us to interpreties interactions as oscillators with gyroscopieptings.
Note that a mode of one subsystem is coupled tontbaes of the other subsystem but is not direailypted with
the other modes of the subsystem to which it bedoii@is configuration of mode coupling is exactig tone that
assumes SEA.



SMEDA FORMULATION INCLUDING NON RESONANT TRANSMISSION

In this section, we are interested by establisldingenergy formulation of the vibro-acoustic behaviof the
cavity-structure-cavity system. The original SmEwadel [7] is based on the DMF described previoasly allows
us describing the energy sharing between the resonedes (i.e. the modes contained in the frequéanyd of

excitation [d)l,d)z]). For the case considered in this paper, it id wabw that the Non-Resonant (NR) structure

modes play an important role for frequencies bethw critical frequency. Indeed, the low frequentyucture
modes which are not in frequency coincidence with resonant cavity modes may be in space coincédefitt
these cavity modes and may participate signifigatdl the energy transmission between the two @svitAn
illustration of the modal interaction for frequeesibelow the critical frequency is given in Fig.The original
SmEdA model describes only the resonant transnmisspdotted in black on this figure. One extendsehire
SmEdA model for describing the energy exchangethbyow frequency NR structure modes (plotted thor Fig.
3).

NON-RESONANT
HF MODES

RESONANT
MODES

NON-RESONANT
LF MODES

CAVITY 1 |STRUCTURE | CAVITY 2
MODES MODES ‘ MODES

EXCITATION —|

FIGURE 3. Modal interaction scheme of the sound transmisk&low the critical frequency.

Non-Resonant M odes Condensation

A new interpretation of the modal coupling showrig. 3 is proposed in this section. Let us apgyanFourier
transform to (3). Then, one can write the matristeyn:

Z, _jawlz 0 My Q,
+jaAle* Zzz +jaW2; rz =0 ®)
0 — N, Zy M, 0
with the modal amplitude and generalised sour@ngth vectors:
r=19, =1 X 'r3:Z_r Q= Qp ' 6
: Px1 : Qx1 : Rx1 : Px1
the modal impedance matrices and the modal inieraatorks,
Z,, = diag| ~o + jaxyy, + wpz]Pxp  Z,, = diag[ ~o7 + jewy], +a)qZ]QXQ @
233 =d ag |:—0.)2 + Ja}a)f”r + a)rz:IRxR ! and,V\/lz = |.\NPQJP><Q’ W23 = I:Vvqr :IQxR ' (8)

Now, let us considering two sets of modes for tinecsure: the resonant modes séR and the non resonant

modes setQ"R which are defined by:

qoQ™ = w, 0[0,& andq0Q® = w,0[@,d)] ©)



The DMF equations in the frequency domain (5) camdwritten:

Z11 - J MngR - J MNlF; 0 rl Ql
+HjoNY  ZF 0  +jWY ||T¥] |0 (10)
+jNS 0 zy +jaNX || TR 0
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where the subscript R or NR are related to the Rasioand Non-Resonant modes sets respectively.

Eliminating Fg‘Rfrom the second row which can be reintroduced endther rows gives the condensed matrix

system:
-1 e . -1
le—a)ZVVlNR [ZQ‘ZR] Wi“zR —qule —afWT? [ZNZRZJ WNZF;* r, Q

2

NS Z, FjNE rel=| o (11)
—AR[ZE W -, Z W[ 2] ws (L] 1O

This operation links the amplitudes of the resomaoties of the 3 subsystems. On another hand, i€onsiders
that the natural frequencies of the NR modes arechmlower than the angular frequency (i.e.

w, << @ <w 0gOQ™ ), one can assumeEZZNZR]_lz—%L where | is the identity matriQ"®xQ™ .

Moreover, if one neglects the matrix terms in dddito the modal impedance matrices of the cavitiee obtains:
Z, =] anF; ‘WﬂRVVQf* r, Q,
+jaW1§' Z, +jawg"*3 rj=40 (12)
_WzgR\ngRk —jaw, 2Rs Z g s 0

This system gives a new interpretation of the maataraction compared to the schema proposed inZFighe
resonant modes of the structure remains conneotdloetresonant modes of each cavity by gyroscdgiments.
The non resonant modes are no longer explicitlyesgnted but their behaviours are simulated thradigict
couplings between the resonant modes of the twadtiesiv The coupling elements introduce couplingcéor
proportional to the modal amplitudes (and not tkieie derivatives). They are then spring of stiffegiven by the
modal interaction interworks between the resonamtitg modes and the non resonant structure modes. A
illustration of the new modal interaction schemerigposed of Fig. 4. Compared to the former schéreFig. 3),
it has the advantage to involve only couplings leetwresonant modes. The same process used foliststegpthe
original SmEdA model can then be applied to thes@mé problem. The energy formulation can be basethe
power flow relation for two coupled oscillators @&gd by white noise source as emphasized in thegestion.

EXCITATION |—
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FIGURE 4. New interpretation of the modal interaction foe gound transmission problem below the critical
frequency. Back, gyroscopic coupling; red, spriogging.



Energy formulation

SmEdA formulation is presented in details in [7hedgives here the outline of this formulation.

First, it is based on the estimation of the enesiggring by two coupled modes from a relation eihbll by
Scharton and Lyon [11] considering two oscillatescited by white noise forces and coupled by angpeand a
gyroscopic element.

The power flow exchanged by the mquef the cavity 1 and the modeof the cavity 2 which are coupled by a
spring can be related to their modal energies by

n, =8, (E-E). (13)
where ,li’pr is called the modal coupling factor. It is a fuaotof natural angular frequencie&)p, @) ; modal

damping factorsy , 77, ; and interaction modal work® ., W, :

(w7, +@n,)

pr = Zququz 2 2P 2 2|
B (ngn, J [(w) —(w)} +(a)p/7p+wr/7r)[wp/7p(wr) g, (a)p)}

(14)
p v

The power flow exchanged by the mqulef the cavity 1 and the modgof the structure which are coupled by a
gyroscopic element can be evaluated by the same way

Using these power flow relations and writing thevpo balance equation of each mode of the threeystéras,
one obtains a linear equation system having theatrenergy as unknowns:

W1,E, + Zﬁpq(Ep_Eq)+§ﬁpr(Ep_Er):niﬂjv Dlesv

abQr
WO1Ey+ Y. By (B, —E, )+ 2.8, (E,~E )=0,  0qOQ, (15)
poP ror

wnE +Y B, (E -E)+Y. B, (E -E,)=0, OroR,
qD(j, pDI5

where I'Ii’;j characterizes the acoustic source and correspontie modal injected power by the generalized

source strengtk),. This equation system can be solved and the ¢otigy of each cavity can be finally obtained by
adding modal energies:

E(:l:ZEp' EczzzEr ! (16)
pOP rOR
whereEc; (resp.Ec,) is the time-averaged total energy of cavity Bfrecavity 2). The classical Transmission Loss
(TL) can then be easily deduced from these ene(gess[1]).

A BASIC EXAMPLE OF APPLICATION

One illustrates here the present approach on ateata case for which the subsystem modes can balatd
analytically. One emphasizes that this approacHdcbe easily applied to a complex thin structurepgted to
cavities of complex geometries. In this case, thmdah information (modal frequencies, modes shapeshe
structure surface) can be evaluated by Finite Eltsnealculations for each uncoupled subsystem.

The considered case is shown on Fig. 5. It is camgpof a rectangular simply-supported plate coupletdoth
side with a parallelepiped cavity. The plate h&sr.x 0.4m as dimension, 1mm as thickness and deroasteel.
The critical frequency of the plate is around 1ZkH



Rectangular thin plate (Lmm of thickness)

|

/ Excited cavity

Receiving cavity
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FIGURE 5. lllustration of the sound transmission between pacallelepiped cavities coupled by a rectangularepl

For the third octave 1000 Hz, Fig. 6 gives the galwf the modal interaction works (see (4)) betwten
resonant cavity modes and the resonant/non respiatetmodes. The highest values are observedéoNR plate
modes with a low modal order corresponding to mé@gjuencies below 200 Hz. These modes are noégquéncy
coincidence with the resonant cavity modes but #ireyin space coincidence with the cavity modesigtsiighted
by the values of Fig. 6).

Resonant
modes

W12 (Joule) - 1000 Hz W23 (Joule) - 1000 Hz
250

Non-Resonant
modes <

plate modal order
plate modal order

10 20 30 5 10 15 20 25

cavity 1 modal order cavity 2 modal order
FIGURE 6. Interaction modal works: left, between the excitadlity and the plate; right, between the plate thedeceiving
cavity. Third octave band 1000 Hz.
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FIGURE 7. Transmission Loss: left, comparison of the SmEdédpmtions with or without taking the NR modes into
account; right, influence of the plate damping Ifzsgor.



Fig. 7 gives the Transmission Loss (TL) predictgdSmEdA. On the left, one compares the resultsaof t
calculations: one including the NR modes, the otlaking only the resonant modes into account raginal
SmEdA). As it could be expected, one observes itapbdiscrepancies (>15 dB) between the two cdicuis for
the frequencies below the critical frequency. Farqéiencies between 1 kHz and 10 kHz, the blackecurv
corresponds to the mass law of the plate (i.e.eslop6 dB/octave). On the right of Fig. 7, the SrAE@sults
including the NR modes are plotted for two diffdrplate Damping Loss Factors (DLF): 0.01 and 0.@xlow the
critical frequency, the DLF variation does not gheinfluence the TL. This result could be expectastause the
damping has only an effect on the resonant coritabs.

PERSPECTIVES

An extension of SmEdA taking the NR modes contidng into account has been presented. It will allev
using this model for predicting the TL of completxustures like a car firewall or a truck floor inding the
geometry of the engine and passenger compartniemesmodal information (modal frequencies, modegpeban
the structure surface) can be evaluated by FiniéenEnts calculations for each uncoupled subsystem large
frequency band (mid-frequency expected). Moreowetuding a methodology developed recently in @igokratory
[12], the SmEdA model could take into account tira br damped material in the prediction.

ACKNOWLEDGMENTS

This work was co-funded by the French governmebti (2 - Fonds Unique Interministériel) and Europé&hmion
(FEDER - Fonds européen de développement régioiftalvas carried out in the framework of the resbasroject
CLIC (“City Lightweight Innovative Cab”) labelledybLUTB cluster (Lyon Urban Truck and Bus), in patship
with Renault Trucks, Arcelor-Mittal, ACOEM, CITI Thnologies, FEMTO-ST (Univ. de Franche-Comté) and
LVA (INSA de Lyon).

REFERENCES

[1] M. J. Crocker, A. J. Price. Sound transmissising statistical energy analysis. Journal of Scamdi Vibration9 469—
486 (1969).
[2] A.J. Price, M.J. Crocker, Sound transmissiorotigh double panels using statistical energy amaly®urnal of the
Acoustical Society of Americ&7 683-693 (1970).
[8] R.J.Craik, L. Galbrun, Vibration transmissittmough a frame typical of timber-framed buildingsurnal of Sound and
Vibration, 281 763-782 (2005).
[4] C. Churchill, C. Hopkins, L. Krajci, Modellingirborne sound transmission across a hybrid heagightweight
floor using statistical energy analysis. Proceedih§orum Acusticum, Aalborg, Denmark, 2011.
[5] J-D, Chazot, J-L Guyader , Prediction of trarssion loss of double panels with a patch mobitigthod, Journal of the
Acoustical Society of Americh21 267-278 (2006) .
[6] R. Craik, Non-resonant sound transmission tghodouble walls using statistical energy analyspplied Acousticsp4
325-341 (2003).
[7]1 L. Maxit, J.L. Guyader, Extension of SEA modelsubsystem with non-uniform modal energy distidny Journal of
Sound and Vibratior265 337-358 (2003) .
[8] L. Maxit, J.-L. Guyader, Estimation of SEA cdung loss factors using a dual formulation and FEMdal information.
Part I: Theory, Part Il: Numerical applicationsudwal of Sound and Vibratio239, 907-948 (2001).
[9] N. Totaro, C. Dodard, J.L. Guyader, SEA couglinss factors of complex vibro-acoustic systenran$action of the
ASME: Journal of Vibration and Acoustick31, 041009-1 (2009).
[10] F. Fahy, Vibration of containing structuresdmund in the contained fluid. Journal of Sound ¥itation,10 490-512
(1969).
[11] T.D. Scharton, R.H. Lyon, Power flow and enegiaring in random vibration. Journal of the Adass Society of
America,43 1332-1343 (1968).
[12] H. D. Hwang, K. Ege, L. Maxit, N. Totaro, J.-lGuyader, A methodology for including the effedta damping
treatment in the mid-frequency domain using SmEdé&thod. Proceeding of ICSV20, Bangkok, Thailand173uly
2013.



